指数函数的性质的应用教案
《指数函数的定义和性质》教案
《指数函数的定义和性质》教案指数函数的定义和性质教案
介绍
本教案旨在介绍指数函数的定义和基本性质。
一、指数函数的定义
指数函数是一种以底数为常数的幂的形式来表示的函数。
具体来说,指数函数可以写成 f(x) = a^x 的形式,其中 a 是一个正实数且不等于 1。
二、指数函数的特点和性质
1. 当底数 a 大于 1 时,指数函数是递增函数;当 0 < a < 1 时,指数函数是递减函数。
2. 当 x 是正无穷大时,指数函数趋于无穷大;当 x 是负无穷大时,指数函数趋于 0。
3. 指数函数的图像在 x 轴的正半轴上都是正数。
4. 指数函数和对数函数是互为反函数。
三、指数函数的应用
指数函数在数学、物理、经济等领域有广泛的应用。
其中一些应用包括:
1. 复利计算:指数函数可以用来计算复利问题。
2. 人口增长模型:指数函数可以用来描述人口随时间的增长情况。
3. 自然现象建模:指数函数可以用来描述自然现象中的增长或衰减过程。
四、练题
请解答以下问题:
1. 当底数 a 小于 1 时,指数函数的性质是什么?
2. 指数函数在 x 轴的哪个部分为正数?
3. 为什么指数函数和对数函数是互为反函数?
五、参考答案
1. 当底数 a 小于 1 时,指数函数是递减函数。
2. 指数函数在 x 轴的正半轴上为正数。
3. 指数函数和对数函数是互为反函数是因为它们的定义和性质互相对应,对每一个底数 a 来说,a^x 的反函数是以 a 为底的对数函数 log_a(x)。
指数函数图像与性质教学设计精选10篇
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
《指数函数》教案及说明
《指数函数》教案及说明教学目标:1.了解指数函数的概念及特点。
2.掌握指数函数的基本性质和运算法则。
3.能够应用指数函数解决实际问题。
教学准备:1.教材:《数学》教科书指数函数相关知识。
2.教具:黑板、彩色粉笔、教案、课件。
3.学具:纸、笔、计算器。
教学内容:一、指数函数的概念1.引入-贴近生活:指数函数在生活中的应用,如化学反应速率、人口增长、传染病传播等。
2.定义-初步认识:引导学生理解指数函数的定义,即$f(x)=a^x$,其中$a$为底数,$x$为指数。
3.图像-形象认识:通过绘制不同底数的指数函数图像,让学生感受指数函数的特点。
二、指数函数的性质1.增减性质-探索规律:让学生探究当底数大于1或小于1时指数函数的增减规律。
2.奇偶性质-分析对称:引导学生分析指数函数的奇偶性质及对称性。
3.单调性-推理结论:通过图像和实例讨论指数函数的单调性。
三、指数函数的运算1.指数运算-灵活应用:介绍指数运算的基本法则,如底数相同指数相加、乘法规则等。
2.对数运算-运用技巧:引导学生掌握对数运算与指数运算的关系,解决相关问题。
四、应用题训练1.实际问题-连接生活:设计一些实际问题让学生应用指数函数解答,如投资增长、疾病传播等。
2.综合题目-巩固训练:布置一些综合性的题目,检验学生对指数函数的理解和运用能力。
教学过程:一、引入1.通过引入生活中的例子,引起学生对指数函数的兴趣。
2.提出问题:你知道指数函数是什么吗?它有什么特点?二、概念讲解1.讲解指数函数的定义及表达形式。
2.通过示例让学生理解指数函数的意义。
三、性质探究1.讨论指数函数的增减性、奇偶性和单调性。
2.通过实例和图像展示不同性质的指数函数。
四、运算规律1.教授指数运算基本规则,让学生掌握指数函数的运算方法。
2.引导学生理解对数运算与指数运算之间的关系。
五、应用题训练1.分组讨论实际问题,并给出解法。
2.布置应用题训练,让学生巩固所学内容。
《指数函数的概念》教案
《指数函数的概念》教案一、教学目标:1. 理解指数函数的定义和基本性质。
2. 学会运用指数函数解决实际问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 指数函数的定义与表达式2. 指数函数的性质3. 指数函数的应用三、教学重点与难点:1. 重点:指数函数的定义、性质及应用。
2. 难点:指数函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究指数函数的定义和性质。
2. 用实例讲解指数函数在实际问题中的应用,提高学生的学习兴趣。
3. 利用数形结合法,帮助学生直观地理解指数函数的性质。
五、教学过程:1. 引入:通过生活中的实例,如细胞分裂、放射性衰变等,引导学生思考指数增长的特点。
2. 讲解:介绍指数函数的定义、表达式,并通过PPT展示指数函数的图像,让学生直观地感受指数函数的性质。
3. 实践:让学生分组讨论,每组选取一个实际问题,运用指数函数进行解决,并分享解题过程和答案。
4. 总结:对本节课的内容进行总结,强调指数函数的性质和应用。
5. 作业:布置相关练习题,巩固所学内容。
教案仅供参考,具体实施时可根据实际情况进行调整。
六、教学评价:1. 评价指标:学生对指数函数定义的理解、指数函数性质的掌握以及实际问题中的应用能力。
2. 评价方法:课堂练习、小组讨论、课后作业和考试。
