重庆南开中学2015-2016学年度秋期初三上期末测试数学卷(文档版 有答案)

合集下载

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。

-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。

2015-2016九年级上学期期末试卷 南开区

2015-2016九年级上学期期末试卷 南开区

7 y 1 5 ;③ y ;④ y 5x 1 ;⑤ y x 2 1 ;⑥ y 2 ;⑦ xy 11 ,y x x x
C. 2 个 D. 1 个
5. 如图,弦 CD 垂直于⊙O 的直径 AB,垂足为 H,且 CD= 2 2 ,BD= 3 ,则 AB 的长为 A. 2 6. 对于函数 y B. 3 C. 4 D. 5
2. 下列图形既是轴对称图形又是中心对称图形的是 A. B.
C.
D.
3. 用配方法解方程 x 2 4 x 1 0 ,配方后的方程是 A.
x 22 3
B.
x 22 3
C.
x 22 5
D.
x 22 5
4. 下列关系式中:① y 2 x ;② 是 x 的反比例函数的共有 A. 4 个 B. 3 个
综上所述,正确的说法有①③.
二、填空题(每小题 3 分,共 18 分) 题号 答案 13 150 14 15 16 17 2
4:9
18
2 3
18. 解: (1)解: (1)∵BA=BC,∠BAC=60°,M 是 AC 的中点,∴BM⊥AC,AM=MC, ∵将线段 PA 绕点 P 顺时针旋转 2α 得到线段 PQ,∴AM=MQ,∠AMQ=120°,∴CM=MQ,∠CMQ=60°, ∴△CMQ 是等边三角形,∴∠ACQ=60°,∴∠CDB=30°; (2)∠CDB=90°﹣α,证明如下:连接 PC,
(II)今年这种玩具每件的利润 y 元与 x 之间的函数关系式为 (III)设今年这种玩具的年销售利润为 w 万元,求当 x 为何值时,今年的年销售利润最大?最大年销售额利润 是多少万元?
24. 如图 1,△ABC 是等腰直角三角形,四边形 ADEF 是正方形,D、F 分别在 AB、AC 边上,此时 BD=CF,BD ⊥CF 成立 (I)当正方形 ADEF 绕点 A 逆时针旋转θ(0°<θ<90°)时,如图 2,BD=CF 成立吗?若成立,请证明;若不 成立,请说明理由。 (II)当正方形 ADEF 绕点 A 逆时针旋转 45°时,如图 3,延长 BD 交 CF 于点 G ①求证 BD⊥CF ②当 AB=5, AD

2015-2016学年新人教版九年级上期末数学试卷(含答案)

2015-2016学年新人教版九年级上期末数学试卷(含答案)

2015-2016学年新人教版九年级上期末数学试卷(含答案)九年级数学试卷考试时间:120分钟满分:120分一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x-1)²-2的顶点坐标是(。

)。

A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)2.判断一元二次方程x²-2x+1=0的根的情况是(。

)。

A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x²-4x-3=0,下列配方结果正确的是(。

)。

A.(x-4)²=19B.(x-2)²=7C.(x+2)²=7D.(x+4)²=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是(。

)。

A.100(1+x)=121B.100(1-x)=121C.100(1-x)²=121D.100(1+x)²=1215.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是(。

)。

A。

B。

C。

D.6.已知:点A(x₁,y₁)、B(x₂,y₂)、C(x₃,y₃)是函数y=-3x图象上的三点,且x₁<x₂<x₃,则y₁、y₂、y₃的大小关系是(。

)。

A.y₁<y₂<y₃B.y₃<y₂<y₁C.y₂<y₃<y₁D.无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志。

从而估计该地区有黄羊(。

)。

A.200只B.400只C.800只D.1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为(。

)。

A。

3π/4 B。

重庆南开中学初2015届九年级上期中考试数学试题含答案

重庆南开中学初2015届九年级上期中考试数学试题含答案

象是( )
10.下列图形都是由同样大小桃心按一定的规律组成的,则第(8)个图形中共有桃心
( )
(2)甲校学生参加比赛成绩的众数为_ _分,乙校学生参加比赛成绩的平均分为_ _
分;
(3)甲校得 90 分的学生中有 2 人是女生,乙校得 90 分的学生中有 2 人是男生,现准备从
. . . .
9.元元同学有急事准备从南开中学打车去大坪,出校门后发现道路拥堵使得车辆停滞不
前,等了几分钟后她决定前往地铁站乘地铁直达大坪站(忽略中途等站和停靠站的时
间),在此过程中,他离大坪站的距离 y(km)与时间 t(h)之间的函数关系的大致图
A.x≠1 B.x≠-1 C.x≥-1 D.x>-1
8.将 y x 2 向上平移 2 个单位后所得的抛物线的解析式为( )
A y=x2+2 B y=x2-2 C y=(x+2)2 D ห้องสมุดไป่ตู้=(x-2)2
7.要使分式 有意义,则 x 的取值范围是( )
初 2015 届九年级(上)期中考试 第 1 页
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了
代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答
案标号涂黑.
1.下列各数中是无理数的是( )
1
(0,4 3 ),AD=2BD,若反比例函数 y 的图象刚好过 A、D 两点,则 k 的值为
x
( )
A.-3 B. 3 3 C. 2 3 D. 4 3
2 4 3 3
6.已知一个正棱柱的俯视图和左视图如图,则其主视图为( )

南开中学2015-2016九年级第一学期第一次月检测数学试卷

南开中学2015-2016九年级第一学期第一次月检测数学试卷
南开中学 2015-2016 学年度第一学期九年级月检测数学试卷
一、选择题(每小题 3 分,共 36 分) : 1.二次函数 y kx2 6 x 3 的图象与 x 轴有交点,则 k 的取值范围是( A. k 3 B. k 3 且 k 0 C. k 3 D. k 3 且 k 0 ) )
A.①②③ B.①③④ C.①③⑤ 二、填空题(每小题 3 分,共 18 分) :
D.②④⑤
13.在二次函数 y x 2 bx c 中,函数 y 与自变量 x 的部分对应值如下表: x y -2 7 -1 2 0 -1 1 -2 2 m 3 2 4 7
则 m=__________. 14.抛物线 y x 2 关于 x 轴对称的抛物线的解析式为___________. 15.若二次函数 y mx2 3x 2m m2 的图象经过原点,则 m ________. 16.将 y (2x 1)( x 2) 1 化成 y a( x h)2 k 的形式为___________.
25.如图,在平面直角坐标系 xOy 中,抛物线 y ax2 bx c 经过 A、B、C 三点,已知点 A (﹣3,0) ,B(0,3) ,C(1,0) . ⑴求此抛物线的解析式. ⑵点 P 是直线 AB 上方的抛物线上一动点, (不与点 A、B 重合) ,过点 P 作 x 轴的垂线,垂 足为 F,交直线 AB 于点 E,作 PD⊥AB 于点 D. ①动点 P 在什么位置时,△ PDE 的周长最大,求出此时 P 点的坐标; ②连接 PA,以 AP 为边作图示一侧的正方形 APMN,随着点 P 的运动,正方形的大小、位 置也随之改变.当顶点 M 或 N 恰好落在抛物线对称轴上时,求出对应的 P 点的坐标. (结 果保留根号)

2015—2016学年第一学期九年级期末考试数学试卷附答案

2015—2016学年第一学期九年级期末考试数学试卷附答案

2015一如16学年第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.—2、0、2、-3这四个数中最小数的是1]A.2B.0C.—2D.—32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为【】A.30.1父108B,3.01父108C,3.01父109D.0.301^10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是【】A.x—6=*B,x—6=4C,x+6=4D,x+6=M4.设a=2j3—1,a在两个相邻整数之间,则这两个整数是1]A.1和2B.2和3C.3和4D.4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/I互余的角有几个A.2个B.3个C.4个D.5个第5题图第7题图第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是1】A.99.60,99.60B,99.60,99.70C.99.60,98.80D,99.70,99.607.如图为抛物线y=ax2+bx+c的图像,A、RC为抛物线与坐标轴的交点,且OAOG1,则下列关系中正确的是1]A.ac<0B.a—b=1C.a+b=—1D.b>2a8.如图,过DABCM对角线BD上一点M分别作平行四边形两边的平行线EF与GH那么图中的口AEMGJ面积&与口HCFM勺面积S2的大小关系是【】A.s1s2B.S1:二S2C.S1=S2D.2s l=颔9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的1]A.6B.8C.10D.12为E,设DP=x,AE=y,则能反映y与X之间函数关系的大致图象是第10题图10.如图,在矩形ABCD43,AB=3,BC=4,点P在BC边上运动,连结DP过点A作AHDP垂足A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(_3)2的平方根是。

重庆南开中学2015-2016学年秋初三上阶段检验三数学试题(答案解析图片)

重庆南开中学2015-2016学年秋初三上阶段检验三数学试题(答案解析图片)

重庆南开(融侨)中学初2016届九年级(上)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-。

一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。

1、小圆身高170cm ,以小圆的身高为标准,小圆爸爸的身高为180cm ,记作10+cm ,那么小圆妈妈的身高为165cm 应记为( C ) A 、5+cmB 、10+cmC 、5-cmD 、10-cm2、计算()22x y -的结果是( D ) A 、422x yB 、4x y -C 、22x yD 、42x y3、下列图案中,不是..中心对称图形的是( C )A .B .C .D . 4、如图,//,110,70AB CD DBF ECD ∠=∠=,则E ∠的度数为( B ) A 、30B 、40C 、50D 、605、已知3x =是关于x 的方程53x a -=的解,则a 的值等于( C ) A 、12B 、14C 、12-D 、14-6、如图,点A 、B 、C 是⊙O 上的三点,且AB OB =,则ACB ∠的度数为( B ) A 、22.5B 、30C 、45D 、604题图 6题图 7题图 7、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( C ) A 、0x >B 、0x <C 、2x >D 、2x <8、如图,DEF ∆是由ABC ∆经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则DEF ∆与ABC ∆的面积比是( A )A 、1:4B 、1:2C 、1:9D 、1:29、用火柴棒按如下方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是( D ) A 、48根B 、50根C 、52根D 、54根10、如图,在Rt ABC ∆中,90,6ACB AC BC ∠===,D AC 为的中点,E 是线段AB 边上一动点,连接ED 、EC ,则CDE ∆周长的最小值为( D ) A 、35B 、33C 、333+D 、353+11、如图,矩形OABC 放置在平面直角坐标系中,OA 所在直线为x 轴,OC 所在直线为y 轴,且4,2OA OC ==。

重庆南开中学初2015届九年级上期中考试数学试题含答案.doc

重庆南开中学初2015届九年级上期中考试数学试题含答案.doc
x2向上平移2个单位后所得的抛物线的解析式为(

A.y=x2+2
B.y=x2-2
C.y=(x+2)2
D.y=(x-2)2
9.元元同学有急事准备从南开中学打车去大坪,
出校门后发现道路拥堵使得车辆停滞不前,
等了几分钟后她决定前往地铁站乘地铁直达大坪站(忽略中途等站和停靠站的时间)

在此过程中,他离大坪站的距离y(km)与时间t(h)之间的函数关系的大致图象是
1
2
0
2015
19.计算:
2 cos450
2
1
2
20.如图,△ABC中,CE⊥AB于E,BE=2AE,cosB=2,BC=3,求tan∠ACE的值.
3
四、解答题 :(本大题共4个小题,每小题10分,共40分)解答每小题都必须写出必要的
演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.
21.先化简,再求值:
24.如图,在Rt△ABC中,∠ACB=90°,点D为AB的中点,点E为AC下方一点,AE∥BC且CE⊥CD于点C.
(1)若AC=6,BC=8,求CD的长;
(2)过点D作FD∥EC,交EA延长线于点F,连接CF,求证:EF+AF=BC.
四、解答题 :(本大题共2个小题,每小题12分,共24分)解答每小题都必须写出必要的
_______.
18.如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG
⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=22,BG=3,则FH的长_ _.
三、解答题 :(本大题共2个小题,每小题7分,共14分)解答每小题都必须写出必要的演

