七年级数学上册 5.4 我变胖了教案 (新版)北师大版
北师大版初中七年级数学上册-《我变胖了》教学设计-03
《我变胖了》教学设计一、说教材的地位和作用本节课是七年级上册第五章第四节,也学生学习一元一次方程含义和解一元一次方程的解法后,通过分析图形问题中的数量关系,建立一元一次方程解决实际问题,认识方程模型的重要环节。
二、说教学目标:1、知识目标:①让学生通过分析实际问题中的“不变量”,建立方程解决问题。
②让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型。
2、能力目标:设未知数,正确求解,并验明解的合理性。
3、情感目标:激发学生的学习情绪,让学生在探索问题中学会合作。
三、说教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
四、说教学难点:如何从实际问题中寻找等量关系建立方程。
五、说教学方法:三疑三探自探式六、数学思想方法:方程的思想、化归数学思想七、说教学过程:引入:情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子.每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)请大家谈自己的看法!1、设疑自探动手把自己的橡皮泥做作圆柱压一压,看看有什么变化!手压前和手压后有何变化?你发现了一个相等关系没有?能用自己的话告诉大家吗?①我为什么会变胖?变胖过程有那些量在变化,那些量没有变化?②利用一元一次方程怎样解决等体积变化问题?③利用一元一次方程等周长变形问题?④列方程的关键是什么?⑤周长不变,围成长方形图形和正方形,那种面积最大?⑥应用方程解决问题的一般步骤是什么?2、解疑合探问题1:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?第一步:引导学生审题第二步:假设未知数第三步:找等量关系第四步:列方程第五步:解方程第六步:解释其解的合理性第七步:答3、质疑再探问题2:①把一根铁丝围成一个长方形,有多少种围法?它们的周长改变了吗?它们的面积都相等吗?②用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,此时长方形的长、宽各是多少米呢?面积是多少?③使长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与第一次所围成的长方形相比,面积有什么变化?④若使长方形的长和宽相等,即围成一个正方形,此时正方形的边长是多少米?围成的面积与前两次围成的面积相比,又有什么变化?4、拓展运用①墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示。
数学54我变胖了教案1(北师大版七年级上)
5.4我变胖了教学目标:⒈让学生通过分析实际问题中的“不变量”,建立方程解决问题⒉让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型⒊设未知数,正确求解,并验明解的合理性教学重点:教学难点:如何从实际问题中寻找等量关系建立方程.教具:多媒体、量杯、两瓶矿泉水(容量一样,一个短而宽,一个长而窄)教学过程:一、引入:情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子。
每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐。
有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的。
没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)学生看到这里都笑了起来。
教师把动画关了教师:有什么值大家这么高兴?学生:是猴子,他们蠢死了。
4+3和3+4都是一样的。
学生1:A多学生2:B多学生3:一样多教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了。
教师:不要紧张,现在还有一个机会证明自己,请看问题1:把一个长5厘米,宽2厘米,高40厘米的长方体铁块锻压成一个半径为4厘米的圆柱体,问圆柱体的高是多少?问题2:有个同学用20厘米的铁丝围成一个长比宽多2厘米的长方形,问长方形的长和宽各是多少?教师让学生回答学生4:问题1的体积是等量学生5:问题2铁丝的长度是等量教师:下面请大家用方程形式把他们表示出来,看哪一个小组做的最好教师巡视后,见到各组已做完。
(对做的最快的进行表扬)教师:请大家把两个问题的结论找出来教师巡视后,把做的最好一组的过程放在实物投影仪上让其他学生观看,并在此时规范方程格式。
问题3:问题2中的铁丝在围成什么图形的时候面积最大,大多少?学生通过合作比较之后提出圆形的面积最大,并求出具体的数值课堂练习P165、随堂练习让学生做完之后,进行小组检查小结本课学了如何在问题中寻找等量关系,并建立方程解决问题。
北师大版七年级上册第五章:5.4我变胖了课程设计
北师大版七年级上册第五章:5.4我变胖了课程设计一、教材分析1. 教材基本情况《北师大版七年级上册》第五章“我的身体变化”中的5.4节,“我变胖了”是让学生认识到导致肥胖的原因和对健康带来的影响。
学生需要了解什么是肥胖,什么是BMI指数,以及该如何调整自己的饮食和运动习惯来保持健康。
2. 教材目标•了解肥胖与健康之间的关系;•掌握BMI指数及其计算方法;•能够通过控制饮食及适当的运动来避免肥胖问题。
二、教学设计1. 教学目标•知道什么是肥胖,了解肥胖对健康的影响;•讲解BMI指数及其计算方法,让学生了解自己的身体状况;•学习如何调整饮食和运动习惯来保持健康。
2. 教学重点和难点•重点:讲解BMI指数及其计算方法,控制饮食和运动的习惯。
•难点:掌握适量的饮食及运动是如何影响身体健康的。
3. 教学过程(1)引入新知识讲解肥胖是常见的慢性病,什么是BMI指数。
(2)讲解BMI指数及其计算方法•讲解BMI指数的定义和计算方法•让学生用体重和身高来计算自己的BMI指数•讨论BMI指数的意义及其与健康的关系(3)控制饮食•引导学生学习合理的饮食结构•讲解饮食的适量原则•指导学生如何选择健康的食物(4)适当的运动•讲解运动对身体的好处•指导学生如何选择适当的运动方式•强调运动的适度原则(5)小结对本课的重点内容进行总结,并回答学生提出的相关问题。
4. 教学辅助材料•PPT课件•BMI指数计算器三、教学反思此次教学中,我主要讲解了肥胖的原因及对健康的影响,BMI指数的定义与计算方法,以及饮食和运动习惯的控制对身体健康的重要性。
教学过程中,我利用PPT和计算器等教学工具,让学生更容易理解和掌握知识。
