《高等数学》练习题库及答案

合集下载

高等数学练习题(附答案)

高等数学练习题(附答案)

《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。

高等数学练习题库及答案

高等数学练习题库及答案

高等数学练习题库及答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n n n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) .0 C 27.设=+∞→x x xk )1(lim e 6 则k=( ) .2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1)(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、x9D、 x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、 233、函数f(x)在点x0连续是函数f(x)在x可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x可微的()A、充分条件B、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( ) A 、0/0型 B 、∞/∞型 C 、∞ -∞ D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 x x x x sin 1sinlim 20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=()47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A 、原点(0,0,0)B 、三坐标轴C 、三坐标轴D 、曲面,但不可能为平面54、方程3x 2+3y 2-z 2=0表示旋转曲面,它的旋转轴是( )A 、X 轴B 、Y 轴C 、Z 轴D 、任一条直线55、方程3x 2-y 2-2z 2=1所确定的曲面是( )A 、双叶双曲面B 、单叶双曲面C 、椭圆抛物面D 、圆锥曲面56下列命题正确的是( )A 、发散数列必无界B 、两无界数列之和必无界C 、两发散数列之和必发散D 、两收敛数列之和必收敛(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A 、.必要条件B 、充分条件C 、充分必要条件D 、无关条件58函数f(x)=tanx 能取最小最大值的区间是下列区间中的( )A 、[0,л]B 、(0,л)C 、[-л/4,л/4]D 、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有( )A 、f(x)=x+1B 、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=( )A 、-1B 、0C 、1D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( ) 2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( ) 3、求极限2lim →x x-2/(x+2)1/2=( ) 4、求极限∞→x lim [x/(x+1)]x=( ) 5、求极限0lim →x (1-x)1/x= ( ) 6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=()16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx =x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt =( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x xt dt e x 在点x=0连续, 则a=( )21、∫02(x 2+1/x 4)dx =( )22、∫49x 1/2(1+x 1/2)dx=( )23、∫031/2adx/(a 2+x 2)=( )24、∫01dx/(4-x 2)1/2=( )25、∫л/3лsin (л/3+x)dx=( )26、∫49x 1/2(1+x 1/2)dx=( )27、∫49x 1/2(1+x 1/2)dx=( )28、∫49x 1/2(1+x 1/2)dx=( )29、∫49x 1/2(1+x 1/2)dx=( )30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为 ( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、 y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是 ( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()→∞x47函数y=x2-2x+3的极值是y(1)=()9 x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大并求出其最大值。

高等数学练习题(附答案)

高等数学练习题(附答案)

