反渗透和纳滤的基础知识

合集下载

反渗透和纳滤原理

反渗透和纳滤原理

反渗透和纳滤原理渗透我们知道渗透是指稀溶液中的溶剂(水分子)自发地透过半透膜(反渗透膜或纳滤膜)进入浓溶液(浓水)侧的溶剂(水分子)流动现象。

渗透压定义为某溶液在自然渗透的过程中,浓溶液侧液面不断升高,稀溶液侧液面相应降低,直到两侧形成的水柱压力抵销了溶剂分子的迁移,溶液两侧的液面不再变化,渗透过程达到平衡点,此时的液柱高差称为该浓溶液的渗透压。

反渗透原理即在进水(浓溶液)侧施加操作压力以克服自然渗透压,当高于自然渗透压的操作压力施加于浓溶液侧时,水分子自然渗透的流动方向就会逆转,进水(浓溶液)中的水分子部分通过膜成为稀溶液侧的净化产水。

纳滤原理纳滤与反渗透没有明显的界限。

纳滤膜对溶解性盐或溶质不是完美的阻挡层,这些溶质透过纳滤膜的高低取决于盐份或溶质及纳滤膜的种类,透过率越低,纳滤膜两侧的渗透压就越高,也就越接近反渗透过程,相反,如果透过率越高,纳滤膜两侧的渗透压就越低,渗透压对纳滤过程的影响就越小。

反渗透和纳滤过程根据反渗透和纳滤原理可知,渗透和反渗透及纳滤必须与具有允许溶剂(水分子)透过的半透膜(反渗透膜或纳滤膜)联系在一起才有意义,才会出现渗透现象和反渗透或纳滤操作。

反渗透膜:允许溶剂分子透过而不允许溶质分子透过的一种功能性的半透膜称为反渗透膜;纳滤膜:允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜称为纳滤膜;膜元件:将反渗透或纳滤膜膜片与进水流道网格、产水流道材料、产水中心管和抗应力器等用胶粘剂等组装在一起,能实现进水与产水分开的反渗透或纳滤过程的最小单元称为膜元件;膜组件:膜元件安装在受压力的压力容器外壳内构成膜组件;膜装置:由膜组件、仪表、管道、阀门、高压泵、保安滤器、就地控制盘柜和机架组成的可独立运行的成套单元膜设备称为膜装置,反渗透和纳滤过程通过该膜装置来实现;膜系统:针对特定水源条件和产水要求设计的,由预处理、加药装置、增压泵、水箱、膜装置和电气仪表连锁控制的完整膜法水处理工艺过程称为系统。

污水处理中的纳滤反渗透工艺

污水处理中的纳滤反渗透工艺
某饮用水源地保护
采用纳滤反渗透工艺处理 水源地周边工业废水和生 活污水,保障饮用水安全

03
纳滤反渗透工艺的流程与设备
纳滤反渗透工艺的流程
原水预处理
去除原水中的悬浮物、胶体、有
机物等杂质,为后续处理提供合
格的水源。
01
纳滤
02 利用纳滤膜对不同分子量物质的
选择性透过,将大分子物质和离
子截留,使水得到净化。
谢谢您的聆听
THANKS
02
纳滤膜具有纳米级孔径,能够截 留分子量大于膜孔径的溶质,而 对分子量小于膜孔径的溶质透过 ,从而实现分离。
纳滤反渗透技术的原理
在压力作用下,溶液中的水分子和部 分溶质可以通过膜孔径透过,而其他 高分子物质和杂质则被截留,从而实 现水与杂质的分离。
纳滤膜的孔径大小介于超滤膜和反渗 透膜之间,因此具有较高的截留性能 和通量,能够有效地去除水中的杂质 和有害物质。
使用寿命。
研发新材料
通过研发新型的膜材料和组件 ,提高膜的抗污染性能和通量
,降低成本。
政策支持
政府可以出台相关政策,鼓励 和支持企业采用纳滤反渗透工 艺,推动技术的普及和应用。
05
结论
总结纳滤反渗透工艺在污水处理中的优势与不足
总结
纳滤反渗透工艺在污水处理中具有高效去除污染物、低成本、环保等优势,但也存在对进 水水质要求高、膜污染等问题。
纳滤反渗透技术的特点
高效分离
纳滤反渗透技术能够高效地去除水中的杂 质和有害物质,实现水的净化。
低能耗
与传统的水处理技术相比,纳滤反渗透技 术的能耗较低,有利于降低运行成本。
环保友好
纳滤反渗透技术采用物理方法进行分离, 不需要添加化学药剂,对环境友好。

进口反渗透、纳滤的基础知识

进口反渗透、纳滤的基础知识

反渗透、纳滤基础知识1 分离膜与膜过程膜分离物质世界是由原子、分子和细胞等微观单元构成的,然而这些微小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。

