图形的平移与旋转对称练习题
图形的对称、平移和旋转专项训练题
图形的对称、平移和旋转专项训练题一.选择题(共9小题)1.以下是几所知名大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形也是中心对称图形的有()A.4个B.3个C.2个D.1个3.如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD.将△ABC再次折叠,使BC边落在BA边上,展开后得到折痕BE,BE,AD交于点O.则以下结论一定成立的是()A.AO=2OD B.S△ABO=S四边形ODCEC.点O到△ABC三边的距离相等D.点O到△ABC三个顶点的距离相等4.下列各式中,是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.6.把点P(2,﹣5)向上平移3个单位后再关于原点对称的点的坐标是()A.(5,﹣5)B.(﹣2,2)C.(﹣5,5)D.(2,﹣2)7.如图,△ABC的周长为30cm,将△ABC沿CB向右平移得到△DEF,若平移的距离为4cm,则四边形ACED的周长是()cm.A.34B.36C.38D.408.“会飞的饺子皮”刷爆朋友圈,卡塔尔世界杯吉祥物“拉伊卜”刷爆网络!下面是“拉伊卜”的形象图片,在下面的四个图形中,能由左图经过平移得到的图形是()A.B.C.D.9.通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D二.填空题(共8小题)10.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B'处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB'于点P.若BC=12,则MP+MN=.11.如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则sin∠ADF的值为.12.如图,将△ABC绕点C顺时针旋转30°得到△DEC,边ED,AC相交于点F,若∠A=32°,则∠EFC的度数为°.13.如图,在△ABC中,BC=7,把△ABC沿射线AB方向平移4个单位至△EFG处,EG与BC交于点M.若CM=3,则图中阴影部分的面积为.14.在平面直角坐标系中,将点(1,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是.15.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE交CD于点H,且DH=EH,则AH的长为.16.等腰直角△ABC中,BAC=90°,AB=5,点D是平面内一点,AD=2,连接BD,将BD绕D点逆时针旋转90°得到DE,连接AE,当DAB=(填度数)度时,AE 可以取最大值,最大值等于.17.如图,矩形ABCD的边AD的长为6,将△ADC沿对角线AC翻折得到△AD′C,CD′与AB交于点E,再以CD′为折痕,将△BCE进行翻折,得到△B′CE,若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为.三.解答题(共3小题)18.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位长度,再向下平移2个单位长度,画出△ABC平移后的图形△A1B1C1;(2)以点A为旋转中心,将△ABC按逆时针方向旋转90°,得到△AB2C2,请画出△AB2C2.19.已知O是坐标原点,的坐标分别为(3,1),(2,﹣1).(1)画出绕点O顺时针旋转90°后得到的,并写出A1的坐标为;(2)在y轴的左侧以O为位似中心作的位似图形,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,B,C的坐标分别为(﹣5,1),(﹣5,4),(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1,点A,B,C的对应点分别是A1、B1、C1.(2)画出△ABC关于原点O对称的△A2B2C2,点A,B,C的对应点分别是A2、B2、C2.。
小学数学 《图形的平移、旋转与轴对称》习题1
1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。
五年级数学图形的平移旋转与对称试题
五年级数学图形的平移旋转与对称试题1.风扇扇叶的转动是平移现象..(判断对错)【答案】×【解析】解:据分析可知:风扇扇叶的转动是旋转现象,所以题干的说法是错误的.故答案为:×.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.2.门的开关运动属于运动.【答案】旋转【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.解:据分析可知:门的开关运动属于旋转运动.故答案为:旋转.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.3.画出下面图形的轴对称图形.【答案】见解析【解析】根据轴对称图形的特点和性质,每组对应点到对称轴的距离相等,每组对应点的连线垂直于对称轴,先描出每组对应点,然后顺次用直线连接各点即可.解:先描出每组对应点,然后顺次用直线连接各点.作图如下:【点评】此题主要根据轴对称图形的特点和性质解决问题.4.一间会议室长12米,宽7.2米,如果用边长3分米的正方形地面砖铺地,一共需要多少块?【答案】960块.【解析】先根据“长方形的面积=长×宽”计算出教室的面积,进而根据“正方形的面积=边长×边长”计算出正方形方砖的面积,继而用“教室的面积÷正方形方砖的面积”进行解答即可.解:3分米=0.3米,(12×7.2)÷(0.3×0.3),=86.4÷0.09,=960(块);答:一共需要960块.【点评】解答此题的关键是根据长方形的面积计算公式计算出教室的面积,进而根据正方形的面积计算公式计算出方砖的面积,继而用“教室的面积÷正方形方砖的面积”进行解答即可.5.平行四边形是轴对称图形..(判断对错)【答案】×【解析】依据轴对称图形的定义即可作答.解:因为平行四边形无论沿哪一条直线对折,对折后的两部分都不能完全重合,所以平行四边形不是轴对称图形.答:平行四边形是轴对称图形,这种说法是错误的.故答案为:×.【点评】此题主要考查轴对称图形的定义.6.指针从“1”绕点O顺时针旋转60度后指向.【答案】3.【解析】这里是关于中钟表的问题,不难得出钟面被平均分成了12份,那么1份所对的圆心角就是360°÷12=30°;由此即可解决问题.解:指针从“1”绕点O顺时针旋转60°时,是经过了60°÷30°=2个格,那么此时指针指向3,故答案为:3.