5-6用配方法化二次型成标准形

合集下载

化二次型为标准形几种方法的比较及技巧

化二次型为标准形几种方法的比较及技巧

化二次型为标准形几种方法的比较及技巧1. 引言1.1 化二次型为标准形的重要性化二次型为标准形是线性代数中一个重要的概念。

在实际问题中,我们经常会遇到涉及二次型的计算和分析,因此将二次型化为标准形可以简化计算过程,方便问题的进一步研究和解决。

化为标准形后,我们可以更清晰地看到二次型的特征,比如主轴方向、主轴长度等,这有助于我们对二次型的性质进行深入了解。

将二次型化为标准形也为后续的计算和分析提供了便利。

通过化为标准形,我们可以更方便地进行求导、求极值等操作,从而更好地研究二次型的性质和应用。

标准形也为我们提供了一种比较统一的形式,使得不同二次型之间的比较和分析更加简便和直观。

化二次型为标准形是具有重要意义的。

它不仅简化了计算过程,提供了便利的分析工具,还有助于我们深入理解二次型的性质和特征。

选择合适的方法和技巧进行化标准形的操作可以更快速地解决问题,提高工作效率,是线性代数学习中不可或缺的一环。

2. 正文2.1 方法一:通过配方法求解通过配方法求解是一种将二次型化为标准形的常用方法。

在这种方法中,我们首先将二次型中的平方项配方,使其变为完全平方,然后再通过变量替换的方法将其化为标准形。

具体步骤如下:1. 将二次型中的平方项配方。

对于二次型Q(x_1,x_2,...,x_n)=a_{11}x_1^2+a_{22}x_2^2+...+a_{nn}x_n^2+2(a _{12}x_1x_2+...+a_{1n}x_1x_n+...+a_{n-1,n}x_{n-1}x_n),我们可以将每一项中的平方项提出并进行配方,得到完全平方的形式。

2. 然后,通过适当的变量替换将配方后的二次型化为标准形。

通常情况下,我们选择适当的线性变换矩阵P,使得Q(x)=x^TAX中的A 为对角矩阵,即A=diag(\lambda_1,\lambda_2,...,\lambda_n)。

这样就将二次型成功化为标准形。

通过配方法求解的优点在于操作简单直观,容易理解和掌握。

化二次型为标准型的方法解读

化二次型为标准型的方法解读

化二次型为标准型的方法二、 二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 22ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ''''x x cos y sin y x sin y cos θθθθ⎧=-⎪⎨=+⎪⎩ (2)把方程(1)化成标准方程。

在二次曲面的研究中也有类似的情况。

(1)的左端是一个二次齐次多项式。

从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。

二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。

现在就来介绍它的一些最基本的性质。

设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。

设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式11111221n n 22112222n n 33113223n n n n12n22nn nx c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++⎧⎪=++⎪⎪=++⎨⎪⎪=++⎪⎩ (4) 称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。

如果ij c 0≠,那么线性替换(4)就称为非退化的。

在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。

用配方法将二次型化为标准型

用配方法将二次型化为标准型

用配方法将二次型化为标准型首先,我们来回顾一下二次型的定义。

对于n元变量x1, x2, ..., xn,二次型可以表示为。

Q(x) = x^T A x。

其中,A是一个n阶对称矩阵,x是一个n维列向量,x^T表示x的转置。

二次型的标准型是一个比较特殊的形式,可以通过合适的线性变换将任意的二次型化为标准型。

具体来说,标准型可以表示为。

Q(x) = λ1 y1^2 + λ2 y2^2 + ... + λn yn^2。

其中,λ1, λ2, ..., λn是二次型的特征值,y1, y2, ..., yn是对应的特征向量。

接下来,我们将介绍用配方法将二次型化为标准型的步骤。

设给定的二次型为。

Q(x) = x^T A x。

我们的目标是通过合适的线性变换,将其化为标准型。

首先,我们需要求出矩阵A的特征值和对应的特征向量。

然后,我们将特征值和特征向量构成对角矩阵和正交矩阵,利用这两个矩阵进行相似变换,最终将二次型化为标准型。

具体的步骤如下:1. 求出矩阵A的特征值和对应的特征向量。

设特征值为λ1, λ2, ..., λn,对应的特征向量为v1, v2, ..., vn。

2. 将特征值和特征向量构成对角矩阵D和正交矩阵P。

其中,D的对角线元素为特征值,P的列向量为特征向量。

3. 进行相似变换。

设矩阵B = P^T A P,则二次型可以表示为。

Q(x) = x^T B x。

4. 化为标准型。

将矩阵B对角化,即将其化为对角矩阵,对角线元素为特征值。

设B的对角线元素为λ1, λ2, ..., λn,则二次型化为标准型。

Q(x) = λ1 y1^2 + λ2 y2^2 + ... + λn yn^2。

其中,y = P x。

通过以上步骤,我们可以将任意给定的二次型通过配方法化为标准型。

这样做的好处在于,标准型更容易进行分析和运算,可以更清晰地展现二次型的特性和规律。

在实际问题中,通过将二次型化为标准型,我们可以更方便地求出极值、进行分类讨论等。

化二次型为标准型的方法

化二次型为标准型的方法

化二次型为标准型的方法二、二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程ax 2 +2bxy+ cy 2 = f .为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度。

,作转轴(反时针方把方程(1)化成标准方程,在二次曲面的研究中也有类似的情况.(1)的左端是一个二次齐次多项式。

从代数的观点看,所谓化标准方程就是用变量 的线性替换(2)化简一个二次齐次多项式,使它只含平方项。

二次齐次多项式不但在几 何中出现,而且数学的其他分支以及物理、力学中也常会碰到。

现在就来介绍它的一些最 基本的性质。

设P 是一数域,一个系数在数域P 上的X“X2,...,Xn 的二次齐次多项式 f (X],x^,・・・,Xn ) = a.eX.2 +2a“X]X, +... + 2a.x.x n+... + 2a. x ?x n +... + a n x n 2J xnii Ii i *in i n匕 .n 二 n nil n称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。

设x p x 2,...,x n ; y,,y 2,…,yn 是两组文字,系数在数域P 中的一组关系式x 1=c I1y I +c 12y 2+...c ln y nx 2=c 2iyi +c 22y 2+-c 2nyn X 3=C 3iyi +C 32y2+-C 3ny n(4)/n =C niy2+C n2y2+-C nnyn称为由X|,X2,...,Xn 到力必,…,yn 的一个线性替换,。

如果|cJ #。

,那么线性替换(4)就 称为非退化的。

在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。

另, i<j.由于XjXj=XjXi ,所以f (x p x 2,...,x n ) = a 11x 12 +2a 12X!X 2 +... +2a ln X!X n +a 22x 22 +... + 2a 2n x 2x n +... + a nn x n 2n n= Z»,jXjXjj —1它的系数排成一个n*n 矩阵(1)向转轴) x = x cos 0-y sin 。

化二次型为标准型的方法

化二次型为标准型的方法

化二次型为标准型的方法二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程ax" + 2bxy+ cy' =f .(1)为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度作转轴(反时针方 X = X cos&-y sin&• •y = X sin0+y cos0把方程(1)化成标准方程。

在二次曲而的研究中也有类似的情况。

(1)的左端是一个二次齐次多项式。

从代数的观点看,所谓化标准方程就是用变量 的线性替换(2)化简一个二次齐次多项式,使它只含平方项。

二次齐次多项式不但在几 何中出现,而且数学的其他分支以及物理、力学中也常会碰到。

现在就来介绍它的一些最 基本的性质。

向转轴)(2)设P 杲一数感,一个系数在数域P I :的X|.X2,•…Xn 的二次齐次多项式f(XpXx ・・・,Xn)= a…xf +2apX]X 》+・•・+ 2d]nX]Xn +a"X 分2 +・・・ + 2a*nXjXn +・・・ + annXn2称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。

设X|,X2■…,x…: y^y, y…是两组文字,系数在数域P 中的一组关系式X| =勺』|+匂汙2+・・・5人X2=C2.yi+c…y,+...c,…y… X3=C3y +。

32『2+…(3"九 (4) 1/"=5』2+%九+…5肌 称为由XpX2 x…到yid?人的一个线性替换八如果 G H0,那么线性替换(4)就 称为非退化的。

在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。

另 那二ivj ・由于XjXj=XjXi ,所以 f(X|,X2,・・・,x…) = a]]X/ + 2di2X|X2+・・・ + 2a]nX|Xn +3,2X2"+... + 2a2…X2Xj, +n n =工工a/iXj i —1它的系数排成一个n*n 矩阵州2…% 幻2…幻n它就称为二次型的矩阵。

化二次型为标准型的方法

化二次型为标准型的方法

化二次型为标准型的方法二、 二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 22ax 2bxy cy f ++=. (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ''''x x cos y sin y x sin y cos θθθθ⎧=-⎪⎨=+⎪⎩ (2)把方程(1)化成标准方程。

在二次曲面的研究中也有类似的情况。

(1)的左端是一个二次齐次多项式。

从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。

二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。

现在就来介绍它的一些最基本的性质。

设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。

设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式11111221n n 22112222n n 33113223n n n n12n22nn nx c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++⎧⎪=++⎪⎪=++⎨⎪⎪=++⎪⎩ (4) 称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。

