化学动力学1PPT课件
化学动力学-连串反应PPT课件
连串反应 ——一个反应的某产物是另一个非逆向反应
的反应物,如此组合的反应称为连串反应
C6H6 Cl2 C6H5Cl HCl C6H5Cl Cl2 C6H4Cl2 HCl C6H4Cl2 Cl2 C6H3Cl3 HCl
………………
一级连串反应
两个单向连续的一级反应
t=0
A k1B k2 C
k2cB
0 cB
C ek2t
C积分常数
令C=C(t),并将 cB C(t ) ek2t 代入原方程
dcB dt
k2cB
k1cA0 ek1t
dC(t ) ek2t dt
k2C(t )ek2t
k1cA0 ek1t
dC (t ) dt
k c e(k2 k1 )t 1 A0
C(t)
k c e(k2 k1 )t 1 A0 k2 k1
cA0
0
0
dcB
dt
r
(i B
)vi
i 1
t=t cA
cB
cC
v1 v2
vA
dcA dt
v1
k1cA
vB
dcB dt
v1 v2
k1cA
k2cB
vC
dcC dt
v2
k2cB
cA
c e k1t A0
dcB dt
k2cB
k1cA0e k1 t
cA cB cC cA0
积分形式
cA
c e k1t A0
cB
cA0
k1 k2 k1
(e k1t
ek2t )
cC
cA0 1
k2e k1 t k2
k1e k2 t k1
化学动力学-快速反应的实验方法PPT课件
化学松弛法
当一个快速对峙反应在一定的外界条件下达成 平衡,然后突然改变一个条件,给体系一个扰动, 偏离原平衡,在新的条件下再达成平衡。
对平衡体系施加扰动信号的方法可以是脉冲 式、阶跃式或周期式。改变反应的条件可以是温 度跃变、压力跃变、浓度跃变、电场跃变和超声 吸收等多种形式。
例:采用化学松弛法研究某二级对峙反应,以测定对峙反 应的速率常数。反应和速率方程如下:
快速反应的实验方法
化学反应动力学研究的实质是测量体系组成随时间 的变化,对于快速反应,检测方法必须足够灵敏以 反映组成的变化。常用方法:压力测量,核磁共振, 紫外和可见光谱,气相色谱等等,选择原则是分析 时间快于反应时间。
测量技术的反应时间范围
例:电子自旋共振谱(探 测含未成对电子的物质) 中,谱的吸收峰宽度代表 了自由基的平均寿命,由 量子力学测不准关系式, 峰越宽,寿命越短。
将X代入速率方程,得:
dcB dt
k1cA2
k1cB2
dX dt
k1(cAe
X )2 k1(cBe
X )2
X2 X dX dt
k1cA2 e k1cB2e (2k1cAe 2k1cBe ) X
dX k1cA2 e k1cB2e dt
(2k1cAe 2k1cBe ) X
近似一级反应
dX dt
(2k1cAe 2k1cBe )X
ln
X 初始 X
=(2k1cAe 2k1cBe )t
通过实验测定反应的弛豫时间t,t的定义为当cBe 如果B均由A转化来t 1 =2k1(cA0 cBe ) 2k1cBe
由于温度变化范围很小,所以速率系数的变化也很小,可 以近似认为不变,从而可通过测定一系列平衡浓度下的弛
化学动力学-- 化学反应的反应速率及速率方程.ppt
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
2019-10-13
2019-10-13
平均速率
2019-10-13
瞬时速率
R P
vR
d[R ] dt
vp
d[P] dt
在浓度随时间变化的图上,在时间t 时,作交点的切线,
就得到 t 时刻的瞬时速率。显然,反应刚开始,速率大,然后 不断减小,体现了反应速率变化的实际情况。
2019-10-13
瞬时速率
第十一章 化学动力学
2019-10-13
化学热力学的研究对象和局限性
研究化学变化的方向、能达到的最大限度以及
外界条件对平衡的影响。化学热力学只能预测反应
的可能性,但无法预料反应能否发生?反应的速率
如何?反应的机理如何?例如:
rGm$ / kJ mol1
1 2
N2
3 2
H2
NH3 (g)
16.63
H2
1 2
O2
H2O(l)
237.19
