【理科数学】2020年名校真题高考冲刺卷含答案
2020年高考数学(理)金榜冲刺卷(一)解析版
f (x) cos x sin x (a sin x) ( sin x) a sin x 1 因 为 cos2 x 0 , 所 以 a sin x 1 0 在 区 间
cos2 x
cos2 x ,
( π , π ) 恒成立,所以 a 1
因为
x
(
,
) ,所以
1
sin
x
32 3
1
2 所以 a 的取值范
3.4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中随机抽取 2 张,则取出的 2 张卡片上的数字之和
本资料由集师广益·教学研究所整理
为奇数的概率为( )
1
A.
3
1
B.
2
【答案】C
2
C.
3
3
D.
4
【解析】取出的
2
张卡片上的数字之和为奇数的抽取方法是一奇一偶,
C21C21 C42
=
2 3
9.已知正方体 ABCD A1B1C1D1 的棱长为 2,直线 AC1 平面 .平面 截此正方体所得截面有如下四个
结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;
④截面面积最大值为 3 3 .则正确的是( )
A.①②
B.①③
C.①②④
D.①③④
【答案】D
【解析】对①,当 截此正方体所得截面为 B1CD1 时满足.故①正确.
【答案】B
【解析】根据题意有 f x cos2x 1 1 cos2x 2 3 cos2x 5 ,
2
2
2
所以函数 f x 的最小正周期为 T 2 ,且最大值为 f x 3 5 4 ,故选 B.
2020年百校联考高考考前冲刺数学试卷(理科)(三)(全国I卷)(含答案解析)
2020年百校联考高考考前冲刺数学试卷(理科)(三)(全国I卷)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={x|log2x<1},集合B={y|y=√2−x},则A∪B=()A. (−∞,2)B. (−∞,2]C. (0,2)D. [0,+∞)2.已知MN⃗⃗⃗⃗⃗⃗⃗ =(3,4),M(−2,−1),则点N的坐标为()A. (5,5)B. (−3,1)C. (1,3)D. (1,1)3.已知命题p:∃x∈R,使得x2−x+2<0;命题q:∀x∈[1,2],使得x2≥1.以下命题为真命题的是()A. ¬p∧¬qB. p∨¬qC. ¬p∧qD. p∧q4.已知点是角α终边上一点,则)A. √32+12B. −√32+12C. √32−12D. −√32−125.已知函数f(x)=xcosx+(a−1)x2是奇函数,则曲线y=f(x)在点(0,f(0))处的切线方程是()A. 2x−y=0B. x−y=0C. 2x+y=0D. x−2y=06.若直线y=c(c∈R)与函数y=tanωx(ω>0)的图象相邻的两个交点之间的距离为1,则函数y=tanωx图象的对称中心为()A. (k2,0),k∈Z B. (k,0),k∈ZC. (kπ2,0),k∈Z D. (kπ,0),k∈Z7.已知f(x)是定义在R上且以4为周期的奇函数,当x∈(0,2)时,f(x)=e x−1+e1−x−3(e为自然对数的底),则函数f(x)在区间[0,4]上的所有零点之和为()A. 6B. 8C. 12D. 148.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设在中,角A,B,C对边分别为a,b,c,面积为S,则“三斜求积”公式为S=√14[a2c2−(a2+c2−b22)2].若,且,则面积为()A. √2B. 2C. 3D. √39.已知非零向量a⃗,b⃗ 的夹角为60°,且满足|a⃗−2b⃗ |=2,则a⃗⋅b⃗ 的最大值为()A. 12B. 1C. 2D. 310. 已知a >1,三个数lna+1a、1a+1、1a 的大小关系是( )A. lna+1a >1a>1a+1B. 1a >lna+1a >1a+1C. 1a >1a+1>lna+1aD. 1a+1>1a >lna+1a11. 已知函数f(x)=2sin(ωx +φ)(0<ω<l,|φ|<π2)的图象经过点(0,1),且关于直线x =2π3对称,则下列结论正确的是( )A. f(x)在[π12,2π3]上是减函数B. 若x =x 0是f(x)的一条对称轴,则一定有f′(x 0)≠0C. f(x)≥1的解集是[2kπ,2kπ+π3],k ∈Z D. f(x)的一个对称中心是(−π3,0)12. 若方程x 3−3ax +2=0(a >0)有三个不同实根,则实数a 的取值范围是( )A. a >1B. a >0C. 1<a <3D. 0<a <1二、填空题(本大题共4小题,共20.0分)13. 若函数f(x){1,x >0(12)x ,x ≤0则满足f(a)=2的实数a 的值为______.14. 化简1sin70∘−√3cos70°=______. 15. 在△ABC 中,∠B =∠C =60°,AB =2,且点M 满足BM ⃗⃗⃗⃗⃗⃗ =2CM ⃗⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =______________. 16. 在△ABC 中,若b =1,c =√3,∠C =2π3,则a =______.三、解答题(本大题共6小题,共70.0分)17. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若f(α2)=45,0<α<π3,求cosα的值.18.对于任意非零实数x1,x2,函数f(x)满足f(x1⋅x2)=f(x1)+f(x2),(1)求f(−1)的值;(2)求证:f(x)是偶函数;(3)已知f(x)在(0,+∞)上是增函数,若f(2x−1)<f(x),求x取值范围.19.如图,在△ABC中,点D在边AB上,BD=2AD,∠ACD=45°,∠BCD=90°.(Ⅰ)求证:BC=√2AC;(Ⅱ)若AB=√5,求BC的长.20.已知函数f(x)=x2+aln(x+1)−2x(a∈R).(1)讨论f(x)的单调性;(2)若对任意的−1<x<0,都有f(x)<(a−2)x,求a的取值范围.21.如图,某生态园将三角形地块ABC的一角APQ开辟为水果同种植桃树,已知角A为120°,AB,AC的长度均大于200m,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.(1)若围墙AP,AQ的总长度为200m,如何围可使得三角形地块APQ的面积最大?(2)已知AP段围墙高1m,AQ段围墙高1.5m,造价均为每平方米100元.若建围墙用了20000元,问如何围可使竹篱笆用料最省?22.已知函数f(x)=(x2+a)lnx.(1)当a=0时,求f(x)的最小值.(2)若f(x)在区间[1e2,+∞)上有两个极值点x1,x2(x1<x2).(ⅰ)求实数a的取值范围.(ⅰ)求证:−2e2<f(x2)<−12e.【答案与解析】1.答案:D解析:解:A ={x|0<x <2},B ={y|y ≥0}; ∴A ∪B =[0,+∞). 故选:D .可求出集合A ,B ,然后进行并集的运算即可.考查描述法、区间的定义,对数函数的单调性,以及并集的运算.2.答案:C解析:本题考查向量的坐标,属于基础题.设N (a,b ),则MN⃗⃗⃗⃗⃗⃗⃗ =(a,b )−(−2,−1)=(3,4),即可得N . 解:设N (a,b ),则MN ⃗⃗⃗⃗⃗⃗⃗ =(a,b )−(−2,−1)=(3,4), 所以{a +2=3b +1=4,解得{a =1b =3,所以N(1,3). 故选C .3.答案:C解析:本题主要考查了复合命题的真假判断,属于基础题.解决此题的关键是分别判断命题p 和q 的真假,再结合复合命题的真假判断方法即可求解. 解:对于命题p ,因为△=(−1)2−8<0,故不等式无解,所以p 为假命题; 对于命题q ,因为函数y =x 2在[1,2]上为增函数,所以y min =1,所以∀x∈[1,2],使得x2≥1为真命题,即q为真命题,故¬p∧q为真命题,故选C.4.答案:D解析:本题考查了任意角的三角函数和诱导公式,属于基础题目.现由任意角的三角函数得出,再由诱导公式得出结果.解:由点是角α终边上一点,可得.故选D.5.答案:B解析:解:函数f(x)=xcosx+(a−1)x2,若f(x)为奇函数,可得f(−x)=−f(x),则−xcosx+(a−1)x2=−xcosx−(a−1)x2,即为(a−1)x2=0恒成立,可得a=1,即f(x)=xcosx,f(0)=0函数的导数为f′(x)=cosx−xsinx,可得f(x)在x=0处的斜率为k=f′(0)=1,则f(x)在x=0处的切线方程为y=x.故选:B.由奇函数的定义可得f(−x)=−f(x),可得a=1,求得f(x)的导数,可得切线的斜率,由点斜式方程可得切线方程.本题考查函数的奇偶性和导数的运用:求切线方程,考查运算能力,属于基础题.6.答案:A解析:本题主要考查正切函数的图象和性质,属于基础题.由题意利用正切函数的图象和性质,先求出ω,可得函数y=tanωx图象的对称中心.解:直线y=c(c∈R)与函数y=tanωx(ω>0)的图象相邻的两个交点之间的距离为πω=1,∴ω=π,函数y=tanωx=tanπx,令πx=kπ2,求得x=k2,可得它的对称中心为(k2,0),k∈Z,故选:A.7.答案:D解析:本题主要考查函数零点的判断,利用函数的周期性和奇偶性,分别判断零点个数找到对称性求解,综合性较强.解:根据f(x)为奇函数,得到f(0)=0,又周期为4,所以f(4)=f(0)=0,f(−2)=−f(2),又周期为4,所以f(−2)=f(2),故f(2)=0,当x∈(0,2)时,f(x)=e x−1+e1−x−3,令t=e x−1∈(1e ,e),f(x)=e x−1+e1−x−3=1t+t−3=g(t),g(t)在(1e,1)上单调递减,在(1,e)上单调递增,g(1e)=g(e)>0,g(1)<0,故g(t)=0有有两个解,即f(x)在(0,2)有两个零点记为x1,x2,则在(−2,0)内有两个零点为−x1,−x2,根据周期为4,得到在(2,4)内有两个零点为x3=4−x1,x4=4−x2,所以函数f(x)在区间[0,4]上的所有零点之和为0+2+4+x1+x2+4−x1+4−x2=14,故选D.8.答案:A解析:本题考查正弦定理,余弦定理的应用,考查运算求解能力,是基础题.由正弦定理得ac=3,由余弦定理得a2+c2−b2=2,代入“三斜求积”公式计算求解即可.解:由c2sinA=3sinC,得ac=3,又cosB=a2+c2−b22ac =13,得a2+c2−b2=2.所以S=√14×[32−(22)2]=√2.故选A.9.答案:B解析:本题考查了向量的数量积运算性质与基本不等式的性质,考查了推理能力与计算能力,属于中档题.由题意,利用向量的数量积运算性质与基本不等式的性质可得|a⃗||b⃗ |≤2,即可得出答案.解:∵非零向量a⃗,b⃗ 的夹角为60°,且|a⃗−2b⃗ |=2,∴4=a⃗2+4b⃗ 2−4a⃗⋅b⃗=a⃗2+4b⃗ 2−2|a⃗|⋅|b⃗ |≥2|a⃗|×2|b⃗ |−2|a⃗||b⃗ |=2|a⃗||b⃗ |,即|a⃗||b⃗ |≤2.当且仅当|a⃗|=2|b⃗ |时等号成立,∴a⃗⋅b⃗ =12|a⃗||b⃗ |≤1,∴a⃗⋅b⃗ 的最大值为1,故选B.10.答案:B解析:本题考查了构造函数的应用问题,也考查了利用导数判断函数的单调性以及利用函数的单调性比较大小的应用问题,是综合性题目.构造函数f(x)=x−ln(1+x),x>0,利用导数判断f(x)的单调性,得出x>ln(1+x),令x=1a得1 a >ln a+1a;同理,设g(x)=ln(1+x)−x1+x,x>0,得出ln a+1a>1a+1,即得1a>ln a+1a>1a+1.解:设函数f(x)=x−ln(1+x),x>0,∴f′(x)=1−11+x>0,∴f(x)在(0,+∞)上是增函数, ∴f(x)>f(0)=0, ∴x >ln(1+x); 令x =1a ,且a >1, 则1a >ln(1+1a )=lna+1a;同理,设g(x)=ln(1+x)−x1+x ,x >0, ∴g′(x)=11+x −1(1+x)=x(1+x)>0, ∴g(x)在(0,+∞)上是增函数, ∴g(x)>g(0)=0, ∴ln(1+x)>x1+x ; 令x =1a ,a >1, ∴ln(1+1a )>1a1+1a,即lna+1a >1a+1;综上,1a >ln a+1a>1a+1.故选B .11.答案:D解析:解:函数f(x)=2sin(ωx +φ)(0<ω<l,|φ|<π2)的图象经过点(0,1), 可得f(0)=2sinφ=1,即sinφ=12,可得φ=π6, 由f(x)的图象关于直线x =2π3对称,可得2sin(2π3ω+π6)=kπ+π2, 可得ω=32k +12,由0<ω<1,可得ω=12, 则f(x)=2sin(12x +π6), 由x ∈[π12,2π3],可得12x +π6∈[5π24,π2],显然f(x)递增,故A 错;由f(x)的导数为f′(x)=cos(12x +π6),取x 0=2π3,f(x 0)=2为最大值,则f′(x0)=cosπ2=0,故B错;f(x)≥1即2sin(12x+π6)≥12,即有2kπ+π6≤12x+π6≤2kπ+5π6,k∈Z,化为4kπ≤x≤4kπ+π3,k∈Z,故C错;由f(−π3)=2sin(−π6+π6)=0,可得f(x)的一个对称中心是(−π3,0),故D对.故选:D.由题意可得f(0)=1,解得φ,由对称轴可得ω=12,则f(x)=2sin(12x+π6),由正弦函数的单调性可判断A;由对称轴特点和导数,可判断B;由正弦函数的图象可得x的不等式组,解不等式可判断C;由对称中心的特点可判断D.本题考查三角函数的图象和性质,考查单调性和对称性的判断和运用,考查化简运算能力,属于中档题.12.答案:A解析:本题考查了导数的综合应用及函数思想的应用,同时考查了构造法的应用.易知a=x23+23x,从而令f(x)=x23+23x,求导得f′(x)=23·(x−1)(x2+x+1)x2,从而判断函数的单调性与极值,从而解得.解:易知0不是方程x3−3ax+2=0的根,故3ax=x3+2,故a=x23+23x,令f(x)=x23+23x,则f′(x)=23·(x−1)(x2+x+1)x2,故当x∈(−∞,0)∪(0,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,故f(x)在(−∞,0),(0,1)上单调递减,在(1,+∞)上单调递增,f(1)=13+23=1,在直角坐标系中作出f(x)的示意图。
专题20 2020年全国普通高等学校统一招生考试数学冲刺试卷(全国I卷)(理)(解析版)
