数学人教版六年级下册正比例图像
数学六年级下册第四单元《画一画(正比例图像)》教学案例
数学六年级下册第四单元《画一画(正比例图象)》教学案例1.学习内容北师大版小学数学六年级下册第四单元中的《正比例与反比例》中的《画一画》,主要是学习正比例图象,进一步理解正比例的意义。
2.学习目标(1)学科性目标①结合具体情境,通过“画一画”的活动,初步认识正比例图象,体会“正比例图象是一条直线”的特点,深化对正比例的认识。
②会在方格纸上描出成正比例的量所对应的点,理解正比例图象上的点所表示的意义。
(2)教育性目标在四学活动中培养学生合作学习、敢于表达、勇于质疑的学习品质。
(3)创新性目标利用正比例关系解决生活中的一些简单问题。
【学习重点】在方格纸上描出成正比例的量所对应的点,认识正比例图象的特征。
3.学习过程(1)复习引入,明确方向①复习引入全班同学去看电影,看电影的人数与所付票费如下表。
把上表填写完整,并判断看电影的人数与所付票费是否成正比例。
2÷1=2 4÷2=2 6÷3=2 ……小结:票费与人数的比值是一定的,所以票费与人数成正比例。
判断两种量是否成正比例要满足两个条件:一是两种量是相关联的量,一种量随着另一种量的增加而增加,减少而减少;二是两种量相对应量的比值不变。
②揭示课题:画一画(正比例图象)看来对于成正比例的量之间的关系,同学们已经掌握了,下面我们再思考一个问题,它们之间的关系能通过画图得到吗?这就是我们这节课要学习的内容。
【评析】找准知识的生长点,引导学生运用已有知识,用图的形式去直观的表示两个成正比例的量的变化关系。
(2)运用四学,探究新知探究1:动手画图,理解含义问题1:填表说说表中两个量的关系。
全班同学去看电影,看电影的人数与所付票费如下表。
①首学,展开思维(独立填表,思考两个量的关系)②互学,外化思维(小组交流)③群学,深化思维生1:我从左往右填的是:8、10、12、14、16生2:这两个数都在变化,并且人数增多所付票费也在不断增多,但他们的比值始终不变,所以这两个变量成正比例。
人教版小学六年级数学下册知识点_数学知识点
人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
人教版六年级数学下册讲义-正比例和反比例(含答案)
正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
六年级数学下册认识正比例图像教案苏教版
教案:六年级数学下册认识正比例图像教案苏教版一、教学目标1. 让学生通过观察、分析、归纳,理解正比例图像的特征及意义。
2. 培养学生运用数学知识解决实际问题的能力。
3. 激发学生学习数学的兴趣,培养学生的抽象思维能力。
二、教学重点与难点1. 教学重点:正比例图像的特征及意义。
2. 教学难点:如何判断两种相关联的量是否成正比例。
三、教学准备1. 教具准备:正比例图像的示例、多媒体课件。
2. 学具准备:学生分组合作,准备正比例图像的相关材料。
四、教学过程1. 导入新课1.1 教师出示正比例图像,引导学生观察、分析。
1.2 学生分享观察到的图像特征。
1.3 教师总结正比例图像的特征,板书课题。
2. 探究正比例图像的特征2.1 教师引导学生通过小组合作,探讨正比例图像的特征。
2.2 学生汇报探讨成果,教师点评并总结。
3. 实例分析3.1 教师出示实际问题,引导学生运用正比例图像解决。
3.2 学生展示解题过程,教师点评并指导。
4. 练习巩固4.1 教师设计练习题,让学生独立完成。
4.2 学生展示解答,教师点评并指导。
5. 总结拓展5.1 教师引导学生总结本节课所学内容。
5.2 学生分享学习收获,教师给予鼓励。
五、课后作业1. 完成练习册相关题目。
2. 观察生活中的正比例现象,下节课分享。
教学反思:本节课通过观察、分析、实例、练习等环节,让学生掌握了正比例图像的特征及意义。
在教学过程中,注意引导学生主动参与、积极思考,培养了学生的抽象思维能力。