在教学过程中,我发现学生对于BMI指数的概念和计算方法还不是很清楚。
这需要我在今后的教学中给予更充分的讲解和引导。
因此,我将通过更多的实例让学生更容易理解BMI指数的概念和计算方法。
另外,我也需要注意教学时的语言和思路清晰,避免让学生产生困惑。
北师大版七年级上册《5.4 我变胖了》教学设计
5、4 我变胖了教学目标:1、让学生通过分析实际问题中的“不变量”,建立方程解决问题2、让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型3、设未知数,正确求解,并验明解的合理性4、激发学生的学习情绪,让学生在探索问题中学会合作教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性教学难点:如何从实际问题中寻找等量关系建立方程教具:多媒体、量杯、两瓶矿泉水(容量一样,一个短而宽,一个长而窄)教学过程:情景:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄)问到那个水多?学生1:A多学生2:B多学生3:一样多教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了。
教师:不要紧张,现在还有一个机会证明自己,请看找出下列问题中的等量关系问题一:将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?1、它在锻压前和锻压后有何变化?2、你发现有什么相等关系?3、你能用你的语言表达出来吗?4、你能用数学表达式表示出来吗?5、把你列的方程写在草稿本上,与你的同桌交流,你做对了吗?6、把它解出来,与同桌交流,看谁做得又快又准确。
注意,验明解的合理性。
问题二:小明用10米的铁丝围成一个长方形。
长比宽多1.4米和0.8米和长宽一样时,找出长方形里的等量关系。
教师让学生回答学生:问题1的体积是等量学生:问题2铁丝的长度是等量问题三:问题2中的铁丝在围成什么图形的时候面积最大,大多少?学生通过合作比较之后提出圆形的面积最大,并求出具体的数值课堂练习:P165、随堂练习1.用两根等长的铁丝,分别绕成一个正方形和一个圆. 求这两根等长的铁丝绕成的正方形和圆计算说明谁的面积大?2. 墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示。
小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示。
北师大版-数学-七年级上册-【步步为“赢”】北师大七上数学5.4我变胖了 导学案
5.4我变胖了学习目标、重点、难点【学习目标】1.通过分析图形问题中的数量关系,运用方程解决问题.进一步体会运用方程解决问题的关键是抓住等量关系,并认识方程的重要性.2.通过对“变化中的不变量”的分析,提高分析问题、解决问题的能力.【重点难点】寻找面体积问题中的等量关系。
知识概览图相关分式—形积变化问题新课导引图5—4—1是一筒状的地膜示意图,其内圆半径和外圆半径分别为r=10厘米和R=20厘米,高h=50厘米.如果地膜的厚度是0.005厘米,你能计算出这些地膜的总长度是多少吗?教材精华知识点1 相关公式长方体体积=长×宽×高.圆柱体积=πr2h(h为圆柱的高,r为底面半径).长方形周长=2×(长+宽),长方形面积=长×宽.知识点2 形积变化问题对于这类问题,虽然形状、面积和体积都可能发生变化,但应用题中仍然含有一个相等关系,要通过分析题意和题目中的数量关系,把这个能够表示应用题全部含义的等量关系找出来,然后根据这个等量关系列出方程.此类问题常见的有以下几种情况:(1)形状发生了变化,而体积没变.此时,等量关系为变化前后体积相等.(2)形状、面积发生了变化,而周长没变.此时,等量关系为变化前后周长相等.(3)形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为等量关系. 课堂检测基本概念题1、用5.2米长的铁丝围成一个长方形,使得长比宽多0.6米,围成的长方形的长为多少米?设长方形的宽为x米,可列方程为( )A.x+(x+0.6)=5.2B.x+(x-0.6)=5.2C.2=5.2D.2=5.2综合应用题2、用两根等长的铁丝分别围成一个正方形和一个圆,已知正方形边长比圆的半径长2(π-2)m,求两根等长铁丝的长度,并通过计算比较说明谁的面积大.探索创新题3、如图5-4-2所示,地面上钉着用一根彩绳围成的直角三角形,如果将直角三角形锐角顶点的一个钉子去掉,并将这根彩绳钉成一个长方形,则所钉成的长方形的长、宽各是多少?面积是多少?体验中考古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.如图5—4—3,圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( )A.8)1060(26)1060(2x ++=+ππ B. 66028)60(2⨯=+ππx C.2π(60+10)×6=2π(60+x)×8D.2π(60-x)×8=2π(60+x)×6学后反思附: 课堂检测及体验中考答案课堂检测1、解析:依据长方形周长公式就可得答案. 答案:C2、分析:此题的等量关系为:正方形周长=圆周长.解:设圆的半径为r m ,则正方形边长为m.由题意得2πr=4(r+2π-4),即r =4.故圆周长是8π m ,圆面积是16π m 2,正方形面积是4π2m 2.因为16π>4π·π,所以圆的面积更大.答:铁丝长为8π m ,圆的面积大.规律 周长相等的圆和正方形,圆的面积大.3、分析:由于直角三角形有两个锐角,所以此题应分两种情况讨论:去掉顶点A 的钉子围成一个长方形,此时BC 是长方形的一条边,或去掉顶点B 的钉子围成一个长方形,此时AC 是长方形的一条边.我们可以把AC 或BC 分别看做长方形的长,把宽设为x ,在图形变化过程中,彩绳的长度保持不变,即等量关系为:三角形的周长=长方形的周长.解:设长方形的宽为x 当去掉顶点A 的钉子时,6+8+10=6×2+2x ,解得x =6,所以长方形的长为6,宽为6,S 1=6×6=36.当去掉顶点B 的钉子时,6+8+10=8×2+2x ,解得x=4,所以长方形的长为8,宽为4,S 2=8×4=32.答:所钉成的长方形的长为6,宽为6,面积为36;或长为8,宽为4,面积为32. 体验中考解析:根据挪动前6人之间的距离与挪动后8人之间的距离相等,可列方程为:8)1060(26)1060(2x ++=+ππ.答案: A。
七年级上册数学我变胖了教案 (1)
5.4我变胖了
学习目标
1. 通过分析实际问题中的数量关系,建立方程解应用题。
2.用实例对一些数学猜想做出检验,从而增加猜想的可信程度或推翻猜想。
学习过程
前置准备:
一个面团压扁前有什么关系?