重庆南开中学2015-2016学年度上期初三期末考试数学试题答案

重庆南开中学2015-2016学年度上期初三期末考试数学试题答案

9 3 − 3π
18 − 5 2
3 x +1
21. (1)4; (2)周一:4 人;周五:7 人,图略 (3)
1 2 AC 5 = BC 12
22. 分析:过 P 点作 PE⊥AC 于 C AB=65(米) , tan ∠ABC =
∴AC:BC:AB=5:12:13 ∴AC=25(米) ,BC=60(米) ∴PE=BC=60(米) ∴AE= PE ⋅ tan14° = 60 × 0.25 = 15 (米) ∴BP=EC=25-15=10(米) 23. (1)5 ; (2)0 或 4 (3)2 (4)设 N 点坐标为( x, x + 2 ) 则 d (M , N ) = x − 5 + x + 2 − 1 = x − 5 + x + 1 ①当 x ≤ −1 时, d ( M , N ) = 5 − x − ( x + 1) = −2 x + 4 ∵ k = −2 < 0 ∴ d ( M , N ) 随 x 的增大而减小 ∴当 x = −1 时, d ( M , N ) min = 6 ②当 −1 < x ≤ 5 时, d ( M , N ) = 5 − x + x + 1 = 6 ③当 x ≥ 5 时, d ( M , N ) = x − 5 + x + 1 = 2 x − 4 ∵k = 2 >0 ∴ d ( M , N ) 随 x 的增大而增大 ∴当 x = 5 时, d ( M , N ) min = 6 综上, d ( M , N ) min = 6 ∴点 M(5,1)到直线 y = x + 2 的直角距离为 6。
南开期末数学试卷答案
一、选择题 题号 答案 题号 答案 三、解答题 19. 4 20. (1) −5a 2 − 12a (2) 1 A 2 D 13 3 A 4 C 14 5 D 6 B 15 12 7 C 8 B 16 9 C 17 2 10 D 11 B 18 12 B

重庆市南开中学2016届九年级上期末数学试卷含答案解析

重庆市南开中学2016届九年级上期末数学试卷含答案解析

第 2 页(共 32 页)
2015-2016 学年重庆市南开中学九年级(上)期末数学试卷
一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂7
A.两人恰好同时到达欢乐谷 B.高铁的平均速度为 240千米/时 C.私家车的平均速度为 80千米/时 D.当小王到达成都车站时,小丽离欢乐谷还有 50千米 11.将 1、 、 、 按如图所示的方式排列,若规定(m,n)表示第 m 排从左往右第 n 个数, 则(7,5)表示的数是( )
A.1 B. C. D.
A.1 B.2 C. D. 10.成渝高铁的开通,给重庆市民的出行带来了极大的方便,元旦期间,小丽和小王相约到成都欢 乐谷游玩,小丽乘私家车从重庆出发 1 小时后,小王乘坐高铁从重庆出发,先到成都东站,然后坐 出租车去欢乐谷,他们离开重庆的距离 y(千米)与乘车 t(小时)的关系如图所示,结合图象, 下列说法不正确的是( )
2.下列四个字母既是轴对称图形,又是中心对称图形的是( ) A.N B.K C.Z D.X 3.运算(﹣mn2)3 的结果是( ) A.﹣m3n5 B.m3n6 C.﹣m3n6 D.
m3n5 4.分式方程
的解为( ) A.x=1 B.x=2 C.x=3 D.x=4 5.南开中学举行了首届“南开故事会”讲故事比赛,有 12名学生参加了决赛,他们决赛的最终成 绩各不相同,其中的一名学生要想知道自己是否进入前 6 名,不仅要了解自己的成绩,还要了解这 12名学生成绩的( ) A.众数 B.方差 C.平均数 D.中位数 6.如图,在△ABC中,AB=AC,过点 A 作 AD∥BC,若∠1=65°,则∠BAC的大小为( )

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。

重庆市南开中学九年级数学上学期段考试题(一)(含解析)

重庆市南开中学九年级数学上学期段考试题(一)(含解析)