结合生活实际,让学生感受到数学与生活的紧密联系,提高了学生运用数学知识解决实际问题的能力。
但在课堂提问环节,可以更加注重启发学生思考,提高学生的表达能力。
六、教学评价1. 知识与技能:学生能识别和理解正比例图像,能够解释实际问题中的正比例关系。
2. 过程与方法:学生能够通过观察、分析和归纳来探索正比例图像的特征,并能运用这些特征解决相关问题。
3. 情感态度与价值观:学生对数学学习保持兴趣和热情,能够在小组合作中积极参与,展现合作和交流的能力。
完整版)六年级数学正反比例
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
六年级数学下册典型例题系列之第四单元正比例和反比例部分(解析版)人教版
2021-2022学年六年级数学下册典型例题系列之第四单元正比例和反比例部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第四单元正比例和反比例部分。
本部分内容主要以正比例和反比例的认识、判断及图表应用为主,而利用正比例和反比例解决生活实际问题则编辑在《比例的应用部分》中。
本部分内容偏理解,建议根据学生情况选择性进行讲解,一共划分为九个考点,欢迎使用。
【考点一】认识正比例。
【方法点拨】 一、正比例的意义两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,用字母表示为k xy(一定) 二、判断两种量是否成正比例关系的方法先找变量(找两种相关联的量),再看定量(看两种相关联的量中相对应的两个数的比值是否一定),最后作出判断。
三、正比例关系图象的特点正比例关系图象是一条从(0,0)出发的无限延伸的射线,从图象中可以直观地看到两种量的变化规律,不用计算就可以根据一种量的值直接找到对应的另一种量的值。
【典型例题】科学小组在同一时间、同一地点进行观察实验,测得竹竿的高与竿影的长如下表。
(1)说一说竿影的长与竹竿的高的变化关系。
解析:竹竿的高增加1m ,竿影的长随之增加0.4m 。
(2)写出竿影的长与竹竿的高的比,你有什么发现?解析:竿影的长/竹竿的高=0.4,不管竹竿的高怎么变化,竿影的长和竹竿的高的比值是不变的。
((3)竹竿的高与竿影的长是不是成正比例?说明理由。
解析:竹竿的高与竿影的长成正比例,因为它们的比值一定。
新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5
…
影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。
人教版六年级下册数学-正比例关系图象
(3)利用图象估计一下,汽车行驶 55km的耗油量是多少?
汽车行驶55km 的耗油量大约 是7.3L。
2.同一时间,同一地点测得3棵树的树高及其 影长如下表。
树高/m 2 3 6 影长/m 1.6 2.4 4.8
(1)在左下图中描出表示树高与对应影长的 点,然后把它们连起来,观察图象的特点。
ห้องสมุดไป่ตู้
时间/时 1 2 3 4 5 6 路程/km 80 160 240 320 400 480
(1)写出几组路程与相对应的时间的 比,并比较比值的大小。
80 1
= 160
2
= 240
3
= 320
4
= 400 = 480
5
6
= 80
时间/时 1 2 3 4 5 6 路程/km 80 160 240 320 400 480
0123456 0 90 180 270 360 450 540
人教版六年级下册数学-正比例关系图 象
人教版六年级下册数学-正比例关系图 象
时间/时 0 1 2 3 4 5 6
路程/km 0 90 180 270 360 450 540
(1)比较几组路程与相对应时间比值的大
小,说说这个比值的意义是什么。
比较正比例图象和折线统计图
正比例图像描述的是量与量之间的变化 关系,两个量都是连续的,即射线上的点有 无数个。
折线统计图描述的是一些离散的数据。
你能举出生活中正比例 关系的例子吗?