自主学习:
请同学自己完成教材P182的问题中的表格,并让同位交流问题中等量关系的寻找方法。
合作交流:
1.请同学们首先自主学习例1,然后与同伴交流你的学习方法.
归纳总结:同桌交流归结此类应用题的解题思想方法。
例题解析:
教材P186,问题解决2。
当堂训练:
1上课时,同学们将自制的橡皮泥圆柱体制成了不同的几何体;长方体、正方体等,这些几何体中不变的是()
A、颜色
B、形状
C、体积
D、表面积
学习笔记:
1.我掌握的知识。
2.我不明白的问题。
课下训练:
1、一个梯形的上底是6cm,下底是12cm,它的面积是144cm2,则梯形的
高是。
2、若把一个圆柱加粗,使它的半径是原来的三倍,则其体积变为原来的倍。
中考真题:
(2003年杭州)用直径为120mm的圆钢锻造成重5.9kg的工件,每间立方米的圆钢重7.8kg,问需要截取的圆钢的长是多少?。
北师大版课标初中七年级数学上《一元一次方程我变胖了》三课时教学设计
北师大版课标初中数学七年级七年级上一元一次方程我变胖了教学设计学科名称:我变胖了(初中数学七年级)所在班级情况,学生特点分析:七年级(3)班现有学生39人,其中男生20人,女生19人该班学生数学基础较好,对数学的学习兴趣较浓。
本章知识点在理解的基础上更易掌握。
教学课时:2课时第一课时学习目标1. 通过分析实际问题中的数量关系,建立方程解应用题。
2.用实例对一些数学猜想做出检验,从而增加猜想的可信程度或推翻猜想。
学习过程前置准备:一个面团压扁前有什么关系?自主学习:请同学自己完成教材P182的问题中的表格,并让同位交流问题中等量关系的寻找方法。
合作交流:1.请同学们首先自主学习例1,然后与同伴交流你的学习方法.归纳总结:同桌交流归结此类应用题的解题思想方法。
例题解析:教材P186,问题解决2。
当堂训练:1上课时,同学们将自制的橡皮泥圆柱体制成了不同的几何体;长方体、正方体等,这些几何体中不变的是()A、颜色B、形状C、体积D、表面积学习笔记:1.我掌握的知识。
2.我不明白的问题。
课下训练:1、一个梯形的上底是6cm,下底是12cm,它的面积是144cm2,则梯形的高是。
2、若把一个圆柱加粗,使它的半径是原来的三倍,则其体积变为原来的倍。
中考真题:(2003年杭州)用直径为120mm的圆钢锻造成重5.9kg的工件,每间立方米的圆钢重7.8kg,问需要截取的圆钢的长是多少?第二课时一、教学目标1.使学生知道形积问题的意义,能分析题中已知数与末知数之间的相等关系,列出一元一次方程解简单的应用题;2.使学生了解列出一元一次方程解应用题的方法(含5个步骤)二、教学重点和难点列出一元一次方程解有关形积变化问题是重点;依题意准确把握形积问题中的相等关系是难点。
三、教学过程(1).复习引入(课前复习)钢铁工人正在锻造车间工作(照片或挂图)1.列方程解应用题应注意哪些事项?一是正确审清题意,找准“等量关系” ;二是列出方程正确求解;三是判明方程解的合理性;2.列出方程解应用题的5个步骤是什么?3.填空:长方形的周长= 面积=长方体的体积= 正方体的体积=圆的周长== 面积 =圆柱的体积=(2).例题讲解例1、将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少?分析:设锻压后圆柱的高为x 厘米,填写下表:锻压前锻压后底面半径cm cm高36cm xcm体积∏*()2 *36∏*()2 *x解:设锻压后圆柱的高为x 厘米,根据等量关系,列出方程:解得 x =9 因此,高变成了9厘米。
我变胖了
课题《我变胖了》教学设计教学目标(一)教学知识点1.图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步了解一元一次方程在解决实际问题中的应用.(二)能力训练要求1.通过分析图形问题中的数量关系,建立方程、解决问题.进一步提高分析问题、解决问题的能力.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.(三)情感与价值观要求使学生在动手、独立思考、方程意识建立的过程中,体会数学应用的价值,鼓励学生大胆进行质疑和创新,激发学生的好奇心和主动学习的欲望.教学重点运用方程解决实际问题.教学难点寻找问题中的等量关系.教学准备学生准备橡皮泥,等长的线绳.教学过程一、情景导入(教师讲故事)故事:有一个“又矮又胖”的圆柱,它总抱怨自己的身材不好看,工人叔叔就把它锻造成了“又瘦又长”的圆柱,它望着镜中的自己,说“我变瘦了”.(教师板书课题——我变瘦了,然后出示幻灯片1)二、新课1.请同学们根据自己的理解分别画出“矮胖”形圆柱和“瘦长”形圆柱.2.请同学们用橡皮泥做“矮胖形”形圆柱形,然后将它“变高变瘦”一些.3.出示幻灯片2,让学们观察图中前后的圆柱有什么变化?具体从底面半径、高、体积来叙述.结论:“矮胖”→“瘦长”.底面半径变小,高变长,体积不变.例1:将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱,锻压成底面直径是20厘米的“矮胖”的形圆柱,高变成了多少?分析:展示幻灯片3(1)填写下图中的有关数据.(2)完成下表:(3)在这个问题中的相等关系是:锻压前的________=锻压后的________________.让学生利用等量关系,列出方程,并解方程.教师根据情况讲方程中 的处理方程方法,让学生积累数学经验.解:出示幻灯片4。