如果ij c 0≠,那么线性替换(4)就称为非退化的。

在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。

化二次型为实用标准形地几种方法

化二次型为实用标准形地几种方法

化二次型为标准形的几种方法摘要二次型是代数学要研究的重要容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方.关键词:正交变换法配方法初等变换法雅可比方法偏导数法reduce the quadratic forms to the standard forms Abstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula.Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method一、 引言二次型的本质是一个关于n 个变量二次齐次函数,在它的表达式中除了平方项就是交叉项,没有一次项或常数项,其具体定义为:设P 是一个数域,一个系数在数域P 中12,n x x x ⋯的二次齐次多项式2121112121211222222f(,,,,)2...2...2...n n n n n nn n x x x a x a x x a x x a x a x x a x =++++++++= 11n n ij ij j i a x x ==∑∑,称为数域P 上的一个n 元二次型.二次型具有广泛的应用性,在工程技术、经济管理、社会科学以及数学的其他分支中均需要运用到二次型,在实际运用过程中经常需要将二次型化为标准形,很多同学能够根据标准的步骤将二次型化为标准形,但是却不能很好地根据所给的题目运用最适宜的方法进行解决.本文参考已有的研究结果,总结化二次型为标准形的几种方法,分析每种方法的解题原理和过程,归纳其应用特点,帮助《线性代数》的初学者根据题目的特点和要求采取最佳的方法解决问题,达到简明快速的目的.关于二次型化为标准型的问题,许多数学学者作了较深入的研究,获得了许多具有研究价值和参考价值的成果.庄瓦金在文【11】中给出了二次型的定义及其若干性质.惠汝、红超在文【12】中将二次型和非退化线性替换用矩阵形式表示,对二次型化为标准形问题采取两种转化思路:一是联系矩阵的初等变换,把问题转化为矩阵合同变换问题;二是借助实对称矩阵特征值与特征向量的有关理论,把问题转化为用正交变换化实对称矩阵为对角形的问题.这两种转化思路产生了二次型化为标准形的两种方法,即合同变换法(也称初等变换法)和正交变换法.五明,永金,栋春在【7】中给出了实二次型化为标准形的方法.通过观察各项进行配方,其实质就是运用非退化的线性替换.使用配方法将二次型化为标准形问题时采取两种转化思路:一是含有平方项时,把平方项集中,然后配方,化为标准形;二是不含平方项时构造平方项,进行逆变换,继续第一步进行配方,这种转化思路产生了二次型化为标准形的方法,即配方法.明琼在【9】中给出了二次型化为标准形的方法.此方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.这种转化思路产生了又一种二次型化为标准形的方法,即合雅可比方法.郭佑镇在【8】中给出了实二次型的化简及应用偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间关系这一原理,依据配方法而提出的化二次型为标准行的新方法,解题思路与配方法极为相似.把问题转化为用偏导数法实解决问题.这种转化思路产生了二次型化为标准形的另一种方法,即偏导数法.秀花在文【13】讨论了化二次型为标准形的两种常用方法的区别:正交变换法的第一步是将二次型写成矩阵形式,然后将二次型的矩阵通过单位正交化方法进行对角化,最后利用正交矩阵得到正交变换,利用特征值得到标准形.正交变换法需要求出二次型矩阵的全部特征值,即求特征方程的根,由于代数方程没有统一的求根公式,因此在操作上存在一定的困难.而配方法避免了求解矩阵特征值的问题,因而使用起来比较方便.以上学者的研究为本文介绍的化二次型为标准形的六种方法奠定了基础,为以后的研究工作做出了重要贡献.本文梳理了已有的研究成果,并对六种方法做出总结,希望能够对未来的相关研究作出贡献.二、 化二次型为标准形的六种方法(一)正交变换法由于实对称矩阵必定与对角矩阵合同,因此任何实二次型必定可以通过一个适当的正交线性替换将此实二次型化为标准形.定理1 任意一个实二次型T AX f X ==11n nij i j i j a x x ==∑∑(其中ij ji a a =)都可以经过正交线性替换变成平方和2221122...n n y y y λλλ+++,其中平方项的系数12,...,n λλλ就是矩阵的全部特征根.由此定理得到的化二次型为标准形的方法称为正交变换法,此法的解题步骤为:1. 将实二次型表示成矩阵形式T AX f X =,并写出矩阵A ;2. 求出矩阵A 的所有特征值12,...,i λλλ,它们的重数分别记为21,...,ik k k (21...i k k k +++=n )○3求出每个特征值所对应的特征向量,因为21...i k k k +++=n ,所以共有n 个特征向量21...,,i ξξξ.具体方法是:列出方程1()0E A X λ→-=,解出与1λ对应的1k 个线性无关的特征向量;同理求出其他的特征值23,...,i λλλ所对应的特征向量. ○4将n 个特征向量21...,,i ξξξ,先后施行正交化和单位化,得到单位正交向量组21,,,n ηηη,并记C =21)(,,T n ηηη;○5作正交变换X CY =,则二次型f 化为标准形f =2221122...n ny y y λλλ+++. 例1 用正交变换方法化二次型222212341234121314232434,,,)264462(x x x x x x x x x x x x x x x x x x x f x =+++-+--+-为标准形.解:(1)二次型的矩阵为A =1132112332112311⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭-------- 由A 的特征多项式E A λ-=1132112332112311λλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭--------=(3)(7)(1)(1)λλλλ+--+ 得A 的特征值为1λ=-3,2λ=7,3λ=-1,4λ=1.(2)将1λ=-3代入1()0E A X λ-=中,得到方程组12341234123412324320423032402340x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩ 解此方程组可得出基础解系1α=(1,1,1,1)T --,同样地,分别把2λ=7,3λ=-1,4λ=1代入()0E A X λ-=中,求解方程组得与2λ=7,3λ=-1,4λ=1对应的基础解系依次为2α=(1,1,1,1)T --,3α=(1,1,1,1)T --,4α=.(3)将正交化:1α=1β=2β=2α-21111(,)(,)αββββ= 3β=3α-3132121122(,)(,)(,)(,)αβαβββββββ-=4β=4α-434142123112233(,)(,)(,)(,)(,)(,)αβαβαββββββββββ--= 将正交向量组,单位化得单位正交向量组:,,,(4)令C =121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------,于是正交线性替换1234x x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------1234y y y y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭将二次型化为标准形f =2222123173y y y y +-+-. (二) 配方法使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式及平方差公式逐个消去非平方项,并构造新的平方项.定理 数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122...n nd x d x d x +++的形式. 用配方法化二次型为标准形的关键是构造平方项,其方法是利用完全平方公式、平方差公式逐步消去交叉项,同时构造新的平方项.具体解题思路可分两种情形来处理:(1) 若二次型中含有某变量i x 的平方项和交叉项,则可先将含i x 的交叉项合并在一起,使之与2i x 配方成为完全平方项,然后类似地对剩下的1n -个变量进行配方,直到各项全部化为平方项为止;(2) 若二次型中没有平方项,则可先利用平方差公式将二次型化为含有平方项的二次型,例如,当二次型中出现交叉项i j x x 时,先作可逆线性替换i i j x y y =+,j i j x y y =-,k k x y =(,k i j ≠),使之成为含有2i y ,2j y 的二次型,然后按照情形(1)的方法进行配方.例2 用配方法化二次型23(,,)f x x x =22112223224x x x x x x +++为标准形,并写出所用的线性替换矩阵.解:原二次型中含有1x 的平方项,先将含有1x 的项集中,利用平方和公式消去12x x , 然后对配平方,消去23x x 项.此过程为23(,,)f x x x =221122(2)x x x x +++222233(44)x x x x ++-234x ()()2221223324x x x x x =+++- 于是作非退化线性替换11221233+2y x x y x x y x =+⎧⎪=⎨⎪=⎩,由此得11232233322x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩, 即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭,于是二次型化为标准形23(,,)f x x x =2221234y y y +-, 所用的线性替换矩阵为C =112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.例3 将二次型23(,,)f x x x =121323422x x x x x x -++化为标准形,并写出所用的线性替换矩阵.解:由于所给的二次型中无平方项,故需要构造出平方项,令11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩ 即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭ 代入原二次型得23(,,)f x x x =12121231234()()2()2()y y y y y y y y y y -+-+++-221213444y y y y =-++此时就可以按照情形(1)中的步骤进行,将含有1y 的项集中,消去13y y ,再分别对 23,y y 配平方即可.所以有23(,,)f x x x =221213444y y y y -++2222113332444y y y y y y =-++-+()222133224y y y y =--++ 作非退化线性替换11322332z y y z y z y =-⎧⎪=⎨⎪=⎩,或写成11222331122y z z y z y z ⎧=+⎪⎪=⎨⎪=⎪⎩, 即123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123z z z ⎛⎫ ⎪ ⎪ ⎪⎝⎭于是二次型化为标准形23(,,)f x x x =2221234z z z -++,所用的线性替换矩阵为C =110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=1112211122001⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭ 从以上配方法的过程可以看出,将一般二次型通过配方法化成标准形,实际上就是通过一系列的非退化线性替换将n 个元逐渐配方的过程,这个过程用矩阵的形式表示出来就是将二次型化为标准形的第三种方法------初等变换法.这种方法的实质就是将二次型矩阵通过一系列的合同变换(即进行矩阵的初等行、列变换),逐步地化成与它合同且在形式上又比较简单的矩阵,最后得到对角矩阵的过程.定理 在数域上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵,都可以找到一个可逆矩阵使T C AC 成对角形.根据初等矩阵的有关性质知,用初等矩阵左乘A 相当于对A 作一次初等行变换;用初等矩阵右乘A 相当于对A 作一次初等列变换,任意对称矩阵都可用同样类型的初等行变换和初等列变换化成与之合同的对角阵,对初等矩阵施行一个初等行变换,同时要对矩阵作一次相应的列变换,以保证每对变换作过以后得到的矩阵与原来的矩阵合同.具体的解题步骤为:(1)写出二次型()12,n f x x x 的矩阵A ,A 与E 构成2n n ⨯矩阵A E ⎛⎫ ⎪⎝⎭(2)对A 进行初等行变换和相同的初等列变换,化成与A 合同的但是形式较为简单的矩阵,直至将A 化成对角矩阵;但是对E 只进行其中的列变换.,用分别表示变化后的矩阵.(3)写出正交变换过程中所进行的一系列非退化线性替换X CY =,此线性替换将化原二次型化为标准形()12,n f x x x ='Y DY .此过程可简单表示为:A E ⎛⎫ ⎪⎝⎭A E −−−−−−−−−→对进行同样的初等行、列变换对只进行其中的列变换D C ⎛⎫⎪⎝⎭. 例4 用初等变换法将二次型23(,,)f x x x =22211213223322243x x x x x x x x x +-+++变为标准形.解:首先写出二次型23(,,)f x x x 的矩阵A =111122123-⎛⎫⎪ ⎪ ⎪-⎝⎭然后构造出63⨯矩阵A E ⎛⎫ ⎪⎝⎭=111122123100010001-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪⎝⎭2113-r ,+r r r −−−−→111013032100010001-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭2113-,+j j j j −−−−→100013032111010001⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭26364656-3,i -9,i +3,-3i i i i i i −−−−−−−→100010037114013001⎛⎫⎪ ⎪ ⎪-⎪- ⎪ ⎪- ⎪ ⎪⎝⎭32-3,i i −−−→ 100010007114013001⎛⎫⎪ ⎪ ⎪- ⎪- ⎪ ⎪- ⎪ ⎪⎝⎭从以上过程可以看出C =114013001-⎛⎫⎪- ⎪ ⎪⎝⎭,最后作可逆线性替换X CY =,则23(,,)f x x x = '100010007Y Y ⎛⎫⎪ ⎪⎪-⎝⎭(四)雅可比(Jacobi)方法此方法利用二次型的矩阵的顺序主子式(也即雅可比行列式)来确定 标准形中各平方项的系数 .这种方法较为简便,但是有条件限制,它需要二 次型的矩阵所有的顺序主子式必须都不为零.1. 几个相关定义是数域P 上一个线性空间,是上一个二元函数,如果有下列性质:(1); (2);其中1212,,,,,αααβββ是中任意向量,12k ,k 是中任意数,则称为上的一个双线性函数.线性空间上的一个双线性函数,如果对中任意两个向量α,β都有=,则称为对称双线性函数.设是数域上n 维线性空间上的一个双线性函数.12n ,,...,εεε是V 的一组基,则矩阵11)1n n 1)n n)f (,f (,)A=f (,f (,εεεεεεεε⎛⎫⎪⎪⎪⎝⎭称为 在12n ,,...,εεε下的度量矩阵.2. 解题步骤雅可比方法的计算步骤归纳如下:(1)在矩阵A 的非对角线元素中选取一个非零元素 ija .