正方形的周长与边 长成正比例关系。
如果汽车行驶速度一 定,路程与时间成正 比例关系。
一辆汽车行驶的时间和路程如下表。
49
(14,49) (3)不计算,根据
正比例六年级知识点
正比例六年级知识点正比例是数学中的一种基本关系,常常在实际问题中应用。
在六年级学习中,正比例是一个重要的知识点。
本文将对正比例的概念、性质以及相关计算方法进行详细介绍。
1、正比例的概念正比例是指两个变量之间的关系,当其中一个变量的增加(或减少)时,另一个变量也相应地按比例增加(或减少)。
正比例通常表示为y ∝ x,即y和x成正比。
其中,y是因变量,x是自变量,两者之间满足一定的比例关系。
2、正比例的性质(1)零比例:当x为0时,y也为0。
这表示在正比例关系中,自变量和因变量同时为0,即呈零比例。
(2)比例常数:在正比例关系中,自变量x每增加(或减少)一个单位,因变量y也相应增加(或减少)一个单位。
这个单位的增量与自变量的变化成正比,比例关系中的常数称为比例常数。
比例常数可表示为k,即y = kx。
(3)比例函数图像为一条直线:正比例关系可用一条直线表示。
当自变量x为0时,因变量y为0,因此直线经过原点;当自变量每增加一个单位时,因变量也相应增加一个单位,因此直线是从原点开始逐渐上升的。
3、正比例的计算方法在求解正比例问题时,常常需要根据已知条件计算未知量。
(1)已知任意两个变量的值,求比例常数k:根据正比例关系式y = kx,将已知的x和y代入其中,可求得比例常数k的值。
(2)已知一个变量的值和比例常数k,求另一个变量的值:根据正比例关系式y = kx,将已知的x或y代入其中,可解出另一个变量的值。
示例问题:已知y和x成正比,且当x为3时,y为6。
求当x为8时,y 的值。
解法:根据已知条件可得,y = kx。
将x为3时,y为6代入其中,得到6 = 3k,解得k = 2。
将k = 2代入比例关系式,可得y = 2x。
当x为8时,代入计算可得y = 2*8 = 16。
因此,当x为8时,y的值为16。
4、正比例的实际应用正比例在现实生活中有许多应用,下面以两个例子说明。
(1)速度和时间的关系:当一个物体在匀速运动时,速度与运动所用的时间成正比。
六年级数学下册课件-4.2.2反比例-人教版2
书的总页数一定,已读的页数与未读的页数。
(1)X∶Y=K,k一定,成正比例。
判断下面每题中的两种量成什么比例关系?并用关系式或列表等方式说明你作出判断的依据。
量出他的影长和身高,得到相应比例;
要想左右保持平衡,右边也要挂6颗,应该挂在哪里?
乘积一定,都等于300。
(4)使用竹竿来当参照物,绑在旗杆上,或者立在
正比例和反比例
反比例
正比例和反比例的认识
(1)X∶Y=K,k一定,成正比例。 (2)Y×X=K,k一定,成反比例。
正比例和反比例的认识
(3)正比例,两种相关联的量,一个 量变化,另外一个量也随之变化, 如果这两个的比值一定,就是正 比例。
正比例和反比例的认识
(4)反比例,两种相关联的量,一种 变化,另外一种也随之变化,如 果这两个量的乘积一定,那么就 是反比例。
(1)下面是某种汽车所行路程和耗油量的对应数值表。
树高和影长是成正比例。
杠杆原理背后隐藏着反比例。 第三步,量出旗杆的影长,用 右边的刻度×所放棋子数=左边的刻度×所放棋子数 同学身高∶同学影长=X∶旗杆影长
乘积一定,所以成反比例关系。
有两个相关联的量X、Y
(1)X∶Y=K,k一定,成正比例。
(2)京沪高铁的火车平均行驶速度与形式时间数值表。
书的总页数一定,已读的页数与未读的页数。 不成比例。
已读页数+未读的页数=书的总页数。 正比例 反比例 不成比例
有两个相关联的量X、Y
X
10 20
Y
30 15
反比例: 10×30=300 20×15=300 乘积一定,成反比例。
有两个相关联的量X、Y
X
10 20
Y
六年级数学下册正比例的图像教学课件
方法:估计4.5小时生产
的吨数,要在横轴上找
到表示4.5小时的点,过
这点画横轴的垂线,得
到垂线与图像的交点,
63
B
再过交点作纵轴的垂线, 根据垂足在纵轴上的位
置估计生产的吨数。
A
(2)估计,要生产80吨啤酒,大约需要多少小时?
方法:估计生产80吨啤 酒需要的小时数,要在 纵轴上找到表示80吨的 点,过这点画纵轴的垂 线,得到垂线与图像的 交点,再过交点作横轴 的垂线,根据垂足在横 轴上的位置估计所需要 的小时数。
图中所描的点在一 条直线上吗?
在,正比例关系的 图像在一条直线上。
B
A
正比例的图像是一条直线!
反思:画正比例关系的图像 (1)可以根据提供的各组数据描出图像的许 多个点,再依次连成直线; (2)如果按正比例关系画出的点不在同一条 直线上,表明画点出现了错误,应及时纠正。
B
A
(1)根据下图估计一下,4.5小时大约能生产多少吨啤酒?
➢可以用图像来表示两个数量的正比例关系。
➢怎样用图像来表示两个数量的正比例关系? ➢(1)观察表格中工作总量和工作时间的值 ➢(2)按折线统计图的描点方法,描出相应的点
图中A点表示什么? B点表示什么?