设高变成了x厘米,根据题意,得x=36答:高变成了36厘米.做一做:用等长的线绳首尾相接围成长方形,(分小组进行)比较各小组的结果,你发现了什么?(具体从长、宽,周长、面积等叙述.)结论:长、宽不同,周长相同,面积不变.(保留不同意见,例2后再给予肯定.)例2:用一根长10米的铁丝围成一个长方形,(1)使得该长方形的长比宽多1.4米,此时长方形的长宽各是多少米?它围成的面积是多少?展示幻灯片5(2)使得该长方形的长比宽多0.8米,此时长方形的长宽各是多少米?它围成的面积是多少?展示幻灯片6(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少?面积是多少?展示幻灯片7(4)上面(1)、(2)、(3)中的面积有什么变化?展示幻灯片8让学生通过动手操作、思考,寻找等量关系,列方程,解答,发现围成的长方形的长和宽在发生变化,周长不变,并且长与宽越接近,面积越大.围成的四边形中正方形的面积最大.以上结果都由学生总结,补充得出.思考题:用同样长的线绳可以围很多不同的平面图形,当围成什么图形时面积最大?(圆面积最大)此题具有一定的开放性,教师对学生得到的结论给予补充肯定,并告之具体原因会在高中阶段学到.三、练习:1、展示幻灯片9墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示,小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示,小颖所钉长方形的长、宽各为多少厘米?让学生按题目要求将自己围成的等腰梯形变为长方形,思考前后的等量关系是什么?再解答.2、展示幻灯片10:“小明要考考你”3、展示幻灯片11:思考。
七年级数学上册 5.4我变胖了教案 北师大版【教案】
根据题意,得
此时长方形的长为3.2米,宽为1.8米;面积为5.76平方米。
(2)使得长方形的长比宽多0.8米,
此时长方形的长为2.9米,宽为2.1米,
面积为6.09平方米。
此时长方形的面积比(1)中面积增大0.33平方米。
解:设此时长方形的宽为x米,则它的长为(x+0.8)米。
3.情感目标
通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.
教学重点
列出一元一次方程解有关形积变化问题
教学难点
依题意准确把握形积问题中的等量关系
教学准备
课本、练习册
教学时间
2010年12月日
学情分析
教学内容
§5.4我变胖了
执教者:
课本:第182页
教学目标
1.知识目标
①借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.
②通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.
2.能力目标
通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.
2、解应用题的五个步骤是什么?
教学过程
备注
一、复习引入
1.列方程解应用题的步骤:
①审题;②题设(设元);
③列方程;④解方程;
⑤检验
2.填空:
长方形的周长= 面积=
长方体的体积= 正方体的体积=
圆的周长= 面积=
圆柱的体积=
二、例题讲解
[初中数学]我变胖了教案 北师大版
《我变胖了》教案教学目标知识与能力通过分析实际问题中的数量关系,建立方程解决问题,进一步提高分析解决问题能力。
过程与方法通过主体参实验操作及独立思考,体会运用方程解决问题的关键是寻找应用问题中的等量关系。
情感态度与价值观鼓励学生积极参与数学学习活动,激发学生的好奇心和主动学习的欲望,建立学好数学的自信心。
教学重点难点:寻找面体积问题中的等量关系。
教学过程创设情景、引发探究本节课我们学习的课题是《我变胖了》,刚看见这个题目时,我下意识的摸摸自己的脸,看看自己的身材以为我真的胖了呢?事实上原来不是这回事,同学们你们想知道这是怎么一回事吗?探究新知、学习概念做一做:请同学们看我的演示,这是一块圆柱形橡皮泥,我用力向下一压,你们看它怎么了?(它矮了,也就胖了!哦,原来是说圆柱胖了啊!)刚才的演示与轧钢工厂里的锻压过程完全雷同。
请看下面的例子有一位工人师傅要锻造底面直径为20厘米的“矮胖”形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长”形圆柱,这位师傅想知道将这个“瘦长”形圆柱锻压成“矮胖”形圆柱。
高就变成了多少?你能帮他吗?在这个过程中,圆柱体的哪些量发生了变化?而哪些量没有变化?(底面半径增大、高度减小、体积没变、重量没变)我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积和锻压解:设锻压后圆柱的高为x 厘米,根据题意,列出方程:3652⨯⨯π=x ⨯⨯210π解,得x=9答:高变成了解情况厘米。
我们再来看一个例子(课本164P 例1)[例1]用一根长为10米的铁丝围成一个长方体。
(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?[分组讨论]1、用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题。
5.4《我变胖了》教学设计
(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?面积呢?
分析:由题意知,长方形的周长始终是不变的,在解决这个问题中,要抓住这个等量关系。
解:(1)设此时长方形的宽为x米,则它的长为(x+1.4)米。
根据题意,得
2x =3.6 x= 1.8
1.8+1.4 = 3.2 面积 = 1.8*3.2=5.76
此时长方形的长为3.2米,宽为1.8米;面积为5.76平方米。
(2)使得长方形的长比宽多0.8米,此时长方形的长宽分别是多少,与(1)中相比,它的面积发生了什么变化?
解(略)
此时长为( 2.9 )米,宽为( 2.1 )米,面积为( 6.09 )平方米。
此时长方形的面积比(1)中面积增大( 0.33 )平方米。
(3)若长与宽相等,即变为正方形时,这个正方形的边长是多少?与(2)中相比面积又发生了什么变化?