3. 评价内容:a. 指数函数的定义及其表达式;b. 指数函数的单调性、奇偶性、周期性等性质;c. 运用指数函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示指数函数的图像、实例及应用;2. 练习题:涵盖指数函数的定义、性质和应用;3. 实际问题案例:用于引导学生运用指数函数解决实际问题;4. 小组讨论工具:如白板、彩笔等。
八、教学进度安排:1. 课时:2课时(90分钟);2. 教学环节:引入(10分钟)、讲解(40分钟)、实践(25分钟)、总结(10分钟)、作业布置(5分钟)。
指数函数的性质的应用
2.1.2 指数函数地性质地应用【教学目标】(1)能熟练说出指数函数地性质.(2)能画出指数型函数地图像,并会求复合函数地性质.(3)在学习地过程中体会研究指数函数性质地应用,养成良好地思维习惯. 【教学重难点】教学重点:指数函数地性质地应用. 教学难点:指数函数地性质地应用. 【教学过程】㈠情景导入、展示目标1.指数函数地定义,特点是什么?2.请两位同学画出指数函数地图象(分两种情况画a>1与0<a<1),并对自己所画地图象说明这类函数地性质有哪些?㈡检查预习、交流展示 1.函数)1,0(≠>=a a y a x地定义域是,值域. 2.函数)1,0(≠>=a a y a x.当a>1时,若x>0时,y1,若x<0时,y1;若x=1时,y1; 当0<a<1时,若x>0时,y1,若x<0时,y1;若x=1时,y1.3.函数)1,0(≠>=a a y a x是函数(就奇偶性填).㈢合作探究、精讲精练 探究点一:平移指数函数地图像 例1:画出函数21+=x y 地图像,并根据图像指出它地单调区间.解析:由函数地解析式可得:21+=x y =⎪⎪⎩⎪⎪⎨⎧-≥-<++)1(,)1(,2)21(11x x x x其图像分成两部分,一部分是将)2111(+=x y(x<-1)地图像作出,而它地图像可以看作)21(xy =地图像沿x轴地负方向平移一个单位而得到地,另一部分是将)1(212≥=+x x y 地图像作出,而它地图像可以看作将2xy =地图像沿x轴地负方向平移一个单位而得到地.解:图像由老师们自己画出 单调递减区间[-∞,-1],单调递增区间[-1,+∞].点评:此类函数需要先去绝对值再根据平移变换画图,单调性由图像易知.变式训练一:已知函数)21(1+=x y(1)作出其图像;(2)由图像指出其单调区间;解:(1))21(2+=x y 地图像如下图:(2)函数地增区间是(-∞,-2],减区间是[-2,+∞).探究点二:复合函数地性质 例2:已知函数x xy 3)2111(2+-= (1)求f(x)地定义域;(2)讨论f(x)地奇偶性;解析:求定义域注意分母地范围,判断奇偶性需要注意定义域是否关于原点对称. 解:(1)要使函数有意义,须2x-10≠,即x≠1,所以, 定义域为(-∞,0) (0,+∞).(2)x xy 3)2111(2+-=则f(-x)=x x x xxxx xx333)1(21)()1(21)1(212222)(22∙-+=--+=∙-+---=x x3)2111(2+- 所以,f(-x)=f(x),所以f(x)是偶函数.点评:此问题难度不是太大,但是很多同学不敢尝试去化简,只要按照常规地方式去推理,此函数地奇偶性很容易判断出来.变式训练二:已知函数1()(1)1x xa f x a a -=>+,试判断函数地奇偶性; 简析:∵定义域为x R ∈,且11()(),()11x xx xa a f x f x f x a a -----===-∴++是奇函数;㈣反馈测试导学案当堂检测㈤总结反思、共同提高【板书设计】 一、指数函数性质 1. 图像 2. 性质 二、例题例1 变式1 例2 变式2【作业布置】导学案课后练习与提高2.1.2 指数函数地性质地应用课前预习学案一.预习目标能熟练说出指数函数地定义及其性质. 二.预习内容 1.函数)1,0(≠>=a a y a x地定义域是,值域. 2.函数)1,0(≠>=a a y a x.当a>1时,若x>0时,y1,若x<0时,y1;若x=1时,y1; 当0<a<1时,若x>0时,y1,若x<0时,y1;若x=1时,y1.3.函数)1,0(≠>=a a y a x是函数(就奇偶性填).三.提出疑惑同学们,通过你地自主学习,你还有那些疑惑,请填在下面地表格中课内探究学案一、学习目标:(1)能熟练说出指数函数地性质.(2)能画出指数型函数地图像,并会求复合函数地性质.(3)在学习地过程中体会研究指数函数性质地应用,养成良好地思维习惯. 教学重点:指数函数地性质地应用. 教学难点:指数函数地性质地应用. 二、教学过程探究点一:平移指数函数地图像例1:画出函数21+=x y 地图像,并根据图像指出它地单调区间.解:变式训练一:已知函数)21(1+=x y(1)作出其图像;(2)由图像指出其单调区间; 解:探究点二:复合函数地性质 例2:已知函数x xy 3)2111(2+-= (1)求f(x)地定义域; (2)讨论f(x)地奇偶性; 解:变式训练二:已知函数1()(1)1x xa f x a a -=>+,试判断函数地奇偶性;三.反思总结四.当堂检测1.