B
A
➢(1)观察表格中工作总量和工作时间的值。 ➢(2)按折线统计图的描点方法,描出相应的点 。 ➢(3)把所描的各点用线连起来。
把它们按顺序连起来.
估计一下行驶120km大约要用多长时间?
路程/km
480
400 320
240 160
120
80
0 1 1.5 2 3 4 5 6 7 时间/时
观察分析啤酒生产车间统计表
人教版小学六年级数学比例知识点
一、比例的概念比例是数学中一个重要的概念,是指两个或多个数之间的相对大小关系。
比例的形式常表示为a:b,读作“a与b成比例”。
其中a和b称为比例的项,a称为第一项,b称为第二项。
二、比例的性质1.相等性:如果两个比例的两个项分别相等,那么它们成比例,即a:b=c:d。
2.反比例:如果两个比例的两个项的乘积相等,那么它们成反比例,即a:b=c:d,可表示为a×b=c×d。
三、比例的应用1.比例的计算:已知一个比例的三项中有两项和一个比例,计算另一个项。
常用的计算方法有:-已知a:b=c:d,求b,可通过计算得到b=d×(b/a)。
-已知a:b=c:d,求d,可通过计算得到d=b×(d/a)。
-已知a:b=c:d,求c,可通过计算得到c=a×(c/b)。
-已知a:b=c:d,求a,可通过计算得到a=c×(a/d)。
2.比例的单位换算:在比例中,两个项有可能使用不同单位表示。
为了进行计算,需要进行单位换算。
常见的单位换算包括长度单位、质量单位等。
例如,1米=100厘米,1千克=1000克。
3.量与量的比较:在日常生活中,经常会出现量与量之间的比较,例如时间比较、长度比较等。
这时可以使用比例的概念进行比较。
4.图形的相似:图形的相似指的是形状相似、对应边长成比例的两个图形。
在图形的相似性中,比例起到非常重要的作用。
可以通过比例关系求解未知边长。
5.比例的简化和扩大:当一个比例中的两个项可以同时除以一个相同的数,得到一个新的比例,新比例与原比例相等,此时可以将原比例进行简化。
相反地,如果将一个比例的两个项同时乘以一个相同的数,得到一个新的比例,新比例与原比例相等,此时可以将原比例进行扩大。
四、解题方法与注意事项1.了解比例的性质,正确理解比例的概念。
2.熟练掌握比例的计算方法,理解比例计算的思路。
3.注意单位换算,在进行比例计算时,要注意单位的一致性。
人教版六年级下册数学《正比例 》课件
新知 探究
用字母y和x表示两种相关联的量
用k表示它们的比值(一定)
正比例关系可以用下面的式子表示:
k表示一个固定不变的数 路程 = 速度=90 k
时间
小 组 合作
仿照例子,将公式变为正比例 例: 根h一据定S侧时=,c—hc,—=h(一定),
S侧 所以S侧和c是一对正比例关系
小 组 合作
用字母y和x表示两种相关联的量 用k表示它们的比值(一定)
1.下面是小林家去年上 半年每月用电量情况。
(1)分别写出各月电费与用电量的比, 比较比值的大小。
60∶120=65∶130=55∶110=60∶120=65∶130=75∶150= (02.)5 说明这个比值所表示的意义。比值表示每千瓦时的电费。 (3)电费与相应的用电量成正比例关系吗? 为什么?
例:
根据
,
______一定时,——=
(一定),
所以____和____(__是)一(对正)比例关系
()
数形 结合 正比例图像,找到正比例图像的特点
公式不好记,有没有 直观的办法判断正比
例呢?