人们发明了过滤、蒸馏、萃取、电泳、层析和膜分离等分离技术来获取纯净的物质。

膜分离技术的基础是分离膜。

分离膜是具有选择性透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则被阻隔。

这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么都有大小巨细,而膜有孔径。

当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性(亲油、亲水),深解性,等等。

按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、纳滤(纳米级)、超滤(10纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、膜蒸馏等膜分离过程。

表-1 主要的膜分离过程气体分离气体、气体与蒸汽分离浓度差易透过气体不易透过气体薄膜复合膜薄膜复合膜由超薄皮层(活性分离层)和多孔基膜构成。

基膜一般是在多孔织物支撑体上浇筑的微孔聚砜膜(即0.2mm厚),超薄皮层是由聚酰胺和聚脲通过界面缩合反应技术形成的。

薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是化学稳定性,在中等压力下操作就具有高水通量和盐截留率及抗生物侵蚀。

它们能在温度0-40℃及pH2-l2间连续操作。

像芳香聚酰胺一样,这些材料的抗氯及其他氧化性物质的性能差。

过滤图谱平膜结构图-1 非对称膜与复合膜结构比较美国海德能公司的RO/NF膜(CPA, ESPA, SWC, ESNA, LFC)均是复合膜。

CPA3的断面结构如图-2所示。

可以看出在支撑层上形成褶皱状的表面致密层。

原水以与皮层平行方向进入,通过加压使其透过密致分离层,产水从支撑层流出。

图-2 CPA3的断面结构表面致密层构造根据膜种类不同,制作平膜的表面致密层材质也有差异。

反渗透和纳滤基本知识

反渗透和纳滤基本知识

目录3-1 ........................................................................................ 反渗透和纳滤技术发展历史3-2 3-2 ........................................................................................................ 膜法分离过程分类3-2 3-3 ........................................................................................................ 反渗透和纳滤原理3-3 3-4.................................................................... 影响反渗透和纳滤膜性能的因素3-4 3-5........................................................................ 了解反渗透膜元件脱盐率规范3-73-1 反渗透和纳滤技术发展历史自从上世纪五十年代未六十年代初期,反渗透(RO)和纳滤(NF)技术产品商品化投放市场,尤其是陶氏化学公司全资子公司发明的超薄聚酰胺复合膜进入实用阶段,使得RO和NF成为实用化的化工分离单元操作,它们的应用领域得到不断地扩展。

