霍尔效应与霍尔传感器简介
霍尔传感器资料
在制动过程中,各车轮制动未出现趋于抱死 时,ABS不工作,此时制动过程与常规制动 过程完全相同。在制动过程中,当ABS电脑 判定有车轮制动趋于抱死时,就开始对相应 的控制通道进行防抱死控制,将车轮滑移率 控制在最佳范围之间,直至汽车速度很低或 停止。
在制动过程中,如果汽车为高速急转弯,当
汽车的横向加速度达到一定值时,横向加速 度开关中的一对触点就会断开,ABS电脑不 再有蓄电池电压信号,ABS电脑由此判定汽 车横向加速度已超过设定的界限值,就会对 其防抱死控制过程进行修正,使ABS更为有 效地工作
图1 HE-01霍尔转速传感器
图2 霍尔速度传感器的内部结构
❖ 利用霍尔传感器测转速的结果原理如图2所示。 它实际就是利用霍尔开关与电机轴连接的轮 片上粘有多对小磁钢(N.S极),小磁钢越 多,分辨率就越高。霍尔开关固定在小磁钢 附近,轮旋转时,磁钢经过霍尔开关集成电 路时,开关集成器就会产生一个响应的脉冲, 检测出的单位时间的脉冲数,其长度就是轮 轴的转动周期T及其转速n。
1- 2 霍尔元件 (a)外形结构示意图 (b)图形符号
霍尔传感器
霍尔电压传感器
1.2 霍尔传感器的应用
(一)、差动霍尔电路制成的霍尔齿轮传感 器,如图1所示,新一代的霍尔齿轮转速传感 器,广泛用于汽车智能发动机,作为点火定 时用的速度传感器,用于ABS(汽车防抱死
制动系统)作为车速传感器等。
n=1/T
UH
=RH
IB d
K
HIB
霍尔电势正比于激励电流及磁感应强度,其灵敏度与霍尔常数
RH成正比而与霍尔片厚度d成反比。为了提高灵敏度, 霍尔元 件常制成薄片形状。
❖ ABS(Anti-lock Braking System)防抱死 制动系统,它与传统的制动系统协同工作, 是一种安全、有效的制动辅助系统.通过安装 在车轮上的传感器发出车轮将被抱死的信号, 控制器指令调节器降低该车轮制动缸的油压, 减小制动力矩,经一定时间后,再恢复原有 的油压,不断的这样循环(每秒可达5~10 次),始终使车轮处于转动状态而又有最大 的制动力矩。
霍尔传感器工作原理
霍尔传感器工作原理一、引言霍尔传感器是一种常用的非接触式传感器,它基于霍尔效应来检测磁场的变化。
本文将详细介绍霍尔传感器的工作原理及其应用。
二、工作原理1. 霍尔效应霍尔效应是指当电流通过一块导电材料时,如果该材料处于磁场中,会在材料的两侧产生电势差。
这是由于磁场对电子的运动轨迹产生了影响,导致电子在材料内部积累,从而形成电势差。
2. 霍尔元件霍尔传感器中常用的元件是霍尔元件,它通常由半导体材料制成,具有三个电极:电源电极、接地电极和输出电极。
电源电极提供电流,接地电极连接到地,而输出电极则测量霍尔元件两侧的电势差。
3. 工作原理当霍尔元件处于磁场中时,磁场会对电子的运动轨迹产生影响,使得电子在材料内部积累,从而形成电势差。
这个电势差会导致输出电极上出现电压信号,该信号与磁场的强度和方向有关。
通过测量输出电极上的电压信号,我们可以确定磁场的变化情况。
4. 应用领域霍尔传感器广泛应用于各个领域,包括汽车工业、电子设备、仪器仪表等。
以下是一些常见的应用场景:- 汽车行业:用于测量车速、转速、刹车系统等。
- 电子设备:用于探测开关状态、接近开关、电流测量等。
- 仪器仪表:用于测量磁场强度、角度、位置等。
三、优缺点分析1. 优点- 非接触式传感器:不需要与被测物理量直接接触,减少了磨损和损坏的风险。
- 高精度:霍尔传感器具有较高的精度,可以实现精确的测量。
- 快速响应:霍尔传感器的响应速度较快,能够实时检测磁场变化。
2. 缺点- 受外界磁场干扰:由于霍尔传感器是基于磁场变化来工作的,外界磁场的干扰可能会影响其测量结果。
- 温度敏感:霍尔传感器的性能可能会受到温度的影响,需要进行温度补偿。
四、总结霍尔传感器是一种基于霍尔效应的非接触式传感器,可以用于测量磁场的变化。
它具有高精度、快速响应等优点,在汽车工业、电子设备、仪器仪表等领域有广泛的应用。
然而,它也存在受外界磁场干扰和温度敏感等缺点。
为了提高其性能,可以采取一些措施,如屏蔽外界磁场和进行温度补偿等。
霍尔传感器工作原理
霍尔传感器工作原理引言:霍尔传感器是一种常见的传感器,广泛应用于电子设备和工业领域。
它通过利用霍尔效应来检测磁场的变化,从而实现测量、控制和检测等功能。
本文将详细介绍霍尔传感器的工作原理。
正文:1. 霍尔效应1.1 霍尔效应的基本原理霍尔效应是指当电流通过导体时,如果该导体处于磁场中,会在导体两侧产生一种电势差,这种现象被称为霍尔效应。
霍尔效应的基本原理是磁场对电子的轨道运动产生影响,从而引起电势差的产生。
1.2 霍尔元件的结构霍尔元件通常由一片半导体材料组成,上面覆盖有一层薄膜。
薄膜上有电流引脚和电压引脚,以及用于控制电流和磁场的引脚。
当电流通过薄膜时,霍尔效应产生的电势差会在电压引脚上产生一个电压信号。
1.3 霍尔效应的类型霍尔效应可分为纵向霍尔效应和横向霍尔效应。