数形 结合
正比例图像特点 1.(0,0)出发 2.无限延伸 3.一条射线
巩 固 练 习 [教材第49页练习九 第1题]
课后 作业 练习九 1---7题
成正比例关系,因为电费∶用电量=每千瓦时的电费(一定),比值 一定。
[教材第49页练习九 第4题] 巩 固 练 习
2.已知y与x成正比例关系,在下表中的空格中填写合适的。
x和y两个量成这正比例 关系,则正比例关系式
y÷x=k,再求出k=2.5。
随堂 作业
课时练:课后练习1,2,3,4 数学书:练习九2题
3.5 正比例图像(教案)2023-2024学年数学六年级下册
3.5 正比例图像(教案)一、教学目标1. 让学生理解正比例关系的概念,掌握正比例图像的特点和绘制方法。
2. 培养学生运用正比例关系解决实际问题的能力,提高数据分析与处理的能力。
3. 培养学生合作交流、自主探究的学习习惯,激发学生对数学学科的兴趣。
二、教学内容1. 正比例关系的概念2. 正比例图像的特点和绘制方法3. 正比例关系在实际问题中的应用三、教学重点与难点1. 教学重点:正比例关系的概念,正比例图像的绘制方法。
2. 教学难点:正比例关系在实际问题中的应用。
四、教学过程1. 导入通过生活中的实例,如“一辆汽车行驶的时间和路程的关系”,引导学生发现正比例关系,激发学生的兴趣。
2. 新课导入(1)讲解正比例关系的概念,引导学生理解正比例关系的特点:两个变量之间的比值保持不变。
(2)介绍正比例图像的特点:一条经过原点的直线。
(3)讲解正比例图像的绘制方法,强调绘制过程中的注意事项。
3. 实践操作(1)让学生分组合作,绘制一个正比例关系的图像,如“书的页数和价格的关系”。
(2)引导学生观察图像,分析正比例关系的特点。
4. 应用拓展(1)给出几个实际问题,让学生判断是否为正比例关系,并绘制出相应的图像。
(2)让学生结合自己的生活经验,找出一个正比例关系的实例,并绘制出图像。
5. 总结反馈让学生总结正比例关系的概念、正比例图像的特点和绘制方法,教师点评并给予反馈。
五、课后作业1. 绘制一个正比例关系的图像,如“家庭成员人数和食物消耗量的关系”。
2. 判断下列实际问题是否为正比例关系,并绘制出相应的图像:(1)一本书的页数和厚度之间的关系。
(2)一个人的体重和身高之间的关系。
六、教学反思1. 教师要关注学生在绘制正比例图像过程中的操作规范,及时纠正错误。
2. 在讲解正比例关系时,要注重联系实际,让学生在实际问题中发现正比例关系。
3. 课后作业要注重巩固正比例图像的绘制方法,提高学生的实际应用能力。
七、板书设计1. 正比例关系的概念2. 正比例图像的特点和绘制方法3. 正比例关系在实际问题中的应用八、教学评价1. 学生对正比例关系的概念、正比例图像的特点和绘制方法的掌握程度。
2024六年级数学下册六正比例和反比例第1课时正比例的意义及图像课件苏教版
总价、数量之间的关系吗?
总价
答:这个比值表示铅笔的单价。
=单价 数量
(4)铅笔的总价和数量成正比例吗?为什么?
答:铅笔的总价和数量成正比例,因为它们的比值是一定的。
如果用x和y表示两种相关联的量,用k表示他们的比值,正
比例关系可以用下面的式子表示:
y x =k(一定)
生活中还有哪些成正比例 的量?你能举例说一说吗?
(3)根据图像判断,如果挂上质量是5千克的物体,弹簧 应伸长多少厘米?要使弹簧伸长4厘米,应挂上多少 千克的物体? 弹簧应伸长1.25 cm。应挂上16 kg的物体。
6. 下面的说法对吗?为什么? 亮亮3 岁时的体重是12 千克,11 岁时的体重是44 千克。于 是亮亮得出一个结论:我的体重和年龄成正比例。 亮亮的说法不对。体重与年龄的比值并不总是相同的,体 重还与饮食、运动等因素有关。亮亮3岁与11 岁时体重与 年龄的比值只是恰好相同。 辨析:不能准确找出成正比例关系的两种相关联的量
探究点2 正比例关系的判断方法
购买一种铅笔的数量和总价如下表:
1.6 2 2.4 (1)填写上表,说说总价是随着那个量的变化而变化的。
答:总价是随着数量的变化而变化的。
(2)写出几组相对应的总价和数量的比,并比较比值的大小。
0.4 =0.4,0.8 =0.4,1.2 =0.4。比值相等。
1
0
3
(3)这个比值表示的实际意义是什么?你能用式子表示它与
他们20分钟大约行5千米,行10千米大约要用38分钟。
4.一种彩带每米售价5元,购买2米、3米······各需要多少元? (1)把下表填写完整。
10 15 20 25 (2)根据表中的数据,在下
图中描出彩带总价和长 度所对应的点,再按顺 序连接起来。
六年级下册数学教材习题课件比例人教版(124张)课件
(1)5与8的比等于40与x的比。 5∶8=40∶x,x=64。
3
1
2
(2)x与 3 4
的比等于
1
2
5
与 35
的比。
x∶ 4 = 5 ∶ 5 ,x= 8 。
(3)比例的两个内项分别是2和5,两个外项分别是x和2.5。
x∶2=5∶2.5,x=4。
11.汽车厂按1:20的比生产了一批汽车模型。 (1)轿车模型长24.3cm,轿车的实际长度是多少?