热力学只能判断这两个反应都能发生,但如何使它发
生,热力学无法回答。
2019-10-13
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。
反应速率方程中,反应物浓度项不出现, 即反应速率与反应物浓度无关,这种反应称为 零级反应。常见的零级反应有表面催化反应和 酶催化反应,这时反应物总是过量的,反应速 率决定于固体催化剂的有效表面活性位或酶的 浓度。
化学反应动力学1PPT
9
四、动力学与热力学的关系
1. 对于一个实际应用的物( R P ) 则反应可实用 则反应不实用 • 若热力学√(rG 0),而且:
17
同一基元反应中的不同态态反应具有不同的热 力学和动力学性质。 例如, 0 K时: O(3P1) + H2(1Σ +g) OH(2Σ +) + H(2S1/2) Δ H = 380 kJ/mol O (3P1) + H2 ( 1Σ +g) OH (2П ) + H (2S1/2) Δ H = -5 kJ/mol O (1D2) + H2 ( 1Σ +g) OH ( 2Σ +) + H ( 2S1/2 ) Δ H = 200 kJ/mol O (1D2) + H2 (1Σ +g) OH (2П ) + H ( 2S1/2 ) Δ H = 185 kJ/mol
以溴化氢合成反应为例: 总反应 H2 + Br2 = 2 HBr 由以下基元反应所组成: Br2 2 Br Br + H2 HBr + H H + Br2 HBr + Br H + HBr H2 + Br 2 Br Br2
上述5个基元反应构成了溴化氢合成的反应 机理。
8
根据这一反应机理,可以得出其反应速率与 反应物浓度的关系为: (反应速率)∝[H2][Br2]1/2╱{1+A[HBr]/[Br2]}
3
第一章 动力学基本概念 ( Basic Concepts of Kinetics )
化学动力学
定积分式:
x dx 0 (a x)2
t
0 k2dt
1 a-x
1 a
k2t
x a(a -
x)
k2t
y 1 y
k2at
(y x ) a
t1/2
1 k2a
(2)a b
不定积分式:
1 a-b
ln
a b
x x
k2t
常数
定积分式:
1 a-b
ln
b(a a(b
x) x)
k2t
———————————————————————————
cA
k1d t
ln cA k1t 常数
或
dx (a x)
k1dt
ln(a x) k1t 常数
定积分式
cA dcA
c cA , 0
A
t
0 k1dt
ln cA,0 cA
k1t
或
x dx
0 (a x)
t
0 k1dt
ln
a
a
x
k1t
令 y x/a
ln 1 1
y
k1t
3. ln cA 与 t 呈线性关系。
引 (1)
伸 的
(2)
特 (3)
点
所有分数衰期都是与起始物浓度无关的常数。
t1/ 2 : t3/ 4 : t7/8 1: 2 : 3
c / c0 exp( k1t)
反应间隔 t 相同, c / c0有定值。
n级反应(单组分)
AP
t =0 a
0
t =t a-x x
[例1]
N2
+
5 2
O2
+
化学反应动力学1
第一章 化学反应动力学 Chemical Reaction Kinetics§1.1 化学反应速率的表示方式 expression of Chemical reaction rate化学反应动力学是定量描述化学反应随时间变化即化学反应速率的基础理论。
它表达了反应速率及其影响参数之间的函数关系。
在均相(气体或液体)中进行化学反应时,一般有以下这些影响因素:反应物浓度、绝对压力、温度以及发生催化反应时的催化剂的种类合浓度。
有些情况如高粘性液体中另外,反应速率受扩散过程影响。
化学反映速率指单位时间内单位反应混合物体积中发应物的反应量或产物的生成量。
因反应系统的不同,其表达方式也有不同。
如间歇系统和连续系统就有不同。
下面分别介绍:1.1.1 间歇系统 batches systerm 基本概念:○1反应体积V ,指的是反应器中反应物质所占据的体积。