纵向霍尔效应是指电流和磁场方向平行时产生的电势差,而横向霍尔效应是指电流和磁场方向垂直时产生的电势差。
通常情况下,霍尔传感器采用纵向霍尔效应。
2. 霍尔传感器的工作原理2.1 磁场感应当霍尔传感器处于磁场中时,磁场会对传感器内的电子轨道运动产生影响,使电子在传感器内产生偏转。
这种偏转会导致电子在传感器内的运动速度和方向发生变化,从而产生电势差。
2.2 电势差的测量霍尔传感器通过测量电势差来确定磁场的强度和方向。
当磁场的强度和方向发生变化时,电势差也会相应变化。
通过测量电势差的大小和极性,可以确定磁场的变化情况。
2.3 输出信号的处理霍尔传感器通常会将测得的电势差转换为数字信号或模拟信号进行输出。
数字信号通常用于与微处理器或其他数字电路进行通信和处理,而模拟信号则可直接用于控制电路或其他设备。
3. 霍尔传感器的应用3.1 位置检测由于霍尔传感器可以测量磁场的变化,因此可以用于检测物体的位置。
通过将霍尔传感器与磁体结合使用,可以实现非接触式的位置检测。
3.2 速度测量霍尔传感器还可以用于测量物体的速度。
通过测量磁场的变化,可以确定物体的运动速度。
霍尔电流传感器工作原理
霍尔电流传感器工作原理一、引言霍尔电流传感器是一种常用的电流测量设备,它利用霍尔效应来测量电流。
本文将详细介绍霍尔电流传感器的工作原理及其相关知识。
二、霍尔效应简介霍尔效应是指当电流通过导体时,在垂直于电流方向的磁场作用下,导体两侧会产生电势差。
这种现象是由美国物理学家爱德华·霍尔在1879年首次发现并研究的。
霍尔效应的原理是基于洛伦兹力的作用,即电流通过导体时,受到磁场力的作用。
三、霍尔电流传感器的结构霍尔电流传感器通常由霍尔元件、电源、信号处理电路和输出接口等组成。
1. 霍尔元件:霍尔元件是霍尔电流传感器的核心部件,它是一种半导体材料,常用的有n型和p型两种。
霍尔元件的特点是在磁场的作用下,产生垂直于电流和磁场方向的电势差。
2. 电源:电源为霍尔元件提供工作所需的电压,通常使用直流电源。
3. 信号处理电路:信号处理电路用于对霍尔元件输出的电势差进行放大、滤波和线性化处理,以便得到准确的电流测量结果。
4. 输出接口:输出接口将处理后的电流信号输出给用户,通常使用模拟电压输出或数字接口输出。
四、霍尔电流传感器的工作原理霍尔电流传感器的工作原理基于霍尔效应,具体过程如下:1. 施加电流:将待测电流通过霍尔电流传感器的导线。
2. 产生磁场:在电流通过的导线周围放置一个磁场源,产生一个垂直于电流方向的磁场。
3. 霍尔元件感应:磁场作用下,霍尔元件两侧产生电势差,即霍尔电压。
霍尔电压的大小与电流的强度成正比。
4. 信号处理:将霍尔电压经过信号处理电路进行放大、滤波和线性化处理,得到准确的电流测量结果。
5. 输出结果:将处理后的电流信号通过输出接口输出给用户,用户可以根据输出结果进行相应的判断和操作。
五、霍尔电流传感器的优势霍尔电流传感器相比传统的电流测量方法具有以下优势:1. 非接触式测量:霍尔电流传感器的测量不需要直接接触待测电流,避免了电流测量中的安全隐患。
2. 高精度:霍尔电流传感器的输出结果经过信号处理电路的处理,具有较高的测量精度。
霍尔效应的定义和霍尔传感器的工作原理
霍尔效应的定义和霍尔传感器的工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!霍尔效应与霍尔传感器的工作原理霍尔效应是指当导体或半导体材料中的电荷载流子在受到外加磁场作用时,沿着垂直于电流方向和磁场方向的方向上产生一种电压现象的物理现象。
什么是霍尔效应及霍尔传感器原理图
什么是霍尔效应及霍尔传感器原理图(图)半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄片,如图所示。
当有电流I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。
原理简述如下:激励电流I 从a 、b 端流入,磁场B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、d 方向产生电场E 。
电子积累得越多,FE 也越大,在半导体薄片c 、d 方向的端面之间建立的电动势EH 就是霍尔电势。
由图可以看出,流入激励电流端的电流I 越大、作用在薄片上的磁场强度 B 越强,霍尔电势也就越高。
磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。
(以下是)霍尔电流传感器工作原理1、直放式(开环)电流传感器(CS系列)当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。
一般的额定输出标定为4V。
2、磁平衡式(闭环)电流传感器(CSM系列)磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。
具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。