高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。

因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。

3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。

因此,该说法是错误的。

4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。

因此,该说法是错误的。

=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。

因此,该说法是错误的。

四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。

高等数学习题集及解答

高等数学习题集及解答

高等数学习题集及解答第二章一、 填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。

2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。

3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。

4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。

5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dydx =。

6、()x f x xe =,则_______________(ln 2)f '''=。

7、如果(0)y ax a =>是21y x =+的切线,则__________a =。

8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。

9、()(1)(2)()f x x x x x n =+++,则_________________(0)f '=。

10、ln(13)x y -=+,则____________________y '=。

11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。

12、设tan x y y +=,则_________________________dy =。

13、设lny =_______________(0)y '''=。

14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是______________________。

高等数学试题库及答案doc

高等数学试题库及答案doc

高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。

答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。

答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。

解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。

解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。

证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。

由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。

因此,函数 f(x) 是严格单调递增的。

五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。

求物体在前 3 秒内的位移。

解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。

六、论述题1. 论述微积分在物理学中的应用。

答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。

微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。

完整)高等数学练习题附答案

完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。

+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。

2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。

高等数学练习题库及答案

高等数学练习题库及答案

一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n n n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) .0 C 27.设=+∞→x x xk )1(lim e 6 则k=( ) .2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1)(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、 B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx ,则y (10)=( )A 、sinxB 、cosxC 、-sinxD 、-cosx29、已知y=x ㏑x ,则y (10)=( )A 、-1/x 9B 、1/ x 9C 、x 9D 、 x 930、若函数f(x)=xsin|x|,则( )A 、f``(0)不存在B 、f``(0)=0C 、f``(0) =∞D 、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A 、-1B 、0C 、л/2D 、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1x x x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( )A 、00型B 、0/0型C 、1∞型D 、∞0型38、极限 x x x x sin 1sinlim 20 =( )A 、0B 、1C 、2D 、不存在39、xx 0时,n 阶泰勒公式的余项Rn(x)是较xx 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A 、一个B 、两个C 、无穷多个D 、都不对44、若∫f(x)dx=2e x/2+C=( )A 、2e x/2B 、4 e x/2C 、e x/2 +CD 、e x/245、∫xe -xdx =( D )A 、xe -x -e -x +CB 、-xe -x +e -x +CC 、xe -x +e -x +CD 、-xe -x -e -x +C46、设P (X )为多项式,为自然数,则∫P(x)(x-1)-n dx ( )A 、不含有对数函数B 、含有反三角函数C 、一定是初等函数D 、一定是有理函数47、∫-10|3x+1|dx=( )A 、5/6B 、1/2C 、-1/2D 、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛(x)在点x=x0处有定义是f(x)在x=x处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л] B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有( )A 、f(x)=x+1B 、f(x)=x-1C 、f(x)=x 2-1D 、f(x)=5x 4-4x+160设y=(cos)sinx ,则y’|x=0=( )A 、-1B 、0C 、1D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x=( )5、求极限0lim →x (1-x)1/x= ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( )c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( )22、∫49 x 1/2(1+x 1/2)dx=( )23、∫031/2a dx/(a 2+x 2)=( )24、∫01 dx/(4-x 2)1/2=( )25、∫л/3лsin(л/3+x)dx=( )26、∫49 x 1/2(1+x 1/2)dx=( )27、∫49 x 1/2(1+x 1/2)dx=( )28、∫49 x 1/2(1+x 1/2)dx=( )29、∫49 x 1/2(1+x 1/2)dx=( )30、∫49 x 1/2(1+x 1/2)dx=( )31、∫49 x 1/2(1+x 1/2)dx=( )32、∫49 x 1/2(1+x 1/2)dx=( )33、满足不等式|x-2|<1的X 所在区间为 ( )34、设f(x) = [x] +1,则f (л+10)=( )35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( )37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cos θ)的全长为 ( )39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为 ( )40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是 ( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()x∞→47函数y=x2-2x+3的极值是y(1)=()9 x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。