注意:区别反应体积V 与反应器体积V R 。
○2间歇式反应:反应物等一次性加入复辟容器中,反应物在规定的反应条件下经历一定的反应时间达到所需要的反应率或转化率后,将反应混合物一次卸出,反应混合物浓度随反应时间而变化,但由于良好的搅拌,反应器内没有浓度和温度梯度。
间歇反应器化学反应速率的表示方式:dtdn V AA 1-=γ对恒容过程:dtdC iA ±=γ 有时用单位固体(催化剂)表面积S 代替反应体积V ,即dt dn S ii 1±=γ 或单位固体(催化剂)质量W 代替反应体积V ,即dtdn W ii 1±=γ1.1.2 连续系统 一、基本概念:1连续系统:在连续操作的反应器中,反应原料以固定的流量进入反应器,反应混合物也同样连续地从反应器中取出。
所以反应参数,包括温度、压力、进料量及反应物的浓度都不随时间而变化。
注意:连续系统中反应参数不随时间而变化,但可能随空间而变化。
2空速V SP :空间速率度是单位反应体积所能处理的反应混合物的体积流率。
化学反应动力学
(2)流---固相反应
ri 1 dni W dt
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
5
二、连续流动系统反应速率表示方式 6
流动系统:
反应物料处于连续稳定流动状态,物料在反应器
内没有积累,物系参数随空间位置变化
表示方式:
ri
d Ni d VR
S r
d Ni dS
ρb
d Ni dW
Sr
式中:b ---单位堆体积固体或催化剂中反应的
表 Kg面/m积3 ,--m-2固/m体3 反应物或固体催化Ri剂R的i堆密r度i,
8
2.复合反应
例
入Ri
对Q、P有rQ、rP 对 A、S 用 ri 无 法 描 述 , 引
对献复,合某反一应组需分R考i的虑 每m一组ij 分r_j 在整体反应中的贡 j 1
Ri的应代等数_于ij和按该组分计算的各个反应的反应速率
rj
即R:i
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且
P P
10%
时可忽略P对ri的影响
ri f T、C
则:
(反应动力学模型)
32
33
2. 控制阶段 外扩散控制:第1或7步速率最慢
内扩散控制:第2或6步速率最慢
化学动力学控制:第3、4、5步其中一步速率最慢
(1) 有控制步骤的反应:
r总 r控 r非控 (r1)控 (r1)控 (r1)非控 (r1)非控
(2) 无控制步骤的反应:各反应步骤速率接近
34
二、化学吸附与平衡
型式: a. 幂函数型----经验模型
化学动力学基础1(1)
d • 1 dnB
dt
B dt
r 1 d 1 • 1 dcB V dt V B dt
2.基元反应与非基元反应
基元反应: 反应物分子在碰撞中相互作用直接转化为生成物分子.
非基元反应〔总包反应〕:由若干个基元反应构成 .
反应机理〔reaction mechanism〕
反应机理又称为反应历程.在总反应中,连续或 同时发生的所有基元反应称为反应机理,在有些情况 下,反应机理还要给出所经历的每一步的立体化学结 构图.
同一反应在不同的条件下,可有不同的反应机理. 了解反应机理可以掌握反应的内在规律,从而更好 的驾驭反应.
基元反应的速率方程——质量作用定律
在基元反应中,实际参加反应的分子数目称为反 应分子数.反应分子数可区分为单分子反应、双分子 反应和三分子反应,四分子反应目前尚未发现.反应分 子数只可能是简单的正整数1,2或3.
基元反应简称元反应.如果一个化学反应,反应物 分子在碰撞中相互作用,在一次化学行为中就能转化 为生成物分子,这种反应称为基元反应.
例如上述反应历程中,所有反应历程都是基 元反应.
如果一个化学计量式代表了若干个基元反应 的总结果,那这种反应称为总包反应或总反应,是非 基元反应.
复
习
1.转化速率和反应速率的定义式
谢苗诺夫 欣歇尔伍德
1960年,李远哲等人<Lee Yuan Tseh,1936--,美籍华人> 研究交叉分子束反应, 从分子微观反应动力学角度深入探讨化学反 应的机理,于1986年获诺贝尔化学奖.