此时正方形边长为(2.5)米,面积为(6.25 )平方米。
比(2)中面积增大(0.16 )平方米。
思考:做完这道题,大家有什么想法?用一根绳子围长方形,能得到最大面积吗?什么时候面积最大?
3、随堂练习:
(1)墙上钉着用一根彩绳围成的梯形形状的装饰物,小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,那么,小颖所钉长方形的长和宽各为多少厘米?
(2)小明的爸爸想用一根10米长的绳子靠墙边围一个鸡棚,使得鸡棚的长比宽多4米,但他怎么也围不成,你能帮他想个办法吗?
4、课堂小结:学完本节课你有什么收获?
5、作业布置
P/186页习题5.7 问题解决1
五、板书设计(略)
六、教学反思。
七年级数学上册 我变胖了学案(无答案) 北师大版
(一)预习提示 1.瘦高圆柱变为矮胖圆柱的过程中,什么发生了变化,什么没变? 2.在这个问题中的等量关系是什么? 3.若设锻压后的圆柱高为 χ 厘米,填写下表: (注意:体积只要表示成带л 的形式即可,无 需计算出结果) 锻压前 底面积 高 体积 4.据题意列出方程并试着求出解。 锻压后
(二)预习检测 三、板演展示 3 1.用体积为 448 cm 的圆钢锻造一个高为 7 cm 且底面积是正方形的长方体零件毛坯,则底面 讨论交流部分,各小组展示在自己小组的位置。 正方形的边长为多少? 四、课堂检测 (1)在由圆钢变为长方体零件的过程中,什么不变?因此这个题目的等量关系是一一一= 若小明用 10 米的竹篱笆在墙边围成一个长方形鸡棚,使长比宽大 5 米,那么,请问小明围 (2)解: 成的鸡棚的长和宽又是多少呢?
学习内容
5.4 我变胖了
主备
课时
1
用一根长为 10 米的铁丝围成一个长方形, 一组:使得该长方形的长比宽多 1.4 米,此时长方形的长宽各为多少米?
学习目标: 一、 预习自学
1.在图形的变化中抓住不变量(如体积不变、周长不变)列方程解应用题; (1)动手用细铁丝围一下,看看细铁丝的长度变为长方形的什么了? (2)这个题目中的等量关系是什么? 2.进一步熟练解一元一次应用题。 (3)请你设出未知数,并列方程求出解。 (4)试着求出此长方形的面积。 二组:使得该长方形的长比宽多 0.8 米,此时长方形的长宽各为多少米? (1)动手用细铁丝围一下,看看细铁丝的长度变为长方形的什么了? (2)这个题目中的等量关系是什么? (3)请你设出未知数,并列方程求出解。 (4)试着求出此长方形的面积。 三组:使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长为多少米? (1)动手用细铁丝围一下,看看细铁丝的长度变为正方形的什么了? (2)这个题目中的等量关系是什么? (3)请你设出未知数,并列方程求出解。 (4)试着求出此正方形的面积。 四组:收集各组算得数据,完成下表: 长 长比宽多 1.4 米 长比宽多 0.8 米 正方形 你发现了什么? 宽 面积
北师大版七上《我变胖了》word教案(2)
年级:七年级学科:数学执笔:审核:内容:5.4我变胖了课型:新授时间:2011年月年班小组姓名学习目标:1、用实例对一些数学猜想做出检验,从而增加猜想的可信程度•2、通过分析图形问题中的基本等量关系,建立方程的解决问题.3、培养学生敢于面对和克服数学活动中困难的能力.学习重点:学会分析图形中等量关系来列方程、解方程.学习难点:学会分析图形中等量关系来列方程、解方程.学习过程:一、预习导学:1、填空:长方形的周长= _____________ 面积= ____________长方体的体积 =____________ 正方体的体积 = _________圆的周长==面积=圆柱的体积= _________________________________________ 2、如果长方形的面积是56平方厘米,它的长与宽相差1厘米,请问这个长方形的长、宽各是多少厘米?(只列方程)3、一圆柱的体积是314立方厘米,底面圆的半径是5厘米,此圆柱的高为多少厘米?(只列方程)4、周长一定的图形变形的基本关系式:变形前的周长= _________________________5、等积变形的基本关系式:变形前的体积 = ____________________________ 。
、合作探究:阅读教材182--184页,完成下列内容:(一)等体积变形问题的基本关系式:将一个底面直径是10厘米、高为36厘米的“瘦长” 面直径为20厘米的“矮胖”形圆柱,高变成了多少?分析:锻压前的体积二锻压后的体积那么在这个问题中有如下的等量关系:解:设锻压后圆柱的高为x厘米,填写下表:根据等量关系,列出方程:解得_________________答:高变成了____________ 厘米。
组内交流:形状发生了变化,而__________ 没变•练习:(只列方程)1、要锻造直径是100mm高为80mm勺圆柱形毛坯,需截取直径为80mm勺圆钢长为多少?2、将一个底面直径是10cm高为36cm的“瘦长”形圆柱锻压成底面直径为20cm 的“矮胖”形圆柱,高变成了多少?(二)长方形的长、宽变化与面积变化之间的关系: 用一根长10米的铁丝围成一个长方形。
七年级数学上册 我变胖了教案 北师大版
我变胖了教学设计教学设计思想π,圆柱体的体积公式遗忘等,教师应及时加以纠正。
鼓励让学生谈想法和体会,关注学生课堂活动参与意识,使课堂活动富有生气。
联系生活实际,用数学方法解决实际问题,逐步改变教师的教学行为。
教学目标知识与技能1.能找到图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.过程与方法通过分析图形问题中的数量关系,建立方程、解决问题.进一步提高分析问题、解决问题的能力.情感态度价值观在动手、独立思考、方程意识建立的过程中,进行大胆质疑和创新,体会数学应用的价值,激发主动学习的欲望.教学重点1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.教学难点寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学方法直观——自主探索的方法在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.教具准备橡皮泥、细铁丝.课时安排1课时教学过程Ⅰ.创新问题情境,引入新课[师]在我们的现代社会里,人们不经意地就会听到或看到一些“减肥”的广告.一听别人说自己最近胖了,就考虑怎样减去多余的脂肪.可我们今天不研究“减肥”,研究什么呢?我们今天研究“我变胖了”.Ⅱ.学生通过直观感知、操作等活动,寻找图形问题中的等量关系.1.