《高等数学》练习题库及答案

《高等数学》练习题库及答案

《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 23.下列数列为单调递增数列的有( )A .0.9 ,0.99,0.999,0.9999B .23,32,45,54 C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n nn n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ) A.1 B.0 C.2 D.1/27.设=+∞→x x xk )1(lim e 6 则k=( ) A.1 B.2 C.6 D.1/68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )A.x 2-1B. x 3-1C.(x-1)2D.sin(x-1)9.f(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A 、是连续的B 、无界函数C 、有最大值与最小值D 、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足14、设f(x)=()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=logax相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、 -8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( )A 、0/0型B 、∞/∞型C 、∞ -∞D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( ) A 、00型 B 、0/0型 C 、1∞型 D 、∞0型 38、极限 x x x x sin 1sinlim 20→=( )A 、0B 、1C 、2D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A、2B、1/2C、1D、042、抛物线y=4x-x2在它的顶点处的曲率半径为()A、0B、1/2C、1D、243、若函数f(x)在(a,b)内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=()47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C 、三坐标轴D 、曲面,但不可能为平面54、方程3x 2+3y 2-z 2=0表示旋转曲面,它的旋转轴是( )A 、X 轴B 、Y 轴C 、Z 轴D 、任一条直线55、方程3x 2-y 2-2z 2=1所确定的曲面是( )A 、双叶双曲面B 、单叶双曲面C 、椭圆抛物面D 、圆锥曲面二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x=( )5、求极限0lim →x (1-x)1/x= ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( )8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( )10、函数y=x 2-2x+3的极值是y(1)=( )11、函数y=2x 3极小值与极大值分别是( )12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( )16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( )18、若∫f(x)dx =x 2e 2x +c ,则f(x)= ( )19、d/dx ∫a barctantdt =( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dt e x 在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx =( )22、∫49 x 1/2(1+x 1/2)dx=( )23、∫031/2a dx/(a 2+x 2)=( )24、∫01 dx/(4-x 2)1/2=( )25、∫л/3лsin (л/3+x)dx=( )26、∫49 x 1/2(1+x 1/2)dx=( )27、∫49x 1/2(1+x 1/2)dx=( ) 28、∫49 x 1/2(1+x 1/2)dx=( )29、∫49 x 1/2(1+x 1/2)dx=( )30、∫49 x 1/2(1+x 1/2)dx=( )31、∫49 x 1/2(1+x 1/2)dx=( )32、∫49x 1/2(1+x 1/2)dx=( ) 33、满足不等式|x-2|<1的X 所在区间为 ( )34、设f(x) = [x] +1,则f (л+10)=( )35、函数Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线x=0,x=л/2所围成的面积是 ( )37、 y=3-2x-x 2与x 轴所围成图形的面积是 ( )38、心形线r=a(1+cos θ)的全长为 ( )39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为 ( )40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是 ( )41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是( )42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是 ( )43、求平行于xoz 面且经过(2,-5,3)的平面方程是 ( )44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

高等数学考试题库及答案

高等数学考试题库及答案

高等数学考试题库及答案一、单项选择题(每题4分,共20分)1. 函数y=x^2+2x+1的导数是()。

A. 2x+2B. 2x+1C. x^2+2xD. x^2+2答案:A2. 函数y=sin(x)的不定积分是()。

A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. -sin(x)+C答案:B3. 极限lim(x→0) (1-cos(x))/x的值是()。