这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。
当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。
霍尔传感器
2.线性集成霍尔传感器
线性集成霍尔传感器是由稳压器、霍尔元件及差分放大器等通过集成电路技术制成的传感 器,其输出电压与磁场强度在一定范围内为线性关系。线性集成霍尔传感器有单端输出和双端 输出(差动输出)两种形式,其内部结构如图3-11所示。
霍尔传感器具有微型化、可靠性高、寿命长、功耗低、无温漂及负载能力强等优点。 广泛用于汽车电子、电动自行车、家用电器等领域。
a、a 两根引线连接电源电压或电流,称为激励电极;b、b 两根引线为霍尔输出引线,称为霍尔电 极。
图3-6 霍尔元件及符号
2.霍尔元件的测量电路
霍尔元件的基本测量电路如图3-7所示。
霍尔元件的输出电压一般比较小,所以需要用放大电路将 其放大。为了获得较好的放大效果,通常采用差分放大电 路,如图3-8所示。
图3-11 线性集成霍尔传感器内部结构
(a)单端输出
( b)双端输出
1.4 使用霍尔传感器的注意事项
(1)需要接负载且不能超负载工作。 (2)供电电压不能超出规格说明书中规定的范围,且电源电压极性不能反接。 (3)在使用和安装中应尽量减少机械应力,特别是器件的引脚,根部1 mm 范围内不允许施加任何机械应力(如弯曲、变形等)。 (4)要严格规范焊接时间和温度。 (5)霍尔传感器具有很强的抗外磁场干扰能力。 另外,在装配、焊接、使用及存储过程中要注意防静电。
1.5 应用实践——霍尔传感器在动感单车测速中的应用
1.实践目的
(1)了解霍尔传感器测速原理。 (2)能根据系统要求选择合适的传感器。
2.应用描述
动感单车是一种室内自行车训练、健身 器材,它的结构和普通自行车类似,包 括车把、车座、脚蹬和车轮几部分。动 感单车一般都具有速度、里程检测和显 示功能,用以作为训练者控制自身训练 效果的重要参考指标。
霍尔传感器工作原理
霍尔传感器工作原理一、引言霍尔传感器是一种基于霍尔效应的传感器,可以测量磁场的强度和方向。
它广泛应用于各种领域,如汽车工业、电子设备、航空航天等。
本文将详细介绍霍尔传感器的工作原理及其应用。
二、霍尔效应霍尔效应是指当有电流通过导体时,如果该导体处于磁场中,就会在导体两侧产生一种称为霍尔电压的电势差。
霍尔电压与磁场的强度和方向成正比。
霍尔效应是基于洛伦兹力的原理,即当电流通过导体时,磁场会对电荷施加力,使电荷在导体内部产生偏移。
三、霍尔传感器的构造1. 传感器芯片:霍尔传感器的核心部分是一颗集成在芯片上的霍尔元件。
这个元件通常是由半导体材料制成,具有高灵敏度和稳定性。
2. 导线:传感器芯片上有两个引线,用于连接电源和输出信号。
3. 封装材料:为了保护传感器芯片,通常会使用封装材料将其封装在一个外壳内。
四、霍尔传感器的工作原理1. 工作电流通路:当外部电源连接到霍尔传感器的两个引线上时,电流会通过传感器芯片。
这个电流通路通常被称为工作电流通路。
2. 磁场感应:当有磁场作用于传感器芯片时,磁场会对电流产生影响。
根据霍尔效应,磁场会使电荷在传感器芯片内部产生偏移。
3. 霍尔电压测量:传感器芯片内部有一个测量电压的电路,用于测量霍尔电压。
霍尔电压正比于磁场的强度和方向,因此可以通过测量霍尔电压来确定磁场的特性。
4. 输出信号:测量到的霍尔电压会被转换成数字信号或模拟信号,作为传感器的输出信号。
这个输出信号可以被连接到其他电路或设备中进行进一步处理。
五、霍尔传感器的应用1. 位置检测:霍尔传感器可以用于检测物体的位置。
例如,在汽车中,霍尔传感器可以用来检测刹车踏板的位置,从而实现刹车灯的控制。
2. 速度测量:霍尔传感器可以用于测量物体的速度。
例如,在自行车中,霍尔传感器可以用来检测车轮的转速,从而计算出车辆的速度。
3. 开关控制:霍尔传感器可以用作开关,通过检测磁场的变化来控制电路的开关状态。
例如,在电子设备中,霍尔传感器可以用来检测盖子的开合状态,从而控制设备的开关。
霍尔传感器工作原理
霍尔传感器工作原理霍尔传感器是一种常见的电磁传感器,利用霍尔效应来测量或检测磁场的存在和强度。
它通常由霍尔元件、电源、信号处理电路和输出接口组成。
下面将详细介绍霍尔传感器的工作原理。
1. 霍尔效应简介霍尔效应是指当电流通过一块导体时,若在该导体周围存在磁场,会在导体两侧产生一种电势差,这种现象被称为霍尔效应。
该电势差与电流、磁场强度以及导体材料的特性有关。
2. 霍尔元件霍尔元件是霍尔传感器的核心部件,通常由半导体材料制成。
它具有一个导电通道,电流沿着该通道流动。
当磁场作用于该通道时,电子将受到洛伦兹力的作用,导致电子在通道两侧产生不平衡的电荷分布,从而形成电势差。
3. 工作原理当霍尔传感器工作时,首先需要给霍尔元件供电。
一般情况下,霍尔元件需要直流电源进行工作。
电源的电压可以根据具体需求进行选择。