做一做[师]现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“瘦长”的圆柱体;然后再让这个“瘦长”的圆柱“变胖”,变成一个又矮又胖的圆柱,随后思考两个问题:(1)在你操作的过程中,圆柱由“瘦”变“胖”的过程中,圆柱的底面直径变了没有?圆柱的高度呢?(2)在这个变化过程,是否有不变的量?是什么没变?(让学生亲自动手操作,在动手操作的过程中,体会哪些量发生了变化,哪些量没有变化?教师对基础差的同学可适当引导)[生]在我操作的过程中,圆柱的直径和高度都发生了变化,而橡皮泥的体积没有变.[师]很好.我这儿有一个问题:有一位工人师傅要锻造底面直径为20厘米的“矮胖”形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长”形圆柱,这位师傅想知道将这个“瘦长”形圆柱锻压成“矮胖”形圆柱.高就变成了多少?你能帮他吗?[生]用一元一次方程来解.这个问题的等量关系:锻压前的体积=锻压后的体积.[师]这位同学的分析很好.下面我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积和锻压后的体积.请一位同学填写.[生]锻压前的圆柱的底面半径为10÷2=5(厘米),高为36厘米,所以锻压前的圆柱的体积为π×52×36(立方厘米).锻压后的圆柱的底面半径为20÷2=10厘米,高设为x厘米,所以锻压后的体积为π×102×x.[师生共析]由等量关系我们便可得到方程:π×52×36=π×102×x.[师]列出方程我们只是走完“万里长征”的重要的第一步,如何解这个方程呢?[生]将π换成3.14,算出x的系数π×102,然后将系数化为1就解出了方程.[生]我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.[师]这位同学的想法很好.下面我们共同把这个题的过程写一下.解:设锻压后圆柱的高为x厘米,根据题意,列出方程:π×52×36=π×102×x解,得x=9答:高变成了9厘米.[师]我们再来看一个例子.(课本P164例1)[例1]用一根长为10米的铁丝围成一个长方体.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?[分组讨论](1)用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题.(2)请每一小组派一个代表汇报三个小问题的解答过程.(3)反思各组的解答过程讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验.[小组汇报]解:(1)设此时长方形的宽为x米,则它的长为(x+1.4)米,根据题意,得[x+(x+1.4)]×2=102x=5-1.42x=3.6x=1.8x+1.4=1.8+1.4=3.2此时长方形的长和宽分别为3.2米、1.8米.(2)此时长方形的宽为x米,则它的长为(x+0.8)米,根据题意,得[x+(x+0.8)]×2=102x=5-0.82x=4.2x=2.1x+0.8=2.1+0.8=2.9此时长方形的长和宽分别是2.9米和2.1米.它围成的长方形的面积为2.1×2.9=6.09(米2).而(1)中长方形的面积为3.2×1.8=5.76(米2).此时长方形的面积比(1)中面积增大6.09-5.76=0.33(米2)(3)设正方形的边长为x米.根据题意得4x=10x=2.5正方形的边长为2.5米,它所围成的面积为2.5×2.5=6.25(米2).比(2)中面积增大6.25-6.09=0.16(米2).[师生共析]我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米.由此便可建立“等量关系”.但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.[师]是不是用10米长的铁丝围成的正方形的面积最大.同学们不妨下去继续讨论这个问题.[例2]一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?分析:是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较.而此时就需找到“等量关系”建立方程.解:根据小王的设计可以设宽为x米,长为(x+5)米,根据题意,得2x+(x+5)=353x=30x=10因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.再来看小赵的设计可以设宽为x米,长为(x+2)米,根据题意,得2x+(x+2)=353x=33x=11因此小赵的设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,鸡场的面积为11×13=143(米2).Ⅲ.课堂练习(课本P165)1.解:设长方形的长为x厘米,根据题意得,2(x+10)=10×4+6×2.解,得x=16答:小颖所钉长方形的长和宽为16厘米,10厘米.Ⅳ.课时小结本节课通过分析一些图形如圆柱、长方形等的数量关系,建立方程解决问题.进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.Ⅴ.课后作业1.课本习题5.7,2.预习下一节《打折销售》并作市场调查.Ⅵ.活动与探究参看《读一读·“瞎转圈”的道理》过程:组织全班学生阅读此材料,并开展交流与体验,亲自到操场实际体会这一现象.过程:分小组进行,先让第一小组做实验,将他们的眼睛蒙上,然后叫他们一直向前走.看会有什么现象出现.其他组也做类似的实验.结果:他们每个人有些渐渐向右偏,有些渐渐向左偏转,最后都转起圈来,又踏上自己已走过的路径.上面的现象很神秘,也很有趣.但其中的道路很简单.可参看教材P166的解释.板书设计。
2019-2020年七年级数学上册 5.4我变胖了(第1课时)教案 北师大版
2019-2020年七年级数学上册 5.4我变胖了(第1课时)教案北师大版教学目标:⒈让学生通过分析实际问题中的“不变量”,建立方程解决问题⒉让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型⒊设未知数,正确求解,并验明解的合理性⒋激发学生的学习情绪,让学生在探索问题中学会合作教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.教学难点:如何从实际问题中寻找等量关系建立方程.教具:多媒体、量杯、两瓶矿泉水(容量一样,一个短而宽,一个长而窄)教学过程:一、引入:情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子。
每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐。
