工业以太网技术全面解析

合集下载

工业以太网技术方案

工业以太网技术方案

工业以太网技术方案
简介
本文旨在介绍工业以太网技术方案。

工业以太网是一种应用于工业控制环境下的数据传输技术。

它能够提供高速、实时、可靠的数据传输,适用于诸如工厂自动化、机器人技术等领域。

技术优势
工业以太网技术在应用场景方面有很多优势:
- 高速传输:传输速率高达10Gbps,能够满足大数据量、高速传输的需求。

- 实时性强:传输时延小于1ms,保证实时性。

- 可靠性高:采用冗余传输、差错检测等技术,保证数据传输的可靠性。

- 灵活性:采用分布式结构,能够轻松扩展、升级。

应用场景
工业以太网技术可以应用于以下领域:
- 工厂自动化:工业以太网能够连接厂级控制系统(MES)、生产线控制系统(PCS)等设备,实现自动化生产。

- 机器人技术:工业以太网能够连接机器人、视觉设备等,实现高速、精准的机器人控制。

- 智能物流:工业以太网能够连接各种设备,实现物流信息的实时传输和监管。

结论
工业以太网技术是当前工业自动化领域中一种重要的数据传输技术,能够提供高速、实时、可靠的数据传输服务,有着广泛的应用前景。

(完整版)工业以太网概述

(完整版)工业以太网概述

工业以太网概述现场总线对于面向设备的自动化工业系统起到了极大的促进作用,但是由于现场总线工业网络存在一定的缺陷,导致其的发展受到极大的限制。

其缺陷包括有通信速率低,成本高,支持应用低,又由于现场总线通信协议多种多样,使得不同总线之间的互联互通比较繁琐,必须要通过一些通信协议转换器进行协议的转换,特别是有多个现场总线协议共存于一个系统中时,相互之间的协议转换更加繁琐。

以太网自从发明出来之后,由于以太网具有极强的兼容性、可扩展性、开放性,得到了飞速的发展,深入到了社会生活的各个层面,同样,以太网也进入了工业应用领域。

但是普通的以太网存在极大的缺陷导致其不能应用于工业领域:1.工业控制领域对于数据的实时性要求非常高,对于数据的延时一般都是必须要控制在几十个ms之内。

由于以太网采用的是载波侦听多路复用冲突检测(CSMA/CD机制),当以太网上发生冲突的时候,就会重发数据,很明显,一旦冲突发生,就必须牺牲时间为代价来解决冲突的问题,实时性就不能得到保证。

但是在工业领域,实时性不能得到保证的话,就有可能导致设备的停止运作,甚至造成安全事故。

2.由于以太网采用的是载波侦听多路复用冲突检测(CSMA/CD 机制),使得以太网存在冲突,特别是在以太网网络负荷比较重的情况下,冲突出现的几率更大。

而一旦大量的冲突发生,导致数据不断的重发,使得工业网络之间的通信的不确定性大大增加,从而降低了系统控制性能。

3.以太网在最初设计时,没有考虑到工业现场的复杂电磁环境,在恶劣的外部环境中,必然导致以太网的可靠性的降低。

但是在生产环境中,工业网络必须有良好的可靠性,可维护性及可恢复性。

针对以太网存在的以上缺陷,采用了多种解决机制改善以太网的性能以使的其可以适用于工业网络,以形成工业以太网。

1.工业以太网交换技术。

为改善以太网在网络负荷较重的时候出现的拥塞问题,采用工业以太网交换机减少由于载波侦听多路复用冲突检测(CSMA/CD机制)而产生的冲突问题和错误传输,从而提高系统的稳定性。