第I 卷 选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,1,2,3,4,5}A =-,{|(1)(5)0}B x x x =∈--<N ,则AB =( ).A .{3}B .{2,3}C .{2,3,5}D .{1,1,5}-【答案】D 【解析】{|(1)(5)0}{2,3,4}B x x x =∈--<=N ,所以{1,1,5}A B =-.故选:D.2.设i 为虚数单位,复数z 满足()25z i -=,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】因为()25z i -=,所以()()()5252222i z i i i i +===----+, 由共轭复数的定义知,2z i =-+,由复数的几何意义可知,z 在复平面对应的点为()2,1-,位于第二象限. 故选:B3.某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).①35.6%的客户认为态度良好影响他们的满意度; ②156位客户认为使用礼貌用语影响他们的满意度; ③最影响客户满意度的因素是电话接起快速;④不超过10%的客户认为工单派发准确影响他们的满意度. A .1 B .2C .3D .4【答案】C 【解析】①认为态度良好影响他们满意度的客户比例为35.6%18.35%17.25%-=,故错误; ②156位客户认为使用礼貌用语影响他们的满意度,故正确; ③影响客户满意度的因素是电话接起快速,故正确;④认为工单派发准确影响他们满意度的客户比例为100%98.85% 1.15%-=,故正确. 故选:C . 4.函数()()1ln 1xxe xf x e -=+的部分图像大致为( )A .B .C .D .【答案】B 【解析】()()1ln 1xxe xf x e -=+,其定义域为:(,0)(0,)-∞+∞,又()()()1ln 1ln ()11x xx xe x e xf x f x e e ------===-++,所以()f x 为奇函数,故排除A,C 选项,又当12x =时,1(1)ln 12()021e f e ⨯=<+, 所以排除D 选项, 故选:B.5.惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为q ,这两个相距为R 的惰性气体原子组成体系的能量中有静电相互作用能221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭,其中c k 为静电常量,1x ,2x 分别表示两个原子负电中心相对各自原子核的位移,且1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,则U 的近似值为( )A .21232c k q x x RB .21232c k q x x R - C .2123c k q x x R D .2123c k q x x R- 【答案】B 【解析】根据题意,221121111c U k q R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭21212c k q R R R R R R R x x R x R x ⎛⎫=+-- ⎪+-+-⎝⎭212121111111c k q x x x x R R R R⎛⎫⎪=+--⎪- ⎪++-⎝⎭, 因为1x 和2x 都远小于R ,当x 远小于1时,()1211x x x -+≈-+,所以212121111111c k q x x x x R R R R⎛⎫⎪+--⎪- ⎪++-⎝⎭222212121122221111+c k q x x x x x x x x R R R R R R R ⎡⎤⎛⎫⎛⎫--⎛⎫≈+-+--+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦()222212121122222c x x k q x x x x x x RR R R R R R ⎡⎤--≈-++---⎢⎥⎢⎥⎣⎦21232c k q x x R ≈-, 故选:B6.若曲线()xf x mx e n =⋅+在点()()1,1f 处的切线方程为y ex =,则m n +的值为( )A .12e + B .12e - C .12D .2e 【答案】A 【解析】()x f x mx e n =⋅+,则()()'1x f x m x e =+⋅,故()1f e =,()1f e '=,()11me n e m e e +=⎧∴⎨+=⎩,解得122m e n ⎧=⎪⎪⎨⎪=⎪⎩,所以12e m n ++=. 故选:A .7.据《九章算术》记载,商高是我国西周时期的数学家,曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯早500年.如图,现有ABC 满足“勾3股4弦5”,其中3AC =,4BC =,点D 是CB 延长线上的一点,则AC AD ⋅=( )A .3B .4C .9D .不能确定【答案】C 【解析】因为3,4,5AC CB AB ===,所以222AC CB AB +=, 所以AC CB ⊥,所以0AC CB ⋅=,所以0AC CD ⋅=, 所以2()AC AD AC AC CD AC AC CD ⋅=⋅+=+⋅909=+=. 故选:C8.一个球体被挖去一个圆锥,所得几何体的三视图如图所示,则该几何体的体积为( )A .403πB .56πC .1843πD .104π【答案】C 【解析】由题意可知该几何体是球体被挖去一个圆锥,圆锥底面半径为332=6, 设球的半径为R ,可得(()22236R R =+-,解得4R =,所以该几何体的体积为(2341184236333R π⨯π⨯-⨯⨯π=. 故选:C .9.为响应国家“节能减排,开发清洁能源”的号召,小华制作了一个太阳灶,如图所示.集光板由抛物面(抛物线绕对称轴旋转得到)形的反光镜构成,已知镜口圆的直径为2m ,镜深0.25m ,为达到最佳吸收太阳光的效果,容器灶圈应距离集光板顶点( )A .0.5米B .1米C .1.5米D .2米【答案】B 【解析】若使吸收太阳光的效果最好,容器灶圈应在抛物面对应轴截面的抛物线的焦点处, 如图,画出抛物面的轴截面,并建立坐标系,设抛物线方程22x py = 集光板端点()1,0.25A ,代入抛物线方程可得24p =, 所以抛物线方程24x y =, 故焦点坐标是()0,1F.所以容器灶圈应距离集光板顶点1m . 故选:B10.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21 B .63C .13D .84【答案】B 【解析】因为130S =,3421a a +=,所以111313602521a d a d +⨯=⎧⎨+=⎩,解可得,3d =-,118a =,则7171876(3)632S =⨯+⨯⨯⨯-=.故选:B .11.已知函数()14sin cos f x x x =-,现有下述四个结论: ①()f x 的最小正周期为π;②曲线()y f x =关于直线4πx =-对称; ③()f x 在5,412ππ⎛⎫⎪⎝⎭上单调递增;④方程()2f x =在[],ππ-上有4个不同的实根. 其中所有正确结论的编号是( ) A .②④ B .①③④C .②③④D .①②④【答案】D 【解析】()112sin 2,sin 2214sin cos 12sin 212sin 21,sin 22x x f x x x x x x ⎧-<⎪⎪=-=-=⎨⎪-≥⎪⎩, 作出()f x 在[],ππ-上的图象(先作出2sin 2y x =-的图象,再利用平移变换和翻折变换得到12sin 2y x =-的图象),如图所示,由图可知①②④正确,③错误.故所有正确结论的编号是①②④.故选:D.12.三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC 6P ABC -的外接球的体积是( ) A .2π B .4πC .83πD .43π 【答案】D 【解析】M是线段BC上一动点,连接PM,PA PB PC,,互相垂直,AMP∴∠就是直线AM与平面PBC所成角,当PM最短时,即PM BC⊥时直线AM与平面PBC所成角的正切的最大.此时6 APPM=,6PM=,在直角PBC中,2612PB PC BC PM PC PC PC⋅=⋅⇒=+⨯⇒=. 三棱锥P ABC-扩充为长方体,则长方体的对角线长为1122++=.∴三棱锥P ABC-的外接球的半径为1R=,∴三棱锥P ABC-的外接球的体积为34433Rππ=.故选:D.第II卷非选择题部分(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.若x,y满足约束条件24010220x yx yx y-+≥⎧⎪++≥⎨⎪+-≤⎩,则3z x y=+的最大值为______.【答案】5【解析】由题意,作出约束条件所表示的平面区域,如图所示:目标函数3z x y =+,可化为直线3y x z =-+, 当3y x z =-+经过点A 时,直线在y 轴上的截距最大. 此时目标函数取得最大值,又由10220x y x y ++=⎧⎨+-=⎩,解得3x =,4y =-,即()3,4A -,所以目标函数的最大值为3345z =⨯-=. 故答案为:514.设n S 是等比数列{}n a 的前n 项和,425S S =,则此数列的公比q =____________. 【答案】1-或2± 【解析】设等比数列{}n a 的首项为10a ≠,公比为q ,425S S =,∴1q ≠, ∴()()421115111a q a q qq--=--,化简可得()()22140qq--=,解得1q =-或2q =±. 故答案为:1-或2±.15.2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.【答案】13【解析】根据题意,要求甲、乙、丙3名志愿者每名志愿者至少辅导1门学科, 每门学科由1名志愿者辅导,则必有1人辅导2门学科;则有23436636C A =⨯=种情况,若甲辅导数学,有2212323212C A C A +=种情况, 则数学学科恰好由甲辅导的概率为13, 故答案为:13. 16.过双曲线2221(0)x y a a -=>上一点M 作直线l ,与双曲线的两条渐近线分别交于,P Q ,且M 为线段PQ 的中点,若POQ △(O 为坐标原点)的面积为2,则双曲线的离心率为______.【解析】由题意知,双曲线2221(0)x y a a-=>的两条渐近线方程为1y x a =±,设112211,,,P x x Q x x a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则()12121,22x x M x x a +⎛⎫- ⎪⎝⎭,根据点M 在双曲线2221x y a -=上,得()()22121222144x x x x a a +--=,得212x x a =,由双曲线的两条渐近线方程得1tan2POQ a∠= 222sin cos 22sin =2sin cos 22sin cos 22POQ POQ POQ POQ POQ POQ POQ ∠∠∠∠∠=∠∠+ 22212tan2tan 211POQPOQ a a∠==∠++ ,所以21222211121POQ a aS POQ x x a a a∆+=∠=⨯⨯⨯=+,而2POQS=,所以2a =,又1b =,所以5c =,离心率5e =.故答案为:5 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.平面四边形ABCD ,点,,A B C 均在半径为2的圆上,且6BAC π∠=.(1)求BC 的长;(2)若3BD =,2DBC BCD ∠=∠,求BCD ∆的面积. 【答案】(1)2;(2)352【解析】(1)设外接圆半径为2R =, 在ABC 中,6BAC π∠=,由正弦定理得12sin 422BC R BAC =∠=⨯=, 即2BC =; (2)在BCD 中,2DBC BCD ∠=∠,sin sin 22sin cos DBC BCD BCD BCD ∴∠=∠=∠∠则由正弦定理可得2cos CD BD BCD =⋅∠,又由余弦定理知222cos 2BC CD BD BCD BC CD +-∠=⋅,222()BD BC CD BD CD BC CD+-∴=⋅,又2BC =,3BD =, 解得215CD =,由余弦定理2222232151cos 22326BD BC CD CBD BD BC +-+-∠===-⋅⨯⨯,则35sin 6CBD ∠=, BCD ∴△的面积135sin 22BCDSBC BD CBD =⋅⋅∠=. 18.如图1,在多边形ABCDEF 中,四边形ABCD 为等腰梯形,//BC AD ,1AB AF BC ===,2AD DE ==,四边形ADEF 为直角梯形,//AF DE ,90DAF ∠=︒.以AD 为折痕把等腰梯形ABCD 折起,使得平面ABCD ⊥平面ADEF ,如图2所示.(1)证明:AC ⊥平面CDE .(2)求直线CF 与平面EAC 所成角的正切值. 【答案】(1)详见解析;(2)1919. 【解析】(1)证明:取AD 的中点M ,连接CM ,如下图所示:1AB AF BC ===,//BC AM ,由四边形ABCM 为菱形,可知12AM AD =, 在ACD 中,在90ACD ∠=︒, 所以AC DC ⊥.又平面ABCD ⊥平面ADEF ,平面ABCD 平面ADEF AD =,//AF DE ,90DAF ∠=︒,所以DE AD ⊥,DE ⊂平面ADEF ,所以DE ⊥平面ABCD ,AC ⊂平面ABCD , 所以DE AC ⊥,又因为DE DC D ⋂=, 所以AC ⊥平面CDE .(2)由平面ABCD ⊥平面ADEF ,如图取AD 的中点为O ,以O 为原点,以OA 为x 轴,其中y 轴,z 轴分别在平面ADEF 平面ABCD 中,且与AD 垂直,垂足为O 建立空间直角坐际系O xyz -.因为()1,1,0F ,13,0,22C ⎛⎫- ⎪ ⎪⎝⎭,()1,2,0E -,()1,0,0A ,33,0,22CA ⎛=- ⎝⎭,()2,2,0AE =-,33,1,2CF ⎛= ⎝⎭. 设平面CAE 的法向量(),,n x y z =,则00CA n AE n ⎧⋅=⎨⋅=⎩,即330220x z x y ⎧=⎪⎨-+=⎪⎩,不妨令1x =,得(1,1,3n =.设直线CF 与平面EAC 所成的角为θ,则331522sin 1045CF n CF nθ+-⋅===⨯⋅, 所以19tan θ=.19.在平面直角坐标系xOy中,设椭圆22221x ya b+=(0ab>>)的离心率是e,定义直线bye=±为椭圆的“类准线”,已知椭圆C的“类准线”方程为23y=±,长轴长为4.(1)求椭圆C的方程;(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O:223x y+=的切线l,过点O且垂直于OP的直线l交于点A,问点A是否在椭圆C上?