一般说来,取绝对值最大的非对角线元素;(2) 由公式jj ii ija a a tan -=22θ求出θ,从而得平面旋转矩阵IJ P P =1; (3) 111AP P A T=,1A 的元素由公式(9)计算. (4) 以1A 代替A ,重复第一、二、三步求出2A 及2P ,继续重复这一过程,直到m A 的非对角线元素全化为充分小(即小于允许误差)时为止.(5) m A 的对角线元素为A 的全部特征值的近似值,m P ...P PP 21=的第j 列为对应于特征值j λ(jλ为m A 的对角线上第j 个元素)的特征向量.例5 用雅可比方法将二次型123(,,)f x x x =2221231213234x x x x x x x ++++化为标准形.解:二次型的矩阵32223A =102201⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭,顺序主子式1=2∆,21=-4∆,31=-44∆都不等于零,所以能采用雅可比方法.设1231000,1,0001εεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,双线性函数关于基的矩阵为, 则 A=()()()()()()()()()111213212223313233f ,f ,f ,f ,f ,f ,f ,f ,f ,εεεεεεεεεεεεεεεεεε⎛⎫⎪ ⎪ ⎪⎝⎭=32223102201⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭再设111121212223131232333c c c c c c ηεηεεηεεε=⎧⎪=+⎨⎪=++⎩系数11c 可由条件()11f ,1ηε=求出,即()111111c f ,2c 1εε==,从而得出1112c =,所以11111121020c ηεε⎛⎫ ⎪ ⎪=== ⎪ ⎪⎪⎝⎭,系数1222,c c 可由方程组()()()()1211221212122222,,0,,1c f c f c f c f εεεεεεεε+=⎧⎪⎨+=⎪⎩求出,并可得到122268c c =⎧⎨=-⎩,所以2121222c c ηεε=+=680⎛⎫ ⎪- ⎪ ⎪⎝⎭,系数132333,,c c c 可由方程组132333132313333220230221c c c c c c c ⎧++=⎪⎪⎪+=⎨⎪+=⎪⎪⎩求出,即1323338171217117c c c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩,所以38171217117η⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭.由此可得,由基123,,εεε到123,,ηηη的过渡矩阵为18621712081710017C ⎛⎫ ⎪⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭.因此123(,,)f x x x 经线性替换能够化成标准形:22222201212312312311z z z 8217z z z ∆∆∆++=-+∆∆∆. (五)偏导数法偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间的关系这一原理,依据配方法提出的化二次型为标准形的新方法,配方法需要仔细观察然后进行配方,而这种方法具有固定的程序,可以按步骤一步一步进行计算.因此,能够提高准确性,且易于理解,求解过程也更加简单.利用偏导数法将二次型()12,...n f x x x =11nnij i j i j a x x ==∑∑化为标准形的解题步骤如下:(注意,运用该方法时,要将二次型分为两种情形来进行讨论.)1. 情形1: 二次中含有i x 的平方项,即ii a ()1,2,...i n =中至少有一个不为零的情形.(1) 不妨设11a 不等于零,将f 对1x 的偏导数1f x ∂∂求出来,并记1112ff x ∂=∂. (2)根据偏导数法()2121111,...(f )g n f x x x a =+,通过计算得出g .此时g 中已经不再含有1x .(3)求出g 对2x 的偏导数2g x ∂∂,并记1212gg x ∂=∂,又可得()12,,...n f x x x =()()2211'112211f g ua a ++, 此时u 中不再含有2x .(4)按照这种程序继续运算,最终可以将二次型化为标准形.2. 情形2:二次型中不含i x 的平方项,即所有iia ()1,2,...i n =都等于零,但是至少有一1(1)j a j >不等于零的情形.(1)不妨设12a 不等于零,首先求出f 对1x 的偏导数1fx ∂∂,以及f 对2x 的偏导数2f x ∂∂,并记1112f f x ∂=∂,2212ff x ∂=∂, (2)将(1)结果代入,此时得到()22121212121,,...[()()]n f x x x f f f f a ϕ=+--+,其中ϕ中不含12,x x 的项.(3)进行观察:如果ϕ中含有i x 的平方项,则按照情形1中的方法去进行计算,如果ϕ中仍然不含有i x 的平方项,则按照上述步骤继续计算,直到将二次型化为标准形为止.例6 用偏导数法化二次型23(,,)f x x x =22212312232422x x x x x x x +-+-为标准形.解:原二次型中含有1x 的平方项,符合情形1,首先求出f 对1x 的偏导数1fx ∂∂=1222x x +,所以可以得到:1112ff x ∂=∂=12x x +23(,,)f x x x =()21111f g a +=()212x x g ++ 整理可得到:22232342g x x x x =--接下来求出g 对2x 的偏导数2g x ∂∂=()232x x -, 1212gg x ∂=∂=23x x -23(,,)f x x x =()()222113'1122115f g x a a +- ()()222122335x x x x x =++--令11222333y x x y x x y x=+⎧⎪=-⎨⎪=⎩经过变形可以得到112322333x y y y x y y x y =--⎧⎪⇒=+⎨⎪=⎩于是原二次型化为标准形23(,,)f x x x =2221235y y y +-所得的变换矩阵为111011001C --⎛⎫⎪= ⎪⎪⎝⎭,例7 用偏导数法化二次型23(,,)f x x x =121323422x x x x x x -++为标准形.解:由于所给的二次型中不含i x 的平方项,符合情形2,所以分别求出f 对1x 的偏导数1f x ∂∂,以及f 对2x 的偏导数2fx ∂∂,其结果如下:1f x ∂∂=2342x x -+,2fx ∂∂=1342x x -+1112f f x ∂=∂=232x x -+,2132122ff x x x ∂==-+∂23(,,)f x x x =()()221212121f f f f a ϕ⎡⎤+--+⎣⎦整理上式可得:ϕ=23x于是得到23(,,)f x x x =()()2223121231222224x x x x x x ⎡⎤-----+⎣⎦=()()222312123x x x x x x ---+-+=222123y y y -++ 令经过整理可以得到1123212333111222111222x y y y x y y y x y ⎧=-++⎪⎪⎪=--+⎨⎪=⎪⎪⎩可以得到所用的可逆矩阵为111222111222001C ⎛⎫- ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭,(六)顺序主子式法对于二次型'12,1(,,...,)nn ij iji j f x x x X AX a x x===∑ (1)其中,,1,2,...,ij ji a a i j n ==,以上介绍了五种化二次型为标准形的方法,本文第六部分介绍顺序主子式法.对于二次型(1)矩阵()A=ijn na ⨯假如11121,-121222,-1111211221221-1-1,n-1-1,-1-1,-10,-0,,=n n n n n n n n a a a a a a a a a ααααα∆=≠∆=≠∆≠则二次型可化为标准形12222211111(,,...,)...n n n n f x x x y y y -∆∆=∆+++∆∆例8 化二次型32212132145),,(x x x x x x x x f -+=为标准形解:二次型的矩阵为51025022020A ⎛⎫⎪ ⎪⎪=- ⎪ ⎪- ⎪⎪⎝⎭方法一:4,425,1321-=∆-=∆=∆ 所以1222231232516(,,)425f x x x y y y =-+方法二: 32218125255101022252502024402016025r r r r A --⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以1,23251,44-∆=∆=∆=-1222222231231232542516(,,)2544254f x x x y y y y y y -=-+=-+-雅可比方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.3.1二次型在二次曲面研究中的应用二次曲面的一般方程为:2221122331213231232220a x a y a z a xy a xz a yzb x b y b zc +++++++++=其中都是实数.我们记,,其中利用二次型的表示方法,方程(1)可表示成下列形式:(2)为研究一般二次曲面的性态,我们需将二次曲面的一般方程转化为标准方程,为此分两步进行. 第一步,利用正交变换 将方程(2)左边的二次型的部分化成标准形:其中为正交矩阵,,相应地有于是方程(2)可化为第二步, 作平移变换,将方程(3)化为标准方程, 其中这里只要用配方法就能找到所用的平移变换.以下对是否为零进行讨论:1)当时,用配方法将方程(3)化为标准方程:(6-1)根据与d 的正负号,可具体确定方程(6-1)表示什么曲面.例如与d 同号,则方程(6-1)表示椭球面.(2)当中有一个为0,设方程(3)可化为(6-2)(6-3)根据与d 的正负号,可具体确定方程(6-2)、(6-3)表示什么曲面.例如当同号时,方程(6-2)表示椭圆抛物面.当异号时,方程(6-2)表示双曲抛物面,(6-3) 表示柱面.(3) 当中有两个为0,不妨设,方程(3) 可化为下列情况之一:此时,再作新的坐标变换:(实际上是绕x ~轴的旋转变换),方程可化为:02221='++'y q p x λ表示抛物柱面;)0(0~~)(21≠=+p y p x b λ表示抛物柱面;)0(0~~)(21≠=+q z q x c λ表示抛物柱面;若与异号,表示两个平行平面;若与同号,图形无实点,若,表示坐标面.例 二次曲面由以下方程给出,通过坐标变换,将其化为标准型,并说明它是什么曲面.222234444212100x y z xy yz x y z +++++-++= 解:将二次曲面的一般方程写成矩阵形式:,⎪⎪⎪⎭⎫ ⎝⎛=z y x x ,1224⎪⎪⎪⎭⎫ ⎝⎛-=b ⎪⎪⎪⎭⎫ ⎝⎛=420232022A )6)(3(18923---=-+-=-λλλλλλλE A的特征值为,分别求出它们所对应的特征向量,并将它们标准正交化:1132323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2231323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪⎝⎭,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=3132323p取 P= ( p 1 , p 2 , p 3 ) , 则 P 为正交矩阵. 作正交变换x = P y , 其中(),,,111Tz y x y =则有: 212136y x x A x T +=111868)(z y x y P b b T T +-==因此,原方程可化为:配方得:令则原方程化为标准方程:0~8~3~622=++z y x该曲面为椭圆抛物面.四、总结不同方法化简的优劣对于初学者来说,配方法是最基础的方法,它的原理很容易被学生消化吸收,因此,这种方法需要熟练掌握,灵活应用.配方法是推导二次型重要理论的基础,要熟悉它的推导过程.对于简单的二次型也可以灵活使用合同变换法,有时候这种方法更具简便性,节约计算量和计算时间.正交变换法由于具有保持几何形状不变的优点而备受青睐.在用正交变换法化二次型为标准型中,如何求正交矩阵是一个难点,常见的求法只有一种,求解过程大致如下:先用二次型矩阵A的特征方程求出A的n个特征值,然后通过直接求矩阵方程的基础解系,得到对应于征值的线性无关的特征向量,再用施密特正交化过程将它们正交化、单位化,进而得到n个两两正交的单位特征向量,最后由这n 个两两正交的单位特征向量构成正交矩阵,即得所要求的正交变换和对应的标准型.这种方法综合性比较强,算比较复杂.雅可比方法是一种新的方法,它的过程与施密特正交化过程类似,思想上也有相似之处.用它解决正定性问题时比较方便.体会并深刻理解各种方法的实质与技巧,才能帮助我们快速并正确解决二次型问题.这需要多做练习,熟能生巧,方可以不变应万变.二次型是高等代数的重要容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准型.二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题,其理论也在网络、分析、热力学等问题中有广泛的应用.将二次型化为标准型往往是困惑学生的一大难点问题,而且它在物理学、工程学、经济学等领域有非常重要的应用,因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值通过典型例题,更能体会在处理二次型问题时的多样性和灵活性,我们应熟练掌握各种方法.致谢我衷心感谢我们论文指导老师,她在论文选题和写作过程中,给予了许许多多认真细致的指导和鼓励 .我也要感谢多年来家人和朋友对我学习工作上的支持,这是我继续在求学路上不断前进的动力之一.大学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多.请允许我以此文来纪念大学四年的美好时光,时间的前进是无法挽回的,四年的求学生活让我明白了一切都来之不易,得到成果的前提是你要不断地脚踏实地地付出自己的努力本文主要就二次型化标准型的方法进行了一定的探讨,在前人的基础上综合了六种化二次型为标准型的方法,这对于二次型的研究和教学都有一定意义!参考文献[1]王萼芳,石生明.高等代数(第三版)[M]:高等教育,2007.[2]同济大学数学教研室.线性代数(第三版)[M]:高等教育,1999.[3]丘维声.高等代数(上册)[M].:高等教育,2002.[4]屠伯.线性代数-方法导引[M].:科技,1986.[5]蓝以中.高等代数简明教程[M].:大学,2003.[6]王琳.用正交变换化实二次为标准形方法研究.[J]数学通讯,1990(3).[7]五明,永金,栋春.实二次型化为标准形的几种方法[J]和田师专科学校学报(汉文综合版)2007,27(5)[8]郭佑镇.实二次型的化简及应用[J]师专学报(自然科学版)2000(2).[9]明琼.把二次型化为标准形的方法[J]工程数学.1998,14(1).[10]大学数学系几何与代数教研室小组编.高等代数(第三版)[M].高等教育.2007:205-234.[11]庄瓦金编.高等代数教程[M].高等教育.2004:427.[12]惠汝,红超.浅淡二次型标准形的两种方法[J].师学院报,2004,23(2):13-15.[13]秀花.二次型的应用[J].学院报,2010,10(6):28-29[14]鱼浩,戴培良.二次型在不定方程中的应用[J].常熟理工学院报,2009,23(10):38-42[15]文杰.实二次型半正定性及应用[J].渤海大学学报,2004,25(2):127-129[16]华盛.二次型半正定性在不等式证明中的应用[J].科技通报,2002,18(30):227[17]袁仕芳,云长,曾丽容.关于二次型XAX最大值和最小值的教学思考[J].考试周刊,2010,35:74[18]JaneM.Day,DanKalmanTeachingLinearAlgebra:IssuesandResources[J]. TheCollegeMathematicsJournal.2001.。