重庆市南开中学2015-2016学年九年级数学上学期段考试题(一)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.9的算术平方根是()A.B.C.3 D.±32.使有意义的x的取值范围是()A.x>﹣4 B.x<﹣4 C.x≠﹣4 D.x≥﹣43.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为()A.2:3 B.4:9 C.:D.3:24.二次函数y=2x2﹣6x+8的顶点坐标为()A.B.C.D.5.下列说法正确的是()A.为了解全国中学生的心理健康情况,应该采用普查的方式B.一个游戏的中奖概率是0.1,则做10次这样的游戏一定会中奖C.为了调查中秋节期间市场上月饼质量情况,应该采用抽样调查的方式D.若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲级稳定6.把抛物线y=x2向右平移3个单位,然后再向下平移2个单位,则平移后抛物线的解析式为()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2+2 D.y=(x+3)2﹣27.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.B.C.D.8.关于二次函数y=ax2+bx+c(a≠0)的图象有下列命题,其中错误的是()A.当c=0时,函数的图象经过原点B.当b=0时,函数的图象关于y轴对称C.若函数的图象过点A(1,2),B(7,2),则它的对称轴为直线x=3D.当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根9.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD交AF于点H,AB=5,且tan∠EFC=,那么AH的长为()A.5 B.C.10 D.10.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.6611.如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A⇒B⇒C⇒D⇒A运动一周,则P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C. D.12.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),则下列结论:①abc<0;②b2﹣4ac=0;③2a﹣b=0;④a>2;⑤4a﹣2b+c>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个二、填空题:(本大题8个小题,每小题3分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.不等式组的解集为.14.已知∠α是锐角,且,则∠α= .15.分式方程的解为x= .16.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).17.如图,某校A位于工地O的正西方向,且OA=200m,一辆红岩大货车从O点出发,以每秒10米的速度沿北偏西53°方向行驶,已知货车的噪声污染半径为130m,则学校受噪声污染的时间为秒.(已知sin53°=0.80,tan37°=0.75)18.在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.19.如图,AB是菱形AEBF的对角线,A(﹣1,0),B(7,0),P是线段AB上任意一点(不含端点A,B),过A、P两点的抛物线y1和过P、B两点的抛物线y2的图象开口均向上,它们的顶点分别为线段AE、BE上的C、D两点,当AE=BE=5时,这两个二次函数的最小值之和等于.20.如图,在正方形ABCD时,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.则下列结论:①△ABE≌△DCF;②DP2=PH•PB;③;④.其中正确的是(写出所有正确结论的序号).三、解答题:(本大题共3个小题,21题6分,22题6分,23题8分.共20分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.计算:(﹣1)2016﹣|﹣7|+.22.计算:sin30°•tan60°﹣tan45°+.23.先化简,再求值:,其中a=cos45°.四、解答题:(本大题共6个小题,24题8分,25题8分,26题l0分,27题10分,28题l0分,29题12分,共58分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.24.如图,在△ABC中,sin∠B=,AD⊥BC于点D,∠DAC=45°,AC=,求线段BD的长.(结果保留根号)25.如图所示,抛物线与直线交于A,B两点.(1)A点坐标为,B点坐标为;(2)当自变量x的取值范围为时,y1的值随x的增大而增大;(3)当﹣1≤x<2时,函数y1的取值范围为;(4)当自变量x的取值范围为时,y1<y2.26.为了提高学生身体素质,北关中学开展了课间跑步活动,初三年级针对同学们在这个活动中完成的跑步圈数展开调查,随机抽取了部分学生了解情况,并将调查结果绘制成图1,图2的统计图(未画完整),请结合图中的信息解答下列问题:(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)某班学生有5个跑5圈,其中3名男生,2名女生,现从这5名学生中任意抽取2名来带领其他同学训练,求恰好抽到一男一女的概率.27.某文具盒每周的销量与售价的相关信息如下表:售价(元/个)10 11 12 13 …每周销量(个)20 18 16 14 …已知该文具盒的进价为6元/个,设售价为x元/个,每周销量为y个.(1)请直接写出y与x的函数关系式;(2)设每周的销售利润为W元,求出W与x的函数关系式;(3)若要使该文具盒的每周利润达到96元,且销量更大,销售单位应定为多少元?28.伴随着重庆九龙电厂的永久关停,主城区的大气环境质量得到了进一步改善,曾被无数川美学子画过的黄桷坪大烟囱(如图1所示)也将于2016年拆除.听闻九龙坡区文管所将对大烟囱进行测绘,长江对面的北关中学九年级数学兴趣小组也想估算该烟囱的高度.他们在江边一斜坡上D处测得大烟囱顶端B的仰角是12°,再沿斜坡向下走80米到达坡底A处,在A处测得大烟囱顶端B的仰角是14°,若坡角∠FAE=30°,F,A,C在同一直线上,如图2所示,求大烟囱BC的高度(结果保留整数,参考数据:sin12°≈0.20,cos12°≈0.98,tan12°≈0.20,sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,).29.如图1,二次函数y=﹣x2+x+3的图象与x轴的分别交A、B两点,与y轴交于点C,连接AB,AC.(1)求线段AB的长,∠ABC的正切值;(2)若点Q是该二次函数图象位于线段AC右上方部分的一点,且△QAC的面积为△AOC面积的,求点Q的坐标;(3)如图2,D是线段BC上一动点,连接AD,过点D作DE⊥AC所在直线于点F,取AD的中点F,连接PE、PF①请问点D在线段BC上的运动过程中,∠EPF的大小是否改变?说明理由;②连接EF,求△PEF周长的最小值.2015-2016学年重庆市南开中学九年级(上)段考数学试卷(一)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.9的算术平方根是()A.B.C.3 D.±3【考点】算术平方根.【分析】根据算术平方根的定义求解即可.【解答】解:∵32=9,∴9的算术平方根是3.故选:C.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2.使有意义的x的取值范围是()A.x>﹣4 B.x<﹣4 C.x≠﹣4 D.x≥﹣4【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求解.【解答】解:使式子有意义,则4+x≥0,即x≥﹣4时.则x的取值范围是x≥﹣4,故选D.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为()A.2:3 B.4:9 C.:D.3:2【考点】相似三角形的性质.【分析】因为两相似三角形的面积比等于相似比的平方,所以.【解答】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,所以S△ABC:S△DEF=()2=,故选B.【点评】本题比较容易,考查了两个相似三角形面积比等于相似比的平方的性质.4.二次函数y=2x2﹣6x+8的顶点坐标为()A.B.C.D.【考点】二次函数的性质.【分析】先把y=2x2﹣6x+8进行配方得到抛物线的顶点式y=2(x﹣)2+,根据二次函数的性质即可得到其顶点坐标.【解答】解:∵y=2x2﹣6x+8=2(x﹣)2+,∴顶点坐标为(,).故选:C.【点评】此题考查二次函数的性质,利用配方法得到顶点式是解决问题的关键.5.下列说法正确的是()A.为了解全国中学生的心理健康情况,应该采用普查的方式B.一个游戏的中奖概率是0.1,则做10次这样的游戏一定会中奖C.为了调查中秋节期间市场上月饼质量情况,应该采用抽样调查的方式D.若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则乙组数据比甲级稳定【考点】方差;全面调查与抽样调查;概率的意义.【分析】根据方差的意义以及全面调查和抽样调查的概念分别对每一项进行判断,即可得出答案.【解答】解:A、为了解全国中学生的心理健康情况,应该采用抽查的方式,故本选项错误;B、一个游戏的中奖概率是0.1,则做10次这样的游戏中奖的可能性很大,但不是一定会中奖,故本选项错误;C、为了调查中秋节期间市场上月饼质量情况,应该采用抽样调查的方式,故本选项正确;D、若甲组数据的方差S甲2=0.01,乙组数据的方差S乙2=0.1,则甲组数据比乙组稳定,故本选项错误;故选C.【点评】此题考查了方差的意义以及全面调查和抽样调查的概念,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.把抛物线y=x2向右平移3个单位,然后再向下平移2个单位,则平移后抛物线的解析式为()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2+2 D.y=(x+3)2﹣2【考点】二次函数图象与几何变换.【分析】先根据二次函数的性质得到抛物线y=x2的顶点为(0,0),再利用点平移的规律得到点(0,0)平移后的对应点的坐标为(3,﹣2),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移3个单位,再向下平移2个单位所得对应点的坐标为(3,﹣2),所以平移后抛物线的解析式为y=(x﹣3)2﹣2.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.B.C.D.【考点】解直角三角形;等腰三角形的性质.【分析】由△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,利用等腰三角形三线合一的性质,可证得AD⊥BC,再利用勾股定理,求得AD的长,那么在直角△ACD中根据三角函数的定义求出tan ∠CAD,然后根据同角的余角相等得出∠CDE=∠CAD,于是tan∠CDE=tan∠CAD.【解答】解:∵△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,∴AD⊥BC,CD=BC=5,∴AD==12,∴tan∠CAD==.∵AD⊥BC,DE⊥AC,∴∠CDE+∠ADE=90°,∠CAD+∠ADE=90°,∴∠CDE=∠CAD,∴tan∠CDE=tan∠CAD=.故选A.【点评】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.8.关于二次函数y=ax2+bx+c(a≠0)的图象有下列命题,其中错误的是()A.当c=0时,函数的图象经过原点B.当b=0时,函数的图象关于y轴对称C.若函数的图象过点A(1,2),B(7,2),则它的对称轴为直线x=3D.当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根【考点】二次函数的性质.【分析】利用二次函数的性质,根据二次函数解析式的系数与图象的关系,逐一分析判断即可.【解答】解:A、二次函数y=ax2+bx+c中令x=0代入得到y=c=0,即函数经过原点,正确;B、当b=0时,函数是y=ax2+c,函数的图象关于y轴对称,正确;C、若函数的图象过点A(1,2),B(7,2),则它的对称轴为直线x=4,错误;D、图象的开口向下,则a<0,又c>0,△=b2﹣4ac>0,方程必有两个不相等的实根,正确.故选:C.【点评】此题考查二次函数的性质,掌握二次函数中a,b,c符号的确定方法以及与图象的关系是解决问题的关键.9.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD交AF于点H,AB=5,且tan∠EFC=,那么AH的长为()A.5 B.C.10 D.【考点】相似三角形的判定与性质;矩形的性质.【分析】根据线段中点的定义可得CE=DE,根据矩形的对边平行可得AD∥BC,再根据两直线平行,内错角相等可得∠DAE=∠CFE,然后利用“角角边”证明△ADE和△CFE全等,根据全等三角形对应边相等可得CF=AD,然后利用tan∠EFC求出BF,再利用勾股定理列式求出AF,再求出△ADH和△FBH相似,根据相似三角形对应边成比例求出,再求解即可.【解答】解:∵E为CD的中点,∴CE=DE=AB=,在矩形ABCD中,AD∥BC,∴∠DAE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=EF,AD=CF,∴BF=BC+CF=AD+CF∵tan∠EFC=,∴BF=10,在Rt△ABF中,AF===15,∵AD∥BC,∴△ADH∽△FBH,∴===,∴AH=AF=×15=5.故选A.【点评】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,解直角三角形,勾股定理,综合题,但难度不大,熟记各性质是解题的关键.10.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66【考点】规律型:图形的变化类.【专题】规律型.【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,...由此规律得出第n个图有1+1×3+2×3+3×3+ (3)个点.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.11.如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A⇒B⇒C⇒D⇒A运动一周,则P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C. D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】主要考查了函数图象的读图能力和函数与实际问题结合的应用.【解答】解:由于点P是在正方形的边上移动,所以P的纵坐标y与点P走过的路程s之间的函数关系用图象表示为D.故选D.【点评】本题是一道动点的函数问题.主要考查了动点问题的函数图象问题,解决问题的关键是分解函数得出不同位置时的函数关系,进而得出图象.12.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),则下列结论:①abc<0;②b2﹣4ac=0;③2a﹣b=0;④a>2;⑤4a﹣2b+c>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a >0,据此解答即可.③首先根据对称轴x=﹣=﹣1,可得b=2a,据此判断出2a﹣b=0即可.④根据b2﹣4ac=8a,b=2a,可得4a2﹣4ac=8a,得出a=c+2,由于c>0,即可确定出a的取值范围.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∴2a﹣b=0,∴结论③正确;∵b2﹣4ac=8a,b=2a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论④正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论⑤正确.综上,可得正确结论的个数是3个:③④⑤.故选:B.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题:(本大题8个小题,每小题3分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.不等式组的解集为3<x≤4.【考点】解一元一次不等式组.【专题】探究型.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤4,由②得,x>3,故此不等式组的解集为:3<x≤4.故答案为:3<x≤4.【点评】本题考查的是求一元一次不等式组的解集,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.14.已知∠α是锐角,且,则∠α= 30°.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:∵∠α是锐角,且,∴∠α=30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.15.分式方程的解为x= ﹣3 .【考点】解分式方程.【专题】计算题.【分析】观察可得这个分式方程的最简公分母为(x+1)(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:两边都乘以(x+1)(x﹣1),得x﹣1=2(x+1),解方程得x=﹣3.经检验x=﹣3是原方程的根.【点评】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验.16.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.17.如图,某校A位于工地O的正西方向,且OA=200m,一辆红岩大货车从O点出发,以每秒10米的速度沿北偏西53°方向行驶,已知货车的噪声污染半径为130m,则学校受噪声污染的时间为10 秒.(已知sin53°=0.80,tan37°=0.75)【考点】几何变换综合题.【分析】算出学校从刚开始受到噪声污染到污染刚好消失这段时间内货车行驶的路程,再除以货车的速度就是学校受污染的时间.【解答】解:设货车在B点时刚好对学校产生污染,在D点时污染刚好消失,如图所示,过点A作AC⊥BD于C,连接AD、AB,则AD=AB=130m,由题意知∠AOC=37°,∠CAO=53°,∵AO=200m,∴sin∠CAO=sin53°==,∴OC=160m,在Rt△ACO中,∵AC2=AO2﹣OC2,∴AC=120m,在Rt△ACB中,∵BC2=AB2﹣AC2,∴BC=50m,∵AB=AD,AC⊥BD,∴CD=BC=50m,∴BD=100m,∴t===10s.即:学校受噪声污染的时间为10秒.【点评】本题主要考查了对称变换、等腰三角形的性质、锐角三角形函数、解直角三角形,勾股定理等知识点,难度中等.找到并求出整个污染过程中,货车的行驶路程是解答本题的关键.18.在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.【考点】概率公式;抛物线与x轴的交点.【分析】画出抛物线图象,确定各点横坐标所对应的纵坐标,与P点纵坐标比较即可.【解答】解:如图,﹣2,﹣1,0,1,2的平方为4,1,0,1,4.点P的坐标为(﹣2,4),(﹣1,1),(0,0),(1,1),(2,4);描出各点:﹣2<1﹣,不合题意;把x=﹣1代入解析式得:y1=2,1<2,故(﹣1,1)在该区域内;把x=0代入解析式得:y2=5,0<5,故(0,0)在边界上,不在区域内;把x=1代入解析式得:y3=6,1<6,故(1,1)在该区域内;把x=2代入解析式得:y4=5,4<5,故(2,4)在该区域内.所以5个点中有3个符合题意,点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.【点评】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式:P(A)=.19.如图,AB是菱形AEBF的对角线,A(﹣1,0),B(7,0),P是线段AB上任意一点(不含端点A,B),过A、P两点的抛物线y1和过P、B两点的抛物线y2的图象开口均向上,它们的顶点分别为线段AE、BE上的C、D两点,当AE=BE=5时,这两个二次函数的最小值之和等于﹣3 .【考点】二次函数综合题.【分析】由图可知,两个二次函数最小值分别为C、D两点到x轴的距离的相反数,因此只需求出C、D两点到x轴的距离即可.过C、D作x轴的垂线,垂足分别M、N,过E点作x的垂线,垂足为H,可以证明C、D两点到x轴的距离之和就等于EH,于是问题得到解决.【解答】解:如图:过点C作CM垂直x轴于点M,过点D作DN垂直x轴于点N,过点E作EH垂直x轴于点H,过点C 作CG垂EH于点G,连接CP、DP,由抛物线对称性可知:CA=CP,DP=DB,∵AE=EB,∴CE=PD=BD,从而易证△CEG与△PDN全等,∴EG=DN,显然CGHM是矩形,∴CM=GH,∴EH=CM+DN,∵A(﹣1,0),B(7,0),∴AB=8,∴AH=HB=4,∵AE=5,∴EH=3,∵C、D均在第四象限,∴两个二次函数的最小值之和等于﹣3.【点评】本题是二次函数与几何的综合,考查了二次函数的对称性、菱形的性质、等腰三角形的性质、全等三角形的判定与性、矩形的判定与性、勾股定理等众多知识点,设计巧妙,是一道好题,作为一道填空题而言,有一定难度.本题的关键在于将求两个二次函数的最小值之和转化为求两个顶点到x轴的距离之和,体现化归与转化的数学思想.20.如图,在正方形ABCD时,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.则下列结论:①△ABE≌△DCF;②DP2=PH•PB;③;④.其中正确的是①②④(写出所有正确结论的序号).【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF,∠A=∠ADC,AB=CD,证得△ABE ≌△DCF,故①正确;由于∠FDP=∠PBD,∠DFP=∠BPC=60°,推出△DFP∽△BPH,得到===故③错误;由于∠PDH=∠PCD=30°,∠DPH=∠DPC,推出△DPH∽△CPD,得到=,PB=CD,等量代换得到PD2=PH•PB,故②正确;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,得到,故④正确.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,在△ABE与△CDF中,,∴△ABE≌△DCF,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故③错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•PB,故②正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴.故答案为:①②④.【点评】本题考查了全等三角形的判定和性质,正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.三、解答题:(本大题共3个小题,21题6分,22题6分,23题8分.共20分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.计算:(﹣1)2016﹣|﹣7|+.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,第三项利用算术平方根及零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣7+3+5=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.计算:sin30°•tan60°﹣tan45°+.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值带入求解.【解答】解:原式=×﹣1+1﹣=.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.23.先化简,再求值:,其中a=cos45°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣===,当a=cos45°=时,原式=.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.四、解答题:(本大题共6个小题,24题8分,25题8分,26题l0分,27题10分,28题l0分,29题12分,共58分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.24.如图,在△ABC中,sin∠B=,AD⊥BC于点D,∠DAC=45°,AC=,求线段BD的长.(结果保留根号)【考点】解直角三角形;勾股定理.【专题】计算题;压轴题.【分析】根据垂直可得∠ADB=∠ADC,然后在Rt△ACD中,利用∠DAC的余弦求出AD的长度,在Rt△ABD 中,利用∠B的正弦求出AB的长度,再根据勾股定理列式求解即可得到BD的长短.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ACD中,∵∠DAC=45°,AC=10,∴AD=AC•cos45°=10×=10,在Rt△ABD中,∵sin∠B==,∴AB=2AD=2×10=20,∴BD===10.【点评】本题考查了解直角三角形,勾股定理的应用,根据垂直得到直角三角形是解题的关键,解决此类题目要熟练掌握特殊角的三角函数值.25.如图所示,抛物线与直线交于A,B两点.(1)A点坐标为(﹣,﹣),B点坐标为(3,﹣9);(2)当自变量x的取值范围为x<0 时,y1的值随x的增大而增大;(3)当﹣1≤x<2时,函数y1的取值范围为﹣1≤y≤0,﹣4<y≤0;(4)当自变量x的取值范围为x<﹣或x>3 时,y1<y2.。

2015-2016年九年级数学第一学期期末测试(带详解答案)

2015-2016年九年级数学第一学期期末测试(带详解答案)