当电流通过霍尔元件的导电通道时,如果该通道周围存在磁场,就会在通道两侧产生电势差。
这个电势差可以通过信号处理电路进行放大和处理,最终输出一个与磁场强度相关的电压信号。
4. 信号处理电路信号处理电路对从霍尔元件输出的电势差进行放大和处理,以得到一个可用的电压信号。
处理电路通常包括放大器、滤波器和稳压电路等部分。
放大器负责放大霍尔元件输出的微弱电势差,以提高信号的灵敏度和稳定性。
滤波器用于去除噪声信号,确保输出信号的准确性和稳定性。
稳压电路则用于保持电源电压的稳定,以确保信号处理电路的正常工作。
5. 输出接口经过信号处理电路处理后,霍尔传感器将输出一个与磁场强度相关的电压信号。
这个信号可以通过输出接口连接到其他设备或系统中,以实现相应的控制、测量或检测功能。
常见的输出接口包括模拟输出和数字输出。
模拟输出通常是一个连续变化的电压信号,其幅度与磁场强度成正比。
数字输出则是一个离散的电平信号,通常用于表示磁场的存在与否或判断磁场强度的高低。
6. 应用领域霍尔传感器在许多领域中得到广泛应用。
例如,它可以用于测量和检测磁场的强度和方向,用于电流和速度的测量,用于位置和位移的检测,以及用于接近开关和磁性编码器等。
霍尔传感器工作原理
霍尔传感器工作原理霍尔传感器是一种基于霍尔效应的传感器,主要用于检测磁场的存在和强度。
它通过测量磁场对霍尔元件产生的电压影响来实现磁场的检测。
1. 霍尔效应简介霍尔效应是指当电流通过一块导体时,如果该导体处于磁场中,将会在导体两侧产生电压差。
这种现象是由于磁场对电子运动轨迹的影响而产生的。
2. 霍尔元件结构霍尔元件通常由霍尔片、电源、输出电路和保护电路组成。
其中,霍尔片是关键部分,它是一块具有特殊材料和结构的半导体片,可以感应到磁场的变化。
3. 霍尔传感器工作原理当霍尔元件处于磁场中时,磁场将会使得霍尔片内的载流子(通常是电子)受到偏转,从而产生电荷分布的不均匀现象。
这种不均匀的电荷分布将会导致霍尔片两侧产生电压差,即霍尔电压。
4. 霍尔电压的测量为了测量霍尔电压,通常需要将霍尔元件连接到一个外部电路中。
这个电路通常包括一个电流源和一个测量电压的电路。
电流源用来提供通过霍尔元件的电流,而测量电压的电路则用来测量霍尔电压。
5. 霍尔传感器的应用霍尔传感器广泛应用于各种领域,包括汽车工业、电子设备、航空航天等。
它可以用来检测车速、转速、位置、电流等参数,具有灵敏度高、响应速度快、可靠性强等优点。
6. 霍尔传感器的优缺点霍尔传感器的优点包括:无接触式测量、高灵敏度、响应速度快、可靠性高、体积小等。
然而,它也存在一些缺点,如受温度影响较大、价格较高等。
7. 霍尔传感器的发展趋势随着科技的发展,霍尔传感器也在不断改进和发展。
目前,一些新型的霍尔传感器已经实现了更高的灵敏度、更低的功耗和更小的尺寸。
同时,一些新材料的应用也有望进一步提升霍尔传感器的性能。
总结:霍尔传感器是一种基于霍尔效应的传感器,通过测量磁场对霍尔元件产生的电压影响来实现磁场的检测。
它在各种领域具有广泛的应用,如汽车工业、电子设备、航空航天等。
霍尔传感器具有高灵敏度、响应速度快、可靠性强等优点,但也存在一些缺点。
随着科技的发展,霍尔传感器的性能将会进一步提升,为各个领域的应用提供更好的解决方案。
霍尔式传感器
1)、材料——多用N型半导体 2)、结构和符号 霍尔片——半导体薄片 (因为d小,KH大, l/b=2时KH最大) 引线——激励电极 (短边端面)引线11′、 霍尔电极(长边端面)引线22′。 封装外壳——陶瓷或环氧树脂
目前最常用的霍尔元件材料是锗(Ge)、硅 (Si)、锑化铟(InSb)、砷化铟(InAs)等半 导体材料。 其中N型锗容易加工制造,其霍尔系数、温度性能 和线性度都较好。N型硅的线性度最好,其霍尔系 数、温度性能同N型锗,但其电子迁移率比较低, 带负载能力较差,通常不用作单个霍尔元件。
磁场力
F qvB
Q----电子的电荷量(1.602X10-19C) V----半导体的电子运动速度 B----外磁场的磁感应强度
磁场力 电场力
F qvB
F qEH
Eh 为静电场的电场强度
所以 EH V B
平衡时, F F
材料中电子在电场作用下运动速度的大小常用 载流子迁移率来表征; 载流子迁移率,是指在单位电场强度作用下,载 流子的平均速度值。载流子迁移率用符号μ表示, μ=v/EI。其中EI是A、B两端面之间的电场强度。 它是由外加电压U产生的,即EI=U/L。因此我 们可以把电子运动速度表示为v=μU/l。
二、电路部分
1、基本电路
2、霍尔元件的输出电路 线性应用 图5-5-4 a) 开关应用 图5-5-4b)
霍尔线性电路
它由霍尔元件、差分放大 器组成。其输出电压和加 在霍尔元件上的磁感强度 B成比例,这类电路有很 高的灵敏度和优良的线性 度,适用于各种磁场检测。 霍尔线性电路的性能参数 见下表。
3 霍尔传感器的应用