工业以太网简介

工业以太网简介
执行器 连续的被控对象 传感器
,其中 为整

以太网
离散的控制器
图 2.2 延时合并的网络控制系统结构
2.3.2 节点的驱动方式的选择 网络控制系统有一个很重要的概念:节点的驱动方式,其他控制系统中不 存在这个概念。一般节点的驱动方式分为两种:事件驱动和时间驱动。时间驱
动就是系统节点按照事先规定的时间间隔处理相应的任务,例如定时采样。而 事件驱动是指当系统节点收到数据时,开始处理相应的任务。不同的驱动方 式,系统的数学模型也不一致,即使采用相同的控制算法,控制效果也不同。 传感器一般都采用时间驱动方式 ,执行器和控制器的驱动方式有待讨 论。 当控制器和执行器有一个为时间驱动时,便存在与传感器时间同步的问 题。网络控制系统的节点有可能分布在一个较大的物理空间,各个节点很难保 持精确的时间同步。系统应当尽可能避免使用时间同步。 1、执行器采用时间驱动方式 传统的离散控制算法,都是基于 Z 变换的,也就是等周期控制,执行器节 点采用时间驱动,每个控制量的执行时间为定值(采样周期) ,与算法设计的一 致。当延时小于一个采样周期时,系统总的延时为常数,有利于控制算法的设 计与分析。但执行器节点采用时间驱动会增大反馈通道的时延,当前控制量无 法及时作用到被控对象,不可避免的降低闭环系统的性能。 2、执行器采用事件驱动方式 执行器节点采用事件驱动,可以减小反馈通道的时延,使得控制量能够尽 快的作用于被控对象,有利于改善系统的性能。在一个周期内执行器可能会收 到多个控制信号,或者几个周期内执行器才收到一个控制信号,每个控制量的 执行时间不是定值(采样周期) ,与算法设计不一致,可能使控制效果变差,同 时使得系统的数学模型相对要复杂一些,系统的分析也更加困难。 当网络总延时小于一个采样周期时,执行器一般都采用事件驱动方式。 3、控制器采用时间驱动方式 控制器采用时间驱动,就要考虑时间同步问题。 若控制器与传感器的时间同步,当传感器数据传输时延为 Tsc ,则传感器到 控制器的延时为 sc (int(Tsc T ) 1) T , int() 是向零方向取整函数, T 为采样周 期。 若控制器与传感器的时间不同步,设控制器的时间比传感器的时间落后

工业以太网技术的应用分析

工业以太网技术的应用分析

工业以太网技术的优势
兼容性
工业以太网技术可以与商用以太网 技术无缝对接,方便用户使用和维 护。
高可靠性
通过采用冗余设计和故障检测机制 ,提高了系统的可靠性和稳定性。
低成本
随着以太网技术的广泛应用,成本 不断降低,成为一种经济实惠的工 业通信方案。
灵活性
工业以太网技术具有多种通信速率 和传输介质选择,可以根据实际应 用需求进行灵活配置。
以太网/IP网络拓扑结构
01
网络拓扑结构类型
以太网/IP网络拓扑结构包括星型、树型、环型、网状等,这些结构可
满足不同场景下的网络需求。
02
网络拓扑结构特点
以太网/IP网络拓扑结构具有高可靠性、高性能和易维护性等特点,可
实现跨平台、跨网络和跨厂商的通信。
03
工业以太网技术的优势
工业以太网技术相比传统现场总线技术具有高可靠性、高性能、易用
工业互联网的机遇与挑战
工业互联网发展
工业以太网技术是工业互联网的核心组成部分,随着工业互联网 的快速发展,将面临更多的机遇和挑战。
安全性问题
在工业互联网时代,网络安全成为了一个重要的问题。工业以太 网技术需要加强安全防护,确保数据传输的安全性和稳定性。
兼容性问题
工业互联网涉及多种设备和协议,工业以太网技术需要与其他协议 和设备实现良好的兼容性,以实现更加广泛的应用。
THANKS
谢谢您的观看
设备类型
以太网/IP设备包括交换机、路由器、网关、网桥等,这些设备提供了不同的网络连接方 式和性能。
设备特点
以太网/IP设备具有高可靠性、高性能、易用性和可扩展性等特点,支持TCP/IP协议,可 实现跨平台、跨网络和跨厂商的通信。