李远哲
波拉尼 赫施巴赫
五、化学动力学的任务和目 的
<1>研究各种因素,包括浓度、温度、催化剂、溶剂、 光照等对化学反应速率的影响;
化学动力学基础1
14
§11.2 化学反应速率的表示方法
Ch11. 动力学基础1
---反应速率测定方法
物理法
利用一些物理性质与浓度成单值函数的关系,测定反
应体系物理量随时间的变化,然后折算成不同时刻反
应物的浓度值,通常可利用的物理量有P,V,α,G等。这
r def 1 d
V dt ----V:反应体系体积
因为:
d def dnB B
r 1 1 dnB 体积恒定 1 dcB 1 d[B]
B B 反应式中物质B的计量系数;r 的量纲: 浓度·时间-1
11
Ch11. 动力学基础1
Ch11 化学动力学基础1
作业:19、34
Ch11 化学动力学基础(一)
Elements of Chemical Kinetics
2
本章目录
§11.1 化学动力学的任务和目的 §11.2 化学反应速率表示法 §11.3 化学反应的速率方程 §11.4 具有简单级数的反应 §11.5 几种典型的复杂反应 §11.7 温度对反应速率的影响 §11.8 关于活化能 §11.9 链反应 §11.10 拟定反应历程的一般方法
---速率方程(rate equation)
动力学方程(Kinetics Equation):反应速率r 与各物质浓度
的函数关系式或各物质的浓度与时间t的函数关系式。
r f (ci )(微分式); ci f (t)(积分式)
反应速率方程只有通过实验才能确定。一般,知道一化学反应 计量方程并不能预言它的速率方程 。
化学热力学预测反应的可能性,
化学动力学(1)
(2) 20世纪初~20世纪40年代:从宏观动 力学到微观动力学的过渡 1918 W.C.Mc Lewis 提出气体反应速率的碰 撞理论 1930‘s Eyring-Polanyi 提出反应速率的过渡态 理论 1913 Boldenstein 提出链反应机理 (3) 20世纪50年代~ 现在: 快速反应和分子动态 学的建立
1 dc A kc A a dt
c A, 0 c A, 0 x
akt (y x c A,0 )
1 ln akt 1 y
Characteristics:
(1) lncA~ t
straight line slope: -ak intercept: lncA,0
t1/ 2 ln 2 ak t 1/2 与 c A,0 无关
(2) 平衡态与非平衡态并重
非平衡是有序之源
在一定的条件下,在封闭的平 衡体系中将是自发地从有序趋向无 序;在开放的非平衡体系中将是自 发地从无序趋向有序。
熵与经济社会
高熵 原料
低熵能源
知识技术
生产系统
高熵 废物 废热
低熵 产品
关于热寂论的批判 宇宙的大爆炸模型: 宇宙初期是处在高温高密度的“热粥”状态, 存在着极高温的辐射(光子)和某些种类的粒 子。随着宇宙的膨胀,密度减小、温度下降、 在微观上形成了原子核、原子、分子(从最简 单的无机分子到高级的生物大分子),在宏观 上在万有引力作用下演化出银河系、超星系团、 星系团、星系、恒星、太阳系和地球,在地球 上又演化出生物,直到出现人类及其社会。整 个宇宙的演化是从均匀到不均匀、从无序到有 序,从简单到复杂,从低级到高级进化式的发 展
化学动力学-反应速率方程PPT课件
Br2 H2 2HBr
v 1 d[HBr] k[Br2]1/2[H2] 2 dt 1 k[HBr] / [Br2]
反应速率方程
Reaction Rate Equations
反应速率方程 (动力学方程) ——在其它因素固定不变的条件下,定量描
述各种物质的浓度对反应速率影响的数学方程。
v f (cA ,cB , )
反应速率方程由反应本性决定,与反应器的型式 和大小无关。 严格的反应速率方程难以获得,一般用经验半经 验方法得到近似的速率方程。
(mol m3 )1n s1
k kA kP
A P
非幂函数型速率方程
(non-power function type)
v
1
kcAa cBb kcAa cBb
反应机理决定速率方程形式。
I2 H2 2HI Cl2 H2 2HCl
v
1 2
d[HI] dt
k[I2
][H2
]
v
1 2
d[HCl] dt
基元反应
反应分子数
AP
单分子反应
AB P
双分子反应
2A B P
三分子反应
基元反应(elementary reactions) :
基元反应的反应速率正比于该反应的反应物 浓度之积——质量作用定律(mass action law)
单分子反应 A P
v kcA
双分子反应 2A P
AB P
v kcA2 v kcAcB
复合反应(complex reactions):
幂函数型速率方程
(power function type)
第五章 化学动力学1
基元反应
反应物微粒(分子、原子、离子、自由基等) 在碰撞直接作用并即刻转化为产物(一步完成) 的反应称为基元反应(elementary reaction)。否 则,就是非基元反应。
机理方程的每一步骤都是基元反应,所有这 些基元反应表明了从反应物到生成物所经历的整 个过程,所以反应机理又称为反应历程。
综合以上两种情况,有:
aA bB cC P
微分速率方程:
- dcA dt
kAcA2
定积分
cA - dcA
c cA,0
2 A
t
0 kAdt
积分速率方程:
1 cA
1 cA,0
kAt
二级反应的特征
1. 反应速率常数 k 的量纲 为[浓度]-1 [时间]-1;
2. 1/cA与 t 为线性关系,其斜率为 kA ,
A
t
0 kAdt
(其中kA ak)
得
ln cA,0 cA
kAt
or cA cA,0 exp(kAt)
或 ln cA ln cA,0 kAt
实例
某抗菌素在人体血液中消耗呈现简单 级数的反应,若给病人在某时刻注射后, 在不同时刻t测定抗菌素在血液中的浓度c, 得到数据如下:
t/h
由一级反应速率方程 ln cA,0 kt cA
当 cA,0 1 时,有 cA 0.67
易知:
t 1 ln cA,0 k cA
=
1 1.2110-4
ln
0.671
3300年
核心内容(二)
一级反应: 1. 定义及常见反应 2. 微分速率方程 3. 积分速率方程 4. 特征(量纲、线性关系、半衰期) 5. 实例解答
(完整版)化学反应动力学..