有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的。
没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)学生看到这里都笑了起来。
教师把动画关了教师:有什么值大家这么高兴?学生:是猴子,他们蠢死了。
4+3和3+4都是一样的。
情景2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄)问到那个水多?学生1:A 多学生2:B多学生3:一样多教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了。
教师:不要紧张,现在还有一个机会证明自己,请看附:找出下列问题中的等量关系问题1:把一个长5厘米,宽2厘米,高40厘米的长方体铁块锻压成一个半径为4厘米的圆柱体,问圆柱体的高是多少?问题2:有个同学用20厘米的铁丝围成一个长比宽多2厘米的长方形,问长方形的长和宽各是多少?教师让学生回答学生4:问题1的体积是等量学生5:问题2铁丝的长度是等量教师:下面请大家用方程形式把他们表示出来,看哪一个小组做的最好教师巡视后,见到各组已做完。
七年级数学上册 我变胖了教案 北师大版
我变胖了教学设计教学设计思想改变传统以讲解例题为主的教学方式,让学生经历试验、猜想、探索发现问题的过程,通过实际问题的解决,增强用数学方法解决问题的意识,教学中注意培养学生学习数学的主动性。
学生填表时,发现有些同学半径与直径混淆,方程中直接用3.14替代π,圆柱体的体积公式遗忘等,教师应及时加以纠正。
鼓励让学生谈想法和体会,关注学生课堂活动参与意识,使课堂活动富有生气。
联系生活实际,用数学方法解决实际问题,逐步改变教师的教学行为。
教学目标知识与技能1.能找到图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.过程与方法通过分析图形问题中的数量关系,建立方程、解决问题.进一步提高分析问题、解决问题的能力.情感态度价值观在动手、独立思考、方程意识建立的过程中,进行大胆质疑和创新,体会数学应用的价值,激发主动学习的欲望.教学重点1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.教学难点寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学方法直观——自主探索的方法在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.教具准备橡皮泥、细铁丝.课时安排1课时教学过程Ⅰ.创新问题情境,引入新课[师]在我们的现代社会里,人们不经意地就会听到或看到一些“减肥”的广告.一听别人说自己最近胖了,就考虑怎样减去多余的脂肪.可我们今天不研究“减肥”,研究什么呢?我们今天研究“我变胖了”.Ⅱ.学生通过直观感知、操作等活动,寻找图形问题中的等量关系.1.做一做[师]现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“瘦长”的圆柱体;然后再让这个“瘦长”的圆柱“变胖”,变成一个又矮又胖的圆柱,随后思考两个问题:(1)在你操作的过程中,圆柱由“瘦”变“胖”的过程中,圆柱的底面直径变了没有?圆柱的高度呢?(2)在这个变化过程,是否有不变的量?是什么没变?(让学生亲自动手操作,在动手操作的过程中,体会哪些量发生了变化,哪些量没有变化?教师对基础差的同学可适当引导)[生]在我操作的过程中,圆柱的直径和高度都发生了变化,而橡皮泥的体积没有变.[师]很好.我这儿有一个问题:有一位工人师傅要锻造底面直径为20厘米的“矮胖”形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长”形圆柱,这位师傅想知道将这个“瘦长”形圆柱锻压成“矮胖”形圆柱.高就变成了多少?你能帮他吗?[生]用一元一次方程来解.这个问题的等量关系:锻压前的体积=锻压后的体积.[师]这位同学的分析很好.下面我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积和锻压后的体积.请一位同学填写.[生]锻压前的圆柱的底面半径为10÷2=5(厘米),高为36厘米,所以锻压前的圆柱的体积为π×52×36(立方厘米).锻压后的圆柱的底面半径为20÷2=10厘米,高设为x厘米,所以锻压后的体积为π×102×x.[师生共析]由等量关系我们便可得到方程:π×52×36=π×102×x.[师]列出方程我们只是走完“万里长征”的重要的第一步,如何解这个方程呢?[生]将π换成3.14,算出x的系数π×102,然后将系数化为1就解出了方程.[生]我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.[师]这位同学的想法很好.下面我们共同把这个题的过程写一下.解:设锻压后圆柱的高为x厘米,根据题意,列出方程:π×52×36=π×102×x解,得x=9答:高变成了9厘米.[师]我们再来看一个例子.(课本P164例1)[例1]用一根长为10米的铁丝围成一个长方体.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米?它所围成的面积与(2)中相比有何变化?[分组讨论](1)用你手里的铁丝亲自动手操作,根据你的生活经验和操作过程以及用一元一次方程解决实际问题的基础,分组独立完成例1中的(1)(2)(3)三个问题.(2)请每一小组派一个代表汇报三个小问题的解答过程.(3)反思各组的解答过程讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验.[小组汇报]解:(1)设此时长方形的宽为x米,则它的长为(x+1.4)米,根据题意,得[x+(x+1.4)]×2=102x=5-1.42x=3.6x=1.8x+1.4=1.8+1.4=3.2此时长方形的长和宽分别为3.2米、1.8米.(2)此时长方形的宽为x米,则它的长为(x+0.8)米,根据题意,得[x+(x+0.8)]×2=102x=5-0.82x=4.2x=2.1x+0.8=2.1+0.8=2.9此时长方形的长和宽分别是2.9米和2.1米.它围成的长方形的面积为2.1×2.9=6.09(米2).而(1)中长方形的面积为3.2×1.8=5.76(米2).此时长方形的面积比(1)中面积增大6.09-5.76=0.33(米2)(3)设正方形的边长为x米.根据题意得4x=10x=2.5正方形的边长为2.5米,它所围成的面积为2.5×2.5=6.25(米2).比(2)中面积增大6.25-6.09=0.16(米2).