浅论工业以太网技术

浅论工业以太网技术

浅论工业以太网技术1.工业以太网技术的产生传感器技术、通信技术和计算机技术是现代信息技术的三大基础。

随着IT技术的飞速发展和工业自动化要求的不断提高,工业控制网络所负担的工作越来越重。

与数据信息网络不同,工业控制领域需要一种高速廉价、实时性和开放性好、稳定性和准确性高的网络。

工业控制网络作为一种直接面向生产过程的特殊网络,肩负着工业生产一线的测量与控制信息传输的任务,它通常应满足强实时性、高可靠性、恶劣的工业现场环境适应性等特殊要求。

它的发展经历了DCS、FCS、工业以太网等几个阶段。

DCS是工业控制系统的第一代主力军。

随后,FCS取而代之,开创了工业控制网络发展的新局面。

FCS的具有较高的可靠性、实时性和抗干扰能力,并且结构简单、易于维护、节省设备投资,这些使它在工业领域得到了广泛应用。

但是由于FCS协议种类繁多,实现兼容与互操作十分困难。

于是现场总线开始转向以太网以太网(Ethernet)技术支持几乎所有的网络协议,所以在数据信息网络中得到广泛应用,具有传输速度高、低能耗、便于安装、兼容性好、开放性高和支持设备多等多方面的优势,以太网在工业企业信息化系统中的管理层、监控层得到了广泛应用,以太网直接向下延伸应用于工业测控系统的现场设备层网络,成为工业控制网络发展的必然趋势。

工业以太网是基于IEEE 802.3 (Ethernet)的强大的区域和单元网络。

利用工业以太网,SIMATIC NET 提供了一个无缝集成到新的多媒体世界的途径。

企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。

继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u 的标准)也已成功运行多年。

采用何种性能的以太网取决于用户的需要。

工业以太网络技术解决方案

工业以太网络技术解决方案

工业以太网络技术解决方案
简介
工业以太网络技术是一种用于实现工业自动化的网络通信技术。

它与传统的以太网相比,具有更高的可靠性、安全性和实时性,能
够满足工业现场的特殊通信需求。

本文将介绍工业以太网络技术的
主要特点和应用案例。

特点
1. 高可靠性:工业以太网络技术采用冗余设计和网络拓扑结构,能够容忍节点故障和网络中断,保证工业设备的稳定运行。

2. 高安全性:工业以太网络技术使用安全认证和加密机制,能
够防止网络攻击和数据泄露,确保工业系统的安全性和保密性。

3. 实时性:工业以太网络技术通过时间同步和优化传输机制,
能够实现微秒级的数据传输延迟,满足工业现场对实时性的要求。

4. 灵活性:工业以太网络技术支持多种传输介质和通信协议,
适用于不同的工业应用场景,具有很高的灵活性和扩展性。

应用案例
1. 工业自动化:工业以太网络技术广泛应用于工业自动化领域,实现设备之间的通信和数据交换,提高生产线的效率和可靠性。

2. 物联网:工业以太网络技术可以作为物联网的底层通信基础
设施,连接传感器、设备和云平台,实现设备的远程监控和管理。

3. 智能电网:工业以太网络技术可以应用于智能电网系统,实
现电力设备之间的通信和协调,提高电网的稳定性和效率。

4. 智能交通:工业以太网络技术可以应用于智能交通系统,实
现车辆之间的通信和交互,提高交通流量的控制和安全性。

结论
工业以太网络技术是一种可靠、安全、实时的通信技术,适用
于工业自动化、物联网、智能电网和智能交通等领域。

它的应用将
会推动工业的数字化转型,提升工业生产的效率和质量。

论工业以太网的技术特点及应用

论工业以太网的技术特点及应用

论工业以太网的技术特点及应用工业以太网以其特殊的、独具的特点,被广泛应用于工业领域,本文主要论述了以太网技术的由来、技术特点以及应用现状,对工业以太网的发展和实际应用,进行一些探讨和研究。