证明你的结论.【答案】(1)22143x y+=;(2)在,证明见解析.【解析】(1)由题意得:23b abe c==,24a=,又222a b c=+,联立以上可得:24a=,23b=,21c=.∴椭圆C的方程为22143x y+=;(2)如图,由(1)可知,椭圆的类准线方程为23y=±,不妨取23y=,设(),23P x(x≠),则23OPk=,∴过原点且与OP垂直的直线方程为023y x=,当3=x时,过P点的圆的切线方程为3x=过原点且与OP垂直的直线方程为12y x=-,联立312xy x⎧=⎪⎨=-⎪⎩,解得:33,2A⎫-⎪⎪⎭,代入椭圆方程成立;同理可得,当0x =时,点A 在椭圆上;当0x ≠时,联立223412y x x y ⎧=⎪⎨⎪+=⎩,解得1A ⎛⎫,2A ⎛⎫⎝, 1PA所在直线方程为()()20060x x y --=.此时原点O 到该直线的距离d ==∴说明A 点在椭圆C 上;同理说明另一种情况的A 也在椭圆C 上. 综上可得,点A 在椭圆C 上.20.已知函数()()2ln 1f x x a x =+-.(1)讨论函数()f x 的单调性;(2)设函数()()0g x kx b k =+>,当0a =时,若对任意的()0,x ∈+∞,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立,求k 的最小值.【答案】(1)详见解析;(2)2. 【解析】(1)()()212120ax f x ax x x x+'=+=>,当0a ≥时,()0f x '≥在()0,∞+上恒成立, 所以函数()f x 在()0,∞+上单调递增; 当0a<时,若()0f x '>,解得0x <<若()0f x '<,解得x >所以函数()f x 在区间⎛ ⎝上单调递增,在区间⎫+∞⎪⎪⎭上单调递减. (2)因为()2g x x ≤,所以20x kx b --≥,0k >,故240k b ∆=+≤,即24k b ≤-,又因为()()21ef x g x -≤,所以2ln 10e x kx b ---≤. 设()2ln 10x e x kx b ϕ=---≤,()2ex k xϕ'=-, 当20,e x k ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增, 当2,e x k ⎛⎫∈+∞⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减. 故()max 2222ln 212ln 10e ex e e b e b k k k ϕϕ⎛⎫==---=--≤ ⎪⎝⎭,所以22ln 1e b k -≤,所以有222ln 14k e b k -≤≤-. 由题知,存在实数k ,b 使得关于x 的不等式()()221ef x g x x -≤≤恒成立的充要条件是不等式222ln 14k e k -≤-有解,将该不等式化为222ln 104k e k--+≥,令2kt =,则22ln 10t e t -++≥有解. 设()22ln 1h t t e t =-++,()22e h t t t'=-+,可知()h t 在区间(上单调递增,在区间)+∞单调递减,又()10h =,10h=>,()2210h e e e =-++<,所以()22ln 1h x t e t =-++在区间)e 内存在唯一零点0t,故不等式22ln 10t e t -++≥的解集为01t t ≤≤,即012kt ≤≤,故k 的最小值为2. 21.11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率. ①求,,p p p 123;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中,,p p p 123的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式. 【答案】(1)分布列见解析;(2)①1231743,,636216p p p ===;②116177i i i p p p +-=+,11156n np ⎛⎫=- ⎪⎝⎭. 【解析】(1)记一轮投球,甲命中为事件A ,乙命中为事件B ,,A B 相互独立,由题意1()2P A =,2()3P B =,甲的得分X 的取值为1,0,1-,(1)()P X P AB =-=121()()(1)233P A P B ==-⨯=, (0)()()()()()()P X P AB P AB P A P B P A P B ==+=+12121(1)(1)23232=⨯+-⨯-=, 121(1)()()()(1)236P X P AB P A P B ====⨯-=,∴X 的分布列为:(2)由(1)16p =, 2(0)(1)(1)((0)(1))p P X P X P X P X P X ==⋅=+==+=111117()2662636=⨯+⨯+=,同理,经过2轮投球,甲的得分Y 取值2,1,0,1,2--:记(1)P X x =-=,(0)P X y ==,(1)P X z ==,则2(2)P Y x =-=,(1)P Y xy yx =-=+,2(0)P Y xz zx y ==++,(1)P Y yz zy ==+,2(2)P Y z ==由此得甲的得分Y 的分布列为:∴3()()3362636636636216p =⨯+⨯++⨯++=, ∵11(1)i i i i p ap bp cp b +-=++≠,00p =,∴1212321p ap bp p ap bp cp =+⎧⎨=++⎩,71136664371721636636a b a b c ⎧+=⎪⎪⎨⎪++=⎪⎩,∴6(1)717b a b c -⎧=⎪⎪⎨-⎪=⎪⎩,代入11(1)i i i i p ap bp cp b +-=++≠得:116177i i i p p p +-=+, ∴111()6i i i i p p p p +--=-, ∴数列1{}n n p p --是等比数列,公比为16q =,首项为1016p p -=, ∴11()6nn n p p --=.∴11210()()()n n n n n p p p p p p p ---=-+-++-111111()()(1)66656n n n -=+++=-. (二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l 的参数方程为12112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程2cos ρθ=. (Ⅰ)求直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于M ,N 两点,求MON ∠的大小.【答案】(Ⅰ)直线l 的极坐标方程为(cos )1ρθθ=+曲线C 的直角坐标方程为222x y x +=;(Ⅱ)6MON π∠=.【解析】(Ⅰ)由1112x y t ⎧=⎪⎪⎨⎪=+⎪⎩,,得直线l的普通方程为1x += 又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩所以直线l的极坐标方程为(cos )1ρθθ+=+曲线C 的极坐标方程为2cos ρθ=,22cos ρρθ∴=,222x y x ∴+=,即曲线C 的直角坐标方程为222x y x +=.(Ⅱ)设M ,N 的极坐标分别为()11,ρθ,()22,ρθ, 则12MON θθ∠=-,由(cos )12cos ,ρθθρθ⎧=+⎪⎨=⎪⎩消去ρ得2cos (cos )1θθθ+=+,化为cos 22θθ+=sin 26πθ⎛⎫+= ⎪⎝⎭ 不妨设0,2πθ⎛⎫∈ ⎪⎝⎭,即72,666πππθ⎛⎫+∈ ⎪⎝⎭, 所以263ππθ+=,或2263ππθ+=, 即12,12,4πθπθ⎧=⎪⎪⎨⎪=⎪⎩或12412πθπθ⎧=⎪⎪⎨⎪=⎪⎩,, 所以126MON πθθ∠=-=.23.已知函数()|4||4|f x x x =++-. (Ⅰ)求不等式()3f x x >的解集;(Ⅱ)设函数()f x 的最小值为z ,正实数m ,n 满足2mn m n z --=,求证:2103m n ++. 【答案】(Ⅰ)8|3x x ⎧⎫<⎨⎬⎩⎭;(Ⅱ)详见解析. 【解析】(Ⅰ)()3f x x >,即|4||4|3x x x ++->.当4x <-时,不等式可化为443x x x --+->,解得4x <-; 当44x -时,不等式可化为443x x x ++->,解得843x -<; 当4x >时,不等式可化为443x x x ++->,无解. 综上,原不等式的解集为8|3x x ⎧⎫<⎨⎬⎩⎭.(Ⅱ)由绝对值不等式性质得,|4||4||44|8x x x x ++-+-+=,8z ∴=,即28mn m n --=,所以(1)(2)10m n --=,所以(1)(2)32103m n m n +=-+-++,当且仅当1m =,2n =时取“=”, 原不等式得证.。
2020年高考全国名校联考冲刺金卷全国Ⅱ卷 数学(理)(三) Word版含答案
2020届百校联考高考百日冲刺金卷全国II 卷·理数(三)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.全部答案写在答题卡上,写在本试卷上无效。
4.本试卷满分150分,测试时间120分钟。
5.考试范围:高考全部内容。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M ={x ∈N|x ≤6},A ={-2,-1,0,1,2},B ={y|y =x 2,x ∈A},则M ðB = (A){2,5,6} (B){2,3,6} (C){2,3,5,6} (D){0,2,3,5,6} (2)已知i 是虚数单位,z(2-i)=5(1+i),则z = (A)1+3i (B)1-3i (C)-1+3i (D)-1-3i(3)在△ABC 中,AB =23,AC =4,D 为BC 上一点,且3BC BD =u u u r u u u r,AD =2,则BC 的长为 (A)42 (B)42 (C)4 (D)42 (4)在正多边形中,只有三种形状能用来铺满一个平面图形而中间没有空隙,分别是正三角形、正方形、正六边形,称之为“正多边形的镶嵌规律”。
已知如图所示的多边形镶嵌的图形T ,在T 内随机取一点,则此点取自正方形的概率是(A)23 43743+ 743+ (D)12 (5)某几何体的三视图如图所示,则该几何体的体积为(A)2433π+ (B)21233π+ (C)4433π+ (D)41233π+ (6)已知O 为坐标原点,双曲线C :22221(0,0)x y a b a b -=>>的右焦点为F ,点A ,B 分别在双曲线C 的两条渐近线上,AF ⊥x 轴,BO BA ⋅u u u r u u u r<0,四边形OAFB 为梯形,则双曲线C 离心率的取值范围是 (A)(1,233) (B)(233,+∞) (C)(1,23) (D)(23,+∞) (7)函数f(x)=(x 2-2|x|)e |x|的图象大致为(8)如图给出的是计算1111124640384040-+-⋅⋅⋅+-的值的程序框图,其中判断框内应填入的是(A)i ≤4034? (B)i ≤4036? (C)i ≤4038? (D)i ≤4042?(9)已知大于1的实数x ,y 满足log x 2x =log y 3y ,则下列结论正确的是(A)221111x y <++ (B)ln(x 2+1)<ln(y 2+1) (C)tanx<tany >(10)已知抛物线C :y 2=2px(p>0)的焦点到准线的距离为1,若抛物线C 上存在关于直线l :x -y -2=0对称的不同两点P 和Q ,则线段PQ 的中点坐标为 (A)(1,-1) (B)(2,0) (C)(12,-32) (D)(1,1) (11)已知三棱柱ABC -A 1B 1C 1,四边形A 1ACC 1与B 1BCC 1均为边长为2的正方形,M ,N 分别是C 1B 1,CC 1的中点,CA CB ⋅u u u r u u u r=0,则异面直线BM 与AN 所成角的余弦值为(A)15 (B)25 (C)45(D)5(12)设函数f(x)=asin ωx +bcos ωx(ω>0)在区间[6π,2π]上单调,且f(2π)=f(23π)=-f(6π),当x =12π时,f(x)取到最大值4,若将函数f(x)的图象上各点的横坐标伸长为原来的2倍得到函数g(x)的图象,则函数y =g(x)(A)4 (B)5 (C)6 (D)7第II 卷本卷包括必考题和选考题两部分。
金考卷—百校联盟—领航高考冲刺卷(理数答案)
平”的原则.
〃答案速查
镶2 静
4
鳞
辩
拱″
慧鳞
~ ~
酗ii!10
~|~~~|~
B|[
∩
\
D|B
B
A~{C~|[〕
】
■
■ [考查目标] 本题考查集合的并运算`简单指数不等式和一元二次
辩
11
辫
刁
·
′
●
[考查目标]
蕊
嚣霹撼嗡慧霉 ″
∏
/I∏+2 | 了
四
4
2
′
气
‖
勺
烂
本题考查三角恒等变换`三角函数的图象和性质’考
第
14垫[考查目标] 本题主要; α厕ˉl≠0,所以α″ˉα″ˉ|=1,又易知αl=1 ’故数列{α鹏}是首项和公
本题主要考 查双曲线的离心率,考查了分析
一
差都为l的等差数列,故α,="`s"=÷″(″+l) ’则b"= 2
模
问题和解决问题的能力。
(—]),警二(—])馏(←击) ,则数列|h鹏|的煎2022项和
考生的逻辑椎理能力以及运算求解能力,考查的核心素养是逻辑椎
面积,再利用几何概型的概率计算公式求解即可。
≤沪 [解析] 如图所示,设AB=α,连接CF,根据
题意可知乙CEF=90°’乙CFE=45°,EF=
\.~
÷』则cF=粤α;正八边形的面积为α2+4×
理`数学运算。 [解题思路] 分公比是否为l进行讨论,再利用等比数列的前门项 和公式及定义求解即可。 [解析] 设等比数列{α′』 }的公比为q’当q=1时,S"_2α| =nαl
司
∩■
』
|三
乙
γ 几
2020高考理科数学押题卷含答案
形镜子的最大面积为 ( )
A、10 平方分米
B、20 平方分米
C、40 平方分米 D、
1600 平方分米
41
(文)函数 y 3x 1的图象
x2
A. 关于点(2,3)对称
C. 关于直线 x= 2 对称
称
() B. 关于点(2,3)对称
D. 关于直线 y= 3 对
9.若双曲线 x2 y2 1的左支上一点 P(a ,b)到直线 y x 的距离为
4
4
7.(理)C .如图,复数2 i 与 3 3i 对应的向量垂直,
2
所以 3 3i 的辐角主值是 3 。
2
2
C 32+3i
O
2-i
B
(文)A .当函数的图像左右平移时,不改变函数的
B
A
值域。 8.(理)C.如图可设 A 的坐标为 (5cos,4sin ) ,
-6
-4
-2 -1
-2
C
-3
-4
D
16.3 .