2015-2016学年度第一学期期末试卷九年级数学一.选择题(共8小题)1.在平面直角坐标系中,将抛物线y=x2﹣2先向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式是A.y=(x+2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+1 D.y=(x+2)2﹣12.若反比例函数y=(2k﹣1)的图象位于第二、四象限,则k的值是()A.0 B.0或1 C.0或2 D.43.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个4.已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y35.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.C.D. a(5)(6)(7)(8)6.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4 C.4D.87.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°8.如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为()A.10cm B.4πcm C.D.二.填空题(共6小题)9.下列函数中:①y=﹣x2;②y=2x;③y=22+x2﹣x3;④m=3﹣t﹣t2是二次函数的是(其中x、t为自变量).10.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是.11.已知三角形两边的长为3和4,若第三边长是方程x 2﹣6x +5=0的一根,则这个三角形的形状为 ,面积为 .12.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,0),C (6,4)以原点为位似中心,将△ABC 缩小,位似比为1:2,则线段AC 中点P 变换后对应点的坐标为 .(12)(13)(14)13.如图,已知抛物线y=x 2+bx +c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是 .14.如图所示,已知二次函数y=ax 2+bx +c 的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+= . 三.解答题(共10小题)15.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不能,请说明理由.16.已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=﹣1,当x=3时,y=5,求y 与x 之间的函数关系式.17.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式.18.已知:如图,以△ABC 的边AB 为直径的⊙O 交边AC 于点D ,且过点D的切线DE 平分边BC .(1)BC 与⊙O 是否相切?请说明理由;(2)当△ABC 满足什么条件时,以点O ,B ,E ,D 为顶点的四边形是平行四边形?并说明理由.19.已知:如图,D 是AC 上一点,BE ∥AC ,BE=AD ,AE 分别交BD 、BC 于点F 、G ,∠1=∠2.(1)图中哪个三角形与△FAD 全等?证明你的结论;(2)探索线段BF 、FG 、EF 之间的关系,并说明理由.(3)求证:FD 2=FG•FE .20.甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.21.如图,已知双曲线y 1=经过点D (6,1),点C 是双曲线第三象限分支上的动点,过点C 作CA ⊥x 轴,过点D 作BD ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,①若直线CD 的解析式为y 2=ax +b ,求a 、b 的值;②根据图象,直接写出y 1>y 2时x 的取值范围;③判断直线AB 与CD 的位置关系,并说明理由.22.如图1,l 1∥l 2∥l 3直线AB 和CH 交于O 点,分别交l 2于D ,E 两点,已知CE=6,HE=3,AB=12.(1)尝试探究在图1中,求出DB 和AD 的长;(2)类比延伸:平移AB使得A与H重合,如图2所示,过点D作DF∥AC,若DE=5,求线段BF的长;(3)拓展迁移:如图3,若某个三角形ABC的面积是10,点D,E分别位于AB,CA上,DE∥BC,点F在BC上且BF=2,CF=3,如果△CBE的面积和四边形FCED的面积相等,求这个相等的面积值.23.如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.2015-2016学年度第一学期期末试卷九年级数学参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,将抛物线y=x2﹣2先向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式是()A.y=(x+2)2+1 B.y=(x﹣2)2﹣1 C.y=(x﹣2)2+1 D.y=(x+2)2﹣1【分析】先确定抛物线y=x2﹣2的顶点坐标为(0,﹣2),根据点平移的规律,点(0,﹣2)向右平移2个单位,再向上平移3个单位得到对应点的坐标为(2,1),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向右平移2个单位,再向上平移3个单位得到对应点的坐标为(2,1),所以平移后的抛物线的解析式为y=(x﹣2)2+1.故选C.2.若反比例函数y=(2k﹣1)的图象位于第二、四象限,则k的值是()A.0 B.0或1 C.0或2 D.4【分析】先根据反比例函数的定义列出方程求出k的可能取值,再根据图象经过的象限决定常数的取值范围,进而得出k的值.【解答】解:依题意有3k2﹣2k﹣1=﹣1,解得k=0或k=,又因为函数图象位于第二、四象限,所以2k﹣1<0,即k<,而,所以k的值是0.故选A.3.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上,但有限D.有无数个【分析】两条边长分别是6和8的直角三角形有两种可能,即已知边均为直角边或者8为斜边,运用勾股定理分别求出第三边后,和另外三角形构成相似三角形,利用对应边成比例即可解答.【解答】解:根据题意,两条边长分别是6和8的直角三角形有两种可能,一种是6和8为直角边,那么根据勾股定理可知斜边为10;另一种可能是6是直角边,而8是斜边,那么根据勾股定理可知另一条直角边为.所以另一个与它相似的直角三角形也有两种可能,第一种是,解得x=5;第二种是,解得x=.所以可以有2个.故选:B.4.已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.5.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD 的面积为()A.a B.C.D.a【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选C.6.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.8.如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为()A.10cm B.4πcm C.D.【分析】根据旋转的定义得到点A以B为旋转中心,以∠ABA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,由于∠ABA1=90°,∠A1CA2=60°,AB= =5cm,CA1=3cm,然后根据弧长公式计算即可.【解答】解:点A以B为旋转中心,以∠ABA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,∵∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,∴点A翻滚到A2位置时共走过的路径长=+=π(cm).故选:C.二.填空题(共6小题)9.下列函数中:①y=﹣x2;②y=2x;③y=22+x2﹣x3;④m=3﹣t﹣t2是二次函数的是①④(其中x、t为自变量).【分析】根据二次函数的定义条件判定则可.【解答】解:①y=﹣x2,二次项系数为﹣1,是二次函数;②y=2x,是一次函数;③y=22+x2﹣x3,含自变量的三次方,不是二次函数;④m=3﹣t﹣t2,是二次函数.故填①④.10.瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是.【分析】抛掷这个正方体一次,平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形出现的机会相同,6个图形中既是轴对称图形又是中心对称图形的有圆和菱形两个.【解答】解:∵抛掷这个正方体一次,平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形出现的机会相同,6个图形中既是轴对称图形又是中心对称图形的有圆和菱形两个.∴抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是.11.已知三角形两边的长为3和4,若第三边长是方程x2﹣6x+5=0的一根,则这个三角形的形状为直角三角形,面积为6.【分析】根据第三边的长是方程x2﹣6x+5=0的根确定三角形的第三边,利用勾股定理的逆定理判断出其形状,根据直角三角形的面积等于两直角边乘积的一半求出其面积.【解答】解:∵第三边的长是方程x2﹣6x+5=0的根,∴解得:x=1(舍去)或x=5,∵32+42=52,∴该三角形是直角三角形;∴三角形的面积=×3×4=6.故答案为:直角三角形,6.12.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,0),C(6,4)以原点为位似中心,将△ABC缩小,位似比为1:2,则线段AC中点P变换后对应点的坐标为(﹣2,﹣)或(2,).【分析】分缩小后的三角形在第一象限和第三象限两种情况,根据网格结构分别找出点A、B、C的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点P的坐标.【解答】解:如图,∵A(2,2),C(6,4),∴点P的坐标为(4,3),∵以原点为位似中心将△ABC缩小位似比为1:2,∴线段AC的中点P变换后的对应点的坐标为(﹣2,﹣)或(2,).故答案为:(﹣2,﹣)或(2,).13.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是1(在﹣2<b<2范围内的任何一个数).【分析】把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【解答】解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:1(在﹣2<b<2范围内的任何一个数).14.如图所示,已知二次函数y=ax2+bx+c的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+=.【分析】由二次函数y=ax2+bx+c的图象过(﹣1,0)和(0,﹣1)两点,求c的值及a、b的关系式,根据对称轴的位置判断a的取值范围,再把二次根式化简求值.【解答】解:把(﹣1,0)和(0,﹣1)两点代入y=ax2+bx+c中,得a﹣b+c=0,c=﹣1,∴b=a+c=a﹣1,由图象可知,抛物线对称轴x=﹣>0,且a>0,∴a﹣1<0,0<a<1,+=+=|a+|+|a﹣|,=a+﹣a+,=.故答案为:.三.解答题(共10小题)15.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.【分析】(1)这段铁丝被分成两段后,围成正方形.其中一个正方形的边长为xcm,则另一个正方形的边长为=(5﹣x),根据“两个正方形的面积之和等于17cm2”作为相等关系列方程,解方程即可求解;(2)设两个正方形的面积和为y,可得二次函数y=x2+(5﹣x)2=2(x﹣)2+,利用二次函数的最值的求法可求得y的最小值是12.5,所以可判断两个正方形的面积之和不可能等于12cm2.【解答】解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(5﹣x)cm,依题意列方程得x2+(5﹣x)2=17,整理得:x2﹣5x+4=0,(x﹣4)(x﹣1)=0,解方程得x1=1,x2=4,1×4=4cm,20﹣4=16cm;或4×4=16cm,20﹣16=4cm.因此这段铁丝剪成两段后的长度分别是4cm、16cm;(2)两个正方形的面积之和不可能等于12cm2.理由:设两个正方形的面积和为y,则y=x2+(5﹣x)2=2(x﹣)2+,∵a=2>0,∴当x=时,y的最小值=12.5>12,∴两个正方形的面积之和不可能等于12cm2;(另解:由(1)可知x2+(5﹣x)2=12,化简后得2x2﹣10x+13=0,∵△=(﹣10)2﹣4×2×13=﹣4<0,∴方程无实数解;所以两个正方形的面积之和不可能等于12cm2.)16.已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=﹣1,当x=3时,y=5,求y与x之间的函数关系式.【分析】设y1=kx,y2=,则y=kx+,将x=1、y=﹣1和x=3、y=5代入求解可得.【解答】解:设y1=kx,y2=,则y=kx+,根据题意,得:,解得:,则.17.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式.【分析】(1)利用现以O点为原点,抛物线最大高度为6米,底部宽度OM为12米,得出点M及抛物线顶点P的坐标即可;(2)利用顶点式将P点M点代入求出抛物线解析式即可.【解答】解:(1)∵其最大高度为6米,底部宽度OM为12米,∴点M及抛物线顶点P的坐标分别为:M(12,0),P(6,6).(2)设抛物线解析式为:y=a(x﹣6)2+6,∵抛物线y=a(x﹣6)2+6经过点(0,0),∴0=a(0﹣6)2+6,即a=﹣,∴抛物线解析式为:y=﹣(x﹣6)2+6,即y=﹣x2+2x.18.已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.(1)BC与⊙O是否相切?请说明理由;(2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.【分析】(1)连接OD,BD,根据已知及圆周角定理等可求得∠ABC=90°,OD是半径,故BC与⊙O 相切.(2)若四边形OBED是平行四边形,应有OD∥BC,OD=BE;而BE=CE,所以BC=2BE=2OD=AB,故此时△ABC是等腰直角三角形.【解答】解:(1)BC与⊙O相切;理由:连接OD,BD;∵DE切⊙O于D,AB为直径,∴∠EDO=∠ADB=90°,∵DE平分CB,∴DE=BC=BE,∴∠EDB=∠EBD;∵∠ODB=∠OBD,∠ODB+∠EDB=90°,∴∠OBD+∠DBE=90°,即∠ABC=90°,∴BC与⊙O相切;(2)当△ABC为等腰直角三角形(∠ABC=90°)时,四边形OBED是平行四边形;∵△ABC是等腰直角三角形(∠ABC=90°),∴AB=BC,∵BD⊥AC于D,∴D为AC中点,∴OD=BC=BE,OD∥BC,∴四边形OBED是平行四边形.19.已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.(1)图中哪个三角形与△FAD全等?证明你的结论;(2)探索线段BF、FG、EF之间的关系,并说明理由.【分析】(1)已知有一组对顶角和一对边相等,根据平行线的性质又可得到一组角相等,则利用AAS 判定△FEB≌△FAD;(2)根据有两组角对应相等的两个三角形相似,可得到△BFG∽△EFB,根据相似三角形的对应边成比例即可得到BF2=FG•EF.【解答】解:(1)△FEB≌△FAD.证明:∵AD∥BE,∴∠1=∠E.又∠EFB=∠AFD,BE=AD,∴△FEB≌△FAD;(2)BF2=FG•EF.理由:∵∠1=∠E,∠1=∠2,∴∠2=∠E.又∵∠GFB=∠BFE,∴△BFG∽△EFB,∴=,即BF2=FG•EF.20.如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.求证:FD2=FG•FE.【分析】根据BE∥AC,BE=AD,可得ABED为平行四边形,FD=FB.欲证FD2=FG•FE,则证FB2=FG•FE,即证FB:FG=FE:FB.易证它们所在的三角形相似.【解答】证明:∵BE∥AC,∴∠1=∠E.(2分)∵∠1=∠2,∴∠2=∠E.(4分)又∵∠BFG=∠EFB,∴△BFG∽△EFB.(5分)∴,∴BF2=FG•EF.(6分)∵BE∥AC,BE=AD,∴ABED为平行四边形,FD=FB.∴FD2=FG•FE.(10分)21.甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.【分析】(1)直接求出甲伸出小拇指取胜的概率;(2)首先根据题意画出表格,由表格求得所有等可能的结果,即可得出乙取胜的概率;【解答】解;(1)甲伸出小拇指的可能一共有5种,甲伸出小拇指取胜只有一种可能,故P(甲伸出小拇指获胜)=;(2)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:由表格可知,共有25种等可能的结果,乙取胜有5种可能,故P(乙获胜)==.22.如图,已知双曲线y1=经过点D(6,1),点C是双曲线第三象限分支上的动点,过点C作CA ⊥x轴,过点D作BD⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,①若直线CD的解析式为y2=ax+b,求a、b的值;②根据图象,直接写出y1>y2时x的取值范围;③判断直线AB与CD的位置关系,并说明理由.【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)①先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;②根据图象即可得到y1>y2时x的取值范围;③根据题意求出点A、B的坐标,然后利用待定系数由法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【解答】解:(1)∵双曲线y=经过点D(6,1),∴=1,解得k=6;(2)①设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,=×6•h=12,∴S△BCD解得h=4,∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),则,解得;②由图象知当x<﹣2或0<x<6时,y1>y2,③AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1),∴点A、B的坐标分别为A(c,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB的解析式为y=﹣x+1,设直线CD的解析式为y=ex+f,则,解得,∴直线CD的解析式为y=﹣x+,∵AB、CD的解析式k都等于﹣,∴AB与CD的位置关系是AB∥CD.23.如图1,l1∥l2∥l3直线AB和CH交于O点,分别交l2于D,E两点,已知CE=6,HE=3,AB=12.(1)尝试探究在图1中,求出DB和AD的长;(2)类比延伸:平移AB使得A与H重合,如图2所示,过点D作DF∥AC,若DE=5,求线段BF的长;(3)拓展迁移:如图3,若某个三角形ABC的面积是10,点D,E分别位于AB,CA上,DE∥BC,点F在BC上且BF=2,CF=3,如果△CBE的面积和四边形FCED的面积相等,求这个相等的面积值.【分析】(1)如图1,根据平行线分线段成比例定理,由l1∥l2∥l3得=,则利用比例性质可计算出AD=4,于是DB=AB﹣AD=8;(2)如图2,由平移性质得BD=8,AD=4,再证明四边形DECF为平行四边形,得到DE=CF=5,根据平行线分线段成比例定理,由DF∥AC得到=,利用比例性质可计算BF;=S△DEF,根据三角形面积公式和(3)如图3,利用△CBE的面积和四边形FCED的面积相等可得S△BEF平行线的判定可得EF∥BD,则根据平行线分线段成比例定理得==,然后再利用三角形面积公=S△ABC=6.式可计算出S△CBE【解答】解:(1)如图1,∵l1∥l2∥l3,∴=,即=,∴AD=4,∴DB=AB﹣AD=12﹣4=8;(2)如图2,∵平移AB使得A与H重合,∴BD=8,AD=4,∵DF∥AC,而DE∥CF,∴四边形DECF为平行四边形,∴DE=CF=5,∵DF∥AC,∴=,即=,∴BF=10;(3)如图3,∵△CBE的面积和四边形FCED的面积相等,即S△BEF +S△CEF=S△CEF+S△DEF,∴S△BEF=S△DEF,∴EF∥BD,∴==,∴S△CBE=S△ABC=×10=6,即这个相等的面积值为6.24.如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.【分析】(1)由抛物线y=(x+1)2+k与y轴交于点C(0,﹣3),即可将点C的坐标代入函数解析式,解方程即可求得k的值,由抛物线y=(x+1)2+k即可求得抛物线的对称轴为:x=﹣1;(2)连接AC交抛物线的对称轴于点P,则PA+PC的值最小,求得A与C的坐标,设直线AC的解析式为y=kx+b,利用待定系数法即可求得直线AC的解析式,则可求得此时点P的坐标;=×4×|(x+1)2﹣4|,由二次函数的最(3)①设点M的坐标为:(x,(x+1)2﹣4),即可得S△AMB值问题,即可求得△AMB的最大面积及此时点M的坐标;=S△OBC+S△ADM+S梯形②设点M的坐标为:(x,(x+1)2﹣4),然后过点M作MD⊥AB于D,由S四边形ABCM,根据二次函数的最值问题的求解方法,即可求得四边形AMCB的最大面积及此时点M的坐标.OCMD【解答】解:(1)∵抛物线y=(x+1)2+k与y轴交于点C(0,﹣3),∴﹣3=1+k,∴k=﹣4,∴抛物线的解析式为:y=(x+1)2﹣4,∴抛物线的对称轴为:直线x=﹣1;(2)存在.连接AC交抛物线的对称轴于点P,则PA+PC的值最小,当y=0时,(x+1)2﹣4=0,解得:x=﹣3或x=1,∵A在B的左侧,∴A(﹣3,0),B(1,0),设直线AC的解析式为:y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,当x=﹣1时,y=﹣(﹣1)﹣3=﹣2,∴点P的坐标为:(﹣1,﹣2);(3)点M是抛物线上的一动点,且在第三象限,∴﹣3<x<0;①设点M的坐标为:(x,(x+1)2﹣4),∵AB=4,=×4×|(x+1)2﹣4|=2|(x+1)2﹣4|,∴S△AMB∵点M在第三象限,=8﹣2(x+1)2,∴S△AMB∴当x=﹣1时,即点M的坐标为(﹣1,﹣4)时,△AMB的面积最大,最大值为8;②设点M的坐标为:(x,(x+1)2﹣4),过点M作MD⊥AB于D,S四边形ABCM=S△OBC+S△ADM+S梯形OCMD=×3×1+×(3+x)×[4﹣(x+1)2]+×(﹣x)×[3+4﹣(x+1)2]=﹣(x2+3x﹣4)=﹣(x+)2+,∴当x=﹣时,y=(﹣+1)2﹣4=﹣,即当点M的坐标为(﹣,﹣)时,四边形AMCB的面积最大,最大值为.。