【点评】抓住钟面上的一个大格所对的圆心角的度数是30°,是解决本题的关键,这里还要注意逆时针旋转和顺时针旋转的意义.7.五角星是轴对称图形,它只有1条对称轴..【答案】×【解析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可判断五角星的对称轴条数.解:根据轴对称图形的定义可知:五角星是轴对称图形,它有5条对称轴,所以原题说法错误.故答案为:×.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴的条数的灵活应用.8.画出下图中的轴对称图形.【答案】【解析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可.解:画出下图中的轴对称图形:【点评】求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可.9.下面各图形中,对称轴最少的是()A. B. C.【答案】BC【解析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.解:A,有3条对称轴;B,有2条对称轴;C,有2条对称轴;故选:B、C.【点评】解答此题的主要依据是:轴对称图形的概念及特征,借助画图,更容易解答.10.(1)画出图形A绕点O顺时针旋转90°后得到图形B.(2)把图形B先向右平移9格,再向下平移3格得到图形C.【答案】【解析】(1)先找出以点O为旋转中心,顺时针旋转90度的其它三个顶点的对应点,再依次连接起来即可得出图形B;(2)把图形B的四个顶点分别向右平移9格,再向下平移3格,依次连接起来,即可得出图形C.解:根据题干分析画图如下:【点评】此题考查了利用图形旋转、平移的方法进行图形变换的方法.。
初二数学图形的对称平移与旋转试题
初二数学图形的对称平移与旋转试题1.下列运动中,是平移的是()A.开门时,门的移动B.走路时手臂的摆动C.移动电脑的鼠标时,显示屏上鼠标指针的移动D.移动书的某一页时,这一页上的某个图形的移动【答案】C.【解析】根据平移的定义,对题中给出的选项进行分析,选择正确答案:A.开门时,门的移动,属于旋转现象;B.走路时手臂的摆动,属于旋转现象;C.移动电脑的鼠标时,显示屏上鼠标指针的移动,属于平移现象;D.移动书的某一页时,这一页上的某个图形的移动,属于旋转现象.故选C.【考点】生活中的平移现象.2.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形3.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.4.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.【答案】2,4,有2.【解析】与三角形1成轴对称图形是三角形2与三角形4,对称轴有2条.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.7.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近八点的是()【答案】D.【解析】根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.【考点】镜面对称.8.在以下四个图形中,对称轴条数最多的一个图形是()A. B. C. D.【答案】B【解析】由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.【考点】对称轴.9.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1________ C1________.【答案】(1)详见解析;(2)【解析】已知三点坐标,根据在平面直角坐标系中,关于轴对称的点的坐标特点直接确定出的坐标,然后连线即可.试题解析:解:(1)如图,即为所求关于轴对称的图形.考点:画轴对称图形.10.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析11.如图,在正方形网格中每个小正方形的边长都是单位长度1,△的顶点都在格点上,且△与△关于点成中心对称.(1)在网格图中标出对称中心点的位置;(2)画出将△沿水平方向向右平移5个单位后的△.【答案】【解析】(1)连CF、BE后,所得交点即为O点(2)将A、B、C点各平移5个单位后,所得到的3个新的点互相连接,所得到的的图形即为所求图形【考点】图形的对称与平移点评:题目难度不大,学生可以通过多做此类题得出12.下列现象属于图形平移的是()A.轮船在大海上航行B.飞速转动的电风扇C.钟摆的摆动D.迎面而来的汽车【答案】D【解析】平移的定义:把一个图形沿一定的方向移动一定的距离叫做图形的平移,简称平移. A、轮船在大海上航行,B、飞速转动的电风扇,C、钟摆的摆动,均不属于平移;D、迎面而来的汽车,符合平移的定义,本选项正确.【考点】平移的定义点评:本题属于基础应用题,只需学生熟练掌握平移的定义,即可完成.13.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A.75°B.60°C.45°D.15°【答案】B【解析】旋转角的定义:旋转对应边的夹角是旋转角。
图形的平移,对称与旋转的经典测试题含解析
∴a=5,
∴c=5,
∴a+b+c=5+7+5=17,
故选C.
【点睛】
本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.
8.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
∴四边形答案为C.
【点睛】
本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.
15.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
【答案】B
【解析】
【分析】
平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定
【详解】
∵△DEF是△ABC平移得到
∴A和D、B和E、C和F分别是对应点
∴平移距离为:线段AD、BE、CF的长
故选:B
【点睛】
本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.
10.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A.0B.4C.8D.16
【答案】B
【解析】
【分析】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM= ,进而即可得到结论.
【详解】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.