1 工业以太网由来和发展,Xerox,Inter与DigitalEquipment等公司成功研制了以太网1.0版,这标志着以太网正式诞生。

随后,IEEE802.3标准正式发布,那就是的以太网2.0版本。

,以太网技术通过SiemensSINECH1顺利进入了工业通讯领域。

随着网络的不断发展及用户数量的持续增加,以太网的传输速率从10Mb/s扩大到100Mb/s,这就是现在的快速以太网(FastEthernet)。

在之后的几年发展中,快速以太网成为了IEEE802.3标准,并被广泛应用于工业通信中。

目前,工业领域正在研究建立千兆以太网,这就是10Gigabit标准。

2 工业以太网的技术特点2.1 通信中的确定性与实时性传统的Ethernet在实际的实验和检测中,采用了CSMA/CD碰撞检测方式。

其最大弊端就是工作过程中会产生很大的负荷,影响网络传输,从而导致控制系统及其他各系统的实时性很差。

因此,它的功能作用是非确定性的,人们在实际应用中对其也有很多诟病。

相比之下,快速以太网的产生与发展,以及交换式以太网技术的开发和应用,成为了克服和解决非确定性问题新的“突破口”。

(1)Ethernet的通信速率增长非常快,也特别实用。

它已经从10M、100M增加到现在的1000M乃至10G。

在相同情况下,通过提高工业通信速率,极大减轻在实际工作过程中的网络负载量,极大减小网络延迟,从而极大降低在网络传输中的碰撞机率。

(2)工业中交换机的使用,特别是开发了星型拓扑结构,最终在实际运行和操作中,将整个网络分割成数个网段,这就使得数据传输由大变小,更方便更快捷。

而当制造商生产出Ethernet交换机后,它的数据存储功能及数据转发功能,大大缓解了网络传输过程中数据的堵塞,使得每个端口间输入输出数据帧可以有一定程度的缓冲,也大大降低了网络数据碰撞概率。

工业以太网的原理与应用pdf

工业以太网的原理与应用pdf

工业以太网的原理与应用1. 什么是工业以太网?工业以太网是一种用于工业环境中的高速、可靠的网络通信技术。

它基于以太网技术,通过将标准以太网协议进行扩展和优化,实现在工业环境中的实时通信和自动化控制。

工业以太网具有高性能、可扩展性强、标准化程度高等特点,被广泛应用于工业自动化领域。

2. 工业以太网的特点工业以太网相较于传统以太网,在工业环境下有以下特点:•实时性:工业以太网支持实时数据传输,能够满足对实时性要求较高的应用场景,如工业控制系统中的实时控制、监控等。

•可靠性:工业以太网通过采用冗余设计、网络切换等机制,提供了对网络故障具有容错能力的特点,以确保数据的可靠传输。

•安全性:工业以太网采用了加密技术、访问控制等安全机制,以保证数据的安全性,防止未经授权的访问和数据泄露。

•扩展性:工业以太网支持扩展性强,可以根据实际需求进行网络扩展和升级,满足不同规模和复杂度的应用场景。

3. 工业以太网的应用工业以太网在工业自动化领域有广泛的应用,主要包括以下几个方面:3.1 工业控制工业以太网可以用于工业控制系统中的实时控制和监控。

通过工业以太网,可以将传感器、执行器、PLC等设备连接到网络上,实现对工控设备的远程访问和控制。

在工业控制系统中,工业以太网可以提供快速、可靠的实时数据传输,实现对生产过程的精确控制和监测。

3.2 工业通信工业以太网可以用于工业通信领域,实现设备之间的高速数据传输。

通过工业以太网,可以将各种设备连接在同一网络上,实现设备之间的数据交换和共享。

工业以太网可以支持多种通信协议和通信方式,如TCP/IP、UDP等,满足不同设备之间的通信需求。

3.3 工业监测工业以太网可以用于工业监测系统,实现对生产过程的实时监测和数据采集。

通过工业以太网,可以将传感器、数据采集设备等连接到网络上,实现对生产设备、环境等的实时监测和数据采集。

工业以太网可以提供高带宽、低延迟的数据传输,满足对实时监测和数据采集的要求。

第06章工业以太网(3)