2
由非负性
1 2 3
P
0
P
3 2
,Eξ=0
1
2 3
P
1
P 3
2
P 3
P
3 2
三、解答题(本大题共 6 小题,共 74 分.解答应写出文字说明,证明
过程或演算步骤)
17.解:(1)∵2sin2A-cos2A=2 ∴cos2A=- 1 ∴A=
2
3
分)
…………(6
(2)y=2sin2B+sin(2B+ )=1+sin(2B- )
2
2
(1)求 a, k 之值;
2020年百校联考高考百日冲刺数学试卷(理科)(一)(含答案解析)
2020年百校联考高考百日冲刺数学试卷(理科)(一)一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈R|x>1},B={x∈R|x2≤4},则A∪B=()A. [−2,+∞)B. (1,+∞)C. (1,2]D. (−∞,+∞)=()2.若复数z=m(m−1)+(m−1)i是纯虚数,其中m是实数,则1zA. −iB. 2iC. iD. −2i3.某中学共有360名教师,其中一线教师280名,行政人员55人,后勤人员25人,采取分层抽样,拟抽取一个容量为72的样本,则一线教师应该抽取()人.A. 56B. 28C. 11D. 54.过三点A(1,3),B(4,2),C(1,−7)的圆交y轴于M,N两点,则|MN|等于()A. 2√6B. 8C. 4√6D. 105.执行如图所示的程序框图,若输入x=2,则输出的S值为()A. 8B. 19C. 42D. 896.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).问它的体积是多少?”这个问题的答案是()A. 5立方丈B. 6立方丈C. 7立方丈D. 9立方丈7. 设S n 为等差数列{a n }的前n 项和,且a 7=4,则S 13= ( )A. 52B. 39C. 26D. 138. 在(3−x)(x +1)n (n ∈N ∗)的展开式中,已知各项系数之和为64,则x 3的系数是( )A. 10B. 20C. 30D. 409. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A. 323B. 163C. 8√33 D. 16√2310. 如图,已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P 、Q ,若∠PAQ =60°,且OQ ⃗⃗⃗⃗⃗⃗ =3OP ⃗⃗⃗⃗⃗ ,则双曲线C 的离心率为( )A. 2√33 B. √72 C. √396D. √311. 已知定义在R 上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=12,则不等式f(x)−12e x <0的解集为( )A. (−∞,12)B. (0,+∞)C. (12,+∞)D. (−∞,0)12.已知数列{a n}的前n项和为S n,若a1=1,a2n=n−a n,a2n+1=a n+1,则S100=()A. 1306B. 1308C. 1310D. 1312二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,1),b⃗ =(1,−2),则(a⃗+2b⃗ )⋅a⃗=______ .14.设变量x,y满足约束条件{y≥xx+2y−2≤0x+2≥0则z=|x−3y|的最大值是.15.函数f(x)=x2−2lnx的单调减区间是________.16.已知函数的部分图象如图所示,则f(0)=__________.三、解答题(本大题共7小题,共84.0分)17.如图,在梯形ABCD中,已知AD//BC,AD=1,BD=2√10,∠CAD=π4,tan∠ADC=−2,(1)求CD的长;(2)求ΔBCD的面积。
2020年高考数学(理)金榜冲刺卷(一)含答案
2020年高考金榜冲刺卷(一)数学(理)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21i+(i 为虚数单位)的共轭复数是()A .i 1-+B .1i-C .1i+D .i1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于()A .{}1,2,3B .{}2,3C .{}1,2D .{}23.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A .13B .12C .23D .344.若等差数列{}n a 和等比数列{}n b 满足11443,24a b a b ==-==,则22a b=()A .-1B .1C .-4D .45.如图所示的程序框图,该算法的功能是.如图所示的程序框图,该算法的功能是( ) ( )A .计算012(12)(22)(32)++++++L (12)nn +++的值的值 B .计算123(12)(22)(32)++++++L (2)nn ++的值的值 C .计算(123+++L )n +012(222++++L 12)n -+的值的值D .计算[123+++L (1)]n +-012(222++++L 2)n+的值的值6.已知ABC V 是边长为()20a a >的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( ))A .22a -B .232a -C .243a -D .2a -7.已知函数()222cos sin 2f x x x =-+,则,则( ) ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为48.已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数上是增函数..若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为大小关系为( ) ( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<9.已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α.平面α截此正方体所得截面有如下四个结论:①截面形状可能为正三角形;②截面形状可能为正方形;③截面形状不可能是正五边形;④截面面积最大值为33.则正确的是().则正确的是()A .①②.①②B B .①③.①③C C .①②④.①②④D D D.①③④.①③④.①③④1010..已知数列{}n a 的通项公式21021na n n =-+-,前n 项和为n S ,若>n m ,则n m S S -的最大值是( ))A .5B .10C .15D .201111.椭圆.椭圆2222:1(0)x y C a b ab+=>>的左右焦点分别为12,F F ,O 为坐标原点,点A 在椭圆上,且160AOF ∠=︒,'A 与A 关于原点O 对称,且22·'0F A F A =u u u u v u u u u v,则椭圆离心率为(,则椭圆离心率为()) A .31-B .32C .312- D .423-1212.不等式.不等式3ln 1xx e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围(的取值范围( )) A .(,1]e -∞- B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-二、填空题:本题共4小题,每小题5分,共20分.1313.若双曲线.若双曲线221y x k-=的焦点到渐近线的距离为22,则实数k 的值为的值为__________. __________.1414.若函数.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是.的取值范围是.1515.据气象部门预报,在距离某码头南偏东.据气象部门预报,在距离某码头南偏东4545°方向°方向600km 的A 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响,则从现在起经过小时该码头将受到热带风暴影响暴影响. .1616.在三棱锥.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -的体积的最大值为64时,其外接球的表面积为时,其外接球的表面积为____________. ____________. 三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 1717..(12分)已知ABC∆内接于单位圆,且()()1tan 1tan 2A B ++=,(1)求角C ;(2)求ABC ∆面积的最大值.面积的最大值.1818..(12分)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,22AC =,2PA =,E 是PC 上的一点,2PE EC =.(1)证明PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小所成角的大小. .1919..(12分)已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.的中点.(1)若P 为线段AB 的中点,求直线AB 的方程;的方程;(2)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.恒过定点,并求出定点坐标.2020..(12分)有人收集了10年中某城市的居民年收入年中某城市的居民年收入((即此城市所有居民在一年内的收入的总和即此城市所有居民在一年内的收入的总和))与某种商品的销售额的有关数据:品的销售额的有关数据: 第n 年 1 2 3 4 5 6 7 8 9 10年收入亿元(x ) 32.031.033.036.037.038.039.043.045.010x 商品销售额万元(y ) 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.010y且已知101380.0i i x ==∑(1)求第10年的年收入10x ;(2)若该城市该城市居民收入与该种商品的销售额之间满足线性回归方程363ˆˆ254y x a =+,①求第10年的销售额10y ;②如果这座城市居民的年收入达到40亿元,估计这种商品的销售额是多少?(精确到0.010.01))附:(1)在线性回归方程ˆˆˆy bx a =+中,1221ˆˆˆ,ni i i ni i x y nx y ba y bx x nx==-==--∑∑. (2)1022110254.0i i x x =-=∑,91125875.0i i i x y ==∑,91340.0i i y ==∑.2121..(12分)设函数()e cos ,()xf x xg x =为()f x 的导函数的导函数. .(1)求()f x 的单调区间;的单调区间;(2)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭…; (3)设nx 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++ ⎪⎝⎭内的零点,其中n N ∈,证明证明::20022sin cos n n n x x ex πππ-+-<-.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 2222..【极坐标与参数方程】(10分)分)A 为椭圆1C :221424x y +=上任意一点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为210cos 240ρρθ-+=,B 为2C 上任意一点上任意一点. . (1)写出1C 参数方程和2C 普通方程;普通方程; (2)求AB 最大值和最小值最大值和最小值. . 2323..【选修4-54-5:不等式选讲】:不等式选讲】(10分)分)已知函数()2f x x a =-+,()4g x x =+,a R ∈. (1)解不等式()()f x g x a <+;(2)任意x ∈R ,2()()f x g x a +>恒成立,求a 的取值范围的取值范围. .参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. C 2. D.3. C.4. B.5. C .6. B.7. B.8. C .9. D.1010.. B.1111.. A.1212.. D . 二、填空题:本题共4小题,每小题5分,共20分. 1313.. 8. 1414.. [2,)+∞ 1515.. 15 1616.. 6π提示:如图,设球心O 在平面ABC 内的射影为1O ,在平面BCD 内的射影为2O则二面角A BC D --的平面角为AMD ∠,点A 在截面圆1O 上运动,点D 在截面圆2O 上运动,由图知,当AB AC =,BD CD =时,三棱锥A BCD -的体积最大,此时ABC ∆与BDC ∆是等边三角形, 设BC a =,则32AM DM a ==,234BCD S a ∆=.6sin()3h AM AMD a π=-∠=,31263124A BCD DBC V S h a -∆=⋅== 解得3a =,所以32DM =,21DO =,212O M =,设2AMD θ∠=则21cos 22cos 13θθ=-=-,解得tan 2θ=,∴222tan 2OO O M θ==,球O 的半径222262R DO OO =+=,所求外接球的表面积为246S R ππ==.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 1717..(1)(()()())112tanA tanB ++=Q ,1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanB tanC tan A B tanAtanB +∴=-+=-=--,()3C 0,4C ππ∈∴=Q .(2)ABC ∆的外接圆为单位圆,∴其半径1R=,由正弦定理可得22c RsinC ==,由余弦定理可得2222c a b abcosC =+-,代入数据可得2222a b ab =++()2222ab ab ab ≥+=+,当且仅当a=b时,“=”成立,222ab ∴≤+,ABC V ∴的面积1122122222S absinC -=≤⋅=+,ABC∆面积的最大值为212-.1818..(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设()2,,0Db ,则()2200C ,,,()002P ,,,422,0,33E ⎛⎫⎪⎝⎭,()20B b -,,,∴()2202PC =-u u u r,,,22 ,,33BE b ⎛⎫= ⎪⎝⎭u u u r,22 33DE b ⎛⎫=- ⎪⎝⎭u u u r,,,∴44 033PC BE ⋅=-=u u u r u u u r ,0PC DE ⋅=u u u r u u u r ,∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=,∴PC ⊥平面BED .(2)() 002AP =u u u r ,,,()2,,0AB b =-u u u r ,设平面PAB 的法向量为() ,,x y z m =u r ,则2020m AP z m AB x by ⎧⋅==⎪⎨⋅=-=⎪⎩u u u v v u u u v v ,取()20b m =u r ,,,设平面PBC 的法向量为() ,,p n q r =r,则222032023n PC p r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩u u u v v u u u v v , 取21,,2b n ⎛⎫=- ⎪ ⎪⎝⎭r ,∵平面PAB ⊥平面PBC ,∴ 20m n b b =-=⋅u r r ,故2b =, ∴() 1,1,2n =-r ,()222DP =--u u u r,,,∴1cos ,2n DP DP n n DP ⋅==⋅r u u u ru u u r r r u u u r , 设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=,∴30θ=︒, ∴PD 与平面PBC 所成角的大小为30°.1919..(1)设()11,A x y ,()22,B x y,则2112y x =①,2222y x =②.①-②,得 ()()()1212122y y y y x x -+=- .又因为()1,1P 是线段AB 的中点,所以122y y +=,所以,21121212=1y y k x x y y -==-+. 又直线AB 过()1,1P ,所以直线AB 的方程为y x =.(2)依题设(),M M M x y ,直线AB 的方程为()111y k x -=-,即111y k x k =+-,亦即12y k x k=+,代入抛物线方程并化简得 ()2221122220k x k k x k +-+=.所以,12121222112222k k k k x x k k --+=-=,于是,12211M k k x k -=,12121221111M M k k y k x k k k k k -=⋅+=⋅+=. 同理,12221N k k x k -=,21N y k =.易知120k k ≠,所以直线MN 的斜率21211M N M N y y k k k x x k k -==--. 故直线MN的方程为211221211111k k k k y x k k k k⎛⎫--=-⎪-⎝⎭,即212111k k y x k k=+-.此时直线过定点()0,1.故直线MN 恒过定点()0,1.2020..(1)依题意101380.0i i x ==∑,则10323133363738394345380x +++++++++=,解得1046x =. (2)①由居民收入x 与该种商品的销售额y 之间满足线性回归方程$y =363254x a +知363254b =,即101102211036325410i i i i i x y x y b x x==-==-∑∑,即10103401287546103836310254254y y ++-⋅⋅=, 解之得:1051y =. ②易得38x =,39.1y =,代入$363254y x a =+得:36339.138254a =⨯+,解得15.21a ≈-,所以$36315.21254y x =-,当40x =时,3634015.2141.96254y =⨯-≈故若该城市居民收入达到40.0亿元,估计这种商品的销售额是41.96万元. 2121..(1)由已知,有()()'e cos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 单调递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 单调递增. 所以,()f x 的单调递增区间为()32,244k k k Z ππππ⎛⎫-+∈⎪⎝⎭, ()f x 的单调递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.(2)记()()()2h x f x g x x π⎛⎫-=⎝+⎪⎭.依题意及(1)有:()()cos sin xg x e x x =-,从而'()2sin xg x e x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭….所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭….(3)依题意,()()10nnu xf x =-=,即e cos 1nx n x =.记2n n y x n π=-,则,42n y ππ⎛⎫∈ ⎪⎝⎭. 且()e cos ny n n f y y ==()()22ecos 2e n x n n n x n n N πππ---∈=.由()()20e1n nf y f y π-==…及(Ⅰ)得0n y y ….由(2)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭….又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭…,故: ()()()2e 2n n n n n f y y g y g y ππ---=-…()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--…. 所以200e22sin cos n n n x x x πππ-+--<.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 2222..(1)由题意可得1C 的参数方程为:2cos ,26sin ,x y αα=⎧⎪⎨=⎪⎩(α为参数),又∵210cos 240ρρθ-+=,且222x y ρ=+,cos x ρθ=, ∴2C 的普通方程为2210240x y x +-+=,即()2251x y -+=.(2)由(1)得,设()2cos ,26sin A αα,圆2C 的圆心()5,0M ,则()()22||2cos 526sin AM αα=-+220cos 20cos 49αα=--+2120cos 542α⎛⎫=-++⎪⎝⎭,∵[]cos 1,1α∈-,∴当1cos 2α=-时,max ||36AM =; 当cos 1α=时,min ||3AM =.当1cos 2α=-时,max max ||||1361AB AM =+=+;当cos 1α=时,min min ||||12AB AM =-=. 2323..【选修4-54-5:不等式选讲】:不等式选讲】(10分)分)(1)不等式()()f xg x a <+即24x x -<+,两边平方得2244816x x x x -+<++,解得1x >-,所以原不等式的解集为()1,-+∞.(2)不等式()()2f x g x a +>可化为224a a x x -<-++, 又()()24246x x x x -++≥--+=,所以26a a -<,解得23a -<<, 所以a 的取值范围为()2,3-.。