A. 0B. 1C. -1D. 2答案:D4. 微分方程y'=y的通解是()。

A. y=e^xB. y=e^(-x)C. y=e^x+CD. y=e^(-x)+C答案:C5. 函数y=x^3-3x^2+2x的二阶导数是()。

A. 6x-6B. 6x-3C. 6x^2-6xD. 6x^2-6答案:A二、填空题(每题4分,共20分)6. 函数y=x^3的一阶导数是______。

答案:3x^27. 函数y=e^x的不定积分是______。

答案:e^x+C8. 极限lim(x→∞) (x^2-3x+2)/(x^3+2x^2+1)的值是______。

答案:09. 微分方程y''-2y'+y=0的特征方程是______。

答案:r^2-2r+1=010. 函数y=ln(x)的二阶导数是______。

答案:-1/x^2三、计算题(每题10分,共30分)11. 求函数y=x^2-4x+3的极值点。

解:首先求导数y'=2x-4,令y'=0,解得x=2。

然后求二阶导数y''=2,因为y''>0,所以x=2是极小值点。

将x=2代入原函数,得到极小值y=1。

12. 求极限lim(x→1) (x^3-3x^2+3x-1)/(x-1)。

解:首先将分子进行因式分解,得到(x-1)^3。

然后分子分母同时除以(x-1),得到(x-1)^2。

所以极限为lim(x→1) (x-1)^2=0。

《高等数学》习题库及答案

《高等数学》习题库及答案

《高等数学》习题库及答案高等数学(1)复习题一、选择题1.函数112-=x y 的定义域是() A . (-1,1)B .[-1,1]C .(,1][1,)-∞-?+∞D .(,1)(1,)-∞-?+∞ 2、函数13lg(2)y x x =+++的定义域是() A.(3,2)(1,)--?-+∞ B.(2,1)(1,)--?-+∞C. (3,1)(1,)--?-+∞D.(2,)-+∞3、函数1()ln(2)f x x =-的定义域是()A.(2,)+∞ B.(3,)+∞ C.(2,3)(3,)+∞UD.(,2)(2,)-∞+∞U4、下列各式中,运算正确的是()5. 设>≤≤---<+=1,011,11,21)(2x x x x x x f ,则)2(-f = ( )A .23- B .3- C .0 D .25 6.若0lim x x → f (x )存在, 则f (x )在点x 0是()A . 一定有定义B .一定没有定义C .可以有定义, 也可以没有定义D .以上都不对7.下列说法正确的是()。

A . 无穷小量是负无穷大量B .无穷小是非常小的数C .无穷大量就是∞+D .负无穷大是无穷大量8.下列说法正确的是( )A.若函数()f x 在点0x 处无定义,则()f x 在点0x 处无极限。

B.无穷小是一个很小很小的数。

C.函数()f x 在点0x 处连续,则有:00lim ()()x x f x f x →= D.在(,)a b 内连续的函数()f x 在该区间内一定有最大值和最小值。