起初,反渗透主要用于海水和苦咸水脱盐,由于工业领域对保护水源、减少能耗、控制污染以及从废水中回收有价值物质的需求日益增加,反渗透和纳滤的新用途变得更有经济价值。

此外,伴随着膜分离技术的发展,促进了生物技术和制药行业的技术进步,相对于传统蒸馏法,膜法分离浓缩技术更加节省能量消耗,同时也不会引起产品热分解变质。

纳滤膜和反渗透膜孔径

纳滤膜和反渗透膜孔径

纳滤膜和反渗透膜孔径纳滤膜和反渗透膜是两种常用的膜分离技术,它们在水处理、生物医药、食品加工等领域被广泛应用。

本文将从孔径、工作原理和应用领域等方面介绍纳滤膜和反渗透膜的特点和应用。

一、纳滤膜孔径纳滤膜是一种具有特定孔径的薄膜,能够根据溶质的分子大小和电荷选择性地分离溶液中的物质。

纳滤膜的孔径通常在1纳米到100纳米之间,可以将溶液中的大分子、胶体和悬浮物截留在膜外,而让水和小分子通过。

纳滤膜的孔径大小对其分离性能有重要影响。

孔径越小,纳滤膜的截留能力越强,可以截留更小的溶质。

常见的纳滤膜孔径有超滤膜(孔径范围为1-100纳米)和微滤膜(孔径范围为0.1-10微米)等。

二、反渗透膜孔径反渗透膜是一种通过压力驱动使溶质逆向渗透的薄膜,其孔径通常在0.1纳米到1纳米之间。

反渗透膜具有高选择性,可以有效去除水中的溶解性离子、有机物、微生物等。

反渗透膜的孔径比纳滤膜更小,因此其分离效果更好。

在反渗透过程中,水分子可以通过膜孔径,而溶质则被截留在膜外。

这使得反渗透膜在海水淡化、饮用水处理、工业废水处理等方面具有广泛应用。

三、纳滤膜和反渗透膜的工作原理纳滤膜的分离机制主要包括筛分、拦截和吸附三种方式。

当液体通过纳滤膜时,溶质分子受到膜孔径的限制,分子尺寸较大的物质被截留在膜外,分子尺寸较小的物质则通过膜孔径进入滤液。

反渗透膜的分离机制主要是通过半透膜的渗透作用实现的。

当给予反渗透膜一定的压力时,溶液中的水分子会逆向通过膜孔径流向低浓度的一侧,而溶质则被截留在膜外,从而实现对溶质的分离。

四、纳滤膜和反渗透膜的应用领域纳滤膜和反渗透膜在水处理领域具有广泛的应用。

纳滤膜可以用于海水淡化、饮用水处理、工业废水处理等。

例如,海水淡化中使用反渗透膜可以将海水中的盐分和杂质去除,得到高纯净的淡水。

饮用水处理中的纳滤膜可以去除水中的微生物、胶体等有害物质。

工业废水处理中的纳滤膜可以回收和净化水资源。

纳滤膜和反渗透膜还在生物医药、食品加工等领域得到了广泛应用。

超滤、纳滤、反渗透、微滤的概念和区别

超滤、纳滤、反渗透、微滤的概念和区别

超滤、纳滤、反渗透、微滤的概念和区别超滤、纳滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。

是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。

是矿泉水、山泉水生产工艺中的核心部件。

超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。

超滤不需要加电加压,仅依靠自来水压力就可进行过滤,流量大,使用成本低廉,较适合家庭饮用水的全面净化。

因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以达到较宽的处理范围,更全面地消除水中的污染物质。

2、纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。

也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。

这是一般家庭不能接受的。

一般用于工业纯水制造。

3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法分离技术。

可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。

也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。

这是一般家庭不能接受的。

一般用于纯净水、工业超纯水、医药超纯水的制造。

反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。

4、微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、8、当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。

超滤膜的结构有对称和非对称之分。

前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。

第五章-纳滤和反渗透概要

第五章-纳滤和反渗透概要


不可逆热力学领域的集大成者


反渗透过程传质方程
Onsager 线性唯象方程 n J i Lij X j 流率与热力学力成线性关系, (2-6) j 1
X i k ij J j
j 1 n
(2-7)
其中Ji为流率,Xj为热力学力, Lij为唯象系数。 第i个流Ji与第j个力Xj之间的比 例常数Lij,和第j个流Jj与第i个 力Xi之间的比例常数Lji,相等。
膜法海水淡化
几种分离方法能耗比较
分离方法 能耗 (kWh/m3) 反渗透 3.5 低温多效 >7 多级闪蒸 >10
反渗透淡化厂的能耗及产水成本
国家或地区 设备能力 m3/d 原水含盐量 mg/L 能耗 kwh/m3 产水成本
RMB/m3
沙特 56800 43700 7 4.88
中国 长海 1000 35000 5 6.69
A
半透膜
A、渗透 B、渗透平衡 C、反渗透
则平衡状态下
由非平衡态(PA* PA,稀溶液饱和 纯水由半透膜左侧进入右侧,直至 PA*=PA+。 为溶剂的渗透压。
* A (T , P) * ( T , P ) P 蒸汽压降低)向平衡态过渡(渗透): A A P A+
P
反渗透




一般而言,无机盐溶液的渗透压 很高,含1g/l氯化钠的天然水, 渗透压为0.07MPa,含35g/l氯化 钠的海水,渗透压为2.5MPa。 反渗透是以压力差为推动力的分 离操作,其功能是截留离子物质 而仅透过溶剂。 反渗透不是渗透的逆过程,两者 同样是在等温条件下溶剂从高化 学位到低化学位的迁移过程。 反渗透将料液分成两部分:透过 膜的是含溶质很少的溶剂,称为 渗透液;未透过膜的液体,溶质 浓度增高,称为浓缩液。

超滤纳滤反渗透微滤的概念和区别

超滤纳滤反渗透微滤的概念和区别

超滤、纳滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。

是一种利用压差的膜法别离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保存对人体有益的一些矿物质元素。

是矿泉水、山泉水生产工艺中的核心部件。

超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。

超滤不需要加电加压,仅依靠自来水压力就可进展过滤,流量大,使用本钱低廉,较适合家庭饮用水的全面净化。

因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以到达较宽的处理范围,更全面地消除水中的污染物质。

2、纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法别离技术,水的回收率较低。

也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。

这是一般家庭不能承受的。

一般用于工业纯水制造。

3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法别离技术。

可滤除水中的几乎一切的杂质〔包括有害的和有益的〕,只能允许水分子通过。

也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。

这是一般家庭不能承受的。

一般用于纯洁水、工业超纯水、医药超纯水的制造。

反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。

4、微滤〔MF〕:过,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。

滤芯通常不能清洗,为一次性过滤材料,需要经常更换。

①PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。

②活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。

③陶瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。

正渗透、反渗透、超滤、纳滤知识总结

正渗透、反渗透、超滤、纳滤知识总结

正渗透、反渗透、超滤、纳滤知识总结一、反渗透膜、超滤膜、纳滤膜对比1、反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大于100的有机物,同时允许水分子通过。

反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。

2、超滤膜:能截留0.002-0.1微米之间的大分子物质和蛋白质。

超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,用于表示超滤膜孔径大小的切割分子量范围一般在1000-500000之间。