2020年安徽省名校高考冲刺数学模拟试卷(理科) (含答案解析)
2020年安徽省名校高考冲刺数学模拟试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1. 已知集合A ={−1,0,1},B ={x|(x +1)2<1},则A ∩B =( )A. {−1,0}B. {0}C. {−1}D. ⌀2. 若复数,则|z|=( ) A. 14 B. 12 C. 21009 D. 23. 在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,求此点取自空白部分的概率( ).A. 3πB. π3C. π2D. 2π4. 已知a =(13)3,b =313,c =log 133,则( ) A. a <b <c B. c <b <a C. c <a <b D. b <c <a5. 已知|a ⃗ |=1,b ⃗ =(0,2),且a ⃗ ⋅b ⃗ =1,则向量a ⃗ 与b ⃗ 夹角的大小为( )A. π6B. π4C. π3D. π2 6. 函数在[−π2,π2]上的图象为( )A. B.C. D.7. 如图程序框图的算法思路是来源于我国古代数学名著《九章算术》中的“更相减损术”执行该程序框图时,若输入a 、b 的分别为16、18,输出的结果为a ,则二项式(a √x −1√x )6的展开式中常数项是( )A. −20B. 52C. −192D. −1608. 若等差数列{a n }中,a 3=3,则{a n }的前5项和S 5等于( )A. 10B. 15C. 20D. 309. 某学校随机抽取100名学生,调查其平均一周使用互联网的时间(单位:小时),根据调查结果制成了如图所示的频率分布直方图,其中使用时间的范围是[0,16],样本数据分组区间为[0,4),[4,8),[8,12),[12,16].根据直方图,这100名学生中平均一周使用互联网的时间不少于12小时的人数为( )A. 5B. 10C. 20D. 80 10. 已知离心率为2√23的椭圆x 2m+y 2=1(m >1)的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线x =4交于点C ,直线BP 与直线x =4交于点D ,若|CD|=83,则直线AP 的斜率为( )A. 16或120B. 13或120C. 16或121D. 13或12111. 已知三棱锥P −ABC 的底面是边长为3的正三角形,PA ⊥底面ABC ,且PA =6,则该三棱锥的外接球的体积是( )A. 48πB. 32√3πC. 18√3πD.12. 已知函数f(x)是R 上的奇函数,且f(x +4)=f(x),当x ∈(0,2)时,f(x)=3x 2,则f(7)=( )A. 147B. −147C. 3D. −3二、填空题(本大题共4小题,共20.0分)13. 函数f (x )=x 3+ax 在点(1,2)处的切线方程为____.14. 设x ,y 满足约束条件{x +2y ≤12x +y ≥−1x −y ≤0,则z =3x −2y 的最小值为________.15. 已知数列{a n }的前n 项和S n 满足S n =2a n −1,则|a 1−18|+|a 2−18|+⋯+|a 10−18|=________.16. 以双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 为圆心,半径为√3的圆与C 的一条渐近线相交于P ,Q 两点,若PQ⃗⃗⃗⃗⃗ =2QO ⃗⃗⃗⃗⃗⃗ (O 为坐标原点),且PF 垂直于x 轴,则双曲线C 的标准方程为______.三、解答题(本大题共7小题,共82.0分)17. 在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足a sinA =√3cosB . (1)求B ;(2)若b =√7,c =2,求ΔABC 的面积.18. 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD的中点.(1)求证:AF//平面BCE;(2)求二面角C−BE−D的余弦值的大小.19.某市移动公司为了提高服务质量,决定对使用A,B两种套餐的集团用户进行调查,准备从本市n(n∈N∗)个人数超过1000人的大集团和8个人数低于200人的小集团中随机抽取若干个集团.进行调查,若一次抽取2个集团,全是小集团的概率为415(1)求n值;(2)若取出的2个集团是同一类集团,求全为大集团的概率;(3)若一次抽取4个集团,假设取出小集团的个数为X,求X的分布列.20. 已知抛物线C :y 2=2px(p >0)上的点A(t,3)到焦点F 的距离等于134t .(1)求t 的值以及抛物线C 的方程;(2)已知直线l 与抛物线C 相交于不同的M ,N 两点,直线AM ,AN 的斜率分别为k 1,k 2,且k 1+k 2=94,求证:直线l 过定点,并求出该定点坐标.21. 已知f(x)=(ax −1)e x +x 2.(1)当a =1时,讨论函数f(x)的零点个数,并说明理由;(2)若x =0是f(x)的极值点,证明f(x)≥ln(ax −1)+x 2+x +1.22. 在直角坐标系xOy 中,直线l 的参数方程为{x =3−√22t,y =√5−√22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C 的方程为ρ=2√5sinθ.(Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,√5),求1|PA|+1|PB|.23.已知函数f(x)=|2x+1|−|x−2|−1,不等式f(x)≤k的解集为[−5,1].(1)求实数k的值;(2)若正数a、b满足√ab2=k,求2a+4b的最小值.【答案与解析】1.答案:C解析:解:∵集合A ={−1,0,1},B ={x|(x +1)2<1}={x|−2<x <0},∴A ∩B ={−1}.故选:C .先分别求出集合A ,B ,再利用交集定义求解.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题. 2.答案:C解析:本题考查复数的运算及模的性质,属于基础题.直接求复数z 的模,利用模的性质|z 1z 2|=|z 1||z 2|,|z n |=|z|n 求解. 解:|z|=|(1+i)20191−i |=|(1+i)2019||1−i|=|1+i |2019|1−i | =√2)2019√2=(√2)2018=21009.故选C .3.答案:D解析:此题考查几何概型,解题的关键是利用割补的方法求组合图形面积,此类不规则图形的面积可以转化为几个规则的图形的面积的和或差的计算.解:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA=OB=2,则OD=DA=DC=1.在以OA为直径的半圆中,空白部分面积S1=π4+12×1×1−(π4−12×1×1)=1,所以整个图形中空白部分面积S2=2.又因为S扇形OAB =14×π×22=π,所以P=2π.故选D.4.答案:C解析:本题主要考查指数函数与对数函数的性质,为基础题.利用指数函数与对数函数的性质求解即可.解:由指数函数的性质可得a=(13)3∈(0,1),b=313>30=1,由对数函数的性质可得,所以c<a<b.故选C.5.答案:C解析:解:∵|a⃗|=1,b⃗ =(0,2),且a⃗⋅b⃗ =1,∴cos<a⃗,b⃗ >=a⃗ ⋅b⃗|a⃗ | |b⃗|=1×√0+22=12.∴向量a⃗与b⃗ 夹角的大小为π3.故选:C.利用向量的夹角公式即可得出.本题考查了向量的夹角公式,属于基础题.6.答案:B解析:本题考查函数图像识别,是基础题.直接利用函数的性质奇偶性和特殊区间结合排除法求出结果.解:函数的解析式满足f(−x)=−f(x),且的定义域R关于原点对称,则函数为奇函数,排除C、D选项,当0<x≤π2时,由sinx≤1,x2+|x|+1≥1可知:当0<x≤π2时f(x)≤1,排除A选项.故选:B.7.答案:D解析:解:由程序框图可知:当a=16,b=18时,不满足a>b,则b变为18−16=2,由a>b,则a变为16−2=14,由a>b,则a变为14−2=12,由a>b,则a变为12−2=10,由a>b,则a变为10−2=8,由a>b,则a变为8−2=6,由a>b,则a变为6−2=4,由a>b,则a变为4−2=2,由a=b=2,则输出的a=2.则二项式(a√x√x )6=(2√x√x)6,它的展开式的通项公式为T r+1=C6r⋅(−1)r⋅26−r⋅x3−r,r=0,1,2…6,令r=3,可得展开式中常数项是T4=(−1)323C63=−160,故选:D.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况可得a,在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.本题考查算法和程序框图,考查二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.8.答案:B解析:本题考查了等差数列的通项公式及其性质与求和公式,考查了推理能力与计算能力,属于中档题,利用等差数列的通项公式及其性质与求和公式即可得出.解:∵a1+a5=2a3,∴S5=5(a1+a5)2=5a3=5×3=15.故选B.9.答案:C解析:本题考查的知识点是频率分布直方图,难度不大,属于基础题目.根据已知中的频率分布直方图,先计算出平均一周使用互联网的时间不少于12小时的频率,进而可得使用互联网的时间不少于12小时的频数.解:一周使用互联网的时间不少于12小时的频率为:0.05×4=0.2,故一周使用互联网的时间不少于12小时的频数为:0.2×100=20.故选C.10.答案:D解析:本题考查直线与椭圆的相关关系,以及直线斜率的求法,属于中档题.由离心率可求出m ,可得出k PA ⋅k PB =−19,设k PA =k (k >0),则k PB =−19k ,可得出AP ,BP 的方程,即可得到C,D 的坐标,再根据|CD |=83求出k .解:由e =√1−1m=2√23,得m =9.设P (x 0,y 0),则k PA ⋅k PB =y 02x 02−9=1−x 029x 02−9=−19,设k PA =k (k >0),则k PB =−19k ,直线AP 的方程为y =k(x +3),则C 的坐标为(4,7k ), 直线BP 的方程为y =−19k (x −3),则D 的坐标为(4,−19k ), 所以|CD|=7k +19k =83,解得k =13或121. 故选:D .11.答案:B解析:本题考查了球与棱锥的位置关系,球的体积计算,属于中档题.过△ABC 的中心作平面ABC 的垂线,利用勾股定理计算球的半径,即可得出球的体积.解:设D 为△ABC 的中心,O 为外接球的球心,E 为PA 的中点, 则OD ⊥平面ABC ,OA =OP ,从而OE⊥PA,OD//PA,×AB×sin60°=√3.因为AB=BC=CA=3,则AD=23∵PA=6,则OD=EA=3.所以OA=√AD2+OD2=2√3.π×OA3=32√3π,三棱锥的外接球的体积V=43故选B.12.答案:D解析:本题考查的是抽象函数的奇偶性和周期性,属于基础题.由题意得f(x)是周期为4的函数,有f(7)=f(3),又由f(3)=f(−1)=−f(1)=−1即可求解.解:因为函数f(x)是R上的奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=3x2,所以f(7)=f(4+3)=f(3)=f(−1+4)=f(−1)=−f(1)=−3.故选D.13.答案:y=4x−2解析:本题主要考查了利用导数求解曲线某点处的切线方程,属于基础题.将点(1,2)代入f(x)中得到a值,然后求解f(x)的导数,利用导数的几何意义求解即可.解:因为(1,2)在f(x)上,所以1+a=2,解得:a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(1)=4,所以f(x)在点(1,2)处的切线方程为y −2=4(x −1), 即y =4x −2. 故答案为y =4x −2.14.答案:−5解析:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是基础题. 由约束条件作出可行域,由图得到最优解,求出最优解的坐标,即可求得答案. 解:由x ,y 满足约束条件{x +2y ≤ 12x +y ≥−1x −y ≤0作出可行域如图,由图可知,目标函数的最优解为A , 联立{x +2y =12x +y =−1,解得A(−1,1).∴z =3x −2y 的最小值为−3×1−2×1=−5. 故答案为:−5.15.答案:961解析:本题考查数列的通项公式和前n 项和公式的求法,解题时要认真审题,注意构造法的合理运用. 由已知条件推导出{a n }是首项为1,公比为2的等比数列,所以a n =2n−1,进而判断a n −18的符号,去掉绝对值后结合等比数列的求和进行求解. 解:∵S n =2a n −1(n ∈N ∗),∴n =1时,a 1=S 1=2a 1−1,解得a 1=1, n ≥2时,a n =S n −S n−1=2a n −2a n−1, 整理,得a n =2a n−1,∴{a n }是首项为1,公比为2的等比数列, ∴a n =1×2n−1=2n−1. n ≥6,a n −18>0∴|a 1−18|+|a 2−18|+⋯+|a 10−18|=−a 1+18−a 2+18+⋯−a 5+18+a 6−18+···+a 10−18 =S 10−2S 5=1−2101−2−2×1−251−2=961.故答案为961.16.答案:x 24−y 22=1解析:本题考查双曲线的方程和性质,考查渐近线方程的运用,以及点到直线的距离公式的运用,考查化简运算能力,属于中档题.可设双曲线的一条渐近线方程为y =ba x ,取PQ 的中点为M ,求得FM 的长为b ,OM 的长为a ,由弦长公式和勾股定理,可得a ,b 的值,可得所求双曲线的方程.解:可设双曲线的一条渐近线方程为y =b a x , 取PQ 的中点为M ,由PQ ⃗⃗⃗⃗⃗ =2QO ⃗⃗⃗⃗⃗⃗ , 可得Q ,M 为OP 的三等分点, 由|FM|=|bc|√a 2+b 2=b , |OM|=√c 2−b 2=a ,可得b 2+(12a)2=3,且c 2+3=(3a2)2,由a2+b2=c2,解得a=2,b=√2,c=√6,则双曲线的方程为x24−y22=1.故答案为:x24−y22=1.17.答案:解:(1)由正弦定理得,又有,即,又,所以B=π3.(2)由余弦定理b2=a2+c2−2accosB,而b=√7,c=2,B=π3,得7=a2+4−2a,即a2−2a−3=0,因为a>0,所以a=3,故△ABC的面积为S=12acsinB=12×3×2×√32=3√32.解析:本题主要考查了正弦定理,余弦定理,三角形面积公式,大边对大角,同角三角函数基本关系式,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.(1)由弦定理化简,结合sinB≠0,结合范围0<B<π,可求B的值;(2)由余弦定理整理可得:a2−2a−3=0,即可解得c的值,利用三角形面积公式即可计算得解.18.答案:证明:(1)设AD=DE=2AB=2a,以A为原点,AC,AB所在的直线分别作为x轴、z轴,以过点A在平面ACD内和AC垂直的直线作为y轴,建立如图所示的坐标系,A(0,0,0),C(2a,0,0),B(0,0,a),D(a,√3a,0),E(a,√3a,2a). ∵F 为CD 的中点,∴F(3a 2,√3a2,0), AF ⃗⃗⃗⃗⃗ =(32a,√3a 2,0),BE ⃗⃗⃗⃗⃗ =(a,√3a,a), BC ⃗⃗⃗⃗⃗ =(2a,0,−a), ∴AF ⃗⃗⃗⃗⃗ =12(BE ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ), 设CE 的中点为G ,则AF⃗⃗⃗⃗⃗ =BG ⃗⃗⃗⃗⃗ , ∴AF//BG ,又∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF//平面BCE .解:(2)设平面BCE 的一个法向量m⃗⃗⃗ =(x,y ,z), 则{m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗ =ax +√3ay +az =0m ⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2ax −az =0,令x =1,得m ⃗⃗⃗ =(1,−√3,2).设平面BDE 的一个法向量n ⃗ =(i,j ,k),BD ⃗⃗⃗⃗⃗⃗ =(a,√3a,−a), 则{n⃗ ⋅BE ⃗⃗⃗⃗⃗ =ai +√3aj +ak =0n ⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =ai +√3aj −ak =0,令i =√3,得n ⃗ =(√3,−1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ |⋅|n ⃗⃗ |=√64. 由图可知二面角C −BE −D 为锐二面角, 故二面角C −BE −D 的余弦值为√64.解析:本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)设AD =DE =2AB =2a ,以以A 为原点,AC ,AB 所在的直线分别作为x 轴、z 轴,以过点A 在平面ACD 内和AC 垂直的直线作为y 轴,建立空间直角坐标系,利用向量法能证明AF//平面BCE . (2)求出平面BCE 的一个法向量和平面BDE 的一个法向量,利用向量法能求出二面角C −BE −D 的余弦值.19.答案:解:(1)由题意知共有n +8个集团,取出2个集团的方法总数是C n+82,其中全是小集团的情况有C 82,故全是小集团的概率是C 82C n+82=8×7(n+8)(n+7)=415,∴(n +8)(n +7)=210=15×14, ∴n +7=14, 解得n =7;(2)若2个全是大集团,共有C 72=21种情况; 若2个全是小集团,共有C 82=28种情况;故全为大集团的概率为C 72C 82+C 72=2128+21=37;(3)由题意知,随机变量X 的可能取值为0,1,2,3,4; P(X =0)=C 80⋅C 74C 154=139, P(X =1)=C 81⋅C 73C 154=839,P(X =2)=C 82⋅C 72C 154=2865, P(X =3)=C 83⋅C 71C 154=56195, P(X =4)=C 84⋅C 70C 154=239;故X 的分布列为:解析:本题考查了古典概型的概率计算问题,也考查了离散型随机变量的分布列与数学期望计算问题,是中档题.20.答案:解:(1)抛物线的准线方程为x =−p2,且2pt =9,由抛物线的定义可知|AF|=t +p2=134t ,解得t=1,p=92,则抛物线的方程y2=9x;(2)证明:由(1)可知A(1,3),设直线l的方程为x=my+n,代入y2=9x得y2−9my−9n=0,设M(x1,y1),N(x2,y2),则y1+y2=9m,y1y2=−9n,所以k1+k2=y1−3x1−1+y2−3x2−1=y1−3y129−1+y2−3y229−1=9y1+3+9y2+3=9(y1+y2+6)y1y2+3(y1+y2)+9=9(6+9m)−9n+27m+9=94,化为n=−m−53,可得直线l的方程为x=my−m−53,即为x=m(y−1)−53.则直线l恒过定点(−53,1).解析:本题考查抛物线方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.(1)由抛物线的定义可知|AF|=t+p2=134t,再由A在抛物线上,解方程可得t,p,可求抛物线的标准方程;(2)设直线l为x=my+n,代入y2=9x利用韦达定理,结合斜率公式,化简,结合k1+k2=94,可得m,n的关系式,可得直线l恒过定点.21.