图形的平移,对称与旋转的经典测试题含答案
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】
图形的平移,对称与旋转的专项训练及答案
图形的平移,对称与旋转的专项训练及答案一、选择题1.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.3.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A .0B .4C .8D .16【答案】B【解析】【分析】 作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM ,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM . ∵正方形ABCD 1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.4.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.5.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.6.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.9.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C.2D【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=AE.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E【答案】C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.,若将△ABO绕点O沿顺时针方向旋转90°15.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.16.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.17.如图,点E是正方形ABCD的边DC上一点,把ADE∆绕点A顺时针旋转90︒到ABF∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==2DE=Q,Rt ADE∴∆中,2226AE AD DE=+=故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.。
初三数学图形的对称平移与旋转试题
初三数学图形的对称平移与旋转试题1.下面四个标志属于中心对称的是()A.B.C.D.【答案】A【解析】根据中心对称图形的概念对各选项分析判断后利用排除法求解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.【考点】中心对称图形.2.如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=________.【答案】【解析】∵∠A=30°,AC=10,∠ABC=90°,∴∠C=60°,BC=BC′=AC=5,∴△BCC′是等边三角形,∴CC′=5,∵∠A′C′B=∠C′BC=60°,∴C′D∥BC,∴DC′是△ABC的中位线,∴DC′=BC=.3.将如图所示的图案通过平移后可以得到的图案是()【答案】A【解析】根据平移的定义可知选A.4.图中所示的几个图形是国际通用的交通标志,其中不是轴对称图形的是()【答案】C.【解析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.A、B、D都是轴对称图形,而C不是轴对称图形.故选C.【考点】轴对称图形.5.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形D.正方形【答案】D.【解析】A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.考点: 轴对称图形.6.下列食品商标中不是轴对称图形的是()【答案】B.【解析】根据轴对称图形的概念对各选项分析判断即可得出答案.A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、轴对称图形,故本选项正确;故选B.考点: 轴对称图形.7.如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是 .【答案】平行四边形【解析】∵DE是△ABC的中位线,∴DE CA。
八年级下册数学《图形的对称、平移、旋转》练习题
《图形的对称、平移与旋转》知识点习题一、选择题1. 平面图形的旋转一般情况下会改变图形的()A.位置B.大小C.形状D.性质2. 剪纸是我国最普及的民间艺术.下列剪纸作品中,不是轴对称图形的是()3. 下列图形中,不是中心对称图形是()A.B.C.D.4. 下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动5. 在下图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A.B.C.D.6. 如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.37. 在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P (2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)8. 点(﹣3,2)关于x轴的对称点是()A.(﹣3,﹣2)B.(3,2)C.(﹣3,2)D.(3,﹣2)9. 下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个10. 如图,如果直线是△ABC的对称轴,其中∠B=70°,那么∠BAC的度数等于()A.60°B.50°C.40°D.30°11.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是().A.25°B.30°C.35°D.40°12. 将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是()A.120°B.60°C.45°D.30°13. 已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是().A.a=1,b=5 B.a=5,b=1C.a=﹣5,b=1 D.a=﹣5,b=﹣114. 如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)15. 下列“QQ表情”中属于轴对称图形的是().16. 点M(1,2)关于x轴对称的点的坐标为().A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)17. 如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是().A.50°B.60°C.70°D.80°18. 如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15°B.20°C.25°D.30°19. 如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为().A.2 B.3 C.5 D.720. 如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.21. 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.22. 如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D 重合,折痕EF,点E、F分别在AC和BC上,若BF=1.2,则AE=()A.53B.43C.125D.3523. 风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A.B.C.D.24. 如图,将等腰三角板向右翻滚,依次得到b、c、d,下列说法中,不正确的是()A.a到b时旋转B.a到c是平移C.a到d是平移D.b到c是旋转25. 下列图形中,不是轴对称图形的是()A.B.C.D.26. 如图,将△AOB绕点O按顺时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是( )A.18°B.27°C.45°D.72°27. 将点(1,﹣2)向右平移3个单位得到新的点的坐标为()A.(1,﹣5)B.(4,﹣2)C.(1,1)D.(﹣2,2)28. 点M(3,-4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为( ) A.(-3,4)B.(-3,-4)C.(3,4) D.(3,-4)29. 下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.30. 如图,四边形ABCD为正方形,点O为AC、BD的交点,则三角形COD绕点O经过下列哪种旋转可以得到三角形DOA()A. 顺时针旋转45°B. 顺时针旋转90°C. 逆时针旋转45°D. 逆时针旋转90°31. 如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOF B.∠AOD C.∠COE D.∠COF32. 如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有()①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
平移旋转轴对称练习题
平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。
2. 图形的旋转中心称为__________。