9.函数11)(2--=x x x f ,当1→x 时的极是()A.2-B. 2C. ∞D.极限不存在 10.极限1lim x →211x x -+=()A .0 B. 1 C .2 D .∞11.函数21()1x f x x -=+,当1x →-时的极限()A .2B . 2-C .∞D .极限不存在12.极限1lim x →211x x ++=()A .0 B. 1 C .2 D .∞13.311lim 1x x x →-=-()A.1B.2C.3D.414. 极限=-++-→221lim 221x x x x x ( ) A. 21D .∞ 15.下列各式中正确的是()A .0sin lim 0=→x xx B .1sin lim =∞→x xxC .0sin lim 1=→x xx D .1sin lim 0=→x xx16.设0sin lim7x ax x →= 时,则a 的值是() A. 17B.1C.5D.7 17、当x →0时,下列各等价无穷小错误的是( )A .arctan x ~xB .sin x 2 ~ x 2C . lg(1+x ) ~ xD .1-cos x ~21x 218、函数xx x x f sin )(+=,当∞→x 时的极限() A .0 B .∞C . -1D .119、当0x →时,ln(1x)+与x 比较是()A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量20、2(1)y x =-在1x =处() A.连续 B.不连续 C.不可导 D.既不连续也不可导≥+<+=0 30 32)(2x a x x x x f 在x = 0处连续,则a 的值是( ) A.3 B. 2 C. 1 D. 022、函数y=ln (2 - x - x 2)的连续区间为()A .(-1,2)B .(-2,1)C .(- ∞,1)∪(- ∞,1)D .(- ∞,-2)∪(1,+∞)23.下列说法错误的是()A .可导一定连续B .不可导的点不一定没有切线C .不可导的点一定不连续D .不连续的点一定不可导24.函数f (x )在点 x 0连续是函数在该点可导的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不是充分条件, 也不是必要条件25.已知函数f (x )=,0,10,12>+≤-x x x x 则在x =0处() A .间断 B .不可导C .f '(0) =-1D .f '(0) =126、||x y =在0x =处()A.连续不可导B.可导不连续C.可导且连续D.既不连续也不可导27.设y =x e -,则='y ()A .x e -B . x 1x e --C .-x 1x e --D .-x e -28.导数等于21sin2x 的函数是() A .21sin 2x B .41cos2x C .21cos 2x D .1-21cos2x 29.若下列函数中()的导数不等于1sin 22x A . 1cos 24x B . 21sin 2x C .21cos 2x - D . 11cos 24x - 30、设243y x =-,则()1f '等于()A.0B.-6C.-3D.331.设ln y x x =+,则dy dx=( ) A.1x x + B.1x x + C.1x x +- D.1x x-+ 32.设()y f x =-,则y '=()A.()f x 'B.()f x '-C.()f x '-D.()f x '--33.下列导数计算正确的是( )A.x x e e 22sin sin )(='B.()2112ln ln -='-x x C .22211(arcsin )()x x '=- D .x x 2sin )(sin 2='34.下列导数计算正确的是( )A.sin sin ()x x e e '=B.21(2log )2ln 2ln 2x x x x '+=+C.1()1x x x '+=+D.211)2ln (ln +='+x x 35、半径为R 的金属圆片,加热后半径伸长了dR ,则面积S 的微分dS 是()A .RdR πB .RdR π2C .dR πD .dR π236.设f (x )可微,则d(e f (x ) ) =()A .f '(x )d xB .e f (x )d xC .f '(x ) e f (x )d xD .f '(x ) d(e f (x ) )37、边长为a 的正方形铁片,加热后边长伸长了d a ,则面积S 的微分dS 是()A .a d aB .2a d aC .a 2d aD .d a38、设函数在点0x 可导,且0()f x '=2,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是()A .锐角B . 0oC .90oD .钝角39.设函数在点x 0可导, 且f '(x 0) >0, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00B .900C .锐角D .钝角40.设函数在点x 0可导, 且f '(x 0) =-3, 则曲线y = f (x )在点(x 0, f (x 0))处的切线的倾斜角是( )A .00C .锐角D .钝角41、设函数在点0x 可导,且0()f x '<0,则曲线()y f x =在点00(,())x f x 处的切线的倾斜角是()A .0oB .锐角C .90oD .钝角42.曲线y = ln x 上某点的切线平行于直线y = 2x -3, 该点的坐标是 ( )A .(2, ln 21)B .(2,-ln 21)C .(21,-ln2)D .(21,ln2) 43.设函数在点0x 可导,且02()f x '=-,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .120°D .钝角44.设函数在点0x 可导,且3)(0-='x f ,则曲线)(x f y =在点0x x =处的切线的倾斜角是( ).A .0°B .90°C .锐角D .钝角45、函数x x x f -+=)1ln()(的单调减少区间是()A .),0(+∞B .)0,(-∞D .(-1,0)46、函数)1ln()(x x x f +-=的单调减少区间是()A.),0(+∞B.)0,(-∞C.(0,1)D.(-1,0)47. x x y ln 22-=的单调递减区间为( )A .)21,0(B .11(,)(0,)22-∞-?C .),21(+∞D .11(,0)(,)22-?