一、利用与I的关系 可用于直接测量电流和能转换为电流 的其它物理量 二、利用 U H 与B的关系 U H ~ B 可用于测量磁场及可转换为磁场的其它物理量 实例――霍尔式钳形电流表 图5-5-7
霍尔传感器参数
霍尔传感器参数摘要:1.霍尔传感器的概述2.霍尔传感器的工作原理3.霍尔传感器的主要参数4.霍尔传感器的应用领域正文:一、霍尔传感器的概述霍尔传感器,又称霍尔效应传感器,是一种基于霍尔效应的磁敏传感器。
它可以将磁场变化转换为电压信号,进而实现对磁场强度、磁场方向等磁性参数的检测。
霍尔传感器具有响应速度快、精度高、结构简单等优点,因此在工业、汽车电子、航空航天等领域有着广泛的应用。
二、霍尔传感器的工作原理霍尔传感器的工作原理主要基于霍尔效应。
霍尔效应是指,在磁场中,当电子流经某种半导体材料时,电子受到磁场力作用而产生横向电场,从而引起横向电流。
这个现象最早由美国物理学家爱德华·霍尔在1879 年发现,并以其名字命名。
霍尔传感器的结构包括四个部分:磁感应区域、霍尔元件、信号处理电路和输出端。
在磁感应区域,磁场会对霍尔元件产生霍尔电压,该电压经过信号处理电路放大、滤波等处理后,输出到端口,从而实现对磁场参数的检测。
三、霍尔传感器的主要参数霍尔传感器的主要参数包括:1.霍尔常数:表示霍尔元件在磁场中产生的霍尔电压与磁感应强度的比值。
不同材料的霍尔常数不同,同一种材料的霍尔常数也会受到温度、材料纯度等因素的影响。
2.工作温度:霍尔传感器的工作温度范围。
一般而言,霍尔传感器的工作温度范围较宽,但在高温环境下,霍尔传感器的性能可能会受到影响。
3.灵敏度:表示霍尔传感器对磁场变化的敏感程度。
灵敏度越高,传感器对磁场变化的检测能力越强。
4.响应速度:表示霍尔传感器从磁场变化到产生响应的时间。
响应速度越快,传感器对磁场变化的检测能力越强。
四、霍尔传感器的应用领域霍尔传感器在多个领域都有广泛应用,主要包括:1.汽车电子:霍尔传感器常用于汽车点火系统、发动机转速检测、汽车制动系统等。
2.工业自动化:霍尔传感器可以用于检测电机转速、工件位置、磁性材料的分类等。
3.航空航天:在航空航天领域,霍尔传感器可以用于飞行控制系统、卫星姿态控制等。
霍尔传感器工作原理
霍尔传感器工作原理一、引言霍尔传感器是一种基于霍尔效应的传感器,可以用于测量磁场、检测磁性材料、测量电流等。
本文将详细介绍霍尔传感器的工作原理及其应用。
二、霍尔效应霍尔效应是指当电流通过一块导电材料时,如果该材料处于磁场中,将会在材料两侧产生电势差。
这种现象被称为霍尔效应,是由美国物理学家爱德华·霍尔于1879年首次发现的。
三、霍尔传感器的结构霍尔传感器通常由霍尔元件、增益放大器和输出级组成。
1. 霍尔元件:霍尔元件是核心部件,由半导体材料制成。
它具有一个电流引脚、两个电压引脚和一个磁场敏感区域。
当磁场作用于敏感区域时,霍尔元件产生电势差。
2. 增益放大器:霍尔元件产生的电势差非常微弱,需要经过增益放大器放大后才能得到可用的电信号。
增益放大器通常由运算放大器构成,可以将输入信号放大数十倍。
3. 输出级:输出级接收增益放大器输出的电信号,并将其转换为可用的输出形式,例如电压或电流。
四、霍尔传感器的工作原理当电流通过霍尔元件时,如果材料处于磁场中,磁场将作用于霍尔元件的敏感区域。
根据霍尔效应,敏感区域的两侧将产生电势差。
电势差的大小与磁场的强度成正比,方向与磁场的方向有关。
霍尔传感器利用霍尔效应的这一特性进行磁场测量。
当磁场作用于霍尔传感器时,霍尔元件产生的电势差被放大器放大,并经过输出级转换为可用的输出信号。
通过测量输出信号的大小,我们可以确定磁场的强度和方向。
五、霍尔传感器的应用1. 磁场测量:霍尔传感器可以用于测量磁场的强度和方向。
例如,在车辆导航系统中,霍尔传感器可以用于测量地球磁场,从而确定车辆的方向。
2. 磁性材料检测:霍尔传感器可以检测物体是否具有磁性。
例如,在工业生产中,霍尔传感器可以用于检测金属零件是否具有磁性,从而进行质量控制。
3. 电流测量:霍尔传感器可以用于测量电流的大小。
例如,在电子设备中,霍尔传感器可以用于测量电路中的电流,以确保电路的正常运行。
4. 接近开关:霍尔传感器可以用作接近开关。
霍尔效应及传感器
霍尔效应及传感器一、霍尔效应霍尔效应物理原理1879年,美国普多金斯大学研究生的霍尔, 在研究载流导体在磁场中的受力性质时, 发现了霍尔效应. 当一电流垂直于外磁场方向而流过导体时, 在垂直于电流和磁场的方向导体的两侧会产生一电势差, 这种现象称为霍尔效应, 而所产生的电势差称为霍尔电压。
把一块宽为b ,厚度为d 的半导体试样放在磁感应强度为B 的磁场中,并在磁场中通过横向电流I ,则在这块半导体试样横向侧面间出现了一定的电势差H U ,这个现象就叫做霍尔效应,H U 称为霍尔电压。
实验表明,霍尔电压H U 的大小正比于磁感应强度的大小B 以及电流I ,在H K 、B 、I 三者之间的互相垂直有:H H U K IB = (1-1)式中的H K 称为霍尔元件的灵敏度。