(2)流---固相反应
ri 1 dni W dt
5
W--固体质量
a. 对流固相非催化反应,W为固体反应物质量 b. 对流固相催化反应,W为固体催化剂质量
二、连续流动系统反应速率表示方式 6
流动系统: 反应物料处于连续稳定流动状态,物料在反应器 内没有积累,物系参数随空间位置变化
表示方式:
ri
Ri — 为“-”时表示转化速率,为“+”时表示生成
9
§2 化学反应速率方程(幂函数型)
ri f T、C、P、催化剂或溶剂
对特定反应,且 P 10% 时可忽略P对ri的影响
P
则: ri f T、C (反应动力学模型)
型式: a. 幂函数型----经验模型 b. 双曲函数型----机理模型 c. 级数型----经验模型
r
,,, A
k C r 1
1A
1
A
rQ
2
k C 2U
,,,r2
rQ
Q
R r r r k C A转化速率:
m
A
A
Aj j
A
A
1A
j 1
A
m
R r r r k C Q生成速率:
1
第二章 化学反应动力学
§1 化学反应速率的工程表示 §2 化学反应速率方程(幂函数型) §3 动力学方程的转换 §4 多相催化反应的表面反应动力学
(双曲型动力学方程)
§1 化学反应速率的工程表示 2
一、间歇系统反应速率表示方式
间歇系统:非定态过程,反应器内物系参数随t变化
1.均相反应速率表示方式
一、单一反应动力学方程
10
简单反应、并列反应、自催化反应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NH3(g)
需一定的T,p和催化剂
H2
1 2
O2
H2O(l)
点火,加温或催化剂
系是相辅相成的。 经热力学研究认为是可能的,但实际进行时反应速 率太小,则可以通过动力学研究,降低其反应阻力, 缩短达到平衡的时间。 经热力学研究认为是不可能进行的反应,则没有必 要再去研究如何提高反应速率的问题了。过程的可 能性与条件有关,有时改变条件可使原条件下热力 学上不可能的过程成为可能。
反应分子数只可能是简单的正整数1,2或3。
基元反应
反应分子数
A P
单分子反应
A B P
双分子反应
2A B P
三分子反应
质量作用定律
基元反应的速率与各反应物浓度的幂乘积成正比, 其中各浓度的方次为反应方程中相应组分的分子个数。 这就是质量作用定律。
dcA dt
kcAa cBb
速率方程中的比例常数k叫做反应速率常数。
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
转化速率的定义:
单位时间内发生的反应进度。
d 1 dnB dt B dt
对于非依时计量学反应,转化速率的数值与用来 表示速率的物质B的选择无关,但与化学计量式 的写法有关,故应用此量时必须指明化学反应方 程式。
热力学只能判断这两个反应都有可能发生。
化学动力学的研究对象
化学动力学研究化学反应的速率和反应的机理以 及温度、压力、催化剂等外界因素对反应速率的影响, 把热力学的反应可能性变为现实性。
综上述,化学动力学的基本任务: 1、研究反应速率
即研究各种因素(c、T、p、介质、催化剂等)对反
应速率的影响,提供给人们选择反应的条件,掌握并控制 反应的手段,使反应按期望的速率进行。
化学反应方程,除非特别注明,一般都属于化 学计量方程,而不代表基元反应。例如合成氨反应
N2 3H2 2NH3 就是化学计量方程。
3.基元反应的速率方程——质量作用定律,反应分子数
在基元反应中,实际参加反应的分子数目称为
反应分子数。反应分子数可区分为单分子反应、双
分子反应和三分子反应,四分子反应目前尚未发现。
化学动力学的研究对象
2、揭示反应历程,并研究物质结构与反应能力之间的关系 所谓反应历程就是反应按什么途径,经那些步骤才转