3. 轴对称图形的对称轴可以是__________、__________或__________。
4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。
三、判断题1. 平移不改变图形的大小和形状。
()2. 旋转会改变图形的大小和形状。
()3. 轴对称图形的对称轴必须经过图形的中心。
()4. 平移和旋转都是刚体变换。
()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。
2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。
3. 请举例说明生活中平移、旋转和轴对称现象的应用。
六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。
求平移向量,并画出平移后的图形。
2. 一个长方形的长是8厘米,宽是4厘米。
如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。
图形的平移,对称与旋转的真题汇编含答案
一、选择题
1.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.
故选D.
边关系是解题关键.
16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
【答案】BAB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,
2022年五年级上册数学试题 图形的平移、旋转与对称 测试卷 (含答案)
五年级上册数学试题-第二单元图形的平移、旋转与对称测试卷-西师大版(含答案)一.选择题(共6题,共12分)1.将下面的图案绕点“O”按顺时针方向旋转90°,得到的图案是()。
A. B. C.2.冬天时你见过雪花吗?它是以花心为中心,一个花瓣旋转6次得到的美丽图案。
那么每次它旋转多少度?()A.30°B.60°C.90°D.180°3.在下列运动中,既属于平移又属于旋转的是()。
A.行进中的自行车的车轮B.时针和分针的运动C.高楼建筑电梯的运动D.小球从高处自由落下4.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()。
个个个5.如图:正三角形ABC怎样运动得到正三角形ADE?()A.平移B.旋转C.轴对称6.把一个图形绕其中一点顺时针旋转(),又回到原来的位置。
A.90°B.180°C.360°二.判断题(共6题,共12分)1.图形的旋转只能按顺时针方向转。
()2.旋转就是以一个点或一个轴为中心而做的圆周运动。
()3.上楼梯是旋转运动。
()4.时针从1平移到2,走了30°是一小时。
()5.图形旋转时,对应的每组线段的长度都相等。
()6.下面是四边形ABCD绕点C顺时针旋转90°后的图形A′B′CD′。
()三.填空题(共6题,共19分)1.表针从12走到3,时针旋转了()度。
2.图形(1)是以点()为中心旋转的;图形(2)是以点()为中心旋转的;图形(3)是以点()为中心旋转的。
3.钟面上,时针从指向6转到指向()是顺时针旋转了90°,分针从4:00走到():()是顺时针旋转了90°。
4.平移和旋转都是物体的运动方式,如()、()是平移现象,()、()是旋转现象。
5.如图,指针从A开始,逆时针旋转了90°到()点,逆时针旋转了180°到()点;要从A旋转到D,可以按()时针方向旋转()°,也可以按()时针方向旋转()°6.下图中小船A通过()的转换得到红船,通过()的转换得到绿船。
图形的平移,对称与旋转的经典测试题及解析
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()
初一数学图形的对称平移与旋转试题
初一数学图形的对称平移与旋转试题1.如图,可以看作是一个基础图形绕着中心旋转7次而生成的,则每次旋转的度数是__________.【答案】45°.【解析】∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.∴每次旋转的度数是45°.故答案是45°.【考点】旋转的性质.2.在线段,角、圆、直角三角形、等边三角形、正方形、正五边形、正六边形八个图形中,一定是轴对称图形的个数有个.【答案】7.【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.试题解析:在线段,角、圆、直角三角形、等边三角形、正方形、正五边形、正六边形八个图形中,一定是轴对称图形的有线段,角、圆、等边三角形、正方形、正五边形、正六边形,有7个.【考点】轴对称图形.3.如图是一个图案的一半,其中虚线是这个图案的对称轴,请你画出这个图案的另一半.【答案】作图见解析.【解析】利用轴对称图形的性质得出对应点位置,进而得出答案.试题解析:如图所示:【考点】利用轴对称设计图案.4.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船平移后的图形。
(4分)【答案】作图见解析.【解析】将小船的各点沿箭头方向平移8格,得到对应点,顺次连接成新图即可.所作图形如下:【考点】作图-平移变换.5.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D【解析】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.【考点】1.中心对称图形;2.轴对称图形.6.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使PA1+PC2的值最小,点P的坐标为______.【答案】(1)作图见解析;(2)作图见解析;(3)(,0).【解析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.试题解析:(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【考点】1.作图-旋转变换;2.轴对称-最短路线问题;3.作图-平移变换.7.如图梯形ABCD中,AD∥BC,AD=6cm,BC=10cm,高为7cm,若将梯形ABCD向右平移4cm得到梯形A′B′C′D′,则平移前后两梯形重叠部分的面积为cm2.【答案】28【解析】由平移的性质可得线段AA′=BB′=4,则A′D=2,B′C=6,根据梯形的面积公式即可求出两梯形重叠部分即梯形A′B′CD的面积.解:∵将梯形ABCD向右平移4cm得到梯形A′B′C′D′,∴AA′=BB′=4,∵AD=6,BC=10,∴A′D=2,B′C=6,∴梯形A′B′CD的面积=(2+6)×7=28,即平移前后两梯形重叠部分的面积为28cm2.故答案为28.点评:本题综合考查了平移的性质和梯形的面积公式,根据平移的性质可得线段AA′=BB′=4是解题的关键.8.如图中的剪纸作品有几条对称轴?A.1条B.2条C.3条D.4条【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就叫这个图形的对称轴.由图可得图中的剪纸作品有4条对称轴,故选D.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.9.观察下图中各组图形,其中成轴对称的为(只写序号)【答案】①②④【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得成轴对称的为①②④.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.10.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A, C的坐标分别为( -4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC关于轴对称的△A′B′C′;⑶写出点B′的坐标.【答案】【解析】(1)依题意知,C的坐标(-1,3),故以C点起始向右移动一个单位,向下移动3个单位可得原点O。
初二数学图形的对称平移与旋转试题
初二数学图形的对称平移与旋转试题1.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质2.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为,若∠1=110°,则∠= 度.【答案】20°.【解析】如图所示∵∠1=110°,∴∠2=∠1=110°(两直线相交,对顶角相等),∵四边形ABCD为矩形,∴∠D=∠B’ =∠BAD=90°,∴∠4+∠2=360°-∠D-∠B’="180°" (四边形内角和为360°),∵∠2=110°,∴∠4=70°,∵∠BAD=90°,∴∠3=∠=20°.【考点】1.对顶角;2.余角;3.四边形内角和.3.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】∵△和△都是等腰直角三角形,∴∠∠.又∵△绕着点沿逆时针旋转度后能够与△重合,∴旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A.4.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.5.如图,△绕点旋转一定角度后得到△,若,,则下列说法正确的是()A.B.C.∠是旋转角D.∠是旋转角【答案】D【解析】∵△绕点旋转一定角度后得到△,且,,∴是旋转角,故选D.6.剪纸艺术是我国文化宝库中的优秀遗产.下面四幅剪纸作品中,属于轴对称图形的是()【答案】D.【解析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.考点: 轴对称图形.7.∠AOB=45°,其内部有一点P,OP=8,在∠AOB的两边分别有两点Q,R(不同与点0),则△PQR的最小周长是。
图形的平移与旋转专项练习(含答案)