超滤膜的运行压力一般1-7ba r。

3、纳滤膜:能截留纳米级(0.001微米)的物质。

纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800M W左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。

纳滤膜的运行压力一般 3.5-30b a r。

二、反渗透膜与超滤膜的优劣对比反渗透膜的孔径只有超滤膜的1/100比例大小,因此反渗透水处理设备能够有效去除水质当中的重金属、农药、三氯甲烷等化学污染物,超滤净水器对此则是无能为力的。

而超滤净水器能去除的颗粒污染物及细菌,反渗透全能去除。

(一)反渗透和超滤,核心部件都是膜元件。

主要区别一共有两点:1、出水水质和卫生部门的检测标准有所不同,给大家举一个例子来说明,出水细菌指标,超滤按照“一般水质处理器”,菌落总数为100个/毫升;而反渗透水处理设备则为20个/毫升,要求较为严格,当然反渗透水处理设备出水水质也要比超滤好很多。

2、反渗透水处理设备是分质供水,纯水供应饮用,浓水用来洗涤;而超滤一般都是用作洗涤用水;当自来水水质较为优质时也可以用作饮用水超纯水设备。

(二)超滤的优点与缺点:优点:一般不用泵、不耗电,无电气安全问题;接头少、水压低,故障率及漏水概率相对较低;结构简单、价格便宜;其缺点是:去除水中化学污染物效果差;对供水特发事件效果较差;出水口感稍差;不能降低水的硬度,如自来水硬度高,煮水容器可能会结垢。

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用反渗透过程:反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水而截留离子物质的性质,以膜两侧静压差为推动力克服溶剂渗透压使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。

反渗透同NF 、UF 一样均属于压力驱动型膜分离技术,其操作压差一般为15~105MPa ,截留组分为(110X10—10m 小分子物质。

除此之外还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来以达到分离、纯化等目的。

一.反渗透基本原理1随着超低压反渗透膜的开发已可在小于1MPa 压力下进行部分脱盐适用于水的软化和选择性分离。

2.分离机反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关因此除与膜孔的大小、结构有关外还与膜的化学、物理性质有密切关系即与组分和膜之间的相互作用密切相关。

由此可见,反渗透分离过程中化学因素(膜及其表面特性起主导作用。

3.反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化此外被大量用于纯水制备及生活用水处理以及难于用其他方法分离混合物。

反渗透工业应用包括(1海水脱盐;(2饮用水生产(3纯水生产。

二.纳滤基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适应在较低操作压力下运行,进而实现降低成本演变发展而来的。

我国于二十世纪90年代初期开始研制纳滤膜.与国外相比,我国纳滤技术整体上只能说是刚刚开始膜的研制、组器技术和应用开发等都刚起步。

1.纳滤过程:纳滤(NF是介于反渗透很超滤之间的一种压力驱动型膜分离技术。

它具有两个特性:①对水中的分子量为数百的有机小分子成分具有分离性能;②对于不同价态的阴离子存在Donnan 效应。

物料的荷电性.离子价数荷浓度对膜的分离效应有很大影响。

(道(Donnan模型一道南(Donnan效应Donnan 模型以Donnan 平衡为基础用来描述荷电膜的脱盐过程一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程要用于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为05~2OMPa(或0345~1035MPa 截留分子量界限为200~1000(或200~500 ,分子大小为1nm 的溶解组分的分离。

反渗透培训资料

反渗透培训资料

反渗透培训资料一、什么是反渗透?反渗透(Reverse Osmosis,RO)是一种通过半透膜来分离溶液中溶剂与溶质的方法。

在反渗透过程中,压力被施加于溶液的高浓度一侧,使溶剂逆向渗透到低浓度一侧,而溶质则通过半透膜被滞留在高浓度一侧。

这种分离方法广泛应用于水处理、海水淡化、食品饮料、制药等领域。

二、反渗透原理反渗透原理基于溶液浓度的差异,利用半透膜只允许溶剂通过的特性来实现过滤与分离。

当施加适当的压力在高浓度溶液一侧时,溶剂会逆向渗透到低浓度溶液一侧,而溶质则无法通过半透膜,从而被滞留在高浓度一侧。

三、反渗透设备及工艺流程反渗透设备主要包括膜组件、压力容器、前处理系统、后处理系统等。

工艺流程一般包括进料泵、预处理、反渗透、排放系统等环节。

根据不同的应用场景和水质要求,可以选择单级反渗透系统或多级串联反渗透系统。

四、反渗透在水处理中的应用反渗透广泛应用于水处理领域,特别是海水淡化、自来水处理、工业废水处理等方面。

在海水淡化过程中,反渗透可以有效地去除海水中的盐分和杂质,得到可用于灌溉和饮用的淡水。

在自来水处理中,反渗透可以去除水中的微生物、重金属、有机物等有害物质,提供高质量的饮用水。

五、反渗透的优势与挑战反渗透作为一种高效、低能耗的分离技术,具有以下优势:1) 对溶质的拒渗率高,水质出色;2) 运行成本低,不需要化学药剂;3) 对环境无污染,无二次污染风险。