第06章工业以太网(3)

3. EtherNet/IP的报文种类



I/O数据报:是指实时性要求较高的小数据包测量 控制数据,采用UDP/IP传输。此报文没有协议信 息,数据接收者知道数据的含义,因此又称为隐 性报文。 信息报文:是指实时性要求较低的大数据包组态、 诊断、趋势等数据,采用TCP/IP传输。此报文需 要根据协议信息来理解数据报文的含义,因此又 称为显性报文。 网络维护报文:在系统专门指定的时间内发送时 钟同步及调整一些与网络运行参数,以使网络系 统正常运行。网络维护报文一般采用广播方式发 送。

4. 网络供电



5. 本质安全

7.6.3 以太网的通信帧结构与 工业数据封装
7.6.3 以太网的通信帧结构与 工业数据封装


对于组态和诊断等非实时性数据一般利 用TCP/IP协议发送。 对于I/O等实时性数据一般采用UDP/IP协 议发送。
7.6.4 实时以太网

1.实时以太网简介



实时以太网是工业以太网针对通信实时性、确定性 问题提出的解决方案,属于工业以太网的特色与核 心技术。 目前,实时以太网还处于技术开发阶段,种类繁多, 实时机制、性能、通信一致性存在较大差异。 目 前 , 实 时 以 太 网 技 术 有 : EtherNet/IP , PROFINET , P-NET , INTERBUS , VNET/IP , TCENT,ETHERCAT,ETHERNET,POWERLINK, EPA,MODUBUS-RTPS,SERCOS-III 11个技术标 准。
4. EtherNet/IP的特点




继承TCP/IP协议的优点,具有高速传输大量 数据的能力。 支持主机、PLC、机器人、HMI等典型设备。 多组设备连接到交换机实现点对点10Mb/s或 100Mb/s的自适应通信。 星型拓扑易于连线、检错和维护。 内置Web Server功能,现场数据可以通过网 页浏览。

什么是工业以太网技术?有什么作用?

什么是工业以太网技术?有什么作用?

什么是工业以太网技术?有什么作用?
工业以太网是在以太网技术和TCP/IP的技术上发展延伸出来的一种现场总线技术。

其作用就是为不同的厂商设备的兼容和互相操作提供一种通用的标准通讯协议。

现在的控制系统和工厂自动化系统,以太网的应用像PLC一样越来越普遍,为什么以太网会引入工业控制里来,它有哪些优势呢?
应用广泛
首先以太网是应用最广泛的计算机网络技术,基本所有的计算机语言都可以对其进行再开发。

通讯速率高
做自动化的都知道,传统的现场总线通讯速率是比较慢的,最高的也就能达到10M左右。

而以太网就不一样了,百兆的通信速率普及开来,甚至1G/s的技术逐渐成熟,能够实时满足工业控制对以太网带宽的需求。

数据资源共享能力
随着以太网的发展,其应用无所不在任何一台能上网的计算机都能够浏览工业控制的数据,解除了地域上的障碍。

可持续性的开发
主要就是实现了以太网对控制系统的可能性,例如物联网、人工智能等技术的发展。

为其通讯提供可靠的带宽和性能,而且通讯协议的灵活性非常之高。

浅析工业以太网技术及应用

浅析工业以太网技术及应用

浅析工业以太网技术及应用摘要相對商用以太网来说,工业以太网其本身具备更强的安全性、抗干扰性、适用性以及实时性的特点,对于整个工业生产来说是非常重要的现代化技术。

本文就对工业以太网技术及应用的相关问题进行了分析和探讨。

关键词工业以太网技术;应用;分析思考工业以太网技术源自于以太网技术,但是其本身和普通的以太网技术又存在着很大的差异和区别。

工业以太网技术本身进行了适应性方面的调整,同时结合工业生产安全性和稳定性方面的需求,增加了相应的控制应用功能,提出了符合特定工业应用场所需求的相应的解决方案。

工业以太网技术在实际应用中,能够满足工业生产高效性、稳定性、实时性、经济性、智能性、扩展性等多方面的需求,可以真正延伸到实际企业生产过程中现场设备的控制层面,并结合其技术应用的特点,给予实际企业工业生产过程的全方位控制和管理,是一种非常重要的技术手段。