图形的平移与旋转专项练习(含答案)一、选择题(本大题共34小题,共102.0分)1.如图,在正方形网格中有△ABC,△ABC绕点O逆时针旋转90°后的图案应该是()A. B. C. D.2.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个3.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O()A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°4.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A. 30°B. 60°C. 90°D. 120°5.在平面直角坐标系中,将点A(−1,2)先向左平移2个单位长度,再向下平移3个单位长度后,得到的点的坐标为()A. (1,−1)B. (−1,5)C. (−3,−1)D. (−3,5)6.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO的方向平移后得到△O′A′B′,平移后点A′的横坐标为6√3,则点B′的坐标为()A. (8√3,−4√3)B. (8,−4√3)C. (8√3,−4)D. (8,−4)7.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字是()A.B.C.D.8.如图,将△ABC绕点A逆时针旋转90∘得到△ADE,点B,C的对应点分别为点D,E,AB=1,则BD的长为()A. 1B. √2C. 2D. 2√29.下列四个图形中,可以由下图通过平移得到的是()A. B. C. D.10.下列宣传图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.11.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m212.如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC方向平移BE距离得到此图形,其中AB=6,BE=5,DH=3,则四边形DHCF的面积为()A. 35B. 652C. 452D. 3113.如图,由△ABC平移得到的三角形有()A. 15个B. 5个C. 10个D. 8个14.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)15.如图的四个图形中,由基础图形通过平移、旋转或轴对称这三种变换都能得到的是()A. B.C. D.16.如图,点A,B的坐标分别是(−3,1),(−1,−2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A. 18B. 20C. 36D. 无法确定17.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)18.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)19.将△ABC各顶点的纵坐标加“−3”,连接这三点所成的三角形是由△ABC()A. 向上平移3个单位长度得到的B. 向下平移3个单位长度得到的C. 向左平移3个单位长度得到的D. 向右平移3个单位长度得到的20.如图,将△OAB绕点O逆时针旋转70°,得到△OCD,若∠A=2∠D=100°,则α的度数是()A. 50°B. 60°C. 40°D. 30°21.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A. πcm2B. 4cm2)cm2C. (π−π2)cm2D. (π+π222.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个23.如图,在△ABC中,AB=12,将△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,则阴影部分的面积为()A. 24B. 48C. 36D. 7224.如图,P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A. 2√2B. 3√2C. 3D. 无法确定25.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是()A. 12B. 1 C. √3 D. √3226.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A. 2(√33+1)B. √33+1C. √3−1D. √3+127.如图,△ABC绕点A旋转至△ADE,则旋转角是()A. ∠BADB. ∠BACC. ∠BAED. ∠CAD28.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB//DE,AB=DE;②AD//BE//CF,AD=BE=CF;③AC//DF,AC=DF;④BC//EF,BC=EF.A. 1个B. 2个C. 3个D. 4个29.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.30.如图,∠A=80∘,O是AB上一点,直线OD与AB所夹的∠AOD=82∘,要使OD//AC,直线OD绕点O按逆时针方向至少旋转()A. 8∘B. 10∘C. 12∘D. 18∘31.下列说法中,不正确的是()A. 图形平移是由移动的方向和距离所决定的B. 图形旋转是由旋转中心和旋转角度所决定的C. 任意两条相等的线段都成中心对称D. 任意两点都成中心对称32.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A. 向左平移了5个单位长度B. 向下平移了5个单位长度C. 向上平移了5个单位长度D. 向右平移了5个单位长度33.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有()A. ①②B. ①③C. ②③D. ①②③34.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组二、填空题(本大题共25小题,共75.0分)35.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45∘,将△ADC绕点A顺时针旋转90∘后,得到△AFB,连接EF,下列结论: ①△AED≌△AEF; ②BE+DC=DE; ③BE2+DC2=DE2,其中正确的是.(填序号)36.如图,在平面直角坐标系中,已知点A(−3,−1),点B(−2,1),平移线段AB,使点A落在A1(0,−1),点B落在点B1,则点B1的坐标为37.如图,在△ABC中,∠C=90°,AC=8,BC=6,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为.38.在平面直角坐标系中,将点A(−1,2)向上平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是39.如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为.40.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.41.已知平面直角坐标内的点A(−2,5),如果将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.42.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.43.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=.44.有下列图形:①线段;②三角形;③平行四边形;④正方形;⑤圆.其中不是中心对称图形的是(填序号).45.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.46.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着__点_______旋转__度可得到△____.47.已知点A(1,−2),B(−1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.48.钟表上的时针走1小时旋转了度.49.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”“B”或“C”).50.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.51.如图,将△ABC绕点A旋转一定角度后得到△ADE.若∠CAE=60∘,∠E=65∘,且AD⊥BC,则∠BAC=°.52.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.53.如图,四边形ABCD与四边形FGHE关于某一点成中心对称,则这个点是.54.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.55.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.56.点P(−4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,−1),则x=,y=.57.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.58.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5cm,BC=8cm,∠BAC=130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.59.如图,在△ABC中,∠ACB=90∘,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.三、解答题(本大题共23小题,共184.0分)60.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.61.