化二次型为标准形的常用方法

化二次型为标准形的常用方法

高教视野GAOJIAO SHIYE 籲#化二次型为标'形的常用方-◎邓娜廖平平(抚州幼儿师范高等专科学校,江西抚州344000)【摘要】二次型在几何、物理、工程、经济等领域有着广 泛的应用,是高等代数的重要内容之一,但将二次型化为标 准形往往是困惑学生的难点,本文介绍了一些化二次型为 标准形的方法,并给出了相应的例题.【关键词】二次型;标准形;化筒二次型理论的根源是解析几何中将一般的二次曲线或 二次曲面方程化简为标准形式,是高等代数的重要内容之一.在研究二次型问题时,通常将其化为标准形式,本文介 绍了三种常用的化二次型为标准形的方法._、正交变换法对实对称矩阵!而言,总存在一个正交矩阵"使得为对角矩阵,即A必定和一个对角矩阵合同,因此,通 过适当的正交变换可以将任何实二次型化为标准形.定理1[1]任意一个实二次型((1j)1都可以经过正交变换# = "$化成平方和其中!i,A2,…,!& )!的特征多项式的全部特征值.用正交变换化二次型为标准形的步骤'①求出二次型对应的矩阵!的全部特征值A&,A',…,A&;② 的一组线性无关的特征向量!,!,…,!;③/!,!,…,!标准正交化(正交化主要在每个特征值所对应的特征 之间进行)得到%&,%,••,%;④令"=(",",…,"&),做正交变换# = "$,即得/ = A&+ + A'+ + …+ A&+例1用正交变换把二次型/(%,%,%)=2% +5% , 5% , 4%%' - 4%1% - 8%'%化为标准形,并写出所做变换.f22-2A 解二次型对应的矩阵为!= 2 5 -4,v-2-4 5 j A的特征多项式为A -2-22I XE - A \= - 2 A - 5 4 = (A -1)2(A -10),2 4 A -5#1= (2,- 1,0)(,#2= (2,0,1)(,标准正交化 得$= (2#,-f0)T,$= (2#,4#,l:)T.将A2= 10代人齐次线性方程组(AE - A)# = 0,解得基础解系#3= (1,2, -2)T,单位化后得$= (f,f,-f) •令正交矩阵"=($,$,$),则正交变换f2 /5"2 /5"1A化二次型为 /=+1 + y2 + 10y+二、配方法定理2"1]数域f上任意一个二次型都可以经过非退 化线性变换化成平方和/1+2 + /2y2 +…+ /&y2&的形式.使用 方法将二次型化为标准形 的是将交%(*#j),用 平方公式和平方 式逐个消去交叉项,并构造新的平方项,下面分两种情形来讨论(a为 零矩阵时已经是标准形,假定a= (*()_不为零矩阵).①A的主对角线中至少有一个 为0,假设*11# 0,接下来将所有含有%的项进行配方,具体如下:/(%,%,…,%)=*11% + 2"*1产1% +y=2t=2y=2&2&&=*11 (%+ "*-*1;.% j1%%,;=2t=2;=2&&&2&&其中= -*-1 ( "*v%)+ ""*(%%.t=2 ;=2.2t=2 ;=2+1= %+ "*-1*v%,/=2做非退化线性变换<+2= %,ky&= %&,%1= +1 - "*-1*1;+,.2A的特征值为A!= 1(2重根),A2= 10.即*!%=+2,将A1= 1代 次线性方程组(久%-!)# = 0,解得 …础解系(即A1对应特征向量):L%&= +&•数学学习与研究2019. 1GAOJIAO SHIYE高教视野将原二次型化为/=*&&+ + ""〜.++,其中((2 j 二2&&&&""1++是+2,+",…,+的一个二次型,对""1+ +t = 2 ) 2 t = 2 ) 2重复%的配方步骤,直到所有项都化为平方项为止.例! 用配方法化二次型/(%,%2,%) = % , 2% , 2%% -2%%为标准形,写出所做线性变换.解/$ %,%,%)= % , 2% , 2%% - 2%%=(% , 2%% - 2%%) ,2%=(% ,% - % )2 - (% - %)2 , 2%.做非退化线性变换(% ,% - % =%2 -% = +2,%2 = +",T l ,得(l 2X "=+1-+2,f %、f 1-10 \f +1、=+即%2=001+2=+-+2,、% )L 0-11)V +")将原二次型化为标准形:/ = +2 -+ + 2+.#!的主对角线元素全为〇,即*( =〇(( = 1,2,…,&), 但在2中至少有一个交叉项*(#〇(〗#7),做非退化线性变「%=+;++,换{ % = +t -+,(3 = 1,2,.",&;3 # (+)[2],将原二次型化= +,成一个含有平方项+的二次型,再按第一种情形的方法化 为标准形.例3 用配方法化二次型/(%&,%,% ) =%% , %% - "%%为标准形,并写出所做的线性变换.1 = hh ,解做非退化线性变换{%=+,+,则原二次型% =+,化为/(%1,%2,%)=(+1 -+)(+ ++) + (+1 -+2)+ -"(+1 ++) + =+ - + - 2+1+ - 4++=(+1 -+)2 -+ - + - #++=(+1 -+)2 - (+2 ,2+)2 +"+•C +令{+ ,2+ =42,即卜r+ - + =4,r+1 =41 + 4",{ +2 =42 - 24, f c + =4",L + =4,得/ =4 - 4 + ,.%1 =41 - 42 + 34",所做非退化线性变换为{ % =4 ,42 -4",%" =4" •三、初等变换法任一对称矩阵!都合同于一个对角阵% = [/1,/2,…, /&],即存在可逆矩阵&使得&!& =%,由于可逆矩阵可以表示成一系列初等矩阵的乘积,即&= &1&2…&,因此,有= (&1&2 …&)(!(&1&…&)=P ((P (_1 …(&((&(4&)&2)…&-)&,%&1&2 …& = &用初等变换将矩阵化为等价的对角形,但是变换前后 的矩阵必须是合同的,因此,必须对行、列同时做初等变换,使矩阵合同•利用初等变换将二次型化为标准形的步骤'①写出二次型/(6)对应矩阵!构造2& x &矩阵(%)(或构造&0 2&矩阵(! %));②对A 进行初等列变换后再进行同样的初等行变换,将!化为对角矩阵%,则单位矩阵经过一系列的初等列(行)变换化为矩阵&(&),有&!& = %;③写出所进行的非退化线性变换# = &$,化二次型为标准形/= $%$•此过程可表示为:/A \对A 进行同样的初等行变换和列变换>(E !对%只进行初等行变换(%)((! %)对!进行同样的初等行变换和列变换,( &对%只进行初等行变换 $ ( % ))例(用初等变换化二次型/(%,%,%)=% - % +2%1%2 ,2%%为标准形.f 1 10 \解二次型对应的矩阵!= 1 01 ,有V 01-1)f 110、f 100 \1010-1101-182 -8101-11001-10010010V 01 )V 01 )f 10 \0 - 18" +c2 0 0 0 ------$1 -1 -0 1 1V01f %1、做化线 变换%=-1Y +、1 +,将二1 U次型化为/ = + -+.【参考文献】[1]王萼芳.高等代数[M ].北京:高等教育出版 社,2009.数学学习与研究2019. 1。

配方法化二次型为标准型

配方法化二次型为标准型

配方法化二次型为标准型方法化二次型为标准型的步骤如下:1. 首先,判断二次型的矩阵是否为对称矩阵。

若不是对称矩阵,则进行对称化处理。

2. 对称化处理:对于二次型$Q(\boldsymbol{x})=\boldsymbol{x}^T\boldsymbol{A}\boldsym bol{x}$,若矩阵$\boldsymbol{A}$不是对称矩阵,则可以构造对称矩阵$\boldsymbol{B}$,使得$\boldsymbol{A}=\frac{1}{2}(\boldsymbol{B}+\boldsymbol{B}^T)$。

这样,二次型可表示为$Q(\boldsymbol{x})=\boldsymbol{x}^T(\frac{1}{2}\boldsymbol {B}+\frac{1}{2}\boldsymbol{B}^T)\boldsymbol{x}$。

3. 根据对称性质,可以知道对称矩阵可以进行正交对角化,即存在正交矩阵$\boldsymbol{P}$,使得$\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{D}$。

这里,$\boldsymbol{D}$为对角矩阵,其对角元素为特征值,即$\boldsymbol{D}=\text{diag}(\lambda_1,\lambda_2,...,\lambda_n)$。

4. 将二次型进行变量替换,令$\boldsymbol{y}=\boldsymbol{P}^{-1}\boldsymbol{x}$,则有$\boldsymbol{x}=\boldsymbol{P}\boldsymbol{y}$,代入二次型得到$Q(\boldsymbol{y})=\boldsymbol{y}^T(\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P})\boldsymbol{y}=\boldsymbol {y}^T\boldsymbol{D}\boldsymbol{y}$。