重庆市南开中学2016届九年级上期末数学试卷含答案解析

重庆市南开中学2016届九年级上期末数学试卷含答案解析

2015-2016学年重庆市南开中学九年级(上)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. 7的倒数是()A.B.﹣ C.7 D.﹣72.下列四个字母既是轴对称图形,又是中心对称图形的是()A.N B.K C.Z D.X3.运算(﹣mn2)3的结果是()A.﹣m3n5B.m3n6C.﹣m3n6D.m3n54.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=45.南开中学举行了首届“南开故事会”讲故事比赛,有12名学生参加了决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己是否进入前6名,不仅要了解自己的成绩,还要了解这12名学生成绩的()A.众数 B.方差 C.平均数D.中位数6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=65°,则∠BAC的大小为()A.45° B.50° C.60° D.65°7.如果,AB是⊙O的弦,半径为OA=2,∠AOB=120°,则弦AB的长为()A.2 B.3 C.2 D.28.一个小组新年互送贺卡,若全组共送贺卡42张,则这个小组有()人.A.6 B.7 C.8 D.99.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.10.成渝高铁的开通,给重庆市民的出行带来了极大的方便,元旦期间,小丽和小王相约到成都欢乐谷游玩,小丽乘私家车从重庆出发1小时后,小王乘坐高铁从重庆出发,先到成都东站,然后坐出租车去欢乐谷,他们离开重庆的距离y(千米)与乘车t(小时)的关系如图所示,结合图象,下列说法不正确的是()A.两人恰好同时到达欢乐谷B.高铁的平均速度为240千米/时C.私家车的平均速度为80千米/时D.当小王到达成都车站时,小丽离欢乐谷还有50千米11.将1、、、按如图所示的方式排列,若规定(m,n)表示第m排从左往右第n个数,则(7,5)表示的数是()A.1 B.C.D.12.如图,一次函数y=﹣kx+n(k≠0)与x轴、y轴分别交于A、B两点,与反比例函数y=(k≠0)=,则n=()交于C、D两点,且C、D两点分别是线段AB的三等分点,若S△AOBA.﹣B.﹣C.﹣2D.﹣二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.函数y=中,自变量x的取值范围是.14.重庆南开中学占地360亩,约240000平方米,将240000这个数用科学记数法表示为.15.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.16.如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为.(结果保留π)17.有六张正面分别标有数字﹣2、﹣、0、1、2、3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片的数字a记为点P的横坐标,将a2记为点P的纵坐标,已知P(a,a2)落在直线y=﹣x+n上的概率为,则n的值为.18.如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为.四、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.计算:×cos60°﹣tan45°﹣12016.20.化简:(1)(3﹣a)(a+3)﹣(2a+3)2;(2).21.初三年级对上周迟到的学生人数进行统计后,制成了如下两幅不完整的统计图:(1)本周内每天迟到人数的极差是.(2)请将折线统计图补充完整;(3)统计有4名同学迟到达到2次及以上,其中有3名男生,年级拟从这4名同学中任选2人了解迟到原因,请你用列表法或画树状图的方法求出所选同学为一男一女的概率.22.酷爱写诗的陈老师,某日到南山采风,结束后步行下山回家,发现下山路AB 为一条坡度为i=5:12的斜坡,在斜坡下端B 处有一座塔,陈老师在A 处测得塔顶P 的俯角为14°,沿斜坡前行65米到达B 处,请根据以上条件求塔的高度BP .(参考数据:tan14°≈0.25,sin14°≈0.24,cos14°≈0.97)23.对于平面直角坐标系中的任意两点P 1(x 1,y 1),P 2(x 2,y 2),我们把d (P 1,P 2)=|x 1﹣x 2|y 2﹣y 2|叫做P 1、P 2两点间的直角距离.(1)已知点A (1,1),点B (3,4),则d (A ,B )= .(2)已知点E (a ,a ),点F (2,2),且d (E ,F )=4,则a= .(3)已知点M (m ,2),点N (1,0),则d (M ,N )的最小值为 .(4)设P 0(x 0,y 0)是一定点,Q (x ,y )是直线y=ax+b 上的动点,我们把d (P 0,Q )的最小值叫做P 0到直线y=ax+b 的直角距离,试求点M (5,1)到直线y=x+2的直角距离.24.随着私家车的增多,节假日期间,高速公路收费站经常拥堵严重,去年元旦早上8点,某收费站出城方向有120辆汽车排队等候收费通过,假设每分钟到达收费站的汽车数量保持不变,每个收费窗口每分钟可以通过的汽车数量也不变,若开放5个收费窗口,则需要20分钟才能将原来排队等候的汽车及后来到达的汽车全部收费通过;若开放全部6个窗口,只需15分钟.(1)请求出每分钟到达收费站的车辆数以及每个收费窗口每分钟可以通过的车辆数;(2)为了缓减拥堵,今年元旦节前,该收费站将出城方向的6个窗口中的若干个改造成了ETC 通道,已知ETC 通道每分钟可以通过10辆车,今年元旦早上8点有130辆车排队等候收费通过,在每分钟到达的汽车数量比去年同期增长50%的情况下,不到5分钟所有排队等候的汽车及后来到达的汽车全部收费通过,请问至少有几个收费窗口改造成了ETC 通道?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.已知正方形ABCD 中,点E 在BC 上,连接AE ,过点B 作BF ⊥AE 于点G ,交CD 于点F .(1)如图1,连接AF,若AB=4,BE=1,求AF的长;(2)如图2,连接BD,交AE于点N,连接AC,分别交BD、BF于点O、M,连接GO,求证:GO平分∠AGF;(3)如图3,在第(2)问的条件下,连接CG,若CG⊥GO,求证:AG=CG.26.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.2015-2016学年重庆市南开中学九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.7的倒数是()A.B.﹣ C.7 D.﹣7【考点】倒数.【分析】根据倒数的定义解答即可.【解答】解:∵7×=1,∴7的倒数是,故选A.【点评】此题考查倒数的定义,关键是根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列四个字母既是轴对称图形,又是中心对称图形的是()A.N B.K C.Z D.X【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、N不是轴对称图形,是中心对称图形,不符合题意;B、K是轴对称图形,不是中心对称图形,不符合题意;C、Z不是轴对称图形,是中心对称图形,不符合题意;D、X是轴对称图形,也是中心对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.运算(﹣mn2)3的结果是()A.﹣m3n5B.m3n6C.﹣m3n6D.m3n5【考点】幂的乘方与积的乘方.【分析】利用积的乘方法则直接计算即可.【解答】解:原式=(﹣mn2)3=﹣m3n6故选C.【点评】本题考查了积的乘方法则,注意积中每个因式分别乘方,熟记法则是解题的关键.4.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4【考点】解分式方程.【分析】首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.【解答】解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.【点评】此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.5.南开中学举行了首届“南开故事会”讲故事比赛,有12名学生参加了决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己是否进入前6名,不仅要了解自己的成绩,还要了解这12名学生成绩的()A.众数 B.方差 C.平均数D.中位数【考点】统计量的选择.【分析】12人成绩的中位数是第6、7名成绩平均数.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有12个人,且他们的分数互不相同,第6、7的成绩平均数是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.【点评】本题主要考查统计量的选择,熟悉平均数、中位数、众数、方差的意义是此类问题的关键.6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=65°,则∠BAC的大小为()A.45° B.50° C.60° D.65°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=65°,∴∠C=∠1=65°,∴∠B=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣65°﹣65°=50°,故选B.【点评】本题考查了三角形内角和定理,等腰三角形的性质,平行线的性质的应用,解此题的关键是求出∠C的度数和得出∠B=∠C,注意:三角形内角和等于180°,两直线平行,内错角相等.7.如果,AB是⊙O的弦,半径为OA=2,∠AOB=120°,则弦AB的长为()A.2 B.3 C.2 D.2【考点】垂径定理.【分析】过点O作AB的垂线,得到直角三角形,在直角三角形中根据三角函数进行计算,然后再由垂径定理得到AB的长.【解答】解:如图:过点O作OC⊥AB于C,则AC=BC,∠AOC=∠BOC=60°.在直角△AOC中,sin60°=,∴AC=AOsin60°=2×=.AB=2AC=2.故选:C.【点评】本题主要考查了垂径定理,关键是掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧.8.一个小组新年互送贺卡,若全组共送贺卡42张,则这个小组有()人.A.6 B.7 C.8 D.9【考点】一元二次方程的应用.【分析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数﹣1)=42,把相关数值代入计算即可.【解答】解:设这小组有x人.由题意得:x(x﹣1)=42,解得x1=7,x2=﹣6(不合题意,舍去).即这个小组有7人.故选:B.【点评】本题考查一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键,注意理解本题中互送的含义,这不同于直线上点与线段的数量关系.9.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.【考点】菱形的性质;勾股定理.【专题】计算题.【分析】根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2BC)2=32+BC2,从而可求得BC的长.【解答】解:∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2BC)2=32+BC2,∴BC=.故选:D.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.10.成渝高铁的开通,给重庆市民的出行带来了极大的方便,元旦期间,小丽和小王相约到成都欢乐谷游玩,小丽乘私家车从重庆出发1小时后,小王乘坐高铁从重庆出发,先到成都东站,然后坐出租车去欢乐谷,他们离开重庆的距离y(千米)与乘车t(小时)的关系如图所示,结合图象,下列说法不正确的是()A.两人恰好同时到达欢乐谷B.高铁的平均速度为240千米/时C.私家车的平均速度为80千米/时D.当小王到达成都车站时,小丽离欢乐谷还有50千米【考点】一次函数的应用.【分析】根据图象的信息解答,且利用路程除以时间得出速度判断即可.【解答】解:A、根据图象得出两人恰好同时到达欢乐谷,正确;B、高铁的平均速度==240千米/时,正确;C、设y=kt+b,当t=1时,y=0,当t=2时,y=240,得:,解得:,故把t=1.5代入y=240t﹣240,得y=120,设y=at,当t=1.5,y=120,得a=80,∴y=80t,所以私家车的平均速度=80千米/时,正确;D、当t=2,y=160,216﹣160=56(千米),∴小丽离欢乐谷还有56千米,错误.故选D.【点评】此题主要考查了一次函数的应用,根据题意结合函数图象得出一次函数解析式是解题关键.11.将1、、、按如图所示的方式排列,若规定(m,n)表示第m排从左往右第n个数,则(7,5)表示的数是()A.1 B.C.D.【考点】算术平方根.【专题】规律型.【分析】所给一系列数是4个数一循环,看(7,5)是第几个数,除以4,根据余数得到相应循环的数即可.【解答】解:∵第6排最后一个数为1+2+3+4+5+6==21,∴(7,5)表示21+5=26个数,∵26÷4=6…2,∴(7,5)表示的数为,故选B.【点评】此题考查数字的变化规律;判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.12.