答案:解:(1)当a=1时,f(x)=(x−1)e x+x2,f′(x)=x(e x+2),当x>0时,f′(x)>0;当x<0时,f′(x)<0,∴f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增,∵f(−2)=4−3e>0,f(0)=−1<0,f(1)=1>0,∴f(x)有两个零点;(2)∵f′(x)=e x (ax −1+a)+2x , ∵x =0是f(x)的极值点, ∴f′(0)=a −1=0,解得a =1, 经验证a =1时,x =0是f(x)的极值点,∴f(x)=(x −1)e x +x 2故要证(x −1)e x ≥ln(x −1)+x +1,令x −1=t ,即证te t+1≥lnt +t +2,设ℎ(x)=exe x −lnx −x −2(x >0),ℎ′(x)=e ⋅e x (x +1)−1x −1=e(x +1)(e x −1ex ), 令u(x)=e x −1ex ,u′(x)=e x +1ex 2>0,∴u(x)在(0,+∞)上单调递增,又u(1)=e −1e >0,u(e −2)=e e −2−e <0,故u(x)=0有唯一的根x 0∈(0,1),e x 0=1ex 0,当0<x <x 0时,u(x)<0,故ℎ′(x)<0, 当x >x 0时,u(x)>0,故ℎ′(x)>0,∴ℎ(x)≥ℎ(x 0)=ex 0⋅e x 0−lnx 0−x 0−2=ex 0⋅1ex 0+lne x 0+1−x 0−2=1+x 0+1−x 0−2=0,故te t+1≥lnt +t +2,即f(x)≥ln(ax −1)+x 2+x +1.解析:本题考查了函数的单调性、最值问题,考查导数的应用以及函数的零点问题,考查转化思想,不等式的证明,是一道综合题.(1)求出函数的导数,根据函数的单调性判断函数的零点个数即可;(2)问题转化为证明te t+1≥lnt +t +2,设ℎ(x)=ex ⋅e x −lnx −x −2(x >0),即证ℎ(x)≥0,求出函数的导数,根据函数的单调性证明即可.22.答案:解:(Ⅰ)由ρ=2√5sinθ得x 2+y 2−2√5y =0,即x 2+(y −√5)2=5.(Ⅱ)将直线l 的参数方程代入圆C 的直角坐标方程,得(3−√22t)2+(−√22t)2=5,整理得t 2−3√2t +4=0, 由于,故可设t 1,t 2是上述方程的两实根,所以{t 1+t 2=3√2t 1t 2=4.又直线l 过点P(3,√5),故由上式及t 的几何意义得1|PA|+1|PB|=|1t 1+1t 2|=|t 1+t 2t 1t 2|=3√24.解析:本题考查极坐标方程化为直角坐标方程、直线参数方程的几何意义、直线与圆的位置关系等基础知识与基本技能方法,属于中档题.(Ⅰ)由⊙C 的方程ρ=2√5sinθ可得ρ2=2√5ρsinθ,利用极坐标化为直角坐标的公式x =ρcosθ,y =ρsinθ即可得出.(Ⅱ)把直线l 的参数方程{x =3−√22t,y =√5−√22t (t 为参数)代入⊙C 的方程中得到关于t 的一元二次方程,即可得到根与系数的关系,根据参数的意义可得1|PA|+1|PB|=|1t 1+1t 2|=|t 1+t 2t 1t 2|,即可得出.23.答案:解:(1)不等式f(x)≤k ,即|2x +1|−|x −2|≤k +1,当x ≥2时,2x +1−x +2≤k +1,解得:x ≤k −2, 当−12<x <2时,2x +1+x −2≤k +1,解得:x ≤k+23,当x ≤−12时,−2x −1+x −2≤k +1,解得:x ≥−(k +4), 而不等式的解集是[−5,1],对应[−(k +4),k+23],故{−(k +4)=−5k+23=1,解得:k =1,经检验,k =1时满足题意,故k =1; (2)由(1)中,得√ab 2=1,即ab =2,故2a +4b ≥2√8ab =8,当且仅当a =2,b =1时成立. 故2a +4b 的最小值为8.解析:本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想以及基本不等式的性质,是一道中档题.(1)通过讨论x 的范围求出不等式的解集,根据对应关系求出k 的值即可; (2)求出ab =2,根据基本不等式的性质,求出代数式的最小值即可.。
2020年全国高考冲刺压轴卷(样卷) 数学(理)含答案
2020年全国高考冲刺压轴卷(样卷)数学(理科)注意事项:1.本卷满分150分,考试时间120分钟。
答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|2x>6},B={x|2x<32},则A∩B=A.(3,4)B.(4,5)C.(3,+∞)D.(3,5)2.复数2iii--(i为虚数单位)在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.“2a>8”是“a2>9”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知某几何体的三视图如图所示,若该几何体的体积为3π+6,则x等于A.4B.5C.6D.75.若函数f(x)=sin(2x +φ)(-2π<φ<2π)的图象关于点(3π,0)对称,则f(6π)的值是 A.-12 B.32 C.-32 D.126.已知a =10,a ·b =510,且(b -a)·(b +a)=15,则向量a 在b 方向上的投影为 A.12B.2C.5D.10 7.执行如图所示的程序框图,则输出的结果为A.2B.3C.4D.58.从0,1,2,3,4,5这6个数字中,任取3个组成一个无重复数字的三位数,则这样的三位数中偶数个数与奇数个数的比值为A.1B.32C.1312D.27239.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =l ,c 3,且2sin(B +C)cosC =1-2cosAsinC ,则△ABC 的面积是A.3B.12C.3或3D.14或1210.设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别是F 1,F 2,过F 1的直线交双曲线C 的左支于M ,N 两点,若MF 2=F 1F 2,且2MF 1=NF 1,则双曲线C 的离心率是A.53B.32C.2D.5411.已知以正方体所有面的中心为顶点的多面体的各个顶点都在球O 的球面上,且球O 的表面积为20π,则该正方体的棱长为A.5B.25C.26D.612.设函数f(x)的定义域为R ,f'(x)是其导函数,若3f(x)+f'(x)>0,f(0)=1,则不等式f(x)>e -3x 的解集是 A.(0,+∞) B.(1,+∞) C.(-∞,0) D.(0,1)二、填空题:本题共4小题,每小题5分,共20分。
专题02 2020年全国普通高等学校统一招生考试数学冲刺试卷(全国I卷)(理)(解析版)
第I 卷 选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1iz i-=(i 为虚数单位),则复数z 的虚部是( ) A .1 B .-1C .iD .i -【答案】B 【解析】 ∵1i z i-=11i +=-1i =--, ∴复数z 的虚部是1-, 故选:B .2.已知集合{}2230A x x x =--<,{}2log 0B x x =>,则A B =I ( ) A .{}12x x << B .{}02x x <<C .{}13x x <<D .{}01x x <<【答案】C 【解析】由题意{}{}223013A x x x x x =--<=-<<,{}{}2log 01B x x x x =>=>, 则{}{}{}13113A B x x x x x x ⋂=-<<⋂>=<<. 故选:C.3.某口罩厂一年中各月份的收入、支出情况如图所示(单位:万元,下列说法中错误的是(注:月结余=月收入一月支出)( )A .上半年的平均月收入为45万元B .月收入的方差大于月支出的方差C .月收入的中位数为70D .月结余的众数为30【答案】C 【解析】由图可得,上半年的平均月收入为406030305060456+++++=万元,故A 正确由图可得,月收入的方差大于月支出的方差,故B 正确由图可得,112-月的月收入(单位:万元)分别为:40、60、30、30、50、60、80、70、70、80、90、80 所以月收入的中位数为:6070652+=,故C 错误 由图可得,112-月的月结余(单位:万元)分别为:20、30、20、10、30、30、60、40、30、30、50、30 所以月结余的众数为30,故D 正确 故选:C4.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤.问依次每一尺各重多少斤?”假定该金杖被截成长度相等的若干段时,其重量从粗到细构成等差数列.若将该金杖截成长度相等的20段,则中间两段的重量和为( ) A .65斤 B .43斤 C .32斤 D .54斤 【答案】C 【解析】把每段重量依次用i a (1,2,,20)i =L 表示,数列{}n a 是等差数列,由题意12341718192042a a a a a a a a +++=⎧⎨+++=⎩,两式相加得12013(42)42a a +=⨯+=,∴101112032a a a a +=+=.故选:C .5.若点P 在函数3()3f x x x =-+的图象上,且函数3()3f x x x =-+的图象在点P 处的切线平行于直线21y x =+,则点P 的坐标为( )A .(1,3)B .(1,3)-C .(1,3)和(1,3)-D .(1)3-, 【答案】B 【解析】设P 点坐标为(,)P m n ,则33n m m =-+2()31x f x '=-由于在点P 处的切线平行于直线21y x =+ 故2312m -=,1m ∴=±,代入33n m m =-+, 故点P 坐标为(1,3)和(1,3)-又点(1,3)在直线21y x =+,此时切线与21y x =+重合,排除 故点P 坐标为(1,3)- 故选:B6.如图所示,在ABC ∆中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+u u u v u u u v u u u v,则λμ=( )A .12B .13C .2D .23【答案】B 【解析】分析:从A 点开始沿着三角形的边转到D ,则把要求的向量表示成两个向量的和,把BD u u u r 写成BC uuu r的实数倍,从而得到AD u u u r 1344AB AC =+u u u r u u u r ,从而确定出13,44λμ==,最后求得结果.详解:34AD AB BD AB BC =+=+u u u v u u u v u u u v u u u v u u u v 3()4AB AC AB =+-u u u v u u u v u u u v 1344AB AC =+u u ur u u u r ,所以13,44λμ==,从而求得13λμ=,故选B.7.某几何体的三视图如图所示,俯视图为正三角形,1M 为正视图一边的中点,且几何体表面上的点M 、A 、B 在正视图上的对应点分别为1M 、1A 、1B ,在此几何体中,平面α过点M 且与直线AB 垂直.则平面α截该几何体所得截面图形的面积为( )A .62B .64C 3D 3【答案】A 【解析】如图,原几何体是一个正三棱柱ADE FBG -,M 上AF 中点,取AD 中点N ,连接,,MN NE EM ,连接DF ,由三视图知ADBF 是正方形, DF AB ⊥,又,M N 分别是,AF AD 中点,∴//MN DF ,∴AB MN ⊥,正三棱柱中,BD ⊥平面ADE ,EN ⊂平面ADE ,故EN BD ⊥,又EN AD ⊥,AD BD D =I ,则可得EN ⊥平面ADBF ,AD ⊂平面ADBF ,∴EN AB ⊥, 又MN EN N ⋂=,∴AB ⊥平面MNE ,MNE ∆即为截面α, 同理由EN ⊥平面ADBF 得EN MN ⊥,由三视图得2MN =3EN =162322S ==. 故选:A .8.已知抛物线C :28y x =的交点为F ,准线为l ,P 是l 上一点,直线PF 与曲线C 相交于M ,N 两点,若3PF MF =u u u v u u u v,则||MN =( ) A .212B .323C .10D .11【答案】B 【解析】抛物线C :28y x =的焦点为F (2,0),准线为:2l x =-.如下图.设()()1122,,,,,M x y N x y M N 到准线的距离分别为,M N d d , 由抛物线的定义可知122,2M N MF d x NF d x ==+==+, 于是124MN MF NF x x =+=++. 作MH ⊥l 于H , ∵3PF MF =u u u v u u u v,∴22PM MF MH ==, ∴60PMH ∠︒=,根据对称性可得直线AB 的斜率为3∴直线PF的方程为)2y x =-.由)228y x y x ⎧=-⎪⎨=⎪⎩消去y 整理得2320120x x -+=, ∴12203x x +=. 于是1220324433MN x x =++=+=. 故选B .9.已知函数12,0()21,0x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若关于x 的方程23())0()(f f x a x a -+=∈R 有8个不等的实数根,则a 的取值范围是( ) A .10,4⎛⎫ ⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .(1,2)D .92,4⎛⎫ ⎪⎝⎭【答案】D 【解析】绘制函数()12,021,0x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图象如图所示,令()f x t =,由题意可知,方程230t t a -+=在区间()1,2上有两个不同的实数根, 令()()2312g t t t a t =-+<<,由题意可知:()()113024603990242g a g a g a ⎧⎪=-+>⎪⎪=-+>⎨⎪⎛⎫⎪=-+< ⎪⎪⎝⎭⎩,据此可得:924a <<. 即a 的取值范围是92,4⎛⎫ ⎪⎝⎭. 本题选择D 选项.10.圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第7位的人,这比欧洲早了约1000年.生活中,我们也可以通过如下随机模拟试验来估计π的值:在区间()0,1内随机取2m 个数,构成m 个数对(),x y ,设x ,y 能与1构成钝角三角形三边的数对(),x y 有n 对,则通过随机模拟的方法得到的π的近似值为( ) A .2m nm+ B .2m nn+ C .24m nm+ D .22m nn+ 【答案】C 【解析】依题有0101x y <<⎧⎨<<⎩,试验的全部结果构成以1为边长的正方形,其面积为1.因为x ,y 能与1构成钝角三角形,由余弦定理的及三角形知识得2211x y x y ⎧+<⎨+>⎩,构成如图阴影部分,其面积为142π-,由几何概型概率计算公式得1421nmπ-=,解得24m nmπ+=. 故选:C11.已知双曲线2222C :1(0,b 0)x y a a b-=>>的左、右焦点分别为()10F c-,,()20F c ,,点N 的坐标为23c,2b a ⎛⎫- ⎪⎝⎭.若双曲线C 左支上的任意一点M 均满足24MF MN b >+,则双曲线C 的离心率的取值范围为( )A.⎝B.C.1,)3⎛+∞ ⎝⎭UD.)+∞U【答案】C 【解析】由已知可得212MF MF a -=,若2||4MF MN b +>,即1|||24MF MN a b ++>‖,左支上的点M 均满足2||4MF MN b +>, 如图所示,当点M 位于H 点时,1||MF MN +最小,故23242b a b a +>,即22348b a ab +>, 223840,(2)(23)0b ab a a b a b ∴-+>∴-->,23a b ∴>或222,49a b a b <∴>或22224,913a b c a <∴<或225,1c c a a >∴<<ca >∴双曲线C的离心率的取值范围为1,)3⎛+∞ ⎝⎭U .12.如图,三棱锥P ABC -中,PA ⊥平面ABC ,2BAC π∠=,Q 为PA 中点,下列说法中(1)PBA PCA BPC π∠+∠+∠=;(2)记二面角,P BC A Q BC A ----的平面角分别为1212,,2θθθθ>;(3)记,,ABC QBC PBC V VV 的面积分别为220120221,,,4S S S S S S +≤; (4)cos cos cos PBC PBQ QBC ∠<∠⋅∠, 正确说法的个数为( )A .0B .1C .2D .3【答案】C 【解析】(1)∵P A ⊥平面ABC ,根据最小角定理可得PBA PBC ∠<∠,PCA PCB ∠<, ∴PBA PCA BPC PBC PCB BPC π∠+∠+∠<∠+∠+∠=,故(1)错;(2)如图,过A 作AM ⊥BC 于M ,因为P A ⊥平面ABC ,所以AP ⊥BC ,又AM AP A =I ,所以BC ⊥平面APM ,所以PM ⊥BC ,则12,PMA QMA θθ=∠=∠, 过M 作∠PMA 的角平分线交P A 于点E ,则1MA AEMP PE=<, ∴点E 在点Q 的下方,故2112θθ>,∴则122θθ<, 故(2)错; (3)如图,012S BC AM =⋅,112S BC QM =⋅,212S BC PM =⋅,∴()222212222021+,44144S S BC PM S BC Q AMM +==⨯⨯,而()()()()2222221111+,+++2+2444MQ MA MP MQ MA MP MA MP MA MP MA MP ===⋅≥u u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,所以2224+MA MQ MP ≥,所以2202124S S S +≤,故(3)正确;(4)在 Rt PBM ∆中,cos BMPBC BP∠=,在Rt QBC ∆中cos BM QBC BQ ∠=,在PBQ ∆中,222cos 2PB BQ PQ PBQ PB BQ+-∠=⋅,2222222cos cos 22BM PB BQ PQ BM PB BQ PQ QBC PBQ BQ PB BQ PB BQ +-+-∴∠⋅∠=⋅=⋅⋅,而22222222PB BQ PQ BQ PB PQ BQ +--=--,又PQB ∠Q 是钝角,所以cos 0PBQ ∠< ,所以222>0PB PQ BQ --,222212PB BQ PQ BQ +-∴>,22222BM PB BQ PQ BMBP BQ BP+-∴⋅>,所以cos cos cos PBC PBQ QBC ∠<∠⋅∠.故(4)正确; 故选:C.第II 卷 非选择题部分(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.若实数x ,y 满足约束条件114x y x y ≥⎧⎪≥⎨⎪+≥⎩,则2x y +的最小值为__________.【答案】5约束条件114x y x y ≥⎧⎪≥⎨⎪+≥⎩表示的可行域为:令2x y z +=,即122z y x =-+, 由图可得当直线122zy x =-+过点()3,1时,z 最小,最小值为5故答案为:514.记n S 为等比数列{}n a 的前n 项和,11a =,且441S a =-,则公比q =__________. 【答案】2或1- 【解析】易知{}n a 的公比1q ≠,由451S a =-,得()4141111a q a q q-=--,结合11a =整理,得()()4120q q --=.又1q ≠,所以2q =或1q =-.故答案为:2或1-.15.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答) 【答案】5040.分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为3214564265144036005040N A A C C A =+=+=.填5040.16.关于函数()cos(2)cos(2)36f x x x ππ=-++,有下列说法:①()y f x =②()y f x =是以π为最小正周期的周期函数; ③()y f x =在区间(13,2424ππ)上单调递减;④将函数2y x =的图象向左平移24π个单位后,将与已知函数的图象重合.其中正确说法的序号是______. 【答案】①②③ 【解析】 由题意可得:()cos(2)cos(2)cos(2)sin(2))3233312f x x x x x x ππππππ=-++-=---=-,故max ()f x =222T πππω===,故②正确; 可得当22212k x k ππππ≤-≤+,函数单调递减,解得132424k x k ππππ+≤≤+, 故③正确;2y x =的图象向左平移24π可得)]()24y x f x π=+≠,故④不正确;故答案为:①②③.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =,求ABC ∆的面积;(2)若25sin 5CAD ∠=,4=AD ,求CD 的长. 【答案】(1)12;(2)13. 【解析】(1)在ΔABC 中,222AC AB BC 2AB BC COS ABC ∠=+-⋅⋅ 即251BC 2BC =++⋅ 2BC 2BC 40⇒+-=,解得BC 2=.