化二次型为标准形几种方法的比较及技巧

化二次型为标准形几种方法的比较及技巧

化二次型为标准形几种方法的比较及技巧二次型在数学中有着重要的地位,它在代数、几何、物理等领域都有广泛的应用。

对于一个二次型,我们希望能够将它化为标准形,简化计算和研究过程,因此研究如何将二次型化为标准形是很有必要的。

本文将介绍几种将二次型化为标准形的方法,并对它们进行比较和技巧的讲解。

一、矩阵的对角化方法矩阵的对角化方法是将二次型化为标准形的一种常见方法,其思路是通过矩阵的特征值和特征向量进行变换。

具体步骤如下:1. 将二次型的系数写成矩阵的形式,设为A。

2. 求出A的特征值λ1,λ2,…,λn以及对应的特征向量x1,x2,…,xn。

3. 构造线性变换T,T(x1)=e1,T(x2)=e2,…,T(xn)=en,其中e1,e2,…,en是标准基向量。

4. 令x'=Tx,将二次型转化为x'的形式,此时x'的系数矩阵为对角阵,即化为标准形。

这种方法的优点是直接使用了矩阵的特征值和特征向量进行变换,求解比较简单。

缺点是只有满秩矩阵才能进行对角化,如果矩阵不满秩,需要先进行配方法或者其他转化。

二、配方法2. 求出A的秩r,找到A的一个秩为r的子矩阵,对该子矩阵进行配方法,将二次型化为平方差的形式。

3. 利用正交变换将其余未配方法的部分归并。

4. 根据配方法的结论将二次型化为标准形。

这种方法的优点是适用范围广,只要矩阵是方阵即可。

缺点是存在配方法的不确定性,需要通过试错不断寻找适当的子矩阵进行配方法,求解过程比较繁琐。

三、同阶合同变换2. 利用初等行变换将矩阵A化为对称矩阵B。

这种方法的优点是变换只涉及初等变换,计算过程简单,求解相对容易。

缺点是初等变换时,需要注意保持同阶合同形式,变换的顺序也可能会影响结果。

综上所述,不同的二次型标准化方法各有优缺点,根据实际问题,选择相应的方法应考虑求解的复杂程度、计算的难易程度以及方法的理论基础等因素。

在计算过程中,需要遵循一些技巧,如合理运用矩阵等基本性质,避免计算错误等,以保证求解过程的正确性和高效性。

化二次型为标准形的几种方法

化二次型为标准形的几种方法

化二次型为标准形的几种方法摘要二次型是代数学要研究的重要内容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方.关键词:正交变换法配方法初等变换法雅可比方法偏导数法reduce the quadratic forms to thestandard formsAbstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula.Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method一、 引言二次型的本质是一个关于n 个变量二次齐次函数,在它的表达式中除了平方项就是交叉项,没有一次项或常数项,其具体定义为:设P 是一个数域,一个系数在数域P 中12,n x x x ⋯的二次齐次多项式2121112121211222222f(,,,,)2...2...2...n n n n n nn n x x x a x a x x a x x a x a x x a x =++++++++= 11n n ij ij j i a x x ==∑∑,称为数域P 上的一个n 元二次型.二次型具有广泛的应用性,在工程技术、经济管理、社会科学以及数学的其他分支中均需要运用到二次型,在实际运用过程中经常需要将二次型化为标准形,很多同学能够根据标准的步骤将二次型化为标准形,但是却不能很好地根据所给的题目运用最适宜的方法进行解决.本文参考已有的研究结果,总结化二次型为标准形的几种方法,分析每种方法的解题原理和过程,归纳其应用特点,帮助《线性代数》的初学者根据题目的特点和要求采取最佳的方法解决问题,达到简明快速的目的.关于二次型化为标准型的问题,许多数学学者作了较深入的研究,获得了许多具有研究价值和参考价值的成果.庄瓦金在文【11】中给出了二次型的定义及其若干性质.陈惠汝、刘红超在文【12】中将二次型和非退化线性替换用矩阵形式表示,对二次型化为标准形问题采取两种转化思路:一是联系矩阵的初等变换,把问题转化为矩阵合同变换问题;二是借助实对称矩阵特征值与特征向量的有关理论,把问题转化为用正交变换化实对称矩阵为对角形的问题.这两种转化思路产生了二次型化为标准形的两种方法,即合同变换法(也称初等变换法)和正交变换法.李五明,张永金,张栋春在【7】中给出了实二次型化为标准形的方法.通过观察各项进行配方,其实质就是运用非退化的线性替换.使用配方法将二次型化为标准形问题时采取两种转化思路:一是含有平方项时,把平方项集中,然后配方,化为标准形;二是不含平方项时构造平方项,进行逆变换,继续第一步进行配方,这种转化思路产生了二次型化为标准形的方法,即配方法.胡明琼在【9】中给出了二次型化为标准形的方法.此方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.这种转化思路产生了又一种二次型化为标准形的方法,即合雅可比方法.郭佑镇在【8】中给出了实二次型的化简及应用偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间关系这一原理,依据配方法而提出的化二次型为标准行的新方法,解题思路与配方法极为相似.把问题转化为用偏导数法实解决问题.这种转化思路产生了二次型化为标准形的另一种方法,即偏导数法.孙秀花在文【13】讨论了化二次型为标准形的两种常用方法的区别:正交变换法的第一步是将二次型写成矩阵形式,然后将二次型的矩阵通过单位正交化方法进行对角化,最后利用正交矩阵得到正交变换,利用特征值得到标准形.正交变换法需要求出二次型矩阵的全部特征值,即求特征方程的根,由于代数方程没有统一的求根公式,因此在操作上存在一定的困难.而配方法避免了求解矩阵特征值的问题,因而使用起来比较方便.以上学者的研究为本文介绍的化二次型为标准形的六种方法奠定了基础,为以后的研究工作做出了重要贡献.本文梳理了已有的研究成果,并对六种方法做出总结,希望能够对未来的相关研究作出贡献.二、 化二次型为标准形的六种方法(一)正交变换法由于实对称矩阵必定与对角矩阵合同,因此任何实二次型必定可以通过一个适当的正交线性替换将此实二次型化为标准形.定理1 任意一个实二次型T AX f X ==11n nij i j i j a x x ==∑∑(其中ij ji a a =)都可以经过正交线性替换变成平方和2221122...n n y y y λλλ+++,其中平方项的系数12,...,n λλλ就是矩阵A 的全部特征根.由此定理得到的化二次型为标准形的方法称为正交变换法,此法的解题步骤为:1. 将实二次型表示成矩阵形式T AX f X =,并写出矩阵A ;2. 求出矩阵A 的所有特征值12,...,i λλλ,它们的重数分别记为21,...,i k k k (21...i k k k +++=n )○3求出每个特征值所对应的特征向量,因为21...i k k k +++=n ,所以共有n 个特征向量21...,,i ξξξ.具体方法是:列出方程1()0E A X λ→-=,解出与1λ对应的1k 个线性无关的特征向量;同理求出其他的特征值23,...,i λλλ所对应的特征向量. ○4将n 个特征向量21...,,i ξξξ,先后施行正交化和单位化,得到单位正交向量组21,,,n ηηη,并记C =21)(,,T n ηηη;○5作正交变换X CY =,则二次型f 化为标准形f =2221122...n ny y y λλλ+++. 例1 用正交变换方法化二次型222212341234121314232434,,,)264462(x x x x x x x x x x x x x x x x x x x f x =+++-+--+-为标准形.解:(1)二次型的矩阵为A =1132112332112311⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭-------- 由A 的特征多项式E A λ-=1132112332112311λλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭--------=(3)(7)(1)(1)λλλλ+--+ 得A 的特征值为1λ=-3,2λ=7,3λ=-1,4λ=1.(2)将1λ=-3代入1()0E A X λ-=中,得到方程组12341234123412324320423032402340x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩ 解此方程组可得出基础解系1α=(1,1,1,1)T --,同样地,分别把2λ=7,3λ=-1,4λ=1 代入()0E A X λ-=中,求解方程组得与2λ=7,3λ=-1,4λ=1对应的基础解系依次为2α=(1,1,1,1)T --,3α=(1,1,1,1)T --,4α=222211223344d x d x d x d x +++. (3)将1234,,,αααα正交化:1α=1β=(1,1,1,1)T -- 2β=2α-21111(,)(,)αββββ=(1,1,1,1)T -- 3β=3α-3132121122(,)(,)(,)(,)αβαβββββββ-=(-1,-1,1,1)T 4β=4α-434142123112233(,)(,)(,)(,)(,)(,)αβαβαββββββββββ--=(1,1,1,1)T 将正交向量组1234,,,ββββ,单位化得单位正交向量组:11=(1,1,1,1)2T η--,21(1,1,1,1)2T η=--,31(1,1,1,1)2T η=--,41(1,1,1,1)2T η=(4)令C =121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------,于是正交线性替换1234x x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------1234y y y y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭将二次型化为标准形f =2222123173y y y y +-+-. (二) 配方法使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式及平方差公式逐个消去非平方项,并构造新的平方项.定理92【】 数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122...n nd x d x d x +++的形式. 用配方法化二次型为标准形的关键是构造平方项,其方法是利用完全平方公式、平方差公式逐步消去交叉项,同时构造新的平方项.具体解题思路可分两种情形来处理:(1) 若二次型中含有某变量i x 的平方项和交叉项,则可先将含i x 的交叉项合并在一起,使之与2i x 配方成为完全平方项,然后类似地对剩下的1n -个变量进行配方,直到各项全部化为平方项为止;(2) 若二次型中没有平方项,则可先利用平方差公式将二次型化为含有平方项的二次型,例如,当二次型中出现交叉项i j x x 时,先作可逆线性替换i i j x y y =+,j i j x y y =-,k k x y =(,k i j ≠),使之成为含有2i y ,2j y 的二次型,然后按照情形(1)的方法进行配方.例2 用配方法化二次型23(,,)f x x x =22112223224x x x x x x +++为标准形,并写出所用的线性替换矩阵.解:原二次型中含有1x 的平方项,先将含有1x 的项集中,利用平方和公式消去12x x , 然后对23,x x 配平方,消去23x x 项.此过程为23(,,)f x x x =221122(2)x x x x +++222233(44)x x x x ++-234x ()()2221223324x x x x x =+++- 于是作非退化线性替换11221233+2y x x y x x y x =+⎧⎪=⎨⎪=⎩,由此得11232233322x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩,即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭,于是二次型化为标准形23(,,)f x x x =2221234y y y +-,所用的线性替换矩阵为C =112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.例3 将二次型23(,,)f x x x =121323422x x x x x x -++化为标准形,并写出所用的线性替换矩阵.解:由于所给的二次型中无平方项,故需要构造出平方项,令11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭代入原二次型得23(,,)f x x x =12121231234()()2()2()y y y y y y y y y y -+-+++-221213444y y y y =-++此时就可以按照情形(1)中的步骤进行,将含有1y 的项集中,消去13y y ,再分别对 23,y y 配平方即可.所以有23(,,)f x x x =221213444y y y y -++2222113332444y y y y y y =-++-+()222133224y y y y =--++ 作非退化线性替换11322332z y y z y z y =-⎧⎪=⎨⎪=⎩,或写成11222331122y z z y z y z ⎧=+⎪⎪=⎨⎪=⎪⎩, 即123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123z z z ⎛⎫ ⎪ ⎪ ⎪⎝⎭于是二次型化为标准形23(,,)f x x x =2221234z z z -++,所用的线性替换矩阵为C =110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=1112211122001⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭ 从以上配方法的过程可以看出,将一般二次型通过配方法化成标准形,实际上就是通过一系列的非退化线性替换将n 个元逐渐配方的过程,这个过程用矩阵的形式表示出来就是将二次型化为标准形的第三种方法------初等变换法.这种方法的实质就是将二次型矩阵通过一系列的合同变换(即进行矩阵的初等行、列变换),逐步地化成与它合同且在形式上又比较简单的矩阵,最后得到对角矩阵的过程.定理[7]3 在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A ,都可以找到一个可逆矩阵C 使T C AC 成对角形.根据初等矩阵的有关性质知,用初等矩阵左乘A 相当于对A 作一次初等行变换;用初等矩阵右乘A 相当于对A 作一次初等列变换,任意对称矩阵都可用同样类型的初等行变换和初等列变换化成与之合同的对角阵,对初等矩阵施行一个初等行变换,同时要对矩阵作一次相应的列变换,以保证每对变换作过以后得到的矩阵与原来的矩阵合同.具体的解题步骤为:(1)写出二次型()12,n f x x x 的矩阵A ,A 与E 构成2n n ⨯矩阵A E ⎛⎫ ⎪⎝⎭(2)对A 进行初等行变换和相同的初等列变换,化成与A 合同的但是形式较为简单的矩阵,直至将A 化成对角矩阵;但是对E 只进行其中的列变换.,用C D 、分别表示A E 、变化后的矩阵.(3)写出正交变换过程中所进行的一系列非退化线性替换X CY =,此线性替换将化原二次型化为标准形()12,n f x x x ='Y DY . 此过程可简单表示为:A E ⎛⎫ ⎪⎝⎭A E −−−−−−−−−→对进行同样的初等行、列变换对只进行其中的列变换D C ⎛⎫ ⎪⎝⎭. 例4 用初等变换法将二次型23(,,)f x x x =22211213223322243x x x x x x x x x +-+++变为标准形.解:首先写出二次型23(,,)f x x x 的矩阵A =111122123-⎛⎫ ⎪ ⎪ ⎪-⎝⎭然后构造出63⨯矩阵A E ⎛⎫ ⎪⎝⎭=111122123100010001-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭2113-r ,+r r r −−−−→111013032100010001-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭2113-,+j j j j −−−−→100013032111010001⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭26364656-3,i -9,i +3,-3i i i i i i −−−−−−−→100010037114013001⎛⎫ ⎪ ⎪ ⎪- ⎪- ⎪ ⎪- ⎪ ⎪⎝⎭32-3,i i −−−→ 100010007114013001⎛⎫ ⎪ ⎪ ⎪- ⎪- ⎪ ⎪- ⎪ ⎪⎝⎭从以上过程可以看出C =114013001-⎛⎫ ⎪- ⎪ ⎪⎝⎭,最后作可逆线性替换X CY =,则23(,,)f x x x = '100010007Y Y ⎛⎫⎪ ⎪⎪-⎝⎭(四)雅可比(Jacobi)方法此方法利用二次型的矩阵的顺序主子式(也即雅可比行列式)来确定 标准形中各平方项的系数 .这种方法较为简便,但是有条件限制,它需要二 次型的矩阵所有的顺序主子式必须都不为零.1. 几个相关定义[1]定义 V 是数域P 上一个线性空间,f (,)αβ是V 上一个二元函数,如果f (,)αβ有下列性质:(1)11221122f (,k +)=k f (,)+k f (,)k αββαβαβ;(2)11221122f (k +,)=k f (,)+k f (,)k βββαβαβ;其中1212,,,,,αααβββ是V 中任意向量,12k ,k 是P 中任意数,则称f (,)αβ为V 上的一个双线性函数.[11]定义 f (,)αβ线性空间V 上的一个双线性函数,如果对V 中任意两个向量α,β都有f (,)αβ=f (,)βα,则称f (,)αβ为对称双线性函数.[11]定义 设f (,)αβ是数域P 上n 维线性空间V 上的一个双线性函数.12n ,,...,εεε是V 的一组基,则矩阵11)1n n 1)n n)f (,f (,)A=f (,f (,εεεεεεεε⎛⎫⎪⎪⎪⎝⎭称为 f (,)αβ在12n,,...,εεε下的度量矩阵.2. 