+∞ 48、曲线32y x x =+-在点(1,0)处的切线方程为()A.2(1)y x =-B.4(1)y x =-C.41y x =-D.3(1)y x =-49.函数y = x 2e -x 及其图形在区间(1, 2)内是()A .单调增加且是凸的B . 单调减少且是凸的C .单调增加且是凹的D .单调减少且是凹的50、曲线()y f x =在区间[,]a b 上单调减少且为凸的,则()A .()f x '>0或()0f x ''>B .()f x '>0或()0f x ''<C .()f x '<0且()0f x ''>D .()f x '<0且()0f x ''<51、曲线()y f x =在区间[,]a b 上单调增加且为凹的,则()A .()f x '>0,()0f x ''>B .()f x '<0,()0f x ''<C .()f x '>0,()0f x ''<D .()f x '<0,()0f x ''>52、若在(,)a b 内,函数()f x 的一阶导数()f x '>0,二阶导数()f x ''<0,则函数()f x 在此区间内()A.单调减少,曲线是凹的B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的53.若在(,)a b 内,函数()f x 的一阶导数()f x '<0,二阶导数()f x ''>0,则函数()f x 在此区间内()A.单调减少,曲线是凹的B.单调减少,曲线是凸的C.单调增加,曲线是凹的D.单调增加,曲线是凸的54.若曲线弧位于其上任一点切线的下方,则该曲线弧是( )A.单调增加B.单调减少C.凹弧D.凸弧55.点 x = 0是函数y = x 2 的()A . 驻点但非极值点B .拐点C .驻点且是拐点D .驻点且是极值点56、点0x =是函数4y x =的()A.驻点但不是极值点B.拐点C.驻点且是极值点D.驻点且是拐点57、点0x =是函数3y x =的()A .极值点但不是驻点B .驻点但不是极值点C .驻点且是极值点D .极值点且是拐点58、下列说法正确的是()A.驻点一定是极值点B. 拐点一定是极值点C.极值点一定是拐点D. 极值点一定是驻点或导数不存在的点59、若()00f x '=,则0x 是函数()f x 的()A.极值点B.最值点C.驻点D.非极值点60、函数x e x x f -=)(的极值是()A . 0B . 1C . -1D . 261.函数()y f x =在0x x =处连续,且取得极值,则有( )A.0()0f x '=B.0()0f x ''<C.00()0()f x f x ''=或者不存在D.0()f x '不存在62. 函数)(x f y =在点0x x =处取得极大值,则必有()A . 0()0f x '=B . 0)(0>''x fC . 0()0f x '=且0)(0>''x fD . 0()0f x '=或)(0x f '不存在63、曲线3(1)y x =-的拐点是()A.(1,8)-B.(1,0)C.(0,1)-D.(2,1)64.下列说法正确的是()A.驻点一定是极值点B. 极值点一定是驻点或导数不存在的点C.极值点一定是拐点D. 拐点一定是极值点65、若()(),F x f x '=则()dF x ?=()A.()f xB.()F xC.()F x C +D. ()f x C +66.设?dx x f )(= cos 2x + C ,则f (x ) =()A .sin 2xB .-2sin 2xC .sin x + CD .-sin 2x67.设?dx x f )(= 2cos2x + C ,则f (x ) =() A .sin2x B .-sin 2x C .sin 2x + C D .-2sin 2x 68.若c x x dx x f ++=?cos sin )(,则,=)(x f () A.x x cos sin + B.x x cos sin - C.x x sin cos - D.x x cos sin --69.dxd 52x xe dx ?= ( ) A .42x x e B .52x x e dx C .42x x e dx D .52x x e 70.=dx x xf dxd )( ( ) A.)(21x f B.dx x f )(21 C .)(x xf D .dx x xf )(71.2()d xf x dx ?=()A .21()2f xB .21()2f x dx C .2()xf x dx D .21()2xf x dx 72.2()d x f x dx ?=()A .2()xf xB .2()xf x dxC .2()x f x dxD .2()x f x73. ?=xdx 2cos ()A .2sin2x + CB .2cos2x +C C .12sin2x + CD .12cos2x + C 74.dx xx f 211???? ??'= ( ) A .)1(x f -+ C B .-)1(x f -+ C C .)1(x f + C D .-)1(xf + C 75.?dx x21=() A .C x +1 B .C x+-1 C .C x +2ln D .C x +2ln76、()23sin x e x dx -?=()A. 23cos x e x c ++B. 23cos x e x +C. 23cos x e x -D. 1二、填空题1.函数y =22x -+ arcsin x 的定义域为____________. 2、函数y=2x x -定义域为。

高等数学试题题库及答案

高等数学试题题库及答案

高等数学试题题库及答案一、单项选择题(每题2分,共10题)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. x^2+2xD. 2x^2+2x+1答案:A2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. 不存在答案:B3. 若f(x)在x=a处连续,则下列哪个选项一定成立:A. f(a)存在B. f(a)=lim(x→a)f(x)C. f(a)=lim(x→a)f(x)且f(a)存在D. f(a)不存在答案:C4. 函数y=e^x的不定积分是:A. e^x + CB. e^xC. ln(e^x) + CD. ln(x) + C答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 2答案:C6. 以下哪个函数