然而,反渗透也面临一些挑战,如:1)半透膜易受污染,需要定期清洗和维护;2) 反渗透设备投资较高,维护成本也较高;3) 高压操作可能对设备和膜组件造成损害。

六、反渗透培训的重要性反渗透培训对于从事水处理、海水淡化、工业废水处理等相关工作的人员来说至关重要。

通过反渗透培训,工作人员可以了解反渗透的原理、设备和工艺,掌握运行和维护的技能,提高工作效率和水质处理的稳定性。

七、反渗透培训内容反渗透培训内容主要包括反渗透原理、设备组成和工艺流程的介绍,操作规程和安全注意事项的讲解,实际案例和故障排除的演示等。

纳滤反渗透简介

纳滤反渗透简介

反渗透膜简介
反渗透是利用压力差为动力的膜分离技术,分 离粒径一般小于0.1nm,其分离粒子级别可达到离子 级别,是最精密的膜法液体分离技术,它能阻挡所 有溶解性盐及分子量大于100的有机物,能够去除可 溶性的金属盐、有机污染物、细菌、胶体粒子、发 热物质,其脱盐率大于 99% ,对 COD 、氨氮及总氮的 脱除率可以达到95%以上,出水水质自稳定。
纳滤膜特点
两个显著特征: 一个是其截留分子量介于 RO 和 UF 之间,为 200 ~ 2000,因而推测NF的表面分离层可能有1nm左右的微孔 结构,即具有纳米级孔径; 另一个是NF膜对无机盐有一定的截留率,因为它的 表面分离层由聚电解质所构成(大多是复合型膜),对 离子有静电相互作用。受膜与离子间Donnan效应的影响, NF膜对不同价态的离子截留能力不同。 对于阴离子,截留率为 NO3- < Cl- < OH- < SO42- < CO32对于阳离子,截留率为H+<Na+<Ca2+<Mg2+ NF膜能截留透过UF膜的那部分相对分子质量较小的有 机物,而又能渗透被RO膜所截留的无机盐。操作压力比 RO低(一般低于1.0MPa),通量比RO大。
缺 点
易发生膜污染,分离性能下降; 稳定性、耐热性、耐药性低, 使用范围有限; 单独分离功能有限,需与其它 组合使用。
膜组件
由膜、固定膜的支撑体、间隔物以及容 纳这些部件的容器构成的一个单元称为膜组 件。 膜组件的种类: 管式膜组件:常用于微滤与超滤。 中空纤维帘式膜组件:常用于微滤与超 滤。 平板膜组件:常用于微滤与超滤。 卷式膜组件:可用于微滤、超滤、纳滤 与反渗透。 碟管式膜组件:可用于纳滤、反渗透。
纳滤、反渗透设计过程中的级与段产水源自原水 浓水一级三段式反渗透系统

纳滤反渗透简介

纳滤反渗透简介

膜组件
由膜、固定膜的支撑体、间隔物以及容 纳这些部件的容器构成的一个单元称为膜组 件。
膜组件的种类: 管式膜组件:常用于微滤与超滤。 中空纤维帘式膜组件:常用于微滤与超
滤。 平板膜组件:常用于微滤与超滤。 卷式膜组件:可用于微滤、超滤、纳滤
与反渗透。 碟管式膜组件:可用于纳滤、反渗透。
膜组件----管式膜组件
纳滤、反渗透设计常用术语
1)产水:又称渗透水,淡水,是反渗透系统的净化水。 2)给水:又称供给水,供水,是进入反渗透膜系统的供 给水流。 3)浓水:又称盐水,是反渗透系统的浓缩废液。 4)产水量:膜元件、膜组件系列或系统每小时生产淡水 的能力。 5)膜元件:组成反渗透膜组件的单个反渗透膜滤元。 6)膜组件:含有一个或多个反渗透膜元件的压力容器。 7)段:膜组件的浓水流经下一组膜组件处理、流经几次 膜组件即称为几段。 8)级:膜组件的产品水再经下一组膜组件处理,产品水 经几次膜组件处理即称为几级。 9)水通量:单位时间内透过膜元件(组件)单位膜表面 积的水量。 10)回收率:淡水与供水之比,以百分比表示。
蛋白质、酶等 大分子有机物 抗生素、合成药、染料 二价及多价盐、二糖等
单价盐(NaCl、KCl等)

膜分离特性示意图
膜分离特点
优点
无相变,能耗低; 分离条件温和; 操作方便,易于实现自动化; 结构紧凑,维修成本低。
缺点
易发生膜污染,分离性能下降; 稳定性、耐热性、耐药性低, 使用范围有限; 单独分离功能有限,需与其它 组合使用。
纳滤膜特点
➢两个显著特征: 一个是其截留分子量介于RO和UF之间,为200~
2000,因而推测NF的表面分离层可能有1nm左右的微 孔结构,即具有纳米级孔径;