1 工业以太网技术应用的优势分析第一,工业以太网技术具有广泛的应用范围。

以太网技术本身作为重要的基础性计算机网络技术,其本身能够兼容多种不同的编程语言。

例如,常见的JA V A、C++等编程语言都支持以太网方面的应用开发。

第二,工业以太网技术具有良好的应用经济性。

相对于以往传统工业生产当中现场总线网卡的基础设施方面的投入,以太网的网卡成本方面具有十分显著的优势。

在当前以太网技术不断发展的今天,整体以太网技术的设计、应用方面已经十分成熟。

在具体技术开发方面,有着很多现有的资源和设计案例进行应用,这也进一步降低了系统的开发和推广成本,同时也让后续培训工作的开展变得更加有效率。

可以说,经济性强、成本低廉、应用效率高、过渡短、方案成熟,这是工业以太网技术的一个显著优势特征。

第三,工业以太网技术具有较高的通信速率。

相对现场总线来说,工业以太网的通信速率较高,1Gb/s的技术应用也变得十分成熟。

在当前不断增长的工业控制网络性能吞吐需求的前提下,这种速率上的优势十分明显,其能够更好地满足当前的带宽标准,是新时期现代工业生产网络工程的重要发展方向。

工业以太网冗余技术分析(精)

工业以太网冗余技术分析(精)