函数y =a |x|(0<a <1)地图像是( )2.函数ayx=1,ay x 12+=,若恒有y y12≤,那么底数a地取值范围是( )A .a >1B .0<a <1C .0<a <1或a >1D .无法确定3.函数y =2-x 地图像可以看成是由函数y =2-x+1+3地图像平移后得到地,平移过程是 [ ]A .向左平移1个单位,向上平移3个单位 B .向左平移1个单位,向下平移3个单位 C .向右平移1个单位,向上平移3个单位 D .向右平移1个单位,向下平移3个单位4.函数y=a x+2-3(a >0且a ≠1)必过定点________.参考答案:1.C 2.B 3.A 4.(-2,-2)课后练习与提高1.函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数2.函数21xy =地单调递减区间是( )A.(-∞,+∞) B.(-∞,0) C.(0,+∞)D.(-∞,0)和(0,+∞) 3.函数bx ax f -=)(地图象如图,其中a 、b 为常数,则下列结论正确地是() A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a4.已知函数y=f(x)满足对任意x 1,x 2有f(x 1+x 2)=f(x 1)⋅f(x 2),且x>0时,f(x)<1,那么函数f(x) 在定义域上地单调性为.5.函数y=4x 与函数y=4-x 地图像关于________对称.6.已知函数()1,1x f x a z =-+,若()f x 为奇函数,求a 地值.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.5PCzV。
指数函数及其性质教案
指数函数及其性质教案章节一:指数函数的引入教学目标:1. 理解指数函数的概念。
2. 掌握指数函数的一般形式。
教学内容:1. 引入指数函数的概念,指数函数的一般形式。
2. 举例说明指数函数的图像和性质。
教学步骤:1. 引入指数函数的概念,通过实际例子解释指数函数的定义。
2. 介绍指数函数的一般形式,解释指数函数中的底数和指数的含义。
3. 利用数学软件或图形计算器,绘制几个指数函数的图像,观察其特点。
4. 引导学生总结指数函数的性质,如单调性、奇偶性等。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数的概念。
章节二:指数函数的图像和性质教学目标:1. 掌握指数函数的图像特点。
2. 理解指数函数的单调性和奇偶性。
教学内容:1. 分析指数函数的图像特点。
2. 探讨指数函数的单调性和奇偶性。
教学步骤:1. 利用数学软件或图形计算器,绘制几个指数函数的图像,引导学生观察和总结其特点。
2. 引导学生探讨指数函数的单调性,如当底数大于1时,函数是增函数;当底数小于1时,函数是减函数。
3. 引导学生探讨指数函数的奇偶性,如指数函数既不是奇函数也不是偶函数。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数的图像和性质。
章节三:指数函数的应用教学目标:1. 掌握指数函数在实际问题中的应用。
2. 学会解决与指数函数相关的问题。
教学内容:1. 介绍指数函数在实际问题中的应用。
2. 学会解决与指数函数相关的问题。
教学步骤:1. 举例说明指数函数在实际问题中的应用,如人口增长、放射性衰变等。
2. 引导学生掌握解决与指数函数相关问题的方法,如建立指数函数模型、求解指数方程等。
教学评估:1. 课堂讲解和举例是否清晰明了。
2. 学生是否能正确理解和应用指数函数在实际问题中的应用。
章节四:指数方程的解法教学目标:1. 掌握指数方程的解法。
2. 学会解决实际问题中的指数方程。
指数函数及其性质教学设计(共8篇)
指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。
我将以此为根底对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。
通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。
三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。
指数函数教案设计指数函数教案
指数函数教案设计一、教学目标知识与技能:1. 理解指数函数的定义和性质。
2. 掌握指数函数的图象和应用。
3. 学会解决与指数函数相关的问题。
过程与方法:1. 通过观察、分析和归纳,探索指数函数的性质。
2. 利用指数函数模型解决实际问题。
情感态度价值观:1. 培养学生的数学思维能力。
2. 激发学生对数学的兴趣和好奇心。
二、教学内容第一节:指数函数的定义与性质1. 引入指数函数的概念。
2. 分析指数函数的性质:单调性、奇偶性、周期性。
第二节:指数函数的图象1. 绘制常见指数函数的图象。
2. 分析指数函数图象的特点。
第三节:指数函数的应用1. 应用指数函数解决实际问题。
2. 利用指数函数模型进行预测和计算。
三、教学方法采用问题驱动法、案例教学法和讨论法。