纳滤反渗透

纳滤反渗透

一:实验目的:1.了解纳滤和反渗透的基本原理;2.了解纳滤和反渗透操作的基本步骤;3.了解纳滤和反渗透过程对溶质透过的选择性;二:实验原理:渗透:指稀溶液的容积(水分子)自发地透过半透膜(反渗透膜或纳滤膜)进入浓溶液(浓水)侧的溶剂(水分子)流动现象。

渗透压:在半透膜将纯液体与含有溶质的液体分开情况下,纯液体的化学势高于含有溶质的溶液的化学势,而物质移动规律是从化学势高移动到化学势低的,因此溶剂分子经半透膜移向另外一边的溶液。

如果在溶液的上方施加一个压力,其大小恰好是两边液体保持平衡,这个压力产生的压强数值就是该溶液在该浓度下的渗透压。

反渗透原理:把相同体积的稀溶液(如淡水)和浓液(如海水或盐水)分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压,渗透压的大小决定于浓液的种类,浓度和温度,与半透膜的性质无关。

若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。

纳滤原理:纳滤和反渗透没有明显的界限。

纳滤膜对溶解性盐或溶剂不是完美的阻挡层,这些溶质透过纳滤膜的高低取决于盐份或溶质的种类,透过率越低,纳滤膜两侧的渗透压就越高,也就越接近反渗透过程,相反,如果透过率越高,纳滤膜两侧的渗透压就越低,渗透压对纳滤过程的影响就越小。

两者区别:反渗透膜允许溶剂分子透过而不允许溶质分子透过的一种功能性的半透膜。

纳滤膜允许溶剂分子或某些低分子溶剂或低价离子透过的一种功能性的半透膜。

(它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。

)本次实验旨在探究纳滤和反渗透对不同的离子的选择透过性。

实验分别采用氯化钠和硫酸钠溶液来探究氯离子和硫酸根离子的透过性差异。

反渗透与纳滤

反渗透与纳滤
② 处理能力高,占地面积小,操作方便。
缺点:
① 不能处理含有悬浮物的液体,原水流程短,压力 损失大 ② 浓水难于循环以及密封长度大,清洗、维修不方 便,易堵塞。
(4)中空纤维式反渗透膜组件
特点: ①单位体积膜表面积大 ②制造和安装简单,不需要支撑物 缺点: ①不能用于处理含有悬浮物的废水 ②难以发现损坏的膜
• 应用范围 太空水、纯净水、蒸馏水等制备; 酒类制造及降度用水; 医药、电子等行业用水的前期制备; 化工工艺的浓缩、分离、提纯及配水制备; 锅炉补给水除盐软水; 海水、苦咸水淡化; 造纸、电镀、印染等行业用水及废水处理。
纳滤(NF)
是一种介于反渗透和超滤之间的新型膜分离技术,早 期称为“低压反渗透”或“疏松反渗透”。纳滤膜的截留 相对 分 子 质 量 200~2000之间 ,膜孔径约为 1nm,故称为 “纳滤”。
• 电荷效应(Donnan效应):离子与膜所带电荷的 静电相互作用。
①对不同价态离子截留效果不同,对二 价和高价离子的截留率明显高于单价离 子。 ②对离子的截留受离子半径的影响。 ③截留相对分子质量在200~1000之间, 适用于分子大小为1nm的溶解组分的分离。
其分离原理与反渗透分离原理一致
纳滤装置 与反渗透装置一样,纳滤膜组件有4种形式: ①卷式(最常见,主要用于脱盐及超纯水的制备) ②中空纤维式(水的软化) ③板框式(处理粘度较大的料液) ④管式(处理含悬浮物、高粘度的料液)
反渗透(RO)
一种以压力差为推动力,从溶液中分离出溶剂 的膜分离操作,与自然渗透的方向相反,故称反 渗透。
• 特点 常温条件下,可以对溶质和水进行分离或浓缩,
因而能耗低; 杂质去除范围广,可去除无渗透的原理
在浓水边加压,当压

02第二章 反渗透及纳滤膜应用技术介绍

02第二章 反渗透及纳滤膜应用技术介绍

第二章反渗透及纳滤膜应用技术介绍2.1. ESPA系列超低压反渗透膜自1995年5月美国海德能公司率先推出第一代超低压反渗透膜元件ESPA1以来,其优越的节能特性受到了广大用户的极大关注,超低压反渗透膜在世界日益普及。