[师生共析]我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米.由此便可建立“等量关系”.但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.[师]是不是用10米长的铁丝围成的正方形的面积最大.同学们不妨下去继续讨论这个问题.[例2]一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?分析:是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较.而此时就需找到“等量关系”建立方程.解:根据小王的设计可以设宽为x米,长为(x+5)米,根据题意,得2x+(x+5)=353x=30x=10因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.再来看小赵的设计可以设宽为x米,长为(x+2)米,根据题意,得2x+(x+2)=353x=33x=11因此小赵的设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,鸡场的面积为11×13=143(米2).Ⅲ.课堂练习(课本P165)1.解:设长方形的长为x厘米,根据题意得,2(x+10)=10×4+6×2.解,得x=16答:小颖所钉长方形的长和宽为16厘米,10厘米.Ⅳ.课时小结本节课通过分析一些图形如圆柱、长方形等的数量关系,建立方程解决问题.进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.Ⅴ.课后作业1.课本习题5.7,2.预习下一节《打折销售》并作市场调查.Ⅵ.活动与探究参看《读一读·“瞎转圈”的道理》过程:组织全班学生阅读此材料,并开展交流与体验,亲自到操场实际体会这一现象.过程:分小组进行,先让第一小组做实验,将他们的眼睛蒙上,然后叫他们一直向前走.看会有什么现象出现.其他组也做类似的实验.结果:他们每个人有些渐渐向右偏,有些渐渐向左偏转,最后都转起圈来,又踏上自己已走过的路径.上面的现象很神秘,也很有趣.但其中的道路很简单.可参看教材P166的解释.板书设计。
北师大版七年级上册第五章:5.4我变胖了课程设计 (2)
北师大版七年级上册第五章:5.4我变胖了课程设计一、教学目标1.知识目标:•了解人体如何储存脂肪,以及什么因素会导致人们变胖。
•掌握科学的减肥方法,以及如何保持健康的饮食习惯和生活方式。
2.能力目标:•培养学生的科学探究能力和分析问题的能力。
•提高学生的交流、合作、创新和运用知识的能力。
3.情感目标:•培养学生的健康意识和生活习惯,争取健康成长。
•培养学生的自信心和人际交往能力,同时增强对健康的重视。
二、教学内容1.人体储存脂肪的原因和作用。
2.引发变胖的主要因素,如不良的饮食习惯、缺乏体育锻炼、基因等。
3.科学减肥方法,如合理饮食、适量运动、保持良好的生活习惯。
4.如何树立正确的减肥观和健康观。
三、教学过程1. 导入环节1.通过情景模拟或图片比较,引出本课主题。
2.给学生讲述一则身体变化的故事,引导学生从个人经历出发思考减肥的原因和影响因素。
2. 讲授环节1.介绍人体脂肪的结构、特点等基本知识。
2.讲解人体脂肪储存的原因和作用。
3.分析引发变胖的主要因素,如不良饮食习惯、缺乏体育锻炼、基因等。
4.介绍科学的减肥方法,包括合理饮食、适量运动、保持良好的生活习惯等。
5.引导学生了解如何树立正确的减肥观和健康观。
3. 活动环节1.拆分成小组,让学生在小组内讨论自己的饮食习惯。
2.分析小组内同学的饮食习惯,让学生相互检视并制定合理的饮食计划,并给予提示和建议。
3.制定运动计划,鼓励学生进行各种创新的、有趣的小组运动,并形成反馈。
4. 总结环节1.教师总结本课的重难点内容。
2.引导学生反思、总结本次活动中的收获与不足,并提出自主学习计划。
四、教学评价1.反馈式评价:回顾本次活动的学生表现,采用学生自评、教师点评等方式,给予实时反馈。
2.组织式评价:根据学生表现和参与情况等相应综合评价,如班级贡献、小组创新、学生表现等。
五、课后拓展1.阅读并分析相关的科学减肥理论和方法。
2.进行健康饮食、适度运动等相关练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册 5.4 我变胖了教案(新版)北师大版
教学目标:
1.让学生通过分析实际问题中的“不变量”,建立方程解决问题
2.让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型
3.设未知数,正确求解,并验明解的合理性
4.激发学生的学习情绪,让学生在探索问题中学会合作
教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.
教学难点:如何从实际问题中寻找等量关系建立方程.
教学方法:引导发现
教学过程:
引入:
情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子.每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)
学生看到这里都笑了起来.教师把动画关了
教师:有什么值大家这么高兴?
学生:是猴子,他们蠢死了.4+3和3+4都是一样的.
情景2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄)问到那个水多?
学生1:A多
学生2:B多
学生3:一样多
教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了.
教师:不要紧张,现在还有一个机会证明自己,请看
附:找出下列问题中的等量关系
问题1:把一个长5厘米,宽2厘米,高40厘米的长方体铁块锻压成一个半径为4厘米的圆柱体,问圆柱体的高是多少?
问题2:有个同学用20厘米的铁丝围成一个长比宽多2厘米的长方形,问长方形的长和宽各是多少?
教师让学生回答
学生4:问题1的体积是等量
学生5:问题2铁丝的长度是等量
教师:下面请大家用方程形式把他们表示出来,看哪一个小组做的最好
教师巡视后,见到各组已做完.(对做的最快的进行表扬)
教师:请大家把两个问题的结论找出来
教师巡视后,把做的最好一组的过程放在实物投影仪上让其他学生观看,并在此时规范方程格式.
问题3:问题2中的铁丝在围成什么图形的时候面积最大,大多少?
学生通过合作比较之后提出圆形的面积最大,并求出具体的数值
课堂练习
P165、随堂练习
让学生做完之后,进行小组检查
小结
本课学了如何在问题中寻找等量关系,并建立方程解决问题.问题解决之后如何验证它的合理性
板书设计
教学后记。