如图,已知BC与CD重合,∠B=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.62.如图,在4×3的网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.63.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.64.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O.(1)平移△ABC,使得点A与点O重合,画出平移后的△A′B′C′;(2)画出△ABC关于点O成中心对称的△DEF;(3)判断△A′B′C′与△DEF是否成中心对称.65.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(−3,5),B(−2,1),C(−1,3).(1)若点C1的坐标为(4,0),画出△ABC经过平移后得到的△A1B1C1,并写出点B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称,画出△A2B2C2,并写出点B2的坐标;(3)若△ABC绕着坐标原点O按逆时针方向旋转90°得到△A3B3C3,画出△A3B3C3,并写出点B3的坐标.66.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.67.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;(2)若EF//CD,求∠BDC的度数.68.如图,已知△ABC三个顶点的坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图: ①画出△ABC向左平移5个单位长度后得到的△A1B1C1; ②画出△ABC绕着原点O顺时针旋转90∘后得到的△A2B2C2;(2)请写出直线B1C1与直线B2C2的交点坐标.69.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.(1)旋转中心是点,旋转角是度;(2)连接EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.70.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.71.如图,△ABC各顶点的坐标分别为A(−2,6),B(−3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)在(1)中,若△ABC内有一点M(a,b),则其在△DEF中的对应点M′的坐标为______________;(3)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.72.如图 ①,在△ABC中,∠A=90∘,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0∘<α<360∘),如图 ②,连接CE,BD,CD.(1)当0∘<α<180∘时,求证:CE=BD;(2)如图 ③,当α=90∘时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.73.如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.74.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.75.操作与探究如图,在平面直角坐标系中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.76.在平面直角坐标系中,将点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(−6,−2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3______________;(2)写出点A n的坐标:____________________________(用含n的代数式表示).77.在如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,−2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.78.如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图 ①中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系(不要求证明);(2)当△DEF沿直线m向左平移到图 ②所示的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合.请证明你的猜想.79.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.80.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.81.如图,在Rt△ABC中,∠C=90°,BC=AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置.(1)若平移距离为3,求△ABC与△A′B′C′重叠部分的面积;(2)若平移距离为x(0≤x≤4),用含x的代数式表示△ABC与△A′B′C′重叠部分的面积.82.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC向下平移2个单位长度后得到的△A1B1C1,并写出点A1,B1,C1的坐标;(2)作出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出点C2的坐标.答案和解析1.【答案】A【解析】【分析】本题考查了旋转的性质,知道想要确定旋转后的图形①要确定旋转的方向②要确定旋转的大小是解题的关键.根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可.【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.2.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.3.【答案】C【解析】【分析】本题考查了图形的旋转,解题时注意旋转三要素:①旋转中心;②旋转方向;③旋转角度.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,据此即可解答.解:将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,则相当于将图形逆时针旋转110°,这时如果使图形回到原来的位置,需要将图形绕着点O顺时针旋转110°.故选:C.4.【答案】C【解析】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.5.【答案】C【解析】将点(−1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是(−1−2,2−3),即(−3,−1),故选C.6.【答案】C【解析】∵等边三角形OAB的边长为4,点A在第二象限内,∴易得点A的坐标为(−2√3,2),B(0,4),∵平移后点A′的横坐标为6√3,∠AOB=60∘,∴平移规律为向右平移8√3个单位,向下平移8个单位,∴点B′的坐标为(8√3,−4),7.【答案】C【解析】原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有C 符合.故选C.8.【答案】B【解析】解:由旋转的性质可知AD=AB=1,∠BAD=90∘,∴BD=√AB2+AD2=√12+12=√2,故选B.9.【答案】D【解析】略10.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形;B、D不是轴对称图形,也不是中心对称图形;只有C选项符合题意,故选C.11.【答案】B【解析】略12.【答案】C【解析】略13.【答案】B14.【答案】A【解析】【分析】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1−3=−2;纵坐标为−1+2=1,∴点B的坐标是(−2,1).故选:A.15.【答案】B【解析】略16.【答案】A【解析】略17.【答案】C【解析】解:∵A(1,3)的对应点的坐标为(−2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(−1,−1).故选:C.根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.18.【答案】D【解析】解:由题图可知点A的坐标为(4,2),向上平移一个单位后对应点的坐标为(4,3),再绕点P按逆时针方向旋转90∘后对应点的坐标为(−1,4),如图所示.19.【答案】B【解析】略20.【答案】C【解析】【分析】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于70°,则可以利用三角形内角和定理列出等式进行求解.【解答】解:∵将△OAB绕点O逆时针旋转70°,∴∠A=∠C,∠AOC=70°,∴∠DOC=70°−α,∵∠A=2∠D=100°,∴∠D=50°,∵∠C+∠D+∠DOC=180°,∴100°+50°+70°−α=180°,解得α=40°,故选:C.21.【答案】B【解析】略22.【答案】B【解析】略23.【答案】C【解析】解:∵△ABC绕点A按逆时针方向旋转30∘后得到△AB1C1,∴S△ABC=S△AB1C1,AB=AB1=12,∠BAB1=30∘,∴S阴影=S△ABB1+SΔAB1C1−S△ABC=SΔABB1,作BD⊥AB1于D,在Rt△ABD中,∵∠BAB1=30∘,∴BD=12AB=6,∴SΔABB1=12AB1⋅BD=12×12×6=36.故选C.24.