随着节约能源的要求越来越高,人们对反渗透膜的运行压力不断提出更高的要求。

美国海德能公司为了满足在更低运行压力下的不同产水水质要求,不断充实和完善了超低压反渗透膜ESPA系列。

目前,ESPA系列的8英寸膜元件已经发展到6个型号:ESPA1(标准超低压反渗透膜)、ESPA2(高脱盐率超低压反渗透膜)、ESPA3(超高产水量超低压反渗透膜)、ESPA4(高产水量超低压反渗透膜)、ESPA2+(大面积高脱盐率超低压反渗透膜)和ESPAB (高脱硼超低压反渗透膜),4英寸膜元件也发展到4个型号:ESPA1-4040、ESPA2-4040、ESPA3-4040和ESPA4-4040。

迄今为止,美国海德能公司的ESPA超低压系列反渗透膜是世界上产水量最高、运行压力最低、且具有高脱盐率的膜元件。

在进水含盐量(TDS)低于1000 mg/L时,ESPA系列膜元件具有不可替代的优势。

1 性能说明(1) ESPA系列超低压反渗透膜元件特点由于反渗透膜在工作时需要克服渗透压,因此能耗较高一直是反渗透工艺的弱点。

若能够在较低的压力下制备出符合要求的去离子水,就意味着节约反渗透膜系统的设备投资(水泵、阀门、管路以及压力容器)和运行费用(电能消耗及维护费)。

表-1列出了ESPA系列超低压反渗透膜元件的性能特点,以及与CPA系列低压反渗透膜元件的比较。

表中的特性产水量表示膜元件在单位压力下,单位面积单位时间的产水量,这个参数使得不同的膜元件可以在同一条件下进行比较。

从表-1中可以看出:a. ESPA系列比CPA系列具有更高的特性产水量,其中ESPA4达到7.27 LMH/bar,是目前特性产水量最高的反渗透膜元件;b. ESPA2+的膜面积增加了10 %,达到了440 ft2。

反渗透膜 纳滤膜产品技术手册

反渗透膜 纳滤膜产品技术手册

反渗透膜纳滤膜产品技术手册反渗透膜-纳滤膜产品技术手册===============================1:引言----------本手册旨在介绍反渗透膜和纳滤膜产品的技术特性和应用方法。

通过详细的说明和案例分析,可以帮助用户更好地了解并有效地使用这些产品。

2:反渗透膜和纳滤膜的概述-----------------------------2.1 反渗透膜的定义和原理2.2 纳滤膜的定义和原理2.3 反渗透膜和纳滤膜的区别与联系3:反渗透膜和纳滤膜的分类与性能参数----------------------------------3.1 按材料分类3.1.1 聚醚酯反渗透膜3.1.2 聚酯反渗透膜3.1.3 聚酰亚胺反渗透膜3.1.4 其他材料反渗透膜3.2 按孔径分类3.2.1 纳滤膜3.2.2 超滤膜3.2.3 微滤膜3.3 理化性能参数3.3.1 孔径分布3.3.2 渗透率3.3.3 脱盐率3.3.4 抗污染性能4:反渗透膜和纳滤膜的应用领域------------------------------4.1 饮用水净化4.1.1 家用RO净水机4.1.2 商用RO净水设备4.1.3 工业中水回用系统4.2 废水处理4.2.1 印染废水处理4.2.2 电镀废水处理4.2.3 石化废水处理4.3 医药和食品加工4.3.1 药品生产中的纯化4.3.2 食品加工中的浓缩和分离5:产品选型及使用方法--------------------5.1 反渗透膜和纳滤膜的选型方法 5.1.1 水源特性分析5.1.2 处理要求分析5.1.3 设备和系统参数分析5.2 反渗透膜和纳滤膜的使用方法 5.2.1 模块安装和维护5.2.2 运行参数调整和监控5.2.3 膜元件的清洗和保养6:附件--------本文档附带相关的技术说明书、测试报告和产品目录,供用户参考。

7:法律名词及注释----------------7.1 水污染控制法:指国家对水污染控制和治理的法律法规。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章反渗透和纳滤的原理
3.1 反渗透和纳滤基础
3.1.1 膜与膜过程
膜在自然界中是广泛存在的,尤其在生物体内。

但是人类首次注意到由生物膜引起的渗透现象是在1748 年,法国学者Abbe Nollet(1700 – 1770)很偶然的发现包裹在猪膀胱里的水可以自己扩散到膀胱外侧的酒精溶液中。

法国植物学家Henri Dutrochet(1776 – 1847)在1827 年提出了Osmosis(渗透)一词来定义Abbe Nollet 发现的现象。

但是,这一现象并未能引起足够的重视,直到1854 年英国科学家Thomas Graham(1805 – 1869)在实验中发现,放置在半透膜一侧的晶体会比胶体更快的扩散到另一侧,并提出了Dialysis(透析)的概念。

这时人们才对半透膜产生了兴趣,并由德国生物化学家Moritz Traube(1826 – 1894)在1864 年制造出了人类历史上第一张人造膜——亚铁氰化铜膜。