通过提出问题、分析问题、解决问题的过程,引导学生主动探索指数函数的性质和应用。
利用实际案例,让学生体验数学与生活的紧密联系。
通过小组讨论,培养学生的合作能力和口头表达能力。
四、教学资源1. 教案、PPT课件。
2. 指数函数相关案例资料。
3. 计算器、白板等教学工具。
五、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与程度。
2. 作业完成情况:检查学生作业的完成质量和速度。
3. 小组讨论:评估学生在讨论中的表现,包括观点阐述、合作能力和解决问题的能力。
4. 课后反馈:收集学生对课堂内容和教学方法的反馈,以便进行教学改进。
六、教学安排第一节:指数函数的定义与性质(45分钟)1. 引入指数函数的概念(10分钟)2. 分析指数函数的性质:单调性、奇偶性、周期性(25分钟)3. 练习与讨论(10分钟)第二节:指数函数的图象(45分钟)1. 绘制常见指数函数的图象(20分钟)2. 分析指数函数图象的特点(20分钟)3. 练习与讨论(5分钟)第三节:指数函数的应用(45分钟)1. 应用指数函数解决实际问题(20分钟)2. 利用指数函数模型进行预测和计算(20分钟)3. 练习与讨论(5分钟)七、教学反思在授课过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和内容。
《指数函数》的优秀教案
《指数函数》的优秀教案•相关推荐《指数函数》的优秀教案(精选7篇)作为一名人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
教案应该怎么写才好呢?下面是小编整理的《指数函数》的优秀教案,欢迎大家分享。
《指数函数》的优秀教案篇1教学目标:1.进一步理解指数函数的性质;2.能较熟练地运用指数函数的性质解决指数函数的平移问题;教学重点:指数函数的性质的应用;教学难点:指数函数图象的平移变换.教学过程:一、情境创设1.复习指数函数的概念、图象和性质练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?二、数学应用与建构例1解不等式:(1);(2);(3);(4).小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:(1);(2);(3);(4).小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).练习:(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x—1的图象恒过的定点的坐标是.小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?小结:函数图象的对称变换规律.例3已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象.例4求函数的最小值以及取得最小值时的x值.小结:复合函数常常需要换元来求解其最值.练习:(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;(2)函数y=2x的值域为;(3)设a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值为14,求a的值;(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围.三、小结1.指数函数的性质及应用;2.指数型函数的定点问题;3.指数型函数的草图及其变换规律.四、作业:课本P55—6,7.五、课后探究(1)函数f(x)的定义域为(0,1),则函数的定义域为。
指数函数及其性质教学教案
指数函数及其性质教学教案一、教学目标1. 知识与技能:(1)理解指数函数的定义;(2)掌握指数函数的性质;(3)能够运用指数函数解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生发现指数函数的性质;(2)利用信息技术手段,动态展示指数函数的图像,帮助学生直观理解指数函数的性质。
3. 情感态度价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)指数函数的定义;(2)指数函数的性质;(3)指数函数在实际问题中的应用。
2. 教学难点:(1)指数函数的性质的推导;(2)指数函数在实际问题中的灵活运用。
三、教学准备1. 教师准备:(1)熟悉指数函数的相关知识;(2)准备相关的教学案例和实际问题;(3)准备教学课件和教学素材。
2. 学生准备:(1)掌握函数的基本概念;(2)了解对数函数的相关知识。
四、教学过程1. 导入新课:(1)复习函数的基本概念,引导学生回顾已知函数的性质;(2)提问:同学们,你们听说过指数函数吗?指数函数是什么样的函数呢?2. 探究指数函数的定义:(1)引导学生通过观察、分析,总结指数函数的一般形式;(2)给出指数函数的定义,并解释指数函数的特点。