工业以太网冗余技术分析什么是工业以太网工业以太网是指在工业控制领域中使用的以太网技术。

与传统的计算机网络不同,工业以太网需要满足实时性、可靠性和安全性等需求,因此需要特别设计。

工业以太网的发展经历了多个阶段,最早的版本是10Mbps的以太网,之后又出现了100Mbps和1Gbps的版本。

随着工业控制领域的不断发展,工业以太网已经成为工业自动化的主流通信技术。

工业以太网冗余技术在工业现场应用中,通信的可靠性是非常重要的。

如果通信出现故障,可能会导致整个生产过程停止,给企业带来很大的损失。

工业以太网冗余技术可以提高通信的可靠性,从而保证工业自动化生产的正常运行。

工业以太网冗余技术包括链路聚合、跨交换机链路聚合和环路切换等。

下面逐一进行分析。

链路聚合链路聚合是将多条物理链路的带宽合并成一条逻辑链路的技术。

通过此技术可以提高带宽的容错能力,当有一条物理链路发生故障时,数据包会被发送到另一条链路上,从而达到冗余的效果。

链路聚合可以在切换过程中对应用程序没有影响。

跨交换机链路聚合跨交换机链路聚合是指将两个或两个以上不同交换机的物理端口连接成逻辑链路的技术。

跨交换机链路聚合可以提供更好的冗余效果和更高的容错性。

当其中一台交换机发生故障时,数据包可以直接通过另一台交换机进行传输,从而达到冗余的效果。

环路切换环路切换是指在一个包含多个交换机的网络中,当其中某一个交换机发生故障时,系统能够自动切换到备用路径,从而保证通信的正常运行。

环路切换可以通过不同的方式实现,如RSTP、MSTP等。

工业以太网冗余技术的应用场景工业以太网冗余技术在现实生产中具有广泛的应用场景。

其中包括:自动化生产线在自动化生产线中,工业以太网冗余技术可以提高生产的可靠性和稳定性,保证生产线不会因为通信中断而停止运行。

这对于大型工业企业的生产效率和成本控制都有着重要的意义。

机器人控制在机器人控制中,工业以太网冗余技术可以保证机器人的实时性和稳定性,从而提高生产效率。

工业以太网讲义

工业以太网讲义

CSMA/CD
Exponential Back-off Algorithm – “二进制指数 回避算法,BEB”
每次检测到冲突,CSMA/CD采用BEB算法随机地计 算出下一次重传需要等待的时间,即帧重传时延。帧 重传时延的大小为时隙时间(slot Time,512bit的传输 时间)的整数倍r。 r为随机整数,其取值为:0<r<2r,k=min(n,10), 其中,n为重传次数,最大值为16.对于 10M bit/s网 络,一个时隙时间为51.2us。因此冲突所导致的等待 时间最长可以达到51ms。 重传时延的不确定性,不能满足工业系统的实时性
原因三:工业以太网的技术优势 (1) 解决协议的开放性和兼容性问题。 解决协议的开放性和兼容性问题。 工业以太网因为采用由IEEE802.3所定义的数据传输协议,它是 一个开放的标准,从而为PLC厂家和DCS厂家广泛接受。与现场总线 相比,以太网还具有向下兼容性。快速以太网是在双绞线连接 (10BaseT)的传统以太网标准的基础上发展起来的,但它的传输速度 从10Mbps提升到了100Mbps。在大多数场合,它还可以使用已有的布 线。此外,以太网还允许逐渐采用新技术。也就是说,没必要一下 子改变整个网络,可以一步步将整个网络升级。 (2) 解决带宽需求问题。 解决带宽需求问题。 以太网最初的数据传输速度只有10Mbit/s,随着1996年快速以 太网标准的发布。以太网的速度提高到了100Mbit/s。1998年,千兆 以太网标准的发布将其速度提高到最初速度的100倍。最初的以太网 需要1.2毫秒才能传送一个1518字节大小数据;现在,快速以太网已 经将这一时间减少到120秒;如果采用千兆以太网,这一时间只需12 微秒。
802.3 Header and Data Packet

11 工业以太网

11 工业以太网

4.提供适应工业环境的元件 现已开发出一系列密封性好、坚固、抗震 动的以太网设备与连接件,例如导轨式收 发器、集线器、交换机、带锁紧机构的接 插件等。它们适合在工业环境中使用,为 以太网进入工业控制环境创造了条件。 采取上述措施可以使以太网的非确定性问 题得到相当程度的缓解,但还不能说从根 本上得到了解决。
IP技术 3. IP技术 IP 技 术 是 Internet 的 基 础 : IEEE1394, ATM(asynchronous transfer mode), TCP,UDP(user datagram protocol)等等, 它还可以适用于其它的通信标准,如 FTP(file transfer protocol) 和 SMTP(Simple mail transfer protocol)等。 以太网已成为事实上的工业标准:
11.3 工业以太网互连模型
物理层与数据链路层采用IEEE802.3 规范 网络层与传输层采用TCP/IP协议组 应用层的一部分可以沿用上面提到 的那些互联网应用协议。
11.4 工业以太网技术应解决的 问题
1.通信实时性问题 以太网采用的CSMA/CD的介质访问控制方 式,其本质上是非实时的。平等竞争的 介质访问控制方式不能满足工业自动化 领域对通信的实时性要求。 以太网一直被认为不适合在底层工业网 络中使用。需要有针对这一间题的切实 可行的解决方案。
ቤተ መጻሕፍቲ ባይዱ
从信息集成的观点来看,现场总线的 底层信息必然要和上层的通用局域网 连接,将底层信息集成到车间、公司 级的数据库中,甚至通过WEB方式测 览和交互控制。 因此,有专家预言,现场总线技术与 以太网技术相结合将是未来发展的方 向。
第二部分 第11章 复习题 章
1.什么是工业以太网? 2.工业以太网的协议结构包含哪几 层?分别说明各自的作用? 3.为什么过去以太网在工业自动化 领域应用比较有限?