完整的渗透压理论直到20 世纪才由荷兰物理化学家Van't Hoff(1852 – 1911)提出。

后来,随着各个学科的不断发展,膜分离现象也不断为人们发现并研究。

1960 年,人类终于实现了从苦咸水中制取淡水的梦想,工作于美国加利福尼亚大学洛杉矶分校(UCLA)的科学家Sidney Loeb (1917 –)和Srinivasa Sourirajan(1923 –)共同研制出世界第一张非对称醋酸纤维素反渗透膜。

从那时起的近半个世纪以来,膜分离技术,包括反渗透和纳滤,在世界范围得到了广泛的发展和应用。

表3.1 列出了膜分离技术发展简史。

表3.1 膜分离技术发展史
随着膜材料、制膜方法以及膜应用的不断发展,膜分离技术逐渐成为分离技术大家族中的重要成员。

与传统的分离技术(例如:过滤、蒸馏、萃取、电泳和层析等)相比,膜分离技术的分离精度高、易于操作和管理、在应用中对环境造成的二次污染小。

正是由于这些优点,膜分离技术在短短的半个世纪中就发展成为一种重要的单元分离工艺,并且发展出若干具有不同特点和应用领域的膜分离过程。

主要的膜分离过程包括:微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、透析(DA)、电渗析(ED)、电脱盐(EDI)、渗透汽化(PV)、膜萃取(ME)、膜蒸馏(MD)、液膜技术(LM)和气体分离(GS)等。

表3.2 将主要的膜分离过程做了分类和介绍。

按照这些膜分离过程所能分离物质的不同物理尺寸,我们可以画出分离谱图,如图3.1。

表3.2 主要的膜分离过程
图 3.1 分离谱图
3.1.2 反渗透和纳滤基本原理
当一张半透膜隔开溶液与纯溶剂时,加在溶液上并使其恰好能阻止纯溶剂进入溶液的额外压力称之为渗透压,通常溶液中溶质的浓度越高渗透压就越大。

当溶液一侧没有加压时,纯溶剂会通过半透膜向溶液一侧扩散,这一现象称为渗透
(Osmosis )。

反之,如果加在溶液侧所加压力超过了渗透压,则反而可以使溶液中的溶剂向纯溶剂一侧流动,这个过程就叫做反渗透(Reverse Osmosis ),如图 3.2 所示。

反渗透膜分离技术就是利用反渗透原理分离溶质和溶剂的方法。

反渗透膜分离技术具有以下特点:
• 在常温不发生相变化的条件下,可以对溶质和水进行分离,适用于对热敏感物质
的分离、浓缩,并且与有相变化的分离方法相比,能耗较低;
• 杂质去除范围广,不仅可以去除溶解的无机盐类,而且还可以去除各类有机物杂
质; • 脱盐率高;
• 由于只是利用压力作为膜分离的推动力,因此分离装置简单,易操作、控制和维
护;
• 反渗透膜对进水水质有一定的要求,如:浊度、污染密度指数(SDI 15,相关论述
请参见第二部分第三章 3.2.2)和余氯等。

半透膜 半透膜 半透膜 (a )渗透
(b )渗透平衡
(c )反渗透
图 3.2 反渗透的原理
纳滤膜元件最早被称为疏松反渗透,其截留特性介于超滤与反渗透之间,大约为 100 – 1 000 道尔顿(Daltons )。

因此,纳滤膜元件对水中溶解的小分子有机物,例
盐水 纯水 大于渗 透压的压力
盐水 纯水
纯水 盐水 渗透压
x
如:三卤甲烷(THM )有很高的脱除率;同时纳滤膜元件对水溶液中的离子也有一定的脱除率(一般在 10 – 90 %之间)。

反渗透膜的发展分为两个阶段:非对称膜和复合膜。

在反渗透膜发展的早期,主要的膜材料为三醋酸纤维素(CA )。

这种膜材料对进水 pH 值的要求比较严格(一般在 4 – 6 之间),且工作压力相对较高、脱盐率相对较低,但是其具有耐生物污染和耐氧化性杀菌剂的优点。

近年来,随着高分子材料科学的不断发展。

脱盐率更高、水通量更大、工作压力更低的芳香聚酰胺(结构见图 3.3)被用来制备反渗透膜。

与 CA 非对称膜不同的是,芳香聚酰胺反渗透膜是复合膜,即分离层与支撑层不是同一种材料,并且是通过界面聚合交联在一起的。

图 3.4 显示了非对称膜和复合膜的区别。

H H O O H
N
N C
C N
CO
H O O N C
C
COOH
图 3.3 交链全芳香族聚酰胺结构


①:表面密致层 ①:表面密致层
②:支撑层 ②:支撑层
材质①=② 材质①≠②
非对称膜
复合膜
图 3.4 非对称膜与复合膜结构比较


y。

相关文档
最新文档