所以ΔABC 1121S AB BC sin ABC 122222∠=⋅⋅=⨯⨯⨯=. (2)因为025BAD 90,sin CAD ∠∠==,所以25cos BAC ∠= ,5sin BAC ∠=, πsin BCA sin BAC 4所以∠∠⎛⎫=- ⎪⎝⎭ ()2cos BAC sin BAC 2∠∠=- 22551025510⎛⎫=-= ⎪ ⎪⎝⎭. 在ΔABC 中,AC AB sin ABC sin BCA ∠∠=, AB sin ABCAC 5sin BCA∠∠⋅∴==.222CD AC AD 2AC AD cos CAD ∠=+-⋅⋅所以 551625413=+-⨯⨯⨯= 所以CD 13=.18.在Rt ABC ∆中,90ABC ∠=o ,1tan 2ACB ∠=.已知E F ,分别是BC AC ,的中点.将CEF ∆沿EF 折起,使C 到C '的位置且二面角C EF B '--的大小是60°,连接C B C A '',,如图:(1)证明:平面AFC '⊥平面ABC '(2)求平面AFC '与平面BEC '所成二面角的大小. 【答案】(1)证明见解析(2)45° 【解析】(1)∵F 是AC 的中点,∴AF C F '=. 设AC '的中点为G ,连接FG . 设BC '的中点为H ,连接GH ,EH . 易证:C E EF '⊥,BE EF ⊥,∴BEC '∠即为二面角C EF B '--的平面角. ∴60BEC ∠='o ,而E 为BC 的中点.易知BE EC '=,∴BEC '∆为等边三角形,∴EH BC '⊥.① ∵EF C E '⊥,EF BE ⊥,C E BE E '=I ,∴EF ⊥平面BEC '. 而EF AB ∥,∴AB ⊥平面BEC ',∴AB EH ⊥,即EH AB ⊥.② 由①②,BC AB B '=I ,∴EH ⊥平面ABC '. ∵G H ,分别为AC BC '',的中点. ∴四边形EHGF 为平行四边形.∴FG EH ∥,FG ⊥平面ABC ',又FG ⊂平面AFC '. ∴平面AFC '⊥平面ABC '.(2)如图,建立空间直角坐标系,设2AB =.则()002A ,,,()000B ,,,()201F ,,,()200E ,,,()13C ',, 显然平面BEC '的法向量()001m =r,,,设平面AFC '的法向量为()n x y z r,,=,()32AC ='-u u u u v ,,,()201AF =-u u u v ,,, ∴20320x z x y z -=⎧⎪⎨+-=⎪⎩,∴()32n =r ,,.2cos,2m nm nm n⋅==⋅r rr rr r,由图形观察可知,平面AFC'与平面BEC'所成的二面角的平面角为锐角.∴平面AFC'与平面BEC'所成的二面角大小为45°.19.已知椭圆()2222:10x yC a ba b+=>>经过点()2,1P,离心率为22.(1)求椭圆C的方程;(2)过点P作两条互相垂直的弦,PA PB分别与椭圆C交于点,A B,求点P到直线AB距离的最大值. 【答案】(1)22163x y+=(242【解析】(1)由题意,得224112a bca⎧+=⎪⎪⎨⎪=⎪⎩,结合222a b c=+,得26a=,23b=,所以椭圆C的方程为22163x y+=;(2)当直线AB的斜率存在时,设其方程为y kx m=+,代入椭圆方程,整理得()222124260k x kmx m+++-=,由>0∆得22630k m-+>,设()11,A x y,()22,B x y,则122412kmx xk-+=+,21222612mx xk-=+,因为PA PB⊥,所以1PA PBk k⋅=-,所以121211122y yx x--⋅=---,即()()12121212124y y y y x x x x -++=-++-,其中()()()2212121212y y kx m kx m k x x mk x x m =++=+++,()12122y y k x x m +=++,代入整理得22483210k mk m m ++--=,即()()212310k m k m +-++=, 当210k m +-=时,直线AB 过点P ,不合题意; 所以2310k m ++=,此时满足>0∆, 则直线AB 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线过定点21,33M ⎛⎫- ⎪⎝⎭, 所以当PM AB ⊥时,点P 到直线AB 的最大距离3d PM ===;当直线AB 的斜率不存在时,设其方程为xn =,由12x x n ==,12y y =-,代入()()12121212124y y y y x x x x -++=-++-可得221144y n n -+=-+-,结合221163y n +=可得23n =或2n =(舍去), 当23n =时,点P 到直线23x =的距离为43,综上,点P 到直线AB . 20.某市政府为了引导居民合理用水,决定全面实施阶梯水价,居民用水原则上以住宅为单位(一套住宅为一户).为了了解全市居民月用水量的分布情况,通过抽样,获得了10户居民的月用水量(单位:吨),得到统计表如下:(1)若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过16吨时,超过12吨部分按5元/吨计算水费;若用水量超过16吨时,超过16吨部分按7元/吨计算水费.试计算:若某居民用水17吨,则应交水费多少元?(2)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列与期望;(3)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到k 户月用水量为第一阶梯的可能性最大,求k 的值. 【答案】(1)75元(2)见解析,910(3)6 【解析】(1)若某居民用水17吨,则需交费124451775⨯+⨯+⨯=(元);(2)设取到第二阶梯电量的用户数为ξ,可知第二阶梯电量的用户有3户,则ξ可取0,1,2,3,()373107024C P C ξ===,()217331021140C C P C ξ===,()12733107240C C P C ξ===,()3331013120C P C ξ===. 故ξ的分布列是所以()012324404012010E ξ=⨯+⨯+⨯+⨯=; (3)由题可知从全市中抽取10户,其中用电量为第一阶梯的户数X 满足3~10,5X B ⎛⎫ ⎪⎝⎭,于是为()10103255k kk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0,1,210k =⋅⋅⋅,由()()10110111010101101110103232555532325555k kk k k k k k k k k k C C C C -+-++-----⎧⎛⎫⎛⎫⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎪⎛⎫⎛⎫⎛⎫⎛⎫≥ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩, 化简得11010110102332k k k k C C C C +-⎧≥⎨≥⎩,解得283355k ≤≤. 因为*k ∈N ,所以6k =.21.已知函数2()ln (,)f x x ax bx a b R =--∈.(1)当1a =-时,设1x ,2x 为()f x 的两个不同极值点,证明:()()123ln2f x f x +<--; (2)设1x ,2x 为()f x 的两个不同零点,证明:()12123f x x x x +<+-. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)当1a =-时,2()ln f x x x bx =+-,2121()2(0)x bx f x x b x x x'-+∴=+-=>,12,x x Q 为()f x 的两个不同极值点,12,x x ∴为方程2210x bx -+=的两不等正根,22112221,21bx x bx x ∴=+=+,且由韦达定理1212x x =, ()()()()2212111222ln ln f x f x x x bx x x bx +=+-++- 221212ln 2x x x x =---1212ln 22ln 23x x x x <--=--,()()123ln 2f x f x ∴+<--.(2)要证明()12123f x x x x +<+-,即()()()212121212ln 3x x a x x b x x x x +-+-+<+-,下面分别证明()1212ln 1x x x x +≤+-和()()212122a x x b x x -+-+<-,两式相加即得结论.(i )()1212ln 1x x x x +≤+-, 令120t x x =+>, 即证ln 10t t -+≤.令函数()ln 1g t t t =-+,则11()1tg t t t-'=-=, ()g t ∴在(0,1)单调递增,在(1,)+∞单调递减,()(1)0g t g ∴≤=.(ii )再证明()()212122a x x b x x -+-+<-, 即()()212122a x x b x x +++>.12,x x Q 为()f x 的两个不同零点,不妨设120x x <<, 2111ln x ax bx ∴=+①2222ln x ax bx =+②∴①-②可得()()()11212122lnx a x x x x b x x x =+-+-, 两边同时乘以1212x x x x +-,可得()()()()11222121212lnx x x x a x x b x x x x ⋅+=+++-,即()()112221212121ln 1x x x x a x x b x x x x ⎛⎫+⋅ ⎪⎝⎭+++=-. 令12(0,1)x m x =∈,则()()21212(1)ln 1m m a x x b x x m +⋅+++=-.即证(1)ln 21m mm +⋅>-,即2(1)4ln 211m m m m -<=-++,即证4ln 201m m +-<+. 令函数4()ln 21h m m m =+-+, 则22214(1)()0(1)(1)m m m m m h m '-=-=>++, ()h m ∴在(0,1)单调递增,()(1)0h m h ∴<=.由(i )(ii )可得()()()212121212ln 3x x a x x b x x x x +-+-+<+-,()12123f x x x x ∴+<+-.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.在直角坐标系xOy 中,半圆C 的参数方程为1cos {sin x y ϕϕ=+=(ϕ为参数,0ϕπ≤≤),以O 为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C 的极坐标方程;(Ⅱ)直线l的极坐标方程是(sin )ρθθ+=OM :3πθ=与半圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 【答案】(1)2cos ,[0,]2πρθθ=∈;(2)4.【解析】(Ⅰ)半圆C 的普通方程为22(1)1(01)x y y -+=≤≤,又cos ,sin x y ρθρθ==,所以半圆C 的极坐标方程是2cos ,[0,]2πρθθ=∈. (5分)(Ⅱ)设11(,)ρθ为点P 的极坐标,则有1112cos {3ρθπθ==,解得111{3ρπθ==,12 设22(,)ρθ为点Q的极坐标,则有2222(sin ){3ρθθπθ==解得225{3ρπθ==, 由于12θθ=,所以124PQ ρρ=-=,所以PQ 的长为4. (10分)23.已知函数()221f x m x =--,m R ∈,且102f x ⎛⎫+≥ ⎪⎝⎭的解集为{}11x x -≤≤. (1)求m 的值;(2)若,,a b c 都为正数,且11124m a b c++=,证明:249a b c ++≥. 【答案】(1)1m =(2)证明见解析【解析】(1)由102f x ⎛⎫+≥ ⎪⎝⎭得220m x -≥得m x m -≤≤, 因为102f x ⎛⎫+≥ ⎪⎝⎭的解集为{}11x x -≤≤, 所以1m =. (2)由(1)得111124a b c++=, ∴()1112442241119242424b a c a c b a b c a b c a b a c b c ⎛⎫⎛⎫⎛⎫⎛⎫++++=++++++++≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 当且仅当24a b c ==时,等号成立.所以249a b c ++≥成立.。
2020年高考名校导航冲刺金卷(一) 理科数学答案
k
1 2
x0
1
x0
2
,所以
M (2,1)
AM (2 x1,1 y1), BM (2 x2 ,1 y2 ), 又 AM⊥BM
...........5 分
AM BM (2 x1)(2 x2 ) (1 y1)(1 y2 ) 4 2(x1 x2 ) x1x2 1 ( y1 y2 ) y1 y2 0 ...6 分
2a-
3 -3e2 4
0(a
4)
即g( x) 0, g(x)在[2, )上恒为减函数,
g(x)axm
g(2)
4a-(a
2)
3 2
-2e2
3a-
1 2
-2e2
0
, ………………………(10分)
4
g(x) 0在[2, )上恒成立, g(x)在[2, )上恒为减函数 g(x)axm g(2) 4a-(a 2)2 3ln 2-e2 2a-4 3ln 2-e2 a 4, 2a-4 3ln 2-e2 0. g(x) 0 f (x) ex (x-1)-ax- ln x
或
3xx47
5
x 2 或 x 4 或 x 4 故不等式的解集是{x | x 2 或x 4}
3
3
(2)由(1)的
f (x)min
f (3) 2
5 m 2
5 2 m 2 15
1 3
..........5 分
a b c 1(a2 b2 c2 )(12 12 12 ) (a b c)2 1
y1
x12 4
,
y2
x22 4
5
2( x1
x2 )
3x1x2 2
( x1
x2 )2 4
2020年名校高考数学冲刺卷解析版
2020年高考虽然延期一个月,但是练习一定要跟上,加油!本试卷分第I卷(选择题)和第□卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B).如果事件A、B相互独立,那么P(A B)=P(A)-P(B).如果事件A在一次试验中发生的概率是p,那么”次独立重复试验中恰好发生Q欠的概率P"(k)=c:p k(i-pY k•球的体积公式v球=名汗,其中R表示球的半径.第I卷(选择题共60分)一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.映射f A-B,如果满足集合B中的任意一个元素在A中都有原象,则称为"满射".已知A中有4个元素,B中有3个元素,那么从A到B的不同满射的个数为(C)A,24B.6C.36D.72[解析]集合A中必须有两个元素和B中的一个元素对应,A中剩下的两个元素和B中的其余元素相对应,故应为C,定[评析]本题是一个创新题,给出一个新概念”满射”,考查考生阅读理解能力及灵活运用知识的能力,其实质是立足于排列组合与映射的交汇点设计的问题,难度适中。
2.(理)在复平面内,复数二+d+V3,)2对应的点位于(B)l+zA.第一象限B.第二象限C.第三象限D.第四象限[解析]+(1+V3z)2= --+(-+2a/3)z对应复平面上点1+Z22"甘+2可,故选B.[评析]本题考查复数的代数运算及复数的几何意义即复数与复平面上点对应关系,属于容易题.(文)气=1”是尸+x—6<0的(A)条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要[解析]显然条件+x-6<0,但由/+了_6<0成立不一定有X=1成立。
[评析]本题运用集合关系来判断充分必要性很方便:A0A是胡充分不必要条件.3.设厂⑴是函数f(x)=?(ax—a x)(a>l)的反函数,则使尸(x)>l成立的x的取值范围为DA.(«,+oo)^-) C.(^—^-,<2) D.(-^―^-,+co)2a 2a 2a[解析]广3>1=原函数/'(x)中X>1,求函数值y的范围。
2020届 全国名校高考冲刺压轴卷 数学理 (解析版)
2020届全国名校高考冲刺压轴卷数学理科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =I ( ) A .{}12 x x -≤≤B .{}1,0,1,2- C .{}2,1,0,1,2-- D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面向量a ,b,满足(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2017B .2018C .2019D .20208.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( )A .2y x =+或2y x =--B .2y x =+C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭UB .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦UC .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭U二、填空题:本大题共4小题,每小题5分. 13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的展开式中,各项系数之和为256,则x 项的系数是__________.15.知变量x ,y 满足条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y -=+的最大值为16.如图,在ABC △中,3sin 23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满足:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参加全市座谈交流,设X 表示得分在区间(]130,150中参加全市座谈交流的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =u u u r u u u r,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的普通方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+ ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的任意一点,求PA PB ⋅u u u r u u u r的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b c a b c---⋅⋅≥.2019全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2A B =-I ,故选B .2.【答案】D 【解析】i 1ia +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C . 5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可排除选项A ,B ;32m =,1n =时,可排除选项C , 由指数函数的性质可判断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面向量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 第二次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2018,故选B .8.【答案】A【解析】设事件A 为48h 发病,事件B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】观察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确;当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确;若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,故选D .二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝展开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin22ABC ∠<可知:452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=.