化为最终产物。选择适当的反应途径,可使热力学预期的 可能性变为现实;由反应历程可知反应过程中旧键的破坏 和新键的形成方式,了解物质结构和反应能力的关系。
例如:
动力学认为:
13 2 N2 2 H2
通常的反应速率都是指定容反应速率,它的定义为:
单位时间单位体积内化学反应的反应进度
v 1 d 1 dnB /V 1 dcB
V dt B dt
B dt
对任何反应: AA BB YY ZZ
A的消耗速率 vA dcA / dt
Z的生成速率 vZ dcZ / dt
反应速率与消耗速率和生成速率
依时计量学反应:存在中间产物,并且随着反应 的进行逐渐增加,不符合总的计量式。
非依时计量学反应:若某反应不存在中间物,或 虽有中间物,但其浓度甚微可忽略不计,此类反 应将在整个反应过程均复合一定的计量式。
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
反应分级数的代数和:n=nA+nB+…
反应级数(order of reaction)
反应级数的大小表示浓度对反应速率的影响程 度,级数越大,则反应速率受浓度影响越大。
基元反应可以直接应用质量作用定律。根据反 应数的定义,单分子反应即为一级反应,双分子反 应即为二级反应,三分子反应即为三级反应。只有 这三种情况。
§11.1 化学反应的反应速率及速率方程
速度(velocity)是矢量,有方向性。 速率(rate)是标量 ,无方向性,都是正值。
速率方程又称动力学方程。它表明了反应速 率与浓度等参数之间的关系或浓度等参数与时间 的关系。速率方程可表示为微分式或积分式。
1.反应速率的定义
对某化学反应的计量方程为: 0 BB B
非基元反应不仅有一级、二级、三级反应,还 可以有零级、分数级如1/2级、3/2级等反应,甚至速 率方程中还会出现反应产物的浓度项。
5.用气体组分的分压表示的速率方程
设反应为: A 产物
A的消耗速率
基于分压A的 消耗速率
dcA dt
1 dcA 1 dcB 1 dcY 1 dcZ A dt B dt Y dt Z dt
各不同物质的消耗速率或生成速率,与各自的 化学计量数的绝对值成正比,即
v A = B =Y =Z A B Y Z
2.基元反应和非基元反应
在化学反应过程中,反应物分子一般总是经过若干 个简单的反应步骤,才最后转化为产物分子的。每一个 简单的反应步骤就是基元反应(elementary reaction)。
为一定值,与浓度无关。质量作用定律只适用于基
元反应。 k 的单位随着反应级数的不同而不同。
(mol·m-3)1-n·s-1
4.化学反应速率方程的一般形式,反应级数
对任何反应: AA BB YY ZZ
A
dcA dt
kcAnA
c nB B
各浓度的方次nA和nB等,分别称为反应组分A和B 等的反应分级数,量纲为一。反应总级数n为各组分
① I2 M0 I I M0 ② H2+I I HI HI ③ I I M0 I2 M0
每个步骤均为一基元反应,总反应为非基元反应。
反应机理 所谓一个反应的反应机理(或反应历程) 一般是指该反应进行过程中所涉及的所有基元反应。
基元反应为组成一切化学反应的基本单元。所 谓反应机理(或反应历程)一般是指该反应是由哪 些基元反应组成的。
物理化学
第十一章 化学动力学
Chemistry Kinetics
引言
化学热力学的研究对象和局限性
化学热力学研究化学变化的方向和限度或平衡 等问题。化学热力学只能预测反应的可能性,但关 于反应的速率以及反应的机理则不能回答。例如:
1 2
N2
3 2
H2
NH3 (g)
H2
1 2
O2
H2O(l)
rGm / kJ mol1 16.63 237.19