【答案】B【解析】【分析】本题考查了旋转的性质,利用了旋转的性质:对应点到旋转中心的距离相等,旋转角相等,又利用了勾股定理,根据旋转的性质,可得BP′的长,∠PBP′的度数,根据勾股定理,可得答案.【解答】解:由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2.故选B.25.【答案】B【解析】由旋转的性质可知BM=BN,又∵∠MBN=60∘,∴△BMN为等边三角形,∴MN=BM,∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,BM的长取得最小值,即MN 的长取得最小值,此时点M与点H重合.又∵等边三角形ABC的边长是2,∴AB=BC=CA=2,AB=1.∵CH⊥AB,∴BH=12∴线段MN长度的最小值是1.故选B.26.【答案】D【解析】略27.【答案】A【解析】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选A.28.【答案】D【解析】略29.【答案】B【解析】解:A中的图形既不是轴对称图形也不是中心对称图形;C中的图形为轴对称图形,但不是中心对称图形;D中的图形为中心对称图形,但不是轴对称图形,故选B.30.【答案】D【解析】如图,当OD绕点O旋转至OD′时,OD′//AC,则∠A+∠AOD′=180∘,∴∠AOD′= 180∘−∠A=100∘,∴∠DOD′=∠AOD′−∠AOD=100∘−82∘=18∘,故选D.31.【答案】C【解析】略32.【答案】D【解析】略33.【答案】A【解析】略34.【答案】C【解析】略35.【答案】 ① ③【解析】如图,由已知得,∠BAC=90∘,又∠DAE=45∘,∴∠1+∠2=45∘,由旋转的性质得,∠2=∠3,AD=AF,∴∠FAE=∠1+∠3=45∘=∠DAE,又∵AE=AE,∴△AED≌△AEF,故 ①正确.∵AB=AC,∠BAC=90∘,∴∠ABC+∠C=90∘,由旋转的性质知∠4=∠C,∴∠EBF=∠4+∠ABC=90∘,在Rt△EBF中,BE2+BF2=EF2,由△AED≌△AEF,得EF=ED,由旋转的性质得BF=DC,∴BE2+DC2=DE2,故 ③正确, ②不正确.综上, ① ③正确.36.【答案】(1,1)【解析】【分析】本题考查了坐标与图形变化−平移,熟练掌握网格结构准确找出点的位置是解题的关键.根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.【解答】解:通过平移线段AB,点A(−3,−1)落在(0,−1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为(1,1).37.【答案】2√10【解析】【分析】本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.由旋转的性质可求得AE、DE,由勾股定理可求得AB,则可求得BE,连接BD,在Rt△BDE 中可求得BD的长.【解答】解:如图所示:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AE=AC=8,DE=BC=6,∴BE=AB−AE=10−8=2,连接BD,在Rt△BDE中,由勾股定理可得BD=√DE2+BE2=√62+22=2√10,即B、D两点间的距离为2√10,故答案为2√10.38.【答案】(−1,−5)【解析】略39.【答案】12【解析】略40.【答案】14+4√3【解析】解:如图,将△ABP绕点B顺时针旋转90∘得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90∘,∴PM=√2PB=2,∵PC=4,PA=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90∘,∵∠BPM=∠BMP=45∘,∴∠CMB=∠APB=135∘,∴∠APB+∠BPM=180∘,∴A,P,M三点共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.41.【答案】(−5,1)【解析】略42.【答案】16【解析】【分析】本题考查了平移变换的性质,通过平移,把不规则图形的周长转化为规则图形矩形的周长进行求解是解题的关键.根据平移的性质,不规则图形的周长正好等于长为5,宽为3的矩形的周长,再根据矩形的周长公式进行计算即可.【解答】解:如图所示,封闭图形的周长是:2×(5+3)=2×8=16.故答案为:16.43.【答案】−344.【答案】②【解析】略45.【答案】点B【解析】略46.【答案】C;逆时针方向;60;BCD【解析】【分析】本题考查了旋转的定义,等边三角形的性质和三角形全等的判定定理,难度适中.先根据等边三角形的性质,运用SAS证明△ACE≌△BCD,再由旋转的定义即可求解.【解答】解:∵△ABC和△DCE是等边三角形,∴CA=CB,CE=CD,∠DCE=∠ACB=60°,∴∠ACE=∠BCD=60°+∠ACD.∵在△ACE与△BCD中,{CA=CB∠ACE=∠BCDCE=CD,∴△ACE≌△BCD(SAS),∴△ACE绕点C逆时针方向旋转60度可得到△BCD.故答案为C;逆时针方向;60;BCD.47.【答案】−1【解析】【分析】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.解决本题的关键是通过点的坐标之间的关系确定线段平移的方向和距离.利用A点与E点的横坐标,B点与F点的纵坐标坐标可判定线段AB先向右平移1个单位,再向上平移1个单位得到EF,然后根据此平移规律得到−2+1=a,−1+1=b,则可求出a和b的值,从而得到a+b的值.解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,−2),B(−1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴−2+1=a,−1+1=b,∴a=−1,b=0,∴a+b=−1+0=−1.故答案为−1.48.【答案】30【解析】略49.【答案】平移;A【解析】【分析】本题考查平移、旋转的性质.平移前后,对应边平行,故由①到②属于平移;旋转中心的确定方法是,两组对应点连线的垂直平分线的交点,即为旋转中心.【解答】解:根据题意:观察可得:图①与图②对应点位置不变,通过平移可以得到;根据旋转中心的确定方法,两组对应点连线的垂直平分线的交点,可确定图②经过旋转变换得到图③的旋转中心是A.故答案为平移,A.50.【答案】(7,0)【解析】解:∵点A(3,√3)的对应点D的坐标为(6,√3),∴平移的距离为6−3=3,∴BE=3,∵B(4,0),∴E(7,0).51.【答案】 85【解析】由旋转的性质可知,∠BAD=∠CAE=60∘,∠C=∠E=65∘,∵AD⊥BC,∴∠CAD=90∘−65∘=25∘,∴∠BAC=∠BAD+∠CAD=85∘,故答案为85.52.【答案】方块5【解析】略53.【答案】O1【解析】略54.【答案】2√2【解析】略55.【答案】46【解析】【分析】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°−∠ACD−∠BCE=180°−67°−67°=46°.故答案为:46.56.【答案】−6 2【解析】略57.【答案】AC,E线段AC,CE,EA∠ACE60°【解析】略58.【答案】AB5 BC 8 BAD30°100°【解析】略59.【答案】272【解析】在△ABC中,∠ACB=90∘,AC=4,BC=3,∴AB=5.∵将△ABC绕点A顺时针旋转,使点B落在AC延长线上点D处,∴AD=AB=5,∴CD=AD−AC=1,∴S四边形AEDB =2×12×4×3+12×1×3=272.60.【答案】解:图略【解析】略61.【答案】解:如图示,旋转角为:90°.【解析】【分析】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转中心即为对应点连线的垂直平分线的交点,旋转角度是90°.故答案为90°.62.【答案】解:图略(答案不唯一).【解析】略63.【答案】解:如图,连接P′P,∵△ABC是正三角形,∴∠BAC=60∘,由旋转的性质得P′A=PA=5,P′B=PC=13,∠P′AP=∠CAB=60∘,∴△PAP′为等边三角形,∴PP′=PA=5,即点P与点P′之间的距离为5.在△PP′B中,PP′=5,PB=12,P′B=13,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠P′PB=90∘,又∵∠P′PA=60∘,∴∠APB=∠P′PB+∠P′PA=90∘+60∘=150∘.【解析】略64.【答案】解:(1)如图,△A′B′C′即为所求作.(2)如图,△DEF即为所求作.(3)△A′B′C′与△DEF成中心对称,对称中心是线段A′D与线段FC′的交点.【解析】略65.【答案】解:(1)如图,△A1B1C1即为所求作的图形.B1(3,−2).(2)如图,△A2B2C2即为所求作的图形.B2(2,−1).(3)如图,△A3B3C3即为所求作的图形.B3(−1,−2).【解析】略66.【答案】(1)∵将△ADF绕点A顺时针旋转90∘后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF.∵∠EAF=45∘,∴∠DAF+∠BAE=∠BAQ+∠BAE=45∘,∴∠QAE=45∘,∴∠QAE=∠FAE.在△AQE和△AFE中,{AQ=AF,∠QAE=∠FAE, AE=AE,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线.(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转知∠ADF=∠ABQ,又∠ABD+∠ADF=90∘,∴∠ABD+∠ABQ=90∘,即∠QBE=90∘.在Rt△QBE中,QE2=BE2+QB2,则EF2=BE2+DF2.【解析】略67.【答案】解:(1)∠CEF+∠ADC=180°.证明:∵线段CD绕点C按顺时针方向旋转90°后得CE,∴CE=CD,∠DCE=90°,∵∠ACB=90°,∴∠ECF=∠BCD,在△BCD和△FCE中,{CB=CF∠BCD=∠FCE CD=CE,∴△BCD≌△FCE,∴∠CDB=∠CEF,而∠CDB+∠ADC=180°,∴∠CEF+∠ADC=180°;(2)∵EF//CD,∴∠CEF+∠DCE=180°,而∠DCE=90°,∴∠CEF=90°,∴∠BDC=90°.【解析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.(1)根据旋转的性质得CE=CD,∠DCE=90°,则利用等角的余角相等可得∠ECF=∠BCD,于是可根据“SAS”判断△BCD≌△FCE,则∠CDB=∠CEF,然后利用邻补角的定义可得到∠CDB+∠ADC=180°,所以∠CEF+∠ADC=180°;(2)根据平行线的性质得∠CEF+∠DCE=180°,又∠DCE=90°,所以∠CEF=90°,于是得到∠BDC=90°.68.【答案】(1) ①如图所示,△A1B1C1即为所求作. ②如图所示,△A2B2C2即为所求作.。