设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=, 故9xy ≤,当且仅当x =,y 时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n n n S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+;因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n n n c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-..., 所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =. 【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=, ()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===; 故X 的分布列为: X0 1 2 P27 47 17 ()240127777E X =⨯+⨯+⨯=. 19.(本小题满分12分)【答案】(1)见解析(213 (1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =I , ∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF =则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C ,∴(0,BF =-u u u r,(3,0,EF =-u u u r .设平面BEF 的一个法向量为(,,)n x y z =r ,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r即30,30,y x ⎧-=⎪⎨-=⎪⎩令z =(4,n =r .∵AC ⊥平面BDE ,∴CA u u u r 为平面BDE 的一个法向量,∴(3,3,0)CA =-u u u r ,∴||cos ,||||n CA n CA n CA ⋅<>===⋅r u u u r r u u u r r u u u r ∵二面角F BE D --为锐角,∴二面角F BE D --. 20.(本小题满分12分)【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =u u u r u u u r ,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,根据抛物线的定义AC AF =,所以24AB AC p ==,BC =,122ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=, ()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭,12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 注意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数, 注意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a<<时,在⎡⎢⎣上,总有()'0hx >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+u u u r u u u r 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B .设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-u u u r u u u r .由(1)知2cos3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++u u u r u u u r .因为θ∈R ,所以44PA PB -≤⋅≤+u u u r u u u r23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析. 【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭. (2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
2020年高考数学(理)金榜冲刺卷(二)含答案
2020年高考金榜冲刺卷(二)数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++(i 为虚数单位),则||z =( ) A .0B .12C .1D2.若集合21|M y y x ⎧⎫==⎨⎬⎩⎭,{|N x y ==,那么M N ⋂=() A .()0,+∞B .[)0,+∞C .()1,+∞D .[)1,+∞ 3.已知等比数列的公比为正数,且,则公比=q ( )A .B .C .D .2 4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形,一块中三角形和两块全等的大三角形),一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,若向正方形内随机抛掷2000粒绿豆(大小忽略不计),则落在图中阴影部分内绿豆粒数大约为( )}{n a 25932a a a =21222A .750B .500C .375D .2505.若,,a b c 满足223,log 5,32a cb ===,则( )A .b a c >>B .b c a >>C .a b c >>D .c b a >>6.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 7.已知实数,x y 满足3060x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,若z ax y =+的最大值为39a +,最小值为33a -,则实数a 的取值范围是() A .[]2,1-B .[]1,1-C .[]1,3-D .[]2,3-8.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h ,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D9.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且FA FB +u u u v u u u v =0,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( ) ABC .2D10.已知定义在R 上的函数()f x 满足()()11f x f x +=-且在[)1,+∞上是增函数,不等式()()21f ax f x +≤-对任意1,12x ⎡⎤∈⎢⎥⎣⎦恒成立,则实数a 的取值范围是( )A .[]3,1--B .[]2,0-C .[]5,1--D .[]2,1-11.在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,AB =Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45πB .57πC .63πD .84π12.若函数()1(2)ln xf x a x e x x =-++在(0,2)上存在两个极值点,则a 的取值范围是( ) A .21(,)4e -∞-B .1(,)e -∞-C .2111(,)(,)4e e e -∞---UD .211(,)(1,)4e e--⋃+∞二、填空题:本题共4小题,每小题5分,共20分.13.已知等差数列{}n a 中,4610a a +=,若前5项的和55S =,则其公差为___________.14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有ABC ∆满足“勾3股4弦5”,其中“股”4AB =,D 为“弦”BC 上一点(不含端点),且ABD ∆满足勾股定理,则()CB CA AD -⋅=u u u v u u u v u u u v_________.15.若4()(2)ax y x y -+的展开式中23x y 的系数为8,则a =_________.16.过抛物线C :24x y =的准线上任意一点P 作抛物线的切线PA ,PB ,切点分别为A ,B ,则A 点到准线的距离与B 点到准线的距离之和的最小值是_________.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC ∆中,内角A B C ,,的对边分别是a b c ,,,且满足tan tan 2A aC b a=-. (1)求角C ;(2)设D 为边AB 的中点,ABC ∆的面积为CD 的最小值.18.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.①若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);②已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为(01)p p <<,若2020届高考本科上线人数乙市的均值不低于甲市,求p 的取值范围. 可能用到的参考数据:取40.360.0168=,40.160.0007=.19.(12分)如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC ===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:AE PB ⊥;(2)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的余弦值. 20.(12分)过椭圆22221(0)x y a b a b+=>>的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y轴的交点为C ,已知613AB BC =u u u r u u u r. (1)求椭圆的离心率;(2)设动直线y kx m =+与椭圆有且只有一个公共点P ,且与直线4x =相交于点Q ,若x 轴上存在一定点(1,0)M ,使得PM QM ⊥,求椭圆的方程.21.(12分)函数()22()22ln 4f x x x x x x =--+. (1)求()f x 在x e =处的切线方程(e 为自然对数的底数);(2)设32()33()g x x x x f x =-++,若1212,(0,)x x x x ∈+∞≠且,满足()()128g x g x +=,求证:121x x <. (二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.【极坐标与参数方程】(10分)在平面直角坐标系xOy 中,已知曲线1C的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=. (1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.23.【选修4-5:不等式选讲】(10分) 已知函数()21f x x a x =-+-,()a R ∈. (1)当1a =时,求()2f x ≤的解集;(2)若()21f x x ≤+的解集包含集合1,12⎡⎤⎢⎥⎣⎦,求实数a 的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. C.2. D.3. C.4. C.5. A .6. B.7. B.8. B.9. C.10. B11. B.12. D.二、填空题:本题共4小题,每小题5分,共20分.13. 214.144 2515. 1 16. 4三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(1)由正弦定理:sin 22sin sin a A b a B A =--,又tan sin cos tan cos sin A A CC A C=, 由题tan tan 2A a C b a=-,所以sin cos cos sin A C A C sin 2sin sin AB A =-.因为sin 0A ≠,所以cos (2sin sin )cos sinC B A A C -=,即cos sin cos sin 2sin cos C A A C B C +=,即sin sin()2sin cos B A C B C =+=, 因为sin 0B ≠,所以1cos 2C =,则3C π=.(2)由1sin 2ABC S ab C ∆=,即12ab 12ab =.由1()2CD CA CB =+u u u v u u u v u u u v ,所以2221(2)4CD CA CB CA CB =++⋅u u u v u u u v u u u v u u u v u u u v 222211(2cos )()44b a ab C b a ab =++=++1(2)94ab ab ≥+=当且仅当a b =时取等,所以边CD 的最小值为3. 18.(1)估计本科上线率为4678560%50++++=.(2)①记“恰有8名学生达到本科线”为事件A ,由图可知,甲市每个考生本科上线的概率为0.6,则882241010()0.6(10.6)0.360.16450.01680.160.12P A C C =⨯⨯-=⨯⨯=⨯⨯≈.②甲、乙两市2020届高考本科上线人数分别记为X ,Y ,依题意,可得~(40000,0.6)X B ,~(36000,)Y B p . 因为2020届高考本科上线人数乙市的均值不低于甲市,所以EY EX ≥,即36000400000.6p ≥⨯, 解得23p ≥,又01p <<,故p 的取值范围为2,13⎡⎫⎪⎢⎣⎭.19.(1)证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,//,AB CE AB CE =Q ,∴四边形ABCE 为平行四边形,AE BC AD DE ∴===,ADE ∴∆为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,BD BC ⊥,BD AE ∴⊥,翻折后可得:,OP AE OB AE ⊥⊥.又OP ⊂Q 平面POB ,OB ⊂平面POB ,OP OB O =I ,AE ∴⊥平面POB .PB ⊂Q 平面POB ,AE PB ∴⊥.(2)解:在平面POB 内作PQ ⊥OB,垂足为Q ,因为AE ⊥平面POB ,∴AE ⊥PQ ,因为OB ⊂平面ABCE, AE ⊂平面ABCE,AE ∩OB=O,∴PQ ⊥平面ABCE ,∴直线PB 与平面ABCE 夹角为4PBQ π∠=,又因为OP=OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z轴,建立空间直角坐标系,由题意得,各点坐标为111(,0,0),(0,(,0,(2222222P E C PE EC ∴=-=u u u r u u u r ,设平面PCE 的一个法向量为1(,,)n x y z =u r,则1110022,,01022x z PE n EC n x y ⎧-=⎪⎧⋅=⎪⎪∴⎨⎨⋅=⎪⎩⎪+=⎪⎩u u u v u v u u uv u v设x =y=-1,z=1,∴1,1)n =u r ,由题意得平面PAE 的一个法向量2(0,1,0)n =u u r,设二面角A-EP-C 为α,1212|||cos |=||||n n n n α⋅==u r u u ru r u u r .易知二面角A-EP-C为钝角,所以cos α.20.(1)∵A (,0)a -,设直线方程为2()y x a =+,11(,)B x y ,令0x =,则2y a =,∴(0,2)C a , ∴1111(,),(,2)AB x a y BC x a y =+=--u u u r u u u r∵613AB BC =u u u r u u u r , ∴1x a +=11166(),(2)1313x y a y -=-,整理得111312,1919x a y a =-=, ∵B 点在椭圆上,∴22221312()()11919a b +⋅=,∴223,4b a =∴2223,4a c a -=即2314e -=,∴12e =. (2)∵223,4b a =可设223.4b t a t ==,∴椭圆的方程为2234120x y t +-=,由2234120x y t y kx m ⎧+-=⎨=+⎩得222(34)84120k x kmx m t +++-=,∵动直线y kx m =+与椭圆有且只有一个公共点P,∴0∆=,即2222644(34)(412)0k m m m t -+-=,整理得2234m t k t =+, 设P 11(,)x y 则有122842(34)34km km x k k =-=-++,112334my kx m k=+=+, ∴2243(,)3434km mP k k -++,又(1,0)M ,Q (4,4)k m +,若x 轴上存在一定点(1,0)M ,使得PM QM ⊥, ∴2243(1,)(3,(4))03434km mk m k k+-⋅--+=++恒成立,整理得2234k m +=, ∴223434k t k t +=+恒成立,故1t =,所求椭圆方程为22143x y +=.21.(1)2()f e e =,()()41ln ,f x x x =-'则()4(1)f e e '=-,故()f x 在x e =处的切线方程为()()241e e y x e -=--即()241340e y e e x ---+=;(2)证明:由题可得()()()23141ln g x x x x =-+-',()10g '=,当01x <<时,10,ln 0x x -<<,则()0g x '>;当1x >时,10,ln 0x x ->>,则()0g x '>, 所以,当0x >时,()0g x '≥,()g x 在()0,∞+上是增函数. 设()()()101G x g x g x x ⎛⎫=+<<⎪⎝⎭, 则()()()()22431111311411ln G x g x g x x x x x x x ⎛⎫⎛⎫⎛⎫=-=--+-- ⎪ ⎪ ⎪⎝⎭⎝'⎝⎭⎭'', 当01x <<时,10,ln 0x x -<<,431110,10,x x-<-<则()0G x '<,()G x 在()0,1上递减. 不妨设120x x <<,由于()g x 在()0,∞+上是增函数,则()()12g x g x <, 又()()128g x g x +=,()14g =,则()()()121g x g g x <<,于是1201x x <<<, 由101x <<,()G x 在()0,1上递减,则()()()11218G x G g >==,所以()1118g x g x ⎛⎫+> ⎪⎝⎭,则()()12118g g x g x x ⎛⎫>-= ⎪⎝⎭, 又2111,1x x >>,()g x 在()0,∞+上是增函数,所以,211x x >,即121x x <. (二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.【极坐标与参数方程】(10分)(1)曲线1C 的普通方程为:22(5)10x y -+=,曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=,由两圆心的距离32)d =∈,所以两圆相交,所以两方程相减可得交线为6215x -+=,即52x =.所以直线的极坐标方程为5cos 2ρθ=. (2)直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M直线l的参数方程为242x y ⎧=-⎪⎪⎨⎪=+⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t ,所以12t t +=-1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=.23.【选修4-5:不等式选讲】(10分)(1)当1a =时,()21121f x x a x x x =-+-=-+-,当()2f x ≤,即1212x x -+-≤,上述不等式可化为121122x x x ⎧≤⎪⎨⎪-+-≤⎩,或1121212x x x ⎧<<⎪⎨⎪-+-≤⎩,或11212x x x ≥⎧⎨-+-≤⎩,102x ∴≤≤或112x <<或413x ≤≤,∴原不等式的解集为403x x ⎧⎫≤≤⎨⎬⎩⎭. (2)()21f x x ≤+Q 的解集包含1,12⎡⎤⎢⎥⎣⎦,∴当1,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()21f x x ≤+恒成立,即在2121x a x x -++≤+1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,2121x a x x ∴-+-≤+,即2x a -≤,22x a ∴-≤-≤,22x a x ∴-≤≤+在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立, ()()max min 22x a x ∴≤-≤-,512a ∴-≤≤,a ∴的取值范围为51,2⎡⎤-⎢⎥⎣⎦.。