解题步骤雅可比方法的计算步骤归纳如下:(1)在矩阵A 的非对角线元素中选取一个非零元素 ija .一般说来,取绝对值最大的非对角线元素;(2) 由公式jj ii ija a a tan -=22θ求出θ,从而得平面旋转矩阵IJ P P =1; (3) 111AP P A T=,1A 的元素由公式(9)计算. (4) 以1A 代替A ,重复第一、二、三步求出2A 及2P ,继续重复这一过程,直到m A 的非对角线元素全化为充分小(即小于允许误差)时为止.(5) m A 的对角线元素为A 的全部特征值的近似值,m P ...P PP 21=的第j 列为对应于特征值j λ(jλ为m A 的对角线上第j 个元素)的特征向量.例5 用雅可比方法将二次型123(,,)f x x x =2221231213234x x x x x x x ++++化为标准形.解:二次型的矩阵32223A =102201⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭,顺序主子式1=2∆,21=-4∆,31=-44∆都不等于零,所以能采用雅可比方法.设1231000,1,0001εεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,双线性函数f (,)αβ关于基123,,εεε的矩阵为A , 则A=()()()()()()()()()111213212223313233f ,f ,f ,f ,f ,f ,f ,f ,f ,εεεεεεεεεεεεεεεεεε⎛⎫⎪ ⎪ ⎪⎝⎭=3222310221⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭再设111121212223131232333c c c c c c ηεηεεηεεε=⎧⎪=+⎨⎪=++⎩系数11c 可由条件()11f ,1ηε=求出,即()111111c f ,2c 1εε==,从而得出1112c =,所以11111121020c ηεε⎛⎫ ⎪ ⎪=== ⎪ ⎪⎪⎝⎭,系数1222,c c 可由方程组()()()()1211221212122222,,0,,1c f c f c f c f εεεεεεεε+=⎧⎪⎨+=⎪⎩求出,并可得到122268c c =⎧⎨=-⎩,所以2121222c c ηεε=+=680⎛⎫ ⎪- ⎪ ⎪⎝⎭,系数132333,,c c c 可由方程组132333132313333220230221c c c c c c c ⎧++=⎪⎪⎪+=⎨⎪+=⎪⎪⎩求出,即1323338171217117c c c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩,所以38171217117η⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭.由此可得,由基123,,εεε到123,,ηηη的过渡矩阵为18621712081710017C ⎛⎫ ⎪⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭.因此123(,,)f x x x 经线性替换X CZ =能够化成标准形:22222201212312312311z z z 8217z z z ∆∆∆++=-+∆∆∆. (五)偏导数法偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间的关系这一原理,依据配方法提出的化二次型为标准形的新方法,配方法需要仔细观察然后进行配方,而这种方法具有固定的程序,可以按步骤一步一步进行计算.因此,能够提高准确性,且易于理解,求解过程也更加简单.利用偏导数法将二次型()12,...n f x x x =11nnij i j i j a x x ==∑∑化为标准形的解题步骤如下:(注意,运用该方法时,要将二次型分为两种情形来进行讨论.)1. 情形1: 二次中含有i x 的平方项,即ii a ()1,2,...i n =中至少有一个不为零的情形.(1) 不妨设11a 不等于零,将f 对1x 的偏导数1f x ∂∂求出来,并记1112ff x ∂=∂. (2)根据偏导数法()2121111,...(f )g n f x x x a =+,通过计算得出g .此时g 中已经不再含有1x .(3)求出g 对2x 的偏导数2g x ∂∂,并记1212gg x ∂=∂,又可得()12,,...n f x x x =()()2211'112211f g ua a ++, 此时u 中不再含有2x .(4)按照这种程序继续运算,最终可以将二次型化为标准形.2. 情形2:二次型中不含i x 的平方项,即所有iia ()1,2,...i n =都等于零,但是至少有一1(1)j a j >不等于零的情形.(1)不妨设12a 不等于零,首先求出f 对1x 的偏导数1fx ∂∂,以及f 对2x 的偏导数2f x ∂∂,并记1112f f x ∂=∂,2212ff x ∂=∂, (2)将(1)结果代入,此时得到()22121212121,,...[()()]n f x x x f f f f a ϕ=+--+,其中ϕ中不含12,x x 的项.(3)进行观察:如果ϕ中含有i x 的平方项,则按照情形1中的方法去进行计算,如果ϕ中仍然不含有i x 的平方项,则按照上述步骤继续计算,直到将二次型化为标准形为止.例6 用偏导数法化二次型23(,,)f x x x =22212312232422x x x x x x x +-+-为标准形.解:原二次型中含有1x 的平方项,符合情形1,首先求出f 对1x 的偏导数1fx ∂∂=1222x x +,所以可以得到:1112ff x ∂=∂=12x x +23(,,)f x x x =()21111f g a +=()212x x g ++ 整理可得到:22232342g x x x x =--接下来求出g 对2x 的偏导数2g x ∂∂=()232x x -, 1212gg x ∂=∂=23x x -23(,,)f x x x =()()222113'1122115f g x a a +- ()()222122335x x x x x =++--令11222333y x x y x x y x=+⎧⎪=-⎨⎪=⎩经过变形可以得到112322333x y y y x y y x y =--⎧⎪⇒=+⎨⎪=⎩于是原二次型化为标准形23(,,)f x x x =2221235y y y +-所得的变换矩阵为111011001C --⎛⎫⎪= ⎪⎪⎝⎭,例7 用偏导数法化二次型23(,,)f x x x =121323422x x x x x x -++为标准形.解:由于所给的二次型中不含i x 的平方项,符合情形2,所以分别求出f 对1x 的偏导数1f x ∂∂,以及f 对2x 的偏导数2fx ∂∂,其结果如下:1f x ∂∂=2342x x -+,2fx ∂∂=1342x x -+1112f f x ∂=∂=232x x -+,2132122ff x x x ∂==-+∂23(,,)f x x x =()()221212121f f f f a ϕ⎡⎤+--+⎣⎦整理上式可得:ϕ=23x于是得到23(,,)f x x x =()()2223121231222224x x x x x x ⎡⎤-----+⎣⎦=()()222312123x x x x x x ---+-+=222123y y y -++令112321233y x x x y x x y x =--+⎧⎪=-⎨⎪=⎩经过整理可以得到1123212333111222111222x y y y x y y y x y ⎧=-++⎪⎪⎪=--+⎨⎪=⎪⎪⎩可以得到所用的可逆矩阵为111222111222001C ⎛⎫- ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭,(六)顺序主子式法对于二次型'12,1(,,...,)nn ij iji j f x x x X AX a x x===∑ (1)其中,,1,2,...,ij ji a a i j n ==,以上介绍了五种化二次型为标准形的方法,本文第六部分介绍顺序主子式法.[1]定理 对于二次型(1)矩阵()A=ij n na⨯假如11121,-121222,-1111211221221-1-1,n-1-1,-1-1,-10,-0,,=n n n n n n n n a a a a a a a a a ααααα∆=≠∆=≠∆≠则二次型可化为标准形12222211111(,,...,)...n n n n f x x x y y y -∆∆=∆+++∆∆例8 化二次型32212132145),,(x x x x x x x x f -+=为标准形解:二次型的矩阵为51025022020A ⎛⎫⎪ ⎪⎪=- ⎪ ⎪- ⎪⎪⎝⎭方法一:4,425,1321-=∆-=∆=∆ 所以1222231232516(,,)425f x x x y y y =-+方法二: 32218125255101022252502024402016025r r r r A --⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以1,23251,44-∆=∆=∆=-1222222231231232542516(,,)2544254f x x x y y y y y y -=-+=-+-雅可比方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.3.1二次型在二次曲面研究中的应用二次曲面的一般方程为:2221122331213231232220a x a y a z a xy a xz a yzb x b y b zc +++++++++=其中,,(,1,2,3)ij i a b c i j =都是实数.我们记x =(x,y,z)T ,123=(,,)b b b b T ,111213212223313233A =a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭其中ij jia a =利用二次型的表示方法,方程(1)可表示成下列形式:0TTx Ax b x c ++= (2)为研究一般二次曲面的性态,我们需将二次曲面的一般方程转化为标准方程,为此分两步进行. 第一步,利用正交变换X =PY 将方程(2)左边的二次型TX AX 的部分化成标准形:222112131T x Ax x y z λλλ=++其中P 为正交矩阵,3=()12y x ,x ,x T,相应地有()112131T T T b x b Py b P y k x k y k z ===++于是方程(2)可化为2221121311121310x y z k x k y k z c λλλ++++++= 第二步, 作平移变换y y y =+,将方程(3)化为标准方程, 其中(,,)y x y z =这里只要用配方法就能找到所用的平移变换.以下对123,,λλλ是否为零进行讨论:1)当123,,0λλλ≠时,用配方法将方程(3)化为标准方程:222123x y z d λλλ++= (6-1) 根据123,,λλλ与d 的正负号,可具体确定方程(6-1)表示什么曲面.例如123,,λλλ与d 同号,则方程(6-1)表示椭球面.(2)当123,,λλλ中有一个为0,设30λ=方程(3)可化为22123(0)x y kz z λλ+=≠ (6-2)22123(0)x y d k λλ+== (6-3)根据12,λλ与d 的正负号,可具体确定方程(6-2)、(6-3)表示什么曲面.例如当12,λλ同号时,方程(6-2)表示椭圆抛物面.当12,λλ异号时,方程(6-2)表示双曲抛物面,(6-3) 表示柱面.(3) 当123,,λλλ中有两个为0,不妨设230λλ==,方程(3) 可化为下列情况之一:21()0(,0)a x py qz p q λ++=≠此时,再作新的坐标变换:2222py qz qy pz x x y z p q p q +-'''===++(实际上是绕x ~轴的旋转变换),方程可化为:02221='++'y q p x λ表示抛物柱面;)0(0~~)(21≠=+p y p x b λ表示抛物柱面;)0(0~~)(21≠=+q z q x c λ表示抛物柱面;21()0d x d λ+=若1λ与d 异号,表示两个平行平面;若1λ与d 同号,图形无实点,若0d =,表示yoz 坐标面.例 二次曲面由以下方程给出,通过坐标变换,将其化为标准型,并说明它是什么曲面.222234444212100x y z xy yz x y z +++++-++= 解:将二次曲面的一般方程写成矩阵形式:010=++x b Ax x T T,⎪⎪⎪⎭⎫ ⎝⎛=z y x x ,1224⎪⎪⎪⎭⎫ ⎝⎛-=b ⎪⎪⎪⎭⎫ ⎝⎛=420232022A )6)(3(18923---=-+-=-λλλλλλλE AA 的特征值为1236,3,0λλλ===,分别求出它们所对应的特征向量,并将它们标准正交化:1132323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2231323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪⎝⎭,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=3132323p取 P= ( p 1 , p 2 , p 3 ) , 则 P 为正交矩阵. 作正交变换x = P y , 其中(),,,111Tz y x y =则有: 212136y x x A x T +=111868)(z y x y P b b T T +-==因此,原方程可化为:221111163868100x y x y z ++-++= 配方得:221118176()3(1)8()0372x y z ++-++=令111817,1,372x x y y z z =+=-=+ 则原方程化为标准方程:0~8~3~622=++z y x该曲面为椭圆抛物面.四、总结不同方法化简的优劣对于初学者来说,配方法是最基础的方法,它的原理很容易被学生消化吸收,因此,这种方法需要熟练掌握,灵活应用.配方法是推导二次型重要理论的基础,要熟悉它的推导过程.对于简单的二次型也可以灵活使用合同变换法,有时候这种方法更具简便性,节约计算量和计算时间.正交变换法由于具有保持几何形状不变的优点而备受青睐.在用正交变换法化二次型为标准型中,如何求正交矩阵是一个难点,常见的求法只有一种,求解过程大致如下:先用二次型矩阵A的特征方程求出A的n个特征值,然后通过直接求矩阵方程的基础解系,得到对应于征值的线性无关的特征向量,再用施密特正交化过程将它们正交化、单位化,进而得到n个两两正交的单位特征向量,最后由这n个两两正交的单位特征向量构成正交矩阵,即得所要求的正交变换和对应的标准型.这种方法综合性比较强,算比较复杂.雅可比方法是一种新的方法,它的过程与施密特正交化过程类似,思想上也有相似之处.用它解决正定性问题时比较方便.体会并深刻理解各种方法的实质与技巧,才能帮助我们快速并正确解决二次型问题.这需要多做练习,熟能生巧,方可以不变应万变.二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准型.二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题,其理论也在网络、分析、热力学等问题中有广泛的应用.将二次型化为标准型往往是困惑学生的一大难点问题,而且它在物理学、工程学、经济学等领域有非常重要的应用,因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值通过典型例题,更能体会在处理二次型问题时的多样性和灵活性,我们应熟练掌握各种方法.致谢我衷心感谢我们论文指导老师,她在论文选题和写作过程中,给予了许许多多认真细致的指导和鼓励 .我也要感谢多年来家人和朋友对我学习工作上的支持,这是我继续在求学路上不断前进的动力之一.大学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多.请允许我以此文来纪念大学四年的美好时光,时间的前进是无法挽回的,四年的求学生活让我明白了一切都来之不易,得到成果的前提是你要不断地脚踏实地地付出自己的努力本文主要就二次型化标准型的方法进行了一定的探讨,在前人的基础上综合了六种化二次型为标准型的方法,这对于二次型的研究和教学都有一定意义!参考文献[1]王萼芳,石生明.高等代数(第三版)[M]北京:高等教育出版社,2007.[2]同济大学数学教研室.线性代数(第三版)[M]北京:高等教育出版社,1999.[3]丘维声.高等代数(上册)[M].北京:高等教育出版社,2002.[4]屠伯.线性代数-方法导引[M].上海:上海科技出版社,1986.[5]蓝以中.高等代数简明教程[M].北京:北京大学出版社,2003.[6]王琳.用正交变换化实二次为标准形方法研究.[J]数学通讯,1990(3).[7]李五明,张永金,张栋春.实二次型化为标准形的几种方法[J]和田师范专科学校学报(汉文综合版)2007,27(5)[8]郭佑镇.实二次型的化简及应用[J]渭南师专学报(自然科学版)2000(2).[9]胡明琼.把二次型化为标准形的方法[J]工程数学.1998,14(1).[10]北京大学数学系几何与代数教研室小组编.高等代数(第三版)[M].高等教育出版社.2007:205-234.[11]庄瓦金编.高等代数教程[M].高等教育出版社.2004:427.[12]陈惠汝,刘红超.浅淡二次型标准形的两种方法[J].长春师范学院报,2004,23(2):13-15.[13]孙秀花.二次型的应用[J].宜宾学院报,2010,10(6):28-29[14]鱼浩,戴培良.二次型在不定方程中的应用[J].常熟理工学院报,2009,23(10):38-42[15]杨文杰.实二次型半正定性及应用[J].渤海大学学报,2004,25(2):127-129[16]郑华盛.二次型半正定性在不等式证明中的应用[J].科技通报,2002,18(30):227[17]袁仕芳,陈云长,曾丽容.关于二次型XAX最大值和最小值的教学思考[J].考试周刊,2010,35:74[18]JaneM.Day,DanKalmanTeachingLinearAlgebra:IssuesandResources[J].Th eCollegeMathematicsJournal.2001.。