工业以太网技术简介

工业以太网技术简介

同步过程如右图: 结论:
FF HSE(FOUNDATION™ Fieldbus High Speed Ethernet)
基金会现场总线(FF)是专为过程自动化而设计 的通讯协议。FF最初包括低速总线H1(速率为 31.25kbps)和高速总线H2(速率为1Mbps和2 .5Mbps)两部分。但随着多媒体技术的发展和 工业自动化水平的提高,控制网络的实时信息传 输量越来越大,H2的设计能力已不能满足实时信 息传输的带宽要求。鉴于此,现场总线基金会放 弃了原有H2总线计划,取而代之的是将现场总线 技术与成熟的高速商用以太网技术相结合的新型 高速现场总线-FF HSE(High Speed Ethernet )。
Ethernet/IP(Industrial Protocol)概述
在工业控制上,现场总线已经发展的比 较成熟,形成了主要的几种协议作为不 同工业控制领域的规范 为了适应以太网的工业应用,各协议都 进行了针对性的改良,其中由DeviceNet 及ControlNet发展得到的就是Ethernet/IP 其核心是在应用层采用CIP(Control and Information Protocol)协议与以太网结 合
工业以太网EPA EPA由中国自主研发的一组工业以太网 标准,与Ethernet/IP等都是行业规范之 一 传输层及网络层沿用TCP/IP,即以太网 协议,而在应用层加入EPA应用层协议, 在数据链路层加入EPA通信调度管理实 体
工业以太网EPA ----同步时钟 同步时钟的实现: 1 PTP网络拓扑结构:(OC BC) M主时钟,S从时钟通过报文传递校准 同步报文 跟随报文 延时请求 延迟相应 PTP的“结构体”(引擎结构“数据 集”)
可靠性——冗余技术
可靠性——冗余技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业以太网技术全面解析
高性能、工厂设备和IT系统集成,以及工业物联网的需求驱动促进了工业以太网的增长。

在实时工业以太网中,EPA、EtherCAT、RTEX、Ethernet Powerlink、PROFINET、Ethernet/IP、SERCOS III是主要的竞争者。

下面对它们进行简单比较。

Ethernet/IP
Ethernet/IP是2000年3月由Control Net International和ODV A( Open DevicenetVendors Association共同开发的工业以太网标准。

实现实时性的方法
Ethernet/IP实现实时性的方法是在TCP/IP层之上增加了用于实时数据交换和运行实时应用的CIP协议(Common Industrial Protocol )。

Ethernet/IP在物理层和数据链路层采用标准的以太网技术,在网络层和传输层使用IP协议和TCP、UDP协议来传输数据。

UDP是一种非面向连接的协议,它能够工作在单播和多播的方式,只提供设备间发送数据报的能力。

对于实时性很高的I/O数据、运动控制数据和功能行安全数据,使用UDP/IP协议来发送。

而TCP是一种可靠的、面向连接的协议。

对于实时性要求不是很高的数据(如参数设置、组态和诊断等)采用TCP/IP协议来发送。

Ethernet/IP采用生产者/消费者数据交换模式。

生产者向网络中发送有唯一标识符的数据包。

消费者根据需要通过标识符从网络中接收需要的数据。

这样数据源只需一次性地把数据传到网上,其它节点有选择地接收数据,这样提高了通信的效率。

Ethernet/IP是在CIP这个协议的控制下实现非实时数据和实时数据的传输。

CIP是一个提供工业设备端到端的面向对象的协议,且独立于物理层及数据链路层,这使得不同供应商提供的设备能够很好的交互。

另外,为了获得更好的时钟同步性能,2003年ODV A将 IEEE 15888引入Ethernet/IP,并制定了CIPsync标准以提高Ethernet/IP的时钟同步精度。

EPA
EPA是在“863”计划的支持下,由浙江大学、清华大学、浙江中控技术公司、大连理工大学、中科院自动化所等单位联合制定,是用于工业测量和控制系统的实时以太网标准。

相关文档
最新文档