如图,一次函数y=﹣kx+n(k≠0)与x轴、y轴分别交于A、B两点,与反比例函数y=(k≠0)=,则n=()交于C、D两点,且C、D两点分别是线段AB的三等分点,若S△AOBA.﹣B.﹣C.﹣2D.﹣【考点】反比例函数与一次函数的交点问题.【分析】令x=0,则y=﹣kx+n=n,令y=0,则0=﹣kx+n,即x=,于是得到A(,0),B(0,n),求得OA=,OB=﹣n,根据三角形的面积列方程×(﹣n)=,得到,于是得到(﹣,0),由于C、D两点分别是线段AB的三等分点,得到C(﹣,)求得k=•=﹣1,得到△AOB是等腰直角三角形,即可得到结论.【解答】解:令x=0,则y=﹣kx+n=n,令y=0,则0=﹣kx+n,即x=,∴A(,0),B(0,n),∴OA=,OB=﹣n,=,∵S△AOB∴,即×(﹣n)=,∴k=,∴,∴A(﹣,0),∵C、D两点分别是线段AB的三等分点,∴C(﹣,)∴k=•=﹣1,∴OA=﹣n,∴OA=OB,∴△AOB是等腰直角三角形,∴(﹣n)2=,∴﹣n=,∴n=﹣,故选B.【点评】此题考查了反比例函数与一次函数的交点问题.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.函数y=中,自变量x的取值范围是x<.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【解答】解:依题意,得1﹣2x>0,解得:x<.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.注意当单独的二次根式在分母时,被开方数应大于0.14.重庆南开中学占地360亩,约240000平方米,将240000这个数用科学记数法表示为 2.4×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:240000=2.4×105,故答案为:2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为12 .【考点】平移的性质.【专题】动点型.【分析】根据题意:将△ABC 沿BC 方向移到△A′B′C′的位置,使B′与C 重合,可得:AB ∥A′B′,且BC=CC′;故D 为A′B′的中点;则△C′DC 的面积为△ABC 的面积的一半,即12.【解答】解:∵AB ∥A′B′,且BC=CC′∴D 为A′B′的中点,又∵BC=CC′,∴S △C′DC =S △ABC =×24=12.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.如图,Rt △ABC 中,∠A=90°,∠B=30°,AC=6,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分面积为 9﹣3π .(结果保留π)【考点】扇形面积的计算.【分析】连结AD .根据图中阴影部分的面积=三角形ABC 的面积﹣三角形ACD 的面积﹣扇形ADE 的面积,列出算式即可求解.【解答】解:连结AD .∵直角△ABC 中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,AB=6, ∵AD=AC ,∴三角形ACD 是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=﹣×﹣=9﹣3π,故答案为:9﹣3π.【点评】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算.17.有六张正面分别标有数字﹣2、﹣、0、1、2、3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片的数字a记为点P的横坐标,将a2记为点P的纵坐标,已知P(a,a2)落在直线y=﹣x+n上的概率为,则n的值为 2 .【考点】概率公式;一次函数图象上点的坐标特征.【分析】根据概率公式可得直线y=﹣x+n上的点P(a,a2)有2个,再根据一次函数图象上点的坐标特征得出n=x+y=a+a2=2.【解答】解:∵有六张正面分别标有数字﹣2、﹣、0、1、2、3的不透明卡片,∴P(a,a2)一共有6种情况,当a=﹣2、﹣、0、1、2、3时,a2=4、、0、1、4、9,∴a+a2=2、﹣、0、2、6、12,∵P(a,a2)落在直线y=﹣x+n上的概率为,而n=y+x,∴直线y=﹣x+n上的点P(a,a2)有2个,此时a+a2=2=n,故答案为2.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.也考查了一次函数图象上点的坐标特征.18.如图,点P是平行四边形ABCD对角线BD上的动点,点M为AD的中点,已知AD=8,AB=10,∠ABD=45°,把平行四边形ABCD绕着点A按逆时针方向旋转,点P的对应点是点Q,则线段MQ的长度的最大值与最小值的差为18﹣5.【考点】旋转的性质;平行四边形的性质.【分析】如作AP 1⊥BD 垂足为P 1,当AP 1旋转到与射线AD 的重合时(点P 1与点E 重合),ME 就是MQ 最小值,当点P 2与B 重合时,旋转到与DA 的延长线重合时(点P 2与点F 重合),此时MF 就是MQ 最大值,分别求出MQ 的最大值与最小值即可解决问题.【解答】解:如图,作AP 1⊥BD 垂足为P 1,∵∠DBA=45°,AB=10,∴∠P 1AB=∠DBA=45°,AP 1=P 1B=5,∵AM=MD=AD=4,当AP 1旋转到与射线AD 的重合时(点P 1与点E 重合),ME 就是MQ 最小值=5﹣4, 当点P 2与B 重合时,旋转到与DA 的延长线重合时(点P 2与点F 重合),此时MF 就是MQ 最大值=AM+AF=14,∴MQ 的最大值与最小值的差=14﹣(5﹣4)=18﹣5.故答案为18﹣5.【点评】本题考查旋转的性质、平行四边形的性质等知识,根据题意找到MQ 最大值与最小值的位置是解题的关键.四、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.计算:×cos60°﹣tan45°﹣12016.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】将cos60°=,tan45°=1,12016=1代入原式,再运用实数的运算法则,即可得出结论.【解答】解:原式=+4×﹣1﹣1=4+2﹣1﹣1=4.【点评】本题考查了实数的运算、负整数的指数幂以及特殊角的三角函数值,解题的关键是:记住特殊角的三角函数值并能熟练的运用实数的运算法则解决问题.20.化简:(1)(3﹣a)(a+3)﹣(2a+3)2;(2).【考点】分式的混合运算;整式的混合运算.【分析】(1)根据平方差公式和完全平方公式将式子展开,然后再合并同类项即可解答本题;(2)先将括号内的式子通分,然后根据分式的除法法则进行计算即可.【解答】解:(1)(3﹣a)(a+3)﹣(2a+3)2=9﹣a2﹣(4a2+12a+9)=9﹣a2﹣4a2﹣12a﹣9=﹣5a2﹣12a;(2).====.【点评】本题考查分式的混合运算、平方差公式、完全平方和公式,解题的关键是明确它们各自的计算方法.21.初三年级对上周迟到的学生人数进行统计后,制成了如下两幅不完整的统计图:(1)本周内每天迟到人数的极差是 4 .(2)请将折线统计图补充完整;(3)统计有4名同学迟到达到2次及以上,其中有3名男生,年级拟从这4名同学中任选2人了解迟到原因,请你用列表法或画树状图的方法求出所选同学为一男一女的概率.【考点】列表法与树状图法;扇形统计图;折线统计图.【分析】(1)由周四迟到的学生人数为5人,占20%,可求得本周迟到的学生总人数,继而可分别求得每天迟到人数,进而求得答案;(2)由(1)可补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选同学为一男一女的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵周四迟到的学生人数为5人,占20%,∴本周迟到的学生总人数为:5÷20%=25(人),∴周五迟到的学生人数为:25×28%=7(人),∵周二、周三迟到的学生人数分别为:3人,6人,∴周一迟到的学生人数为:25﹣3﹣5﹣7﹣6=4(人),∴本周内每天迟到人数的极差是:7﹣3=4(人);故答案为:4;(2)如图:(3)画树状图得:∵共有12种等可能的结果,选同学为一男一女的有6种情况,∴选同学为一男一女的概率为: =.【点评】此题考查了列表法或树状图法求概率以及折线统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.酷爱写诗的陈老师,某日到南山采风,结束后步行下山回家,发现下山路AB为一条坡度为i=5:12的斜坡,在斜坡下端B处有一座塔,陈老师在A处测得塔顶P的俯角为14°,沿斜坡前行65米到达B处,请根据以上条件求塔的高度BP.(参考数据:tan14°≈0.25,sin14°≈0.24,cos14°≈0.97)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】如图,过点P 作PE ⊥AC 于点E .通过坡度的定义求得AC :BC :AB=5:12:13,则易得AC=25米,BC=60米,所以利用矩形的性质和解直角△APE 求得BP 的长度即可.【解答】解:如图,过点P 作PE ⊥AC 于点E .∵AB=65米,tan ∠ABC==,∴AC :BC :AB=5:12:13,∴AC=25米,BC=60米,∴PE=BC=60米,∴AE=PE •tan14°=60×0.25=15(米).∴BP=EC=25﹣15=10(米).【点评】此题主要考查了坡度问题以及仰角的应用,根据已知在直角三角形中得出各边长度是解题关键.23.对于平面直角坐标系中的任意两点P 1(x 1,y 1),P 2(x 2,y 2),我们把d (P 1,P 2)=|x 1﹣x 2|y 2﹣y 2|叫做P 1、P 2两点间的直角距离.(1)已知点A (1,1),点B (3,4),则d (A ,B )= 5 .(2)已知点E (a ,a ),点F (2,2),且d (E ,F )=4,则a= 0或4 .(3)已知点M (m ,2),点N (1,0),则d (M ,N )的最小值为 2 .(4)设P 0(x 0,y 0)是一定点,Q (x ,y )是直线y=ax+b 上的动点,我们把d (P 0,Q )的最小值叫做P 0到直线y=ax+b 的直角距离,试求点M (5,1)到直线y=x+2的直角距离.【考点】一次函数综合题.【分析】(1)根据平面直角坐标系中的任意两点的距离的计算公式计算即可;(2)根据平面直角坐标系中的任意两点的距离的计算公式列出算式,根据绝对值的性质计算;(3)根据平面直角坐标系中的任意两点的距离的计算公式和绝对值的非负性解答;(4)根据平面直角坐标系中的任意两点的距离的计算公式列出算式,分x ≤﹣1、﹣1<x ≤5和x ≥5三种情况,根据绝对值的性质计算即可.【解答】解:(1)点A(1,1),点B(3,4),则d(A,B)=|3﹣1|+|4﹣1|=5,故答案为:5;(2)∵点E(a,a),点F(2,2),d(E,F)=4,∴|2﹣a|+|2﹣a|=4,当a>2时,a﹣2+a﹣2=4,解得a=4,当a<2时,2﹣a+2﹣a=4,解得a=0,故答案为:0或4;(3)d(M,N)=|1﹣m|+|0﹣2|=|1﹣m|+2,∵|1﹣m|≥0,∴|1﹣m|的最小值为0,则|1﹣m|+2的最小值为2,即d(M,N)的最小值为2,故答案为:2.(4)设点N为直线y=x+2上一点,点N的坐标为(x,x+2),则d(M,N)=|x﹣5|+|x+2﹣1|=|x﹣5|+|x+1|,当x≤﹣1时,d(M,N)=5﹣x﹣x﹣1=﹣2x+4,由一次函数的性质可知,d(M,N)的值随x的增大而减小,当x=﹣1时,d(M,N)的最小值是6;当﹣1<x≤5时,d(M,N)=5﹣x+x+1=6;当x≥5时,d(M,N)=x﹣5+x+1=2x﹣4,由一次函数的性质可知,d(M,N)的值随x的增大而增大,当x=5时,d(M,N)的最小值是6,综上所述,点M(5,1)到直线y=x+2的直角距离为6.【点评】本题考查的是平面直角坐标系中的任意两点的距离的计算以及一次函数的性质,正确理解新定义是解题的关键,对于一次函数y=kx+b,当k>0时,y随x的增大而增大,k<0时,y随x的增大而减小.24.随着私家车的增多,节假日期间,高速公路收费站经常拥堵严重,去年元旦早上8点,某收费站出城方向有120辆汽车排队等候收费通过,假设每分钟到达收费站的汽车数量保持不变,每个收费窗口每分钟可以通过的汽车数量也不变,若开放5个收费窗口,则需要20分钟才能将原来排队等候的汽车及后来到达的汽车全部收费通过;若开放全部6个窗口,只需15分钟.(1)请求出每分钟到达收费站的车辆数以及每个收费窗口每分钟可以通过的车辆数;(2)为了缓减拥堵,今年元旦节前,该收费站将出城方向的6个窗口中的若干个改造成了ETC通道,已知ETC通道每分钟可以通过10辆车,今年元旦早上8点有130辆车排队等候收费通过,在每分钟到达的汽车数量比去年同期增长50%的情况下,不到5分钟所有排队等候的汽车及后来到达的汽车全部收费通过,请问至少有几个收费窗口改造成了ETC通道?【考点】一元一次不等式的应用.【分析】(1)设每分钟到达收费站的车辆数为x辆,每个收费窗口每分钟可以通过的车辆数为y辆,由题意得等量关系:①5个收费窗口20分钟通过的车的数量=120辆+20分钟到达的车的数量;②6个收费窗口15分钟通过的车的数量=120辆+15分钟到达的车的数量,根据等量关系列出方程组,再解即可;(2)设有a个收费窗口改造成了ETC通道,由题意得不等关系:[每分钟a个ETC通道通过的车的数量+(6﹣a)个人工窗口通过的车的数量]×5≥130辆+5分钟到达的车的数量,根据不等关系列出不等式,再解即可.【解答】解:(1)设每分钟到达收费站的车辆数为x辆,每个收费窗口每分钟可以通过的车辆数为y辆,由题意得:,解得:.答:每分钟到达收费站的车辆数为4辆,每个收费窗口每分钟可以通过的车辆数为2辆;(2)设有a个收费窗口改造成了ETC通道,由题意得:5×[10a+2(6﹣a)]≥130+(1+50%)×4×5,解得:a≥2.5,∵a为整数,∴a=3.答:至少有3个收费窗口改造成了ETC通道.。