3. 探究指数函数的性质:(1)引导学生通过观察、分析、归纳等方法,发现指数函数的性质;(2)利用信息技术手段,动态展示指数函数的图像,帮助学生直观理解指数函数的性质。
4. 应用指数函数解决实际问题:(1)给出实际问题,引导学生运用指数函数知识解决问题;(2)引导学生总结指数函数在实际问题中的应用方法。
五、课堂小结本节课我们学习了指数函数的定义和性质,并通过实际问题了解了指数函数的应用。
希望同学们能够掌握指数函数的知识,并在实际问题中灵活运用。
教学反思:在教学过程中,要注意引导学生通过观察、分析、归纳等方法,发现指数函数的性质。
要注重培养学生的实际问题解决能力,提高学生运用数学知识解决实际问题的能力。
指数函数的图像和性质教案设计
指数函数的图像和性质教案设计一、教学目标1. 让学生理解指数函数的概念,掌握指数函数的图像和性质。
2. 培养学生运用指数函数解决实际问题的能力。
3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 指数函数的定义与性质2. 指数函数的图像特点3. 指数函数的实际应用4. 指数函数的图像和性质的综合运用三、教学重点与难点1. 教学重点:指数函数的定义、图像特点和性质。
2. 教学难点:指数函数图像和性质的运用。
四、教学方法1. 采用问题驱动法,引导学生探索指数函数的图像和性质。
2. 利用多媒体课件,直观展示指数函数的图像,帮助学生理解。
3. 结合实际例子,让学生体验指数函数在实际生活中的应用。
4. 开展小组讨论,培养学生的合作能力和解决问题的能力。
五、教学过程1. 引入:通过回顾幂函数的知识,引导学生思考指数函数的定义和特点。
2. 讲解:讲解指数函数的定义,引导学生掌握指数函数的基本性质。
3. 展示:利用多媒体课件,展示指数函数的图像,引导学生观察和分析图像特点。
4. 实践:让学生绘制指数函数的图像,观察和分析图像的性质。
5. 应用:结合实际例子,让学生运用指数函数解决实际问题。
6. 总结:对本节课的内容进行总结,强调指数函数的图像和性质。
7. 作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问,了解学生对指数函数概念和性质的理解程度。
2. 练习题:布置针对性的练习题,检验学生对指数函数图像和性质的掌握情况。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、拓展与延伸1. 引导学生思考:指数函数在实际生活中的应用场景有哪些?2. 探讨:如何利用指数函数解决实际问题?3. 布置研究性学习任务:让学生研究指数函数在其他领域的应用。
八、教学反思1. 教师总结本节课的教学效果,反思教学过程中的优点和不足。
2. 学生反馈学习感受,提出改进建议。
3. 针对教学不足,制定改进措施,为下一节课的教学做好准备。
指数函数及其性质教学教案
指数函数及其性质教学教案一、教学目标1. 知识与技能:使学生掌握指数函数的定义、表达式及图像特征;理解指数函数的单调性、奇偶性、过定点等性质;能够运用指数函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现指数函数的性质;运用数形结合的方法,让学生感受指数函数在实际生活中的应用。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:指数函数的定义、表达式及图像特征;指数函数的单调性、奇偶性、过定点等性质。
2. 教学难点:指数函数的单调性的证明及应用;指数函数在实际生活中的应用。
三、教学过程1. 导入新课:以日常生活中常见的实例为切入点,如手机信号强度衰减、人口增长等,引出指数函数的概念。
2. 自主学习:让学生通过阅读教材,掌握指数函数的定义、表达式及图像特征。
3. 课堂讲解:讲解指数函数的单调性、奇偶性、过定点等性质,并通过例题演示运用指数函数解决实际问题。
4. 师生互动:引导学生通过观察、分析、归纳等方法,发现指数函数的性质;组织学生进行小组讨论,分享各自的学习心得。
5. 练习巩固:布置适量的课后练习题,让学生巩固所学知识。
四、课后作业1. 完成教材后的课后练习题。
2. 结合生活实际,寻找其他符合条件的指数函数实例,并加以分析。
五、教学反思2. 对教学过程中存在的问题进行反思,如教学方法、教学内容等,并提出改进措施。
3. 针对学生的学习情况,调整课后作业的难度,确保学生能够巩固所学知识。
六、教学评价1. 学生自评:让学生结合自己的学习情况,评价自己在本次课程中对指数函数及其性质的掌握程度。
2. 同伴评价:组织学生进行小组评价,相互交流在学习过程中的心得体会,取长补短。
3. 教师评价:根据学生的课堂表现、课后作业完成情况,以及课堂互动情况,对学生的学习效果进行评价。
七、教学拓展1. 引导学生探讨指数函数在其他领域的应用,如自然科学、社会科学等。
数学教案-指数函数与对数函数性质及其应用
数学教案-指数函数与对数函数性质及其应用一、教学目标1.了解指数函数和对数函数的基本定义;2.掌握指数函数和对数函数的基本性质;3.理解指数函数和对数函数在实际问题中的应用。
二、教学重点1.指数函数和对数函数的基本定义;2.指数函数和对数函数的基本性质。