哪组中的四个数可以组成比例?把能组成的比例写出来。
(3)观察三角形A和B,它们的面积有什么变化?面积与边长是按相同的比变化的吗?
× = ×,
长:80 m=8000 cm,8000× =4(cm),
4∶400=1∶100
∶ =∶ 。
内项:0.8和3.75 外项:0.5和6
(1)从甲地到乙地的路程是240km,汽车行驶的速度与时间如下表。
它们的比值相等。
60 = 120
65 = 130
75 = 150 ,
(2)说明这个比值所表示的意义。 表示每千瓦时的电费。
(3)电费与相应的用电量成正比例关系吗?为 什么?
成正比例。因为各月电费与用电量的比值,也就是 电的单价一定。
2.判断下面每题中的两种量是否成正比例关系, 并说明理由。 (1)《小学生作文》的单价一定,订阅的费用与订阅的数量。 成正比例,理由:因为单价一定,也就是订阅的费用与订阅的数 量的比值一定,所以订阅的费用和订阅的数量成正比例。 (2)正方体的表面积与它的棱长。
顷和0.8公顷。秋收时,两块水稻田的产量分别
为3.75t和6t。
(1)两块水稻田的产量与面积之比,是否可以组成比例?
六年级下册数学正比例和反比例PPT
2、表示两个比(
(
)。
比例 )的项式子叫做
外项
比例中的四个数,叫做比例的( 内项 ),
比例两端的两个项比,例叫的做外比项例之的积等于内项之积
(
);
比例中间的两个项,叫做比√例的
(
)。
×
比例的基本性质:
√
×
9
正比例和反比例
比例及其应用
4、解比例:
(1)8:X=2:9
(2) 15:10=3:
( X 解-6:)2X=8 ×9 解:15× (X -6)=10×3
也随着扩大为原来的3倍,这两种量成(正
)比
例。
1 两也种 反相 而关 缩联 小的 为量 原,来一的5种量扩大为,原这来两的种量5反倍成,(另一种量)
比例。
扩大4倍
7、成正比例的两种量,一种量扩大4倍,另一种量也
( 缩小 1 4
)。 14
第二单元 正比例和反比例
二、考点2:正比例和反比例的判断。
1、判断下面两种量是否成比例,成什么比例,为什么?
(
)。
y
= k(k一定)
4、如果用字x母x和y表示两种相关联的量,用k表示它们的
比值(一定),正比例关系可以用以下关系式表示为
xy= k(k一定)
13
第二单元 正比例和反比例
一、考点1:正比例和反比例的基本概念。
5、正比例的图像是一条( 直线 ),
反比例是图像是一条( 曲线 )。
6、两种相关联的量,一种量扩大为原来的3倍,另一种量
相对应的两个数的( 乘积 )一定,这两种量就叫做 ( 反比例 )的量,它们的关系叫做( 反比例 )关系。
12
第二单元 正比例和反比例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例图象教学设计
教师:更尕彭措【教学内容】
正比例图象。
【教学目标】
1.使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2.通过练习,巩固对正比例意义的认识。
3.初步渗透函数思想。
【重点难点】
能根据数量关系式或图象判断两种量是否成正比例。
【教学准备】
投影仪。
【新课讲授】
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。
(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题:
①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出:
①正比例关系的图象是一条经过原点的直线。
②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
【练习讲授】
1.基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的方法。
学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。
a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km ,2小时行驶180km ,3小时行驶270km ,4小时行驶360km ,5小时行驶450km ,6小时行驶540km ,7小时行驶630km ,8小时行驶720km ……
①出示下表,填表。
一列火车行驶的时间和路程
②填表并思考发现了什么?
③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。
(板书:两种相关联的量)
④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。
⑤用式子表示它们的关系:时间
路程 =速度(一定)。
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2.指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。
在抽查第
(1)小题时,多让不同的学生回答。
做第(2)小题时应多让学生们交流。
第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。
②组织学生在小组中合作探究。
a.动手画一画,指名汇报图象特点。
b.组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
【课堂作业】
1.根据x和y成正比例关系,填写表中的空格。
2.看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
【课堂小结】
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。