霍尔电压的产生是由于半导体中的载流子受到伦兹力Fm 的作用而偏转,使试样横向两侧面分别累积了正、负电荷,在前后两侧面之间建立起电场强度为E 的电场,当载流子受到电场力Fe 与洛伦兹力Fm 平衡时,两侧面之间的电压即为霍尔电压H U ,可以证明(nqd)H U IB = (1-2)式中,n 为载流子浓度,q 为载流子电荷,因此霍尔元件的灵敏度H K 又可以表示为 1(nqd)H K = (1-3)若知道了霍尔元件的H K , 测得I 和H U , 就可算出磁场B 的大小, 这就是霍尔元件测磁场的基本原理霍尔效应的应用(1)在日常生活中,霍尔传感器大多应用于家用电器。
如录音机的换向机构就是使用霍尔传感器检测磁带终点并完成自动换向功能的;录像机中的磁鼓电机常采用锑化铟霍尔元件;洗衣机中的电动机都必须具有正、反转和高、低速旋转功能,主要依靠霍尔传感器检测与控制电动机的转速、转向来实现。
霍尔开关类传感器还用于电饭煲、气炉的温度控制和电冰箱的除霜等方面。
(2)霍尔式汽车点火器与传统点火器不同,具有点火能量高、高速点火可靠、故障率低、省油等优点。
霍尔效应与霍尔传感器简介
霍尔效应科技名词定义中文名称:霍尔效应英文名称:Hall effect定义1:在物质中任何一点产生的感应电场强度与电流密度和磁感应强度之矢量积成正比的现象。
应用学科:电力(一级学科);通论(二级学科)定义2:通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。
应用学科:机械工程(一级学科);工业自动化仪表与系统(二级学科);机械量测量仪表-机械量测量仪表一般名词(三级学科)百科名片霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。
当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
这个电势差也被叫做霍尔电势差。
发现霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在导体的两端产生电压差。
虽然这个效应多年前就已经被大家知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。
根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器。
霍尔效应(图中电场方向应向上)解释在导体上外加与电流方向垂直的磁场,会使得导线中的电子与电洞受到不同方向的洛伦兹力而往不同方向上聚集,在聚集起来的电子与电洞之间会产生电场,此一电场将会使后来的电子电洞受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子电洞能顺利通过不会偏移,此称为霍尔效应。
而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。
电流经过ad,电流I = nqv(ad),n为电荷密度。
霍尔传感器工作原理
霍尔传感器工作原理一、概述霍尔传感器是一种基于霍尔效应的传感器,可以用于测量磁场强度、方向和位置等信息。
它通过检测磁场对载流子的影响来实现磁场的测量。
本文将详细介绍霍尔传感器的工作原理、应用领域以及优缺点。
二、工作原理1. 霍尔效应霍尔效应是指当电流通过一块导体时,如果该导体处于磁场中,磁场会对电流的流动产生影响。
具体来说,磁场会使电荷载流子偏转,从而在导体两侧产生电势差,这就是霍尔效应。
2. 霍尔元件霍尔传感器的核心部件是霍尔元件,它通常由半导体材料制成。
霍尔元件中有一个薄片,称为霍尔片,其两侧分别连接正负极。
当电流通过霍尔片时,磁场会使载流子偏转,从而在霍尔片两侧产生电势差。
3. 工作原理当霍尔传感器处于磁场中时,磁场会对霍尔片中的载流子产生作用力,使其偏转。
偏转的载流子会在霍尔片两侧产生电势差,这个电势差与磁场的强度成正比。
通过测量霍尔片两侧的电势差,我们可以得知磁场的强度。
三、应用领域1. 位置检测霍尔传感器可以用于检测物体的位置,例如机械臂的位置控制、电动汽车的转向角度检测等。
2. 磁场测量霍尔传感器可以测量磁场的强度和方向,广泛应用于磁场测量仪器、磁力计等设备中。
3. 电流检测由于霍尔传感器可以测量磁场对电流的影响,因此可以用于电流检测和电流传感器的制作。
4. 速度检测霍尔传感器可以用于测量旋转物体的速度,例如汽车的车速检测、电机的转速检测等。
四、优缺点1. 优点(1)非接触式测量:霍尔传感器不需要与被测量物体接触,可以实现非接触式测量,减少了磨损和损坏的风险。
(2)高灵敏度:霍尔传感器对磁场的响应非常灵敏,可以测量微弱的磁场信号。
(3)快速响应:霍尔传感器的响应速度非常快,可以实时监测磁场的变化。
(4)可靠性高:霍尔传感器结构简单,工作稳定可靠,寿命长。
2. 缺点(1)温度影响:霍尔传感器的性能会受到温度的影响,温度变化会引起输出信号的偏移。
(2)磁场干扰:霍尔传感器对外部磁场的干扰比较敏感,需要进行屏蔽和抗干扰设计。
霍尔传感器介绍,非常详细!