三、教学难点指数函数和对数函数在实际问题中的应用。
四、教学准备1.教科书;2.展示工具(投影仪、黑板等);3.实际问题的练习题。
五、教学内容1. 指数函数的定义与性质指数函数是以指数为自变量的函数,通常的形式为:f(x)=a x其中,a为底数,x为指数。
指数函数的定义域为实数集,值域为正实数集。
指数函数的性质:•指数函数在x轴右侧递增,在y轴右侧递减;•当a>1时,指数函数递增;当0<a<1时,指数函数递减;•指数函数的图像经过点(0,1);•当x=0时,指数函数的值为1;•当x趋近于正无穷大时,指数函数的值趋近于正无穷大;当x趋近于负无穷大时,指数函数的值趋近于0。
2. 对数函数的定义与性质对数函数是指以一个正数为底数,以正实数为对数的函数,通常的形式为:$$f(x) = \\log_a(x)$$其中,a为底数,x为实数。
对数函数的定义域为正实数集,值域为实数集。
对数函数的性质:•对数函数在x轴右侧递增,在y轴右侧递减;•当a>1时,对数函数递增;当0<a<1时,对数函数递减;•对数函数的图像经过点(1,0);•当x=a时,对数函数的值为1;•当x趋近于正无穷大时,对数函数的值趋近于正无穷大;当x趋近于0时,对数函数的值趋近于负无穷大。
3. 指数函数与对数函数的应用指数函数和对数函数在实际问题中的应用非常广泛,主要包括以下几个方面:3.1 指数增长与指数衰减指数函数可以用来描述一些具有指数增长或指数衰减趋势的现象。
例如,人口增长、疾病传播等。
通过实际问题的分析,学生可以理解指数函数在这些问题中的应用,并通过解题练习加深对指数函数的理解。
最新人教版高一数学《指数函数》教案15篇
人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。
数学指数函数教学教案(最新5篇)
数学指数函数教学教案(最新5篇)高一数学《指数函数》优秀教案篇一一、教学目标:1、知识与技能(1)理解指数函数的概念和意义;(2)与的图象和性质;(3)理解和掌握指数函数的图象和性质;(4)指数函数底数a对图象的影响;(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小(6)体会具体到一般数学讨论方式及数形结合的思想。
2、情感、态度、价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理。
(2)培养学生观察问题,分析问题的能力。
二、重、难点:重点:(1)指数函数的概念和性质及其应用。
(2)指数.函数底数a对图象的影响。
(3)利用指数函数单调性熟练比较几个指数幂的大小。
难点:(1)利用函数单调性比较指数幂的大小。
(2)指数函数性质的归纳,概括及其应用。
三、教法与教具:①学法:观察法、讲授法及讨论法。
②教具:多媒体。
四、教学过程:第一课时讲授新课指数函数的定义一般地,函数(0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。
提问:在下列的关系式中,哪些不是指数函数,为什么?(1)(2)(3)(4)(5)(6)(7)(8)(1,且)小结:根据指数函数的定义来判断说明:因为0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R。
若0,如在实数范围内的函数值不存在。
若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。
先来研究的情况。
下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。
再研究,01的情况,用计算机完成以下表格并绘出函数的图象。
从图中我们看出。
通过图象看出实质是上的。
讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出的函数图象。
练习p711,2作业p76习题3-3A组2课后反思:高一数学《指数函数》优秀教案篇二教学目标:进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。
指数函数的图像与性质教案
指数函数的图像与性质教案一、教学目标1. 理解指数函数的定义和基本性质。
2. 能够绘制和分析指数函数的图像。
3. 掌握指数函数在实际问题中的应用。
二、教学内容1. 指数函数的定义与表达式指数函数是一种特殊类型的函数,形式为f(x) = a^x,其中a 是底数,x 是指数。
指数函数的定义域是所有实数,值域是正实数。
2. 指数函数的图像特点(1) 当a > 1 时,指数函数的图像上升。
(2) 当0 < a < 1 时,指数函数的图像下降。
(3) 指数函数的图像经过点(0, 1)。
3. 指数函数的性质(1) 单调性:当a > 1 时,指数函数单调递增;当0 < a < 1 时,指数函数单调递减。
(2) 指数函数的值域为正实数。
(3) 指数函数的图像具有无限多条切线,且切线斜率恒为a。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析和解决实际问题,深入理解指数函数的图像与性质。