2015-2016学年度九年级上册数学期末考试试卷及答案(人教版)

2015-2016学年度九年级上册数学期末考试试卷及答案(人教版)

2015-2016学年度初三上学期数学期末试题(完卷时间:120分钟 满分:150分)一、选择题(每小题4分,共40分) 1.下列二次根式中,最简二次根式是A . 2B .8C .12D .182.一元二次方程x (x -1)=0的解是A .x =0B .x =1C .x =0或x =1D .x =0或x =-1 3.下列图形中,既是轴对称图形又是中心对称图形的是4.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,若∠A =15°,则∠BOC 的度数是A .15°B .300°C .45°D .75°5.下列事件中,必然发生的是 A .某射击运动射击一次,命中靶心 B .通常情况下,水加热到100℃时沸腾C .掷一次骰子,向上的一面是6点D .抛一枚硬币,落地后正面朝上 6.如图所示,△ABC 中,DE ∥BC ,AD =5,BD =10,DE =6,则BC 的值为A .6B .12C .18D .24 7.如图所示,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为 A .8cm 了 B .6cm C .5cm D .4cm8.若两圆的圆心距为5,两圆的半径分别是方程x 2-4x +3=0的两个根,则两圆的位置关系是A .相交B .外离C .内含D .外切9.将一副直角三角板(含45°角的直角三角板ABC 与含30°角的直角三角板DCB )按图示方式叠放,斜边交点为O ,则△AOB 与△COD 的面积之比等于 A .1∶ 2 B .1∶2 C .1∶ 3 D .1∶310.已知二次函数y =x 2-x +18,当自变量x 取m 时,对应的函数值小于0,当自变量x取m -1、m +1时,对应的函数值为y 1、y 2,则y 1、y 2满足A .y 1>0,y 2>0B .y 1<0,y 2>0C .y 1<0,y 2<0D .y 1>0,y<0 二、填空题(每小题4分,共20分)11.二次根式x 2-1 有意义,则x 的取值范围是__________________.12.将抛物线y =2x 2向上平移3单位,得到的抛物线的解析式是____________. 13.如图所示,某公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落点在黑色石子区域内概率是_____________.A B C D 第4题图 AB CD E第7题图 ABO第9题图 D 第13题图14.某小区2011年绿化面积为2000平方米,计划2013年底绿化面积要达到2880平方米.如果每年的增长率相同,那么这个增长率是__________________.15.如图所示,n +1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n +1D n C n 的面积为S n ,则S 1=________,S n =__________(用含n 的式子表示).三、解答题(共7小题,共90分) 16.计算:(每小题8分,共16分) (1) 27×50÷ 6 (2) 2 3 9x +6x 4-2x 1x 17.(12分)已知△ABC 在平面直角坐标系中的位置如图所示.(1) 分别写出图中点A 和点C 的坐标;(2) 画出△ABC 绕点A 按逆时针方向旋转90°后的△AB'C';(3) 在(2)的条件下,求点C 旋转到点C' 所经过的路线长(结果保留π).18.(11分)在一个不透明的纸箱里装有2个红球、1个白球,它们除颜色外完全相同.小明和小亮做摸球游戏,游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.19.(12分)如图所示,AB 是⊙O 的直径,∠B =30°,弦BC =6,∠ACB 的平分线交⊙O 于D ,连AD . (1) 求直径AB 的长;(2) 求阴影部分的面积(结果保留π).20.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y (件)与销售单价x (元)的关系符合一次函数y =-x +140. (1) 直接写出销售单价x 的取值范围.(2) 若销售该服装获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?(3) 若获得利润不低于1200元,试确定销售单价x 的范围.21.(13分)如图,在△ABC 中,AB =AC =5,BC =6,点D 为AB 边上的一动点(D 不与A 、B 重合),过D 作DE ∥BC ,交AC 于点E .把△ADE 沿直线DE 折叠,点A 落在点A'处.连结BA',设AD =x ,△ADE 的边DE 上的高为y . (1) 求出y 与x 的函数关系式;(2) 若以点A'、B 、D 为顶点的三角形与△ABC 相似,求x 的值; (3) 当x 取何值时,△A' DB 是直角三角形.A C 1 第15题图C 2 C 3 C 4 C 52 3 4 5 6 第17题图D第19题图 A BCDx A'第21题图E ABC第21题备用图22.(14分)已知抛物线y =ax 2+bx +c (a ≠0)经过A (-2,0)、B (0,1)两点,且对称轴是y 轴.经过点C (0,2)的直线l 与x 轴平行,O 为坐标原点,P 、Q 为抛物线y =ax 2+bx +c (a ≠0)上的两动点. (1) 求抛物线的解析式; (2) 以点P 为圆心,PO 为半径的圆记为⊙P ,判断直线l 与⊙P 的位置关系,并证明你的结论; (3) 设线段PQ =9,G 是PQ 的中点,求点G 到直线l 距离的最小值.数学试卷参考答案及评分标准一、选择题:1.A 2.C 3.D 4.B 5.B 6.C 7.A 8.B 9.D 10.A 二、填空题:11.x ≥1 12.y =2x 2+3 13.12 14.20% 15.14;n 2(n +1)三、解答题:16.(1)原式=33×52÷6 ………………………………………………4分 =3×53×2÷6 ………………………………………………6分 =15 ……………………………………………………………8分(2)原式=2 3 ×3x +6×12x -2x ·1x x ………………3分=2x +3x -2x ……………………………6分 =3x …………………………………8分 17.解:(1)A (1,3)、C (5,1); …………………………………4分(2)图形正确; ……………………………………………8分(3)AC =25, ……………………………………………10分弧CC'的长=90π·25180=5π. …………………12分18.解: 或第22题图列对表格或树状图正确, …………………………………………………6分 由上述树状图或表格知:P (小明赢)=59,P (小亮赢)=49. ……………………………………………10分∴此游戏对双方不公平,小明赢的可能性大. ………………………………11分 19.解:(1) ∵AB 为⊙O 的直径,∴∠ACB =90°, ……………………………………1分∵∠B =30,∴AB =2AC , ……………………………………3分 ∵AB 2=AC 2+BC 2,∴AB 2=14AB 2+62, …………………………………5分∴AB =43. ………………………………………6分 (2) 连接OD ,∵AB =43,∴OA =OD =23, …………………………………………………8分 ∵CD 平分∠ACB ,∠ACB =90°, ∴∠ACD =45°, ∴∠AOD =90°, …………………………………………………………………9分∴S △AOD =12OA ·OD =12·23·23=6, ……………………………………10分∴S 扇形△AOD =14·π·OD 2=14·π·(23)2=3π, ………………………………11分∴阴影部分的面积= S 扇形△AOD -S △AOD =3π-6. ……………………………12分20.解:(1) 60≤x ≤90; ……………………………………………………………………3分 (2) W =(x ―60)(―x +140), ……………………………………………………………4分 =-x 2+200x -8400,=―(x ―100)2+1600, ……………………………………………………………5分 抛物线的开口向下,∴当x <100时,W 随x 的增大而增大, …………………………6分 而60≤x ≤90,∴当x =90时,W =―(90―100)2+1600=1500. ………………………7分 ∴当销售单价定为90元时,可获得最大利润,最大利润是1500元. ……………………8分 (3) 由W =1200,得1200=-x 2+200x -8400,整理得,x 2-200x +9600=0,解得,x 1=80,x 2=120, ……………………………………11分 由图象可知,要使获得利润不低于1200元,销售单价应在80元到120元之间,而60≤x ≤90,所以,销售单价x 的范围是80≤x ≤90. ………………………………………………………12分21.解:(1) 过A 点作AM ⊥BC ,垂足为M ,交DE 于N 点,则BM =12BC =3,∵DE ∥BC ,∴AN ⊥DE ,即y =AN .在Rt △ABM 中,AM =52-32 =4, …………………………………………………………2分 ∵DE ∥BC ,∴△ADE ∽△ABC , ……………………………………………………………………………3分∴ AD AB = AN AM , ∴x 5 =y 4, ∴y =4x 5(0<x <5). ………………………………………………………………………4分(2) ∵△A'DE 由△ADE 折叠得到,∴AD =A'D ,AE =A'E ,∵由(1)可得△ADE 是等腰三角形, ∴AD =A'D ,AE =A'E ,∴四边形ADA'E 是菱形, ………………………………5分 ∴AC ∥D A',∴∠BDA'=∠BAC ,又∵∠BAC ≠∠ABC ,∠BAC ≠∠C , ∴∠BDA'≠∠ABC ,∠BDA'≠∠C ,∴有且只有当BD =A'D 时,△BDA'∽△BAC , …………………………………………7分 ∴当BD =A'D ,即5-x =x 时,∴x =52. ………………………………………………………………………………8分(3) 第一种情况:∠BDA'=90°,∵∠BDA'=∠BAC ,而∠BAC ≠90°, ∴∠BDA'≠90°. ………………………………………………………………………9分 第二种情况:∠BA'D =90°,∵四边形ADA'E 是菱形,∴点A'必在DE 垂直平分线上,即直线AM 上,∵AN =A'N = y =4x5,AM =4,∴A'M =|4-85x |,在Rt △BA'M 中, A'B 2=BM 2+A'M 2=32+(4-85x )2,在Rt △BA'D 中,A'B 2=BD 2+A'D 2=(5-x )2-x 2,∴ (5-x )2-x 2=32+(4-85x )2,解得 x =3532,x =0(舍去). ……………………………………………………11分第三种情况:∠A'BD =90°,解法一:∵∠A'BD =90°,∠AMB =90°, ∴△BA'M ∽△ABM , 即BA' AB =BM AM ,∴BA'=154, ……………………………12分 在Rt △D BA'中,DB 2+A'B 2=A'D 2,(5-x )2+22516=x 2,解得:x =12532. ……………………………………………13分 解法二:∵AN =A'N = y =4x5 ,AM =4,∴A'M =|85x -4|,在Rt △BA'M 中, A'B 2=BM 2+A'M 2=32+(85x -4)2,在Rt △BA'D 中,A'B 2= A'D 2-BD 2=x 2-(5-x )2,∴ x 2-(5-x )2=32+(85x -4)2,解得x =5(舍去),x =12532. ………………………………………………………13分综上可知当x =3532、x =12532时, △A'DB 是直角三角形.22.解:(1) ∵抛物线y =ax 2+bx +c 的对称轴是y 轴,∴b =0. …………………………1分∵抛物线y =ax 2+bx +c 经过点A (-2,0)、B (0,1)两点,∴c =1,a =-14, ……………………………………3分∴所求抛物线的解析式为y =-14x 2+1. ……………4分(2) 设点P 坐标为(p ,-14p 2+1),如图,过点P 作PH ⊥l ,垂足为H ,∵PH =2-(-14p 2+1)=14p 2+1, …………………6分OP =p 2+(-14p 2+1)2 =-14p 2+1, ………………8分∴OP =PH ,∴直线l 与以点P 为圆心,PO 长为半径的圆相切. …………………………………9分 (3) 如图,分别过点P 、Q 、G 作l 的垂线,垂足分别是D 、E 、F . 连接EG 并延长交DP 的延长线于点K ,∵G 是PQ 的中点,∴易证得△EQG ≌△KPG ,∴EQ =PK , ………………………………………11分由(2)知抛物线y =-14x 2+1上任意一点到原点O 的距离等于该点到直线l :y =2的距离,即EQ =OQ ,DP =OP , …………………………………12分∴ FG =12DK =12(DP +PK )=12(DP +EQ )=12(OP +OQ ), ……13分∴只有当点P 、Q 、O 三点共线时,线段PQ 的中点G 到直线l 的距离GF 最小, ∵PQ =9,∴G F ≥4.5,即点G 到直线l 距离的最小值是4.5. …………………………………14分 (若用梯形中位线定理求解扣1分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10题图
私家车
出租车高铁……
……第5排第4排第3排第2排第1排
162163
2
213
36321
第9题图
第7题图
第6题图重庆南开中学初2016级九年级(上)期末考试
数 学 试 题
一、选择题:(本大题12个小题,每小题4分,共48分) 1、7的倒数是( ) A 、
1
7
B 、17-
C 、7
D 、-7
2、下列四个字母既是轴对称图形,又是中心对称图形的是( ) A 、N B 、K C 、Z D 、X
3、运算(
)3
2mn
-的结果是( )
A 、35m n -
B 、36m n
C 、36m n -
D 、35m n 4、分式方程
3121
x x =-的解为( ) A 、x =1 B 、x =2 C 、x =3 D 、x =4
5、南开中学举行了首届“南开故事会”讲故事比赛,有12名学生参加了决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己是否进入前6名,不仅要了解自己的成绩,还要了解这12名学生成绩的( ) A 、众数 B 、方差 C 、平均数 D 、中位数
6、如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=65°,则∠BAC 的大小为( ) A 、45° B 、50° C 、60°
D 、65°
7、如果,AB 是⊙
O 的弦,半径为OA =2,∠AOB =120°,则弦
AB 的长为( ) A 、B 、C 、D 、8、一个小组新年互送贺卡,若全组共送贺卡42张,则这个小组有( )人。