线代课件§6用配方法化二次型成标准形

线代课件§6用配方法化二次型成标准形

4. 配方
最后,我们对每一项进行 配方,得到 $(x-g)^2 = D - g^2$,$(y-f)^2 = D f^2$ 和 $(z-h)^2 = D h^2$。
证明步骤详解
1. 引入配方法
2. 展开式子
这一步是为了将二次型转化为一个更易于处 理的形式,通过引入 $g, f, h$ 和 $D$,使得 二次型可以更容易地被配方。
证明结论总结
• 通过上述的证明过程,我们证明了二次型 $f(x,y,z) = ax^2 + by^2 + cz^2 + 2gx + 2fy + 2fz$ 可以被配方法化为标准形 $f(x,y,z) = a(x-g)^2 + b(y-f)^2 + c(z-h)^2 + D$。
05
配方法化二次型成标准形的应 用
配方法简介
01
配方法的定义:通过配方将二次型转化为完全平方的形式 ,从而将其化为标准形的方法。
02
配方法的步骤
03
1. 将二次型中的每一项写成平方项与线性项之和。
04
2. 将二次型中的平方项组合成完全平方项。
05
3. 将二次型中的线性项与完全平方项相加,得到标准形 。
06
配方法的适用范围:适用于任何实数域上的二次型,尤其 在实数域上的一元二次方程求解中有广泛应用。
理解了二次型标准形在解决实际问题 中的应用价值。
对未来研究的展望
深入研究其他化二次型为标准形 的方法,如三角分解法、正交变
换法等。
探索二次型标准形在各个领域的 应用,如物理学、工程学、经济
学等。
进一步研究二次型标准形与矩阵 理论之间的关系,以及其在矩阵 分解和特征值计算等领域的应用。

第5-6章矩阵对角化习题课

第5-6章矩阵对角化习题课

第5-6章习题课
7/38

rank( A 2 E ) rank( A 3E ) 5.
而 rank(A 2E) 2, 故 rank(A 3E) 3. 因 A 为实对称矩阵, 故可对角化, 从而, 每个特征值的代数重数等于其几何重数. 由 rank(A 2E) 2 知 2 的几何重数、代数重数为 3. 由 rank(A 3E) 3 知 3 的几何重数、代数重数为 2.
第5-6章习题课
一、 基本要求
二、典型例题分析
第5-6章习题课
2/38
一、 基本要求
1. 理解矩阵的特征值和特征向量的概念及性质, 熟 练掌握求特征值和特征向量的方法. 2. 理解相似矩阵的概念和性质, 了解相似对角化的条 件, 掌握相似对角化的方法. 3. 理解实对称矩阵的特征值和特征向量的性质, 掌
握实对称矩阵的正交相似对角化方法.
第5-6章习题课
3/38
4. 理解二次型及其矩阵表示, 了解二次型秩的概念,
理解合同矩阵的概念.
5. 理解二次型的标准形, 掌握化实二次型为标准形的
正交变换法, 会用配方法化二次型为标准形, 知道
用合同初等变换法. 6. 理解实二次型的规范形, 了解惯性定理以及实二次 型的正惯性指数、负惯性指数.
其中0 , 1,
于是
, n1为 A 的特征值.
第5-6章习题课
18/38
A 0 E P diag(0 , 1, , n1 ) P 1 P(0 E) P 1 Pdiag(0, 1 0 , , n1 0 ) P 1, ( A 0 E)2 Pdiag(0,(1 0 )2 , ,(n1 0 )2 ) P 1 .

正交变换法和配方法化二次型标准形

正交变换法和配方法化二次型标准形

正交变换法和配方法化二次型标准形(总17页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21 year.March正交变换法和配方法化二次型标准形的优劣研究二次型的研究起源于解析儿何,在平面解析儿何中,通常需要把二次曲线与二次曲面方程化为标准方程.从代数学的观点看,这种变化过程就是通过变量的线性替换化简一个二次多项式,使之只含有各个变量的平方项的过程.这类问题在数学的各个分支及物理、力学和网络计算中都有重要应用.本文在对二次型概念的理解基础上,将二次型化为标准形的方法进行归纳整理,并做进一步的研究与讨论.总结出正交变换法和配方法化二次型标准形的优劣之处.关键词:二次型;标准形;配方法;正交变换法AbstractQuadratic study originated in analytic geometry. In graphic analytic geometry, usually need to second curve and surface equation into standard equation. From the point of view of algebra, the change process of replacement is through simplifying lin ear variable, a quadratic multinomial only con tains the square of variables ・ This kind of question in each branch of mathematics, physics,mechanics and network computing have important applications・Based on the understanding of quadratic basis, induce the method of transform quadratic form into standard form, and further generalization of the research and discussion. Summarize the advantage and disadvantage of orthogonal transformation method and the method of completing square・Keywords: Quadratic form; Standard form; Method of completing square; Method of orthogonal transformation摘要................................................. Abstract . (II)目录........................ 1・引言.............. ......2. 定义.............. .......3. 定理及其证明..............4. 方法步骤及例题............配方法化二次型标准形••••••••. 正交变换法化二次型标准形两种方法的比较研究......................... Ill (1) (1)•.... . (2) (5) (5) (7) (9)5.小结 .........................................致谢............................................ —12参考文献...........................................10线性代数理论有着悠久的历史和丰富的内容,随着科学技术的发展,特别是电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学、社会科学、工程技术、经济、管理等各个领域.二次型理论在线性代数中占有举足轻重的地位,从对平方数的注意到对特殊二次型的研究,再到对一般二次型的探索与发展,中间经历了一个漫长曲折的历史过程,而实二次型的标准形与代数数论、数的儿何等都有密切的联系,利用二次型可以把任何一个方阵JORDAN标准化,对研究矩阵是非常有用的,因此讨论化二次型为标准形的问题就成为教学的一个很重要的内容.文献[1]-[3]具体介绍了二次型的定义以及对二次型的研究情况,提出了化二次型为标准型的重要性.文献[4]-[6]提出了用正交变换法化二次型标准形的步骤及应用.文献[7]-[8]提出了用配方法化二次型标准形的步骤及应用.本文对化二次型为标准形的方法进行了归纳和总结,并做进一步的研究与讨论,这在理论上和应用上都有着十分重要的意义.2 •定义定义1:设P是一数域,一个系数在数域P中的的二次齐次多项式= xf+2a l2x l x2+-+2a in x l x n+a22xl+-2a2n x2x n+—a nn x~称为数域P上的一个n元二次型,简称二次型.定义2:设“,…,兀;儿,…,儿是两组文字,系数在数域P中的一组关系X)= c lI y1+c I2y2+--- + c In儿x2=c11j2+c22y2+-- + c2n儿⑴称为由X],…,兀到儿,…,儿的=c”j +c n2y2 +-- + c nn y n一个线性替换,简称线性替换.如果系数行列式鮭卜0,那么,线性替换(1)就称为非退化的.定义3:在n维欧式空间中,由n个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基.3.定理及其证明定理1:数域P 上任意一个二次型都可以经过非退化线性替换变成平方和〃用+ 〃2卅+…+ £兀:的形式.证明:对变量的个数n 作归纳法.对于nJ,二次型就是/(x 1) = «11x I 2,已经是平方和了,现假定对n-1元的二次 型,定理的结论成立.再设 /(A'! , • * •, a ij X i X j (勺=a ji)r-2 j ・2分三种情形来讨论:1)偷(i = l,2,…中至少有一个不为零,例如gHO,这时/(%勺,・・・,叫)=5卅+2>护宀+工~兀“ +工工知兀"j ・2 r-2 r-2 j ・2=%用+2工⑷円勺+工》佝兀宀T 1-2 7-2这是一个非退化线性替换,它使/g/2,…,X“)=绚田+工工®』儿/-2 /-2由归纳法假定,对f £切兀儿有非退化线性替换 r-2 J-26 =c 22y 2+c 23>'3+-+c 2H 儿5 =°32〉‘2+63『3+・・・ + °3〃〉爲乙=32 +33+••・ + ・儿能使它变成平方和〃2以+ 〃3公+…+ /Z : 工5勺J-2 \22 n nr-2 ;-2(-2 ;-2这里士士bjjX/j =・珥;£ j ・2 V>-2+ f E 炉宀是一个X 2,X 3,- -,A …的二次型. r-2 J-2Ji =山+工如;5勺 yi = x i X 】=比-2>「1匕内丿・2$2 =勺可=>'1于是非退化线性变换6 =32+…+ S”就使/(兀1,%2,…,耳)变成/(X l,x2, -,x n) = ^)2^ +d2zl+…+ 〃“z:,即变成平方和了•根据归纳法原理,定理得证.2) 所有a a = 0,但是至少有一5工0 (j>l),不失普遍性,设如工0-Vi = Zi + S£ = Zi — 5令x3=z s它是非退化线性变换,且使f(x l>x2,- -,x ll) = 2a l2x l x2+- -= 2a n(z l+Z2\z l-Z2)+"-= 2a n^ - 2a n z} +■■■,这时上式右端是Z,,Z2,-,的二次型,且材的系数不为零,属于第一种情况,定理成立.3) °]] = a l2=…=a ln = 0由于对称性,有a21 =a31 = " = a nl =0这时/(坷宀泸巧是n-1元二次型,根据归纳法假定,它能用非r-2 j-2退化线性替换变成平方和.定理2:对于任一个n级实对称矩阵A ,都存在正交矩阵0,使得Q~[AQ = QAQ=儿. 其中入,血,…,血是A的n个特征值.< At)定理3:对于n维欧式空间中任意一组基勺,6,••・,£「都可以找到一组标准正交基…心,使…占卜Mgg…山),° = 12…丿・证明:设^,勻,…,®是一组基,我们来逐个地求出向量首先,可取7= 詁.一般地,假定已经求出〃「〃2,…,〃,”,它们是单位正交的,具有性质L(£i,£2,・・,E)=L(7,“2,・,“i),i = l,2,・・,7n.下一步求〃,曲因为L(习,匂,…占J二L(?7I,〃29…'〃J 所以%1不能被〃1,〃2,…4线性表出・作向量乩】=£g-工亿加•显然,・+1工0‘且(鼻十〃】)=0‘,T2…Mr-i令〃曲=严|,“ 1,〃2,…,〃川,%+1就是—单位正交向量组. |S M+1 I同时L (斫,匂,…,£”+1)=L (〃|, 772,…,〃曲)由归纳法原理,定理得证.定理4:任意一个n元二次型f(x{,x2t-,x n) = X AX(A实对称),总可以经过正交变换X=QY(0为正交矩阵)化为标准形/=人卅+/12用+…+ 2”加,式中,人“2,…,兄”是矩阵店(呦)的全部特征值,/=和屮+兄2需+…+血必称为二次型在正交变换下的标准形.证明:因为矩阵A是实对称阵,由定理4可知,一定存在正交矩阵0,使得Q~{AQ = Q AQ = A=儿. 其中几人,…人是矩阵A的全部特k Ar )征值•作正交变换X =0匚则/(“宀,・・・心)二X AX汀汀AY= A>T +几2元+…+血元4.方法步骤及例题配方法化二次型标准形用配方法化二次型为标准形的关键是消去交义项,分如下两种情形处理:情形1:如果二次型/(“內,…宀)含某文字例如“的平方项,而5工0,则集中二次型中含“的所有交义项,然后与彳配方,并作非退化线性替换Ji =5内+巾吃+…+ 5儿儿=心则/ = » + gGs,…,儿),其中g©2,…y J是儿,…,儿的二次型。