2. 利用数学软件或图形计算器绘制指数函数的图像,帮助学生直观地感受指数函数的特点。
3. 设计具有挑战性的练习题,激发学生的思考和探索能力,巩固所学知识。
四、教学评估1. 通过课堂讲解、练习题和小组讨论,评估学生对指数函数定义、图像和性质的理解程度。
2. 布置课后作业,要求学生绘制指数函数的图像,并运用指数函数解决实际问题,以评估学生的应用能力。
3. 在课程结束后,进行一次小测验,检验学生对指数函数的整体掌握情况。
五、教学资源1. 教学PPT或教案文档,包含指数函数的定义、图像和性质的相关知识点。
2. 数学软件或图形计算器,用于绘制指数函数的图像。
3. 练习题和案例分析题,供学生巩固所学知识和应用实践。
六、教学步骤1. 引入指数函数的概念,引导学生思考指数函数在实际生活中的应用场景。
2. 讲解指数函数的定义与表达式,引导学生理解指数函数的基本形式。
3. 利用数学软件或图形计算器,绘制不同底数的指数函数图像,引导学生观察和分析指数函数的图像特点。
指数函数的图像和性质教案设计
指数函数的图像和性质教案设计第一章:指数函数的定义与性质1.1 指数函数的定义引导学生回顾函数的概念,引入指数函数的定义。
通过实际例子,让学生理解指数函数的形式和特点。
1.2 指数函数的性质分析指数函数的单调性,奇偶性,周期性等基本性质。
通过图表和实际例子,让学生直观地理解指数函数的性质。
第二章:指数函数的图像2.1 指数函数图像的特点引导学生绘制简单的指数函数图像,观察其特点。
分析指数函数图像的渐近线和拐点等特殊点。
2.2 指数函数图像的应用通过实际例子,让学生了解指数函数图像在实际问题中的应用,如人口增长、放射性衰变等。
第三章:指数函数的导数3.1 指数函数的导数公式引导学生回顾导数的基本概念,引入指数函数的导数公式。
通过例题和练习,让学生掌握指数函数的导数计算方法。
3.2 指数函数的单调性分析指数函数的单调性,引导学生理解导数与单调性的关系。
通过实际例子,让学生了解如何利用导数判断指数函数的单调性。
第四章:指数函数的极限4.1 指数函数的极限定义引导学生回顾极限的概念,引入指数函数的极限定义。
通过实际例子,让学生理解指数函数在趋近于无穷大或无穷小时的极限值。
4.2 指数函数的极限性质分析指数函数的极限性质,如单调性和连续性。
通过练习题,让学生掌握指数函数极限的计算方法。
第五章:指数函数的应用5.1 指数函数在实际问题中的应用通过实际例子,让学生了解指数函数在实际问题中的应用,如人口增长、放射性衰变等。
引导学生运用指数函数解决实际问题,培养学生的应用能力。
5.2 指数函数在其他学科中的应用引导学生了解指数函数在其他学科中的应用,如物理学中的放射性衰变、生物学中的种群增长等。
培养学生的跨学科思维和综合运用能力。
第六章:指数函数与对数函数的关系6.1 对数函数的定义引导学生回顾对数函数的概念,引入对数函数的定义。
通过实际例子,让学生理解对数函数的形式和特点。
6.2 指数函数与对数函数的关系分析指数函数与对数函数的互为反函数关系。
指数函数教案
指数函数教案指数函数教案指数函数是高中数学中的重要内容之一,它在数学和科学领域中有着广泛的应用。
本教案将介绍指数函数的定义、性质以及一些常见的应用。
一、指数函数的定义指数函数是以常数e为底的幂函数,通常表示为f(x) = a^x,其中a是底数,x是指数。
指数函数的定义域是实数集,值域是正实数集。
二、指数函数的性质1. 指数函数的图像指数函数的图像呈现出特殊的形状,当底数a大于1时,图像呈现上升的趋势;当底数a小于1时,图像呈现下降的趋势。
当底数a等于1时,指数函数的图像为一条直线。
2. 指数函数的增减性当底数a大于1时,指数函数是递增的;当底数a小于1时,指数函数是递减的。
3. 指数函数的性质指数函数具有以下性质:- f(x) = a^x是连续函数;- 指数函数的导数等于它自身的函数值的导数,即f'(x) = a^x * ln(a);- 指数函数的反函数是对数函数。
三、指数函数的应用指数函数在实际问题中有着广泛的应用,下面介绍几个常见的应用场景。
1. 复利计算在金融领域中,指数函数可以用来计算复利。
复利是指在一定时间内,本金按照一定的利率进行投资,每个时间段的利息都会加到本金上,从而产生更多的利息。
指数函数可以用来计算复利的增长情况,帮助人们做出更明智的投资决策。
2. 生物增长模型生物学中的种群增长模型常常使用指数函数来描述。
例如,兔子繁殖模型中,假设兔子的繁殖速度与当前种群数量成正比,那么种群数量的增长可以用指数函数来表示。
这种模型可以帮助科学家研究生物种群的增长规律。
3. 物质衰变在物理学和化学领域中,指数函数可以用来描述物质的衰变过程。
例如,放射性元素的衰变速度与其当前的数量成正比,可以用指数函数来表示。
这种模型可以帮助科学家研究物质的衰变规律。
4. 电子电路在电子电路中,指数函数可以用来描述电容充放电过程。
当电容器充电时,电荷的增长速度与当前电荷量成正比,可以用指数函数来表示。
这种模型可以帮助工程师设计和优化电子电路。
指数函数性质的应用
指数函数性质的应用
:指数函数性质的应用
活动一:复习性质同桌交流
同桌相互提问指数函数的性质,达到熟练的程度.