霍尔传感器介绍,非常详细!霍尔传感器是一种磁传感器。
用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。
霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。
一、霍尔效应霍尔元件霍尔传感器(一)霍尔效应如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为:式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。
上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。
(二)霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
(三)霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。
霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。
二、霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。
(一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。
(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。
三、霍尔传感器的特性(一)线性型霍尔传感器的特性输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。
(二)开关型霍尔传感器的特性如图4所示,其中BOP为工作点“开”的磁感应强度,BRP为释放点“关”的磁感应强度。
当外加的磁感应强度超过动作点Bop时,传感器输出低电平,当磁感应强度降到动作点Bop以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。
霍尔传感器工作原理
霍尔传感器工作原理一、引言霍尔传感器是一种常用的非接触式传感器,通过测量磁场的变化来检测物体的位置、速度、方向等参数。
本文将详细介绍霍尔传感器的工作原理及其应用。
二、工作原理1. 霍尔效应霍尔效应是指当电流通过一块导体时,如果该导体处于磁场中,将会在导体两侧产生一种电势差(霍尔电压),这种现象被称为霍尔效应。
霍尔传感器利用霍尔效应来测量磁场的变化。
2. 霍尔元件霍尔元件是霍尔传感器的核心部件,由半导体材料制成。
常见的霍尔元件有线性霍尔元件和开关型霍尔元件两种。
- 线性霍尔元件:根据磁场的变化,产生与磁场强度成正比的输出电压。
线性霍尔元件适合于测量磁场的强度和方向。
- 开关型霍尔元件:在磁场的作用下,输出电压从低电平切换到高电平或者从高电平切换到低电平。
开关型霍尔元件适合于检测磁场的开关状态。
3. 工作原理霍尔传感器的工作原理可以分为以下几个步骤:- 步骤1:电流输入将电流通过霍尔元件,使其形成一个磁场。
- 步骤2:磁场感应当霍尔元件处于外部磁场中时,磁场会对霍尔元件产生作用。
- 步骤3:霍尔电压产生根据霍尔效应,磁场作用下,霍尔元件的两侧会产生一个电势差,即霍尔电压。
- 步骤4:电压测量通过测量霍尔电压的大小,可以得知磁场的强度或者状态。
三、应用领域霍尔传感器在许多领域都有广泛的应用,下面列举几个常见的应用领域:1. 位置检测霍尔传感器可以用于检测物体的位置,例如汽车的转向角度、航空航天中的导航系统等。
2. 速度测量通过测量霍尔电压的变化,可以计算出物体的速度,例如车辆的转速、机电的转速等。
3. 开关控制开关型霍尔传感器可以用于检测磁场的开关状态,例如磁性门窗的开关检测、电子设备的开关控制等。
4. 磁场测量霍尔传感器可以用于测量磁场的强度和方向,例如磁力计、地磁测量等。
5. 电流检测通过测量霍尔电压的大小,可以间接测量电流的大小,例如电动车的电流检测、电源管理系统中的电流监测等。
四、总结霍尔传感器是一种常用的非接触式传感器,利用霍尔效应来测量磁场的变化。
276霍尔传感器工作原理
276霍尔传感器工作原理霍尔传感器是一种基于霍尔效应的传感器,可以用于测量磁场的强度和方向。
它广泛应用于各种领域,如电子设备、汽车工业和工业自动化等。
本文将详细介绍276霍尔传感器的工作原理。
一、霍尔效应简介霍尔效应是指当电流通过导体时,如果该导体处于磁场中,会产生一种称为霍尔电压的电势差。
这种电势差与磁场的强度和方向有关,可以通过测量霍尔电压来确定磁场的信息。
二、276霍尔传感器的结构276霍尔传感器由霍尔元件、电流源和放大电路组成。
其中霍尔元件是关键部分,它通常由半导体材料制成,具有一定的宽度和长度。
电流源提供了通过霍尔元件的电流,而放大电路则用于放大霍尔电压。
三、276霍尔传感器的工作原理当电流通过霍尔元件时,霍尔元件处于磁场中,会在两侧产生不同的电势差。
这是因为磁场会在霍尔元件两侧产生一个垂直于电流方向的力,导致电子在垂直方向上偏转,从而形成电势差。
这个电势差就是霍尔电压。
根据霍尔效应的性质,霍尔电压与电流、磁场的强度和方向有关。
当电流方向与磁场垂直时,霍尔电压达到最大值;当电流方向与磁场平行时,霍尔电压为零。
通过测量霍尔电压的大小和极性,可以确定磁场的强度和方向。
为了提高测量的精度和稳定性,276霍尔传感器通常使用了一些补偿技术。
例如,可以通过在霍尔元件周围布置磁场补偿器,来减小外部磁场对测量结果的影响。
此外,还可以通过调整电流源和放大电路的参数,来使输出信号更加稳定和准确。
四、276霍尔传感器的应用276霍尔传感器可以广泛应用于各种领域。
在电子设备中,它可以用于磁场测量、位置检测和速度测量等。
在汽车工业中,它可以用于制动系统、转向系统和发动机控制等。
在工业自动化中,它可以用于流量测量、液位检测和物体检测等。
总结:本文介绍了276霍尔传感器的工作原理。
通过霍尔效应,霍尔传感器可以测量磁场的强度和方向。
它的结构包括霍尔元件、电流源和放大电路。
霍尔元件通过电流和磁场的相互作用产生霍尔电压,通过测量霍尔电压可以确定磁场的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔效应科技名词定义中文名称:霍尔效应英文名称:Hall effect定义1:在物质中任何一点产生的感应电场强度与电流密度和磁感应强度之矢量积成正比的现象。
应用学科:电力(一级学科);通论(二级学科)定义2:通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。
应用学科:机械工程(一级学科);工业自动化仪表与系统(二级学科);机械量测量仪表-机械量测量仪表一般名词(三级学科)百科名片霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(,1855—1938)于1879年在研究金属的导电机构时发现的。
当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
这个电势差也被叫做霍尔电势差。
发现霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在导体的两端产生电压差。
虽然这个效应多年前就已经被大家知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。
根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器。
霍尔效应(图中电场方向应向上)解释在导体上外加与电流方向垂直的磁场,会使得导线中的电子与电洞受到不同方向的洛伦兹力而往不同方向上聚集,在聚集起来的电子与电洞之间会产生电场,此一电场将会使后来的电子电洞受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子电洞能顺利通过不会偏移,此称为霍尔效应。