化二次型为标准形的方法

化二次型为标准形的方法

化二次型为标准形的方法内容摘要:高等代数作为我们数学专业的一门重要的基础课。

它以线性空间为背景,以线性变换为方法,以矩阵为工具,着重研究线性代数的问题。

二次型式多元二次函数,其内容本属于函数的讨论范围,然而二次型用矩阵表示之后,用矩阵方法讨论函数问题,使得二次型的问题变得更加简洁明确,二次函数的内容也更加丰富多彩。

而我们要讨论的是如何化二次型为标准形,也就是用矩阵方法把对称矩阵合同与对角矩阵。

二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准形。

下面介绍了一些化二次型为标准形的方法:配方法,交变换法,初等变换法,雅可比方法,偏导数法关键词:二次型 线性替换 矩阵 标准形导言:二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题。

二次型是学中的一个极其重要的问题,这个问题不仅在数学上,而且在物理学,工程学,经济学领域都有广泛的应用。

在研究时为了研究的方便,我们经常要化二次型为标准形。

我们知道,任一二次型和某一对称矩阵是相互唯一确定的,而任一实对称矩阵都可以化为一对角矩阵,相应的以实二次型都可以化为标准形,以下就是化二次型为标准形的几种方法,通过典型例题,体会二次型问题时的多样性和灵活性。

化二次型为标准形的方法一. 配方法配方法是解决这类问题时另一个常用方法,通过观察对各项进行配方,其实质就是运用非退化的线性替换。

使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式和两数的平方差公式逐步的消去非平方项并构造新的平方项。

定理:数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122...n n d x d x d x +++的形。

1.如果二次型含有i x 的平方项,那么先把含有i x 的乘积项集中,然后再配方,再对其余的项同样进行,直到都配成平方项为止,写出前面过程所经过的所有非退化的线性替换,就将二次型化为标准形了。

化二次型为标准型的方法

化二次型为标准型的方法

化二次型为标准型的方法二、 二次型及其矩阵表示在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 22ax 2bxy cy f ++=. (1)为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ''''x x cos y sin y x sin y cos θθθθ⎧=-⎪⎨=+⎪⎩ (2)把方程(1)化成标准方程。

在二次曲面的研究中也有类似的情况。

(1)的左端是一个二次齐次多项式。

从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含平方项。

二次齐次多项式不但在几何中出现,而且数学的其他分支以及物理、力学中也常会碰到。

现在就来介绍它的一些最基本的性质。

设P 是一数域,一个系数在数域P 上的12n x ,x ,...,x 的二次齐次多项式22212n 11112121n 1n 2222n 2n nn n f (x ,x ,...,x )a x 2a x x ...2a x x a x ...2a x x ...a x =++++++++称为数域P 上的一个n 元二次型,或者在不致引起混淆时简称二次型。

设12n x ,x ,...,x ;12n y ,y ,...,y 是两组文字,系数在数域P 中的一组关系式11111221n n 22112222n n 33113223n n n n12n22nn nx c y c y ...c y x c y c y ...c y x c y c y ...c y ...........x c y c y ...c y =++⎧⎪=++⎪⎪=++⎨⎪⎪=++⎪⎩ (4) 称为由12n x ,x ,...,x 到12n y ,y ,...,y 的一个线性替换,。

如果ij c 0≠,那么线性替换(4)就称为非退化的。

在讨论二次型时,矩阵是一个有力的工具,因此把二次型与线性替换用矩阵来表示。

化二次型为标准形几种方法的比较及技巧

化二次型为标准形几种方法的比较及技巧

化二次型为标准形几种方法的比较及技巧
一般而言,二次型是以一定的形式表示的曲线的方程。

将其转化为标准形,就是使用
各种方法使得二次型的三个系数都变成确定值,即a=1、b=0、c=0。

一:全部系数乘法法
将二次型方程式乘以一定系数使得二次项系数变为 1,如:
2x^2-3x + 1 = 0,可以乘以2而得到
将其带入标准形:y = ax^2 + bx + c,即有a = 1、b = -6、c = 2,可以看到,a = 1。

二:减半系数乘法与加倍系数乘法结合法
可以看出,当将一次项系数减半,乘以 3 而得到二次系数变为 1,然后再乘以 2 使
一次项变为 0 即可,即有a = 1 、b = 0 、c = 3。

三:利用代数整理法
将二次型方程式展开后 sum 两边后,将一次项变为常数,再将每一项有项变为0,如:
2x^2-3x+1=0,展开后 2x^2-3x-1=0
将二次项变为常数后 2x^2-3x =1
以上就是将二次型转化为标准形的几种方法的比较及技巧。

其中有些方法可以使得
b=0,而其它方法也可以使得 c=0,同时还有一些方法是可以使得a = 1 、b = 0 、c = 0一起得到。

因此,要根据实际情况选择最合适的方法,以期达到最佳的效果。

用配方法和初等变换法化化二次型为标准形

用配方法和初等变换法化化二次型为标准形

例题
1 0 0
1 2 1

PT
2
1
0
,则
P
0
1
1 ,所用可逆变换为 x Py ,即
1 1 1
0 0 1
x1 x2
y1
2 y2 y2
y3 y3
, ,
x3
y3 ,
将 f 化为标准形 f y12 3y22 .
1.3 标准二次型化为规范二次型
定义
若标准二次型中的平方项系数只有 0,-1 和 1,则该二次型称为规范二次型.
, ,即
x1 x2
y1
2
y2 y2
y3 y3
, ,将
f
化为标准形
f
y12
3y22 ,所用变换矩阵
y3
x3 , x3
y3
1 2 1

P
0
1
1 .
0 0 1
1.1 用配方法化二次型为标准形
例题
例 3 用配方法求二次型 f x1x2 x2x3 的标准形,并写出相应的可逆线性变换.
[ (x1 2x2 x32 ) 42x2 2x3 4x2 x3 ] 2 x2 2 x2 x3 22 x3
(x1 2x2 x32) 32x2 6x2 x3 32 x3
(x1 2x2 x3 )2 3(x2 x3 )2 .

y1 y2
x1
2 x2 x2
x3 x3
,得
f
的标准形为
f
z12
z22 .
因此,所用的可逆线性变换为
x1 1
x2
1
x3 0
1 1 0
1
0
01
0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


§6
用配方法化二次型成标准形
所用变换矩阵为 1 1 0 2 1 0 0 0 1 0 1 1 6 2 2 1 6 2 1 0 6 1 2 1 2 0 3 2 1 . 6 1 6

z1 2( y1 y3 ), z2 2( y2 2 y3 ), z3 6 y3 ,
2 2 2 f z1 z2 z3 .
1 1 y z z3 , 1 1 2 6 1 1 即 y2 z1 z3 , 2 6 1 1 y z z3 , 3 1 2 6

在 f 中不含平方项.由于含有x1 x2乘积项,故令 x1 y1 y2 x2 y1 y2 , x y 3 3 代入得
2 f 2 y12 2 y2 4 y1 y3 8 y2 y3 .
§6
用配方法化二次型成标准形
2 2
2 f 2 y1 y3 2 y2 2 y3 6 y3 .
§6

用配方法化二次型成标准形
2 2 f x12 2 x2 5 x3 2 x1 x2 2 x1 x3 6 x2 x3
化二次型 为标准形, 并求所用的变换矩阵.

2 2 f x12 2 x2 5 x3 2 x1 x2 2 x1 x3 6 x2 x3 2 2 x12 2 x1 x2 2 x1 x3 2 x2 5 x3 6 x2 x3 2 2 x1 x2 x3 x2 4 x3 4 x2 x3 2 2
0 1 2 0
1 C 1 0
1 C 0 . 6
§6
总结
用配方法化二次型成标准形
将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,需要注意的 是,使用不同的方法,所得到的标准形可能 不相同,但标准形中含有的项数必定相同, 项数等于所给二次型的秩.
§6
用配方法化二次型成标准形
主要内容:
一、拉格朗日配方法化二次型成标 准形的方法
二、举例说明运用拉格朗日配方法 化二次型成标准形
§6
用配方法化二次型成标准形
拉格朗日配方法化二次型成标准形 若二次型含有xi的平方项,则先把 含有xi的乘积项集中,然后配方,再对其 余的变量同样进行,直到都配成平方项 为止,经过非退化线性变换,就得到标 准形.
x1 x2 x3 x2 2 x3 .
2
§6
用配方法化二次型成标准形
y1 x1 x2 x3 , x1 y1 y2 y3 , 令 y2 x2 2 x3 , 即 x2 y2 2 y3 , y x , x y , 3 3 3 3
2 就把 f 化为标准形(规范形) f y12 y2 ,所用变换矩阵为
1 1 1 Biblioteka C 0 1 2 , 0 0 1
C
1 0.
§6
用配方法化二次型成标准形
拉格朗日配方法化二次型成标准形 若二次型中不含有平方项,但是aij≠0(i ≠ j),则先 作可逆线性变换
xi yi y j x j yi y j , k 1, 2, , n且k i, j x y k k
化二次型为含有平方项的二次型,然后再按前面的方法配 方.
§6

用配方法化二次型成标准形
化二次型 f 2 x1 x2 2 x1 x3 6 x2 x3 成标准形, 并求所用的变换矩阵.
相关文档
最新文档