中考数学专题训练:图形的对称、平移与旋转(附参考答案)
中考数学专题训练:图形的对称、平移与旋转(附参考答案)1.下列图形:其中轴对称图形的个数是( )A.4 B.3C.2 D.12.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y 轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( )A.(6,2) B.(-6,-2)C.(2,6) D.(2,-6)3.如图是用七巧板拼成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左、下、右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2 B.3C.4 D.54.在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步:将图1中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图2.根据以上的操作,若AB=8,AD=12,则线段BM的长是( )A.3 B.√5C.2 D.15.如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图1将纸片对折,使AB与DC重合,折痕为EF,展开后如图2;第二步,再将图2中的纸片沿对角线BD折叠,展开后如图3;第三步,将图3中的纸片沿过点E的直线折叠,使点C落在对角线上的点H处,如图4.则DH的长为( )A.32B.85C.53D.956.在平面直角坐标系中,把点P(-3,2)向右平移2个单位长度后,得到对应点的坐标是( )A.(-5,2) B.(-1,4)C.(-3,4) D.(-1,2)7.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移,平移后点A′的横坐标为4√3,则点B′的坐标为( )A.(-6√3,2) B.(6√3,-2√3)C.(6,-2) D.(6√3,-2)8.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移的距离为6,则阴影部分的面积为( )A.24 B.40C.42 D.4810.如图,△ABC沿BC方向平移后的图形为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2C.3 D.411.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D12.如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为( )A.αB.α-45°C.45°-αD.90°-α13.如图,将直角三角尺ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′的度数为( )A.90°B.60°C.45°D.30°14.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,∠BCD的度数为________.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为____________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为______________.18.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______________________.参考答案1.B2.A3.B4.C5.D6.D7.D8.B9.D 10.C 11.B 12.C 13.B 14.C15.33° 16.(7,0) 17.(7,4) 18.90°或180°或270°。
图形的平移,对称与旋转的技巧及练习题附答案解析
图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。
图形的平移与旋转练习题及答案全套
情景再现:你对以上图片熟悉吗?请你答复以下几个问题:〔1〕汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?〔2〕传送带上的物品,比方带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?〔3〕以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,〔2〕〔3〕〔4〕〔5〕〔6〕中的图案_________可以通过平移图案〔1〕得到的.图2“小鱼〞向左平移5格.图34.请欣赏下面的图形4,它是由假设干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§图形的平移与旋转一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,那么平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,那么线段AC与BC的关系为〔〕3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.〔在两个三角形的内角中找〕4、如下左图,四边形ABCD平移后得到四边形EFGH,那么:①画出平移方向,平移距离是_______;〔准确到0.1cm〕②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,〔1〕假设∠A=28º,∠E=72º,BC=2,那么∠1=____º,∠F=____º,EF=____º;〔2〕在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,假设把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,那么以下说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有〔〕8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,那么△AFE经过平移可以得到〔〕A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如以下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,那么草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如以下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在以下四张图中不能看成由一个平面图形旋转而产生的是〔〕4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,假设△ABC经旋转后能与△BDE重合,那么旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:〔1〕旋转中心是哪一点?〔2〕旋转角是什么?〔3〕如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察以下图形,它可以看作是什么“根本图形〞通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?§图形的平移与旋转一、选择题1.平面图形的旋转一般情况下改变图形的〔 〕° ° ° °ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,以下结论错误的选项是〔 〕A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',那么四边形D C B A ''''是________. 6.△ABC 绕一点旋转到△A ′B ′C ′,那么△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.以下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?△ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,〔1〕试作出Rt △ABC 旋转后的三角形; 〔2〕将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转以下角度后的图形: 〔1〕90°;〔2〕180°;〔3〕270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.§图形的平移与旋转看一看:以下三幅图案分别是由什么“根本图形〞经过平移或旋转而得到的?1.2.3.试一试:怎样将以下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , 〔1〕△ABE ≌△ADF .吗?说明理由。
图形的平移,对称与旋转的技巧及练习题附答案
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.