而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。
电流经过ad,电流I = nqv(ad),n为电荷密度。
设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。
设磁场强度为B。
霍尔效应推导相关反应量子霍尔效应热霍尔效应:垂直磁场的导体会有温度差。
Corbino效应:垂直磁场的薄圆碟会产生一个圆周方向的电流。
自旋霍尔效应本质固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。
正交电场和电流强度与大量的研究揭示:应用霍尔效应在应用技术中特别重要。
霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。
好比一条路, 本来大家是均匀的分布在路面上, 往前移动. 当有磁场时, 大家可能会被推到靠路的右边行走. 故路(导体) 的两侧, 就会产生电压差. 这个就叫“霍尔效应”。
根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。
讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。
例如汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。
这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。
相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。
用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。
许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。
而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。
采用功率霍尔开关电路可以减小这些现象。
霍尔器件通过检测磁场变化,转变为电信号输出,可用于监视和测量汽车各部件运行参数的变化。
例如位置、位移、角度、角速度、转速等等,并可将这些变量进行二次变换;可测量压力、质量、液位、流速、流量等。
霍尔器件输出量直接与电控单元接口,可实现自动检测。
目前的霍尔器件都可承受一定的振动,可在零下40摄氏度到零上150摄氏度范围内工作,全部密封不受水油污染,完全能够适应汽车的恶劣工作环境。
发展美国物理学家霍尔(Hall,Edwin Herbert,1855-1938)于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
这个电势差也被叫做霍尔电势差。
在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍耳效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖。
之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert ughlin,1950-)、施特默(Horst L. St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理学奖。
最近,复旦校友、斯坦福教授张首晟与母校合作开展了“量子自旋霍尔效应”的研究。
“量子自旋霍尔效应”最先由张首晟教授预言,之后被实验证实。
这一成果是美国《科学》杂志评出的2007年十大科学进展之一。
如果这一效应在室温下工作,它可能导致新的低功率的“自旋电子学”计算设备的产生。
目前工业上应用的高精度的电压和电流型传感器有很多就是根据霍尔效应制成的,误差精度能达到0.1%以下霍尔传感器百科名片霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。
霍尔效应是磁电效应的一种,这一现象是霍尔(,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H的霍尔电压霍尔效应霍尔元件霍尔传感器根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。
(一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。
(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。
理论基础霍尔传感器流体中的霍尔效应是研究“磁流体发电”的理论基础。
(1)电流传感器必须根据被测电流的额定有效值适当选用不同的规格的产品。
被测电流长时间超额,会损坏末极功放管(指磁补偿式),一般情况下,2倍的过载电流持续时间不得超过1分钟。
(2)电压传感器必须按产品说明在原边串入一个限流电阻R1,以使原边得到额定电流,在一般情况下,2倍的过压持续时间不得超过1分钟。
(3)电流电压传感器的最佳精度是在原边额定值条件下得到的,所以当被测电流高于电流传感器的额定值时,应选用相应大的传感器;当被测电压高于电压传感器的额定值时,应重新调整限流电阻。
当被测电流低于额定值1/2以下时,为了得到最佳精度,可以使用多绕圈数的办法。
(4)绝缘耐压为3KV的传感器可以长期正常工作在1KV及以下交流系统和1.5KV及以下直流系统中,6KV的传感器可以长期正常工作在2KV及以下交流系统和2.5KV及以下直流系统中,注意不要超压使用。
(5)在要求得到良好动态特性的装置上使用时,最好用单根铜铝母排并与孔径吻合,以大代小或多绕圈数,均会影响动态特性。
(6)在大电流直流系统中使用时,因某种原因造成工作电源开路或故障,则铁心产生较大剩磁,是值得注意的。
剩磁影响精度。
退磁的方法是不加工作电源,在原边通一交流并逐渐减小其值。
霍尔传感器(7)传感器抗外磁场能力为:距离传感器5~10cm一个超过传感器原边电流值2倍的电流,所产生的磁场干扰可以抵抗。
三相大电流布线时,相间距离应大于5~10cm。
(8)为了使传感器工作在最佳测量状态,应使用图1-10介绍的简易典型稳压电源。
(9)传感器的磁饱和点和电路饱和点,使其有很强的过载能力,但过载能力是有时间限制的,试验过载能力时,2倍以上的过载电流不得超过1分钟。
(10)原边电流母线温度不得超过85℃,这是ABS工程塑料的特性决定的,用户有特殊要求,可选高温塑料做外壳。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。
取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。
按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。
前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
霍尔元件的结构及工作原理霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。
霍尔元件是一个N型半导体薄片,若在其相对两侧通以控制电流I,而在薄片垂直方向加以磁场,则在半导体另外两侧便会产生一个大小与电流,和磁场B的乘积成工比的电压。
这个现象就是霍尔效应,所产生的电压叫霍尔电压UH.式中: UH---霍尔电压;RH---霍尔系数;d---霍尔元件的厚度;I---通过霍尔元件的电流;B---加在霍尔元件上的磁场磁力线密度;---元件形状函数,其中L为元件的长度,W为元件的宽度。