活动二:应用自测自我检查
1.出示自测题组(8个选择、填空题),学生当堂完成,时间10分钟.
题目包括求函数值、判断函数图象、比较大小、图像过定点等问题.
2.教师公布答案,学生检查对错,及时更正;
通过同桌交流解决做错的问题,解决不了的学习中心组的学生或老师讲解.
活动三:突出重点突破难点
1.对指数函数底数取值范围的进一步理解
问题:举例说明为什么规定指数函数底数a>0, 且a≠1.
提问中等以下水平学生,并根据情况追问,直至学生明白为止.
2.学生用几何画板软件画出底数a>1的指数函数图象,让a变化,观察图像位置的变化特征..用计算机画出底数0
2.师生总结随底数变化,图像的变化规律.
活动四:典型例题抓住关键
1.例1:根据函数性质比较大小(教材P57例7)
问题1:根据本例说明怎样利用指数函数的性质判断两个幂的大小?关键是找到对应指数函数,明确其单调性.
问题2:三个式子比较大小,如何解决,有哪些方法?(两两比较、与0、
1、-1等的数值比较)
2.例2:如果a 2x+1 ≦a x-5(a>0,a≠1),求x的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2指数函数的性质的应用
【教学目标】
(1)能熟练说出指数函数的性质。
(2)能画出指数型函数的图像,并会求复合函数的性质。
(3)在学习的过程中体会研究指数函数性质的应用,养成良好的思维习惯。
【教学重难点】
教学重点:指数函数的性质的应用。
教学难点:指数函数的性质的应用。
【教学过程】
㈠情景导入、展示目标
1.指数函数的定义,特点是什么?
2.请两位同学画出指数函数的图象(分两种情况画a>1与0<a<1),并对自己所画的图象说明这类函数的性质有哪些?
㈡检查预习、交流展示
1.函数)1
a
=a
y a x的定义域是,值域.
,0
(≠
>
2.函数)1
a
y a x.
=a
,0
(≠
>
当a>1时,若x>0时,y1,
若x<0时,y1;若x=1时,y1;
当0<a<1时,若x>0时,y1,
若x<0时,y1;若x=1时,y1.
3.函数)1,0(≠>=a a y a x 是 函数(就奇偶性填).
㈢合作探究、精讲精练 探究点一:平移指数函数的图像
例1:画出函数21+=x y 的图像,并根据图像指出它的单调区间.
解析:由函数的解析式可得:
21+=x y =⎪⎪⎩⎪⎪⎨⎧
-≥-<++)
1(,)
1(,2)2
1(11
x x x x 其图像分成两部分,一部分是将)2
1
1
1(
+=x y (x<-1)的图
像作出,而它的图像可以看作)2
1(x
y =的图像沿x轴的负方向平移一个单位而得到的,另一部分是将)1(21
2
≥=+x x y 的图像作出,而
它的图像可以看作将2x y =的图像沿x轴的负方向平移一个单位而得到的.
解:图像由老师们自己画出
单调递减区间[-∞,-1],单调递增区间[-1,+∞].
点评:此类函数需要先去绝对值再根据平移变换画图,单调性由图像易知。
变式训练一:已知函数)2
1
(1
+=x y
(1)作出其图像;
(2)由图像指出其单调区间; 解:(1)
)
2
1(2
+=x y 的图像如下图:
(2)函数的增区间是(-∞,-2],减区间是[-2,+∞).
探究点二:复合函数的性质 例2:已知函数x x
y 3)2111
(
2+-= (1)求f(x)的定义域; (2)讨论f(x)的奇偶性;
解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。
解:(1)要使函数有意义,须2x -10≠,即x≠1,所以, 定义域为(-∞,0)Y (0,+∞).
(2)x x
y 3
)2
111
(2+-= 则
f
(
-
x
)
=
x x x x
x
x
x x
x
3
3
3
)
1(21)()
1(21)
1(212222
)(2
2•-+=
--+=
•-+---=x x
3)2
111
(
2+- 所以,f(-x)=f(x),所以f(x)是偶函数.
点评:此问题难度不是太大,但是很多同学不敢尝试去化简,只要按照常规的方式去推理,此函数的奇偶性很容易判断出来。
变式训练二:已知函数1
()(1)1x x a f x a a -=>+,试判断函数的奇偶性;
简析:∵定义域为x R ∈,且11()(),()11x x
x x
a a f x f x f x a a -----==
=-∴++是奇函数;
㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高
【板书设计】 一、指数函数性质 1. 图像 2. 性质 二、例题
例1 变式1 例2 变式2
【作业布置】
导学案课后练习与提高。