A 、6 B 、7 C 、8
D 、
9
9、将矩形ABCD 按如图所示的方式折叠,得到菱形AECF ,若AB =3,则BC 的长为( ) A 、1 B C D 、2
第18题图
第15题图
1
1第16题图
10、成渝高铁的开通,给重庆市民的出行带来了极大的方便,元旦期间,小丽和小王相约到成都欢乐谷游玩,小丽乘私家车从重庆出发1小时后,小王乘坐高铁从重庆出发,先到成都东站,然后坐出租车去欢乐谷,他们离开重庆的距离y (千米)与乘车t (小时)的关系如图所示,结合图像,下列说法不正确的是( ) A 、两人恰好同时到达欢乐谷 B 、高铁的平均速度为240千米/时
C 、私家车的平均速度为80千米/时
D 、当小王到达成都车站时,小丽离欢乐谷还有50
千米
11、将
1按如图所示的方式排列,若规定(m ,n )表示第m 排从左往右第n 个数,则(7,5)表示的数是(

A 、1 B
C
D
12、如图,一次函数()0y kx n k =-+≠与x 轴、y 轴分别交于A 、B 两点,与反比例函数()0k
y k x
=
≠交于C 、D 两点,且C 、D 两点分别是线段AB 的三等分点,若9
4
AOB S =
△,则n =( ) A
、 B
、 C
、- D 、二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...(卷.)中对应的横线上。

13、函数1
12y x
=
-中,自变量x 的取值范围是_____________。

14、重庆南开中学占地360亩,约240000平方米,将240000这个数用科学记数法表示为___________。

15、如图,已知△ABC 的面积为24,将△ABC 沿BC 方向平移到△111A B C ,使1B 和C 重合,连接1AC 交1AC 于点D ,则△1C DC 的面积为____________。

16、如图,Rt △ABC 中,∠A =90°,∠B =30°,AC =6,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分面积为 __________。

(结果保留π) 17、有六张正面分别标有数字-2、1
2
-
、0、1、2、3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片的数字a 记为点p 的横坐标,将2
a 记为点P 的纵坐标,已知P ()
2,a a 落在
直线y =-x +n 上的概率为
1
3
,则n 的值为____ ____。

18、如图,点P 是平行四边形ABCD 对角线BD 上的动点,点M 为AD 的中点,已知AD =8,AB =10,∠ABD =45°,把平行四边形ABCD 绕着点A 按逆时针方向旋转,点P 的对应点是点Q ,则线段MQ 的长度的最大值与最
小值的差为 。

四、解答题:(本大题2个小题,每小题7分,共14分)
192
20161cos60tan 4512-︒⎛⎫
⨯-- ⎪⎝⎭
每天迟到人数折线统计图每天迟到人数占本周迟到总人数
百分比扇形统计图20、化简:(1)()()()2
3323a a a -+-+; (2)
3325222x x x x x -+⎛⎫
÷-+ ⎪++⎝⎭
21、初三年级对上周迟到的学生人数进行统计后,制成了如下两幅不完整的统计图: (1)本周内每天迟到人数的极差是__________。

(2)请将折线统计图补充完整;
(3)统计有4名同学迟到达到2次及以上,其中有3名男生,年级拟从这4名同学中任选2人了解迟到原因,请你用列表法或画树状图的方法求出所选同学为一男一女的概率。

22、酷爱写诗的陈老师,某日到南山采风,结束后步行下山回家,发现下山路AB 为一条坡度为i =5:12的斜坡,在斜坡下端B 处有一座塔,陈老师在A 处测得塔顶P 的俯角为14°,沿斜坡前行65米到达B 处,请根据以上条件求塔的高度BP 。

(参考数据:tan 14°≈0.25,sin 14°≈0.24,cos 14°≈0.97)
23、对于平面直角坐标系中的任意两点()111,P x y ,()222,P x y ,我们把()121212,d P P x x y y =-+-叫做P 1、P 2两点间的直角距离。

(1)已知点A (1,1),点B (3,4),则d (A ,B )= 。

(2)已知点E (a ,a ),点F (2,2),且d (E ,F )=4,则a = 。

(3)已知点M (m ,2),点N (1,0),则d (M ,N )的最小值为 。

(4)设()000,P x y 是一定点,Q (x ,y )是直线y =ax +b 上的动点,我们把()0,d P Q 的最小值叫做P 0到直线y =ax +b 的直角距离,试求点M (5,1)到直线y =x +2的直角距离。

24、随着私家车的增多,节假日期间,高速公路收费站经常拥堵严重,去年元旦早上8点,某收费站出城方向有120辆汽车排队等候收费通过,假设每分钟到达收费站的汽车数量保持不变,每个收费窗口每分钟可以通过的汽车数量也不变,若开放5个收费窗口,则需要20分钟才能将原来排队等候的汽车及后来到达的汽车全部收费通过;若开放全部6个窗口,只需15分钟。

(1)请求出每分钟到达收费站的车辆数以及每个收费窗口每分钟可以通过的车辆数;
(2)为了缓减拥堵,今年元旦节前,该收费站将出城方向的6个窗口中的若干个改造成了ETC 通道,已知ETC 通道每分钟可以通过10辆车,今年元旦早上8点有130辆车排队等候收费通过,在每分钟到达的汽车数量比去年同期增长50%的情况下,不到5分钟所有排队等候的汽车及后来到达的汽车全部收费通过,请问至少有几个收费窗口改造成了ETC 通道?
五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡...(卷.
)中对应的位置上。

F
F
F
25、已知正方形ABCD中,点E在BC上,连接AE,过点B作BF⊥AE于点G,交CD于点F。

(1)如图1,连接AF,若AB=4,BE=1,求AF的长;
(2)如图2,连接BD,交AE于点N,连接AC,分别交BD、BF于点O、M,连接GO,求证:GO平分∠AGF;
(3
)如图3,在第(2)问的条件下,连接CG,若CG⊥GO,求证:AG;
26、如图1,在平面直角坐标系中,抛物线2
29
y x bx c =-
++与x 轴交于点A (-3,0),点B (9,0),与y 轴交于点C ,顶点为D ,连接AD 、DB ,点P 为线段AD 上一动点。

(1)求抛物线的解析式; (2)过点P 作BD 的平行线,交AB 于点Q ,连接DQ ,设AQ =m ,△PDQ 的面积为S ,求S 关于m 的函数解析式,以及S 的最大值;
(3)如图2,抛物线对称轴与x 轴交于点G ,E 为OG 的中点,F 为点C 关于DG 对称的对称点,过点P 分别作直线EF 、DG 的垂线,垂足为M 、N ,连接MN ,当△PMN 为等腰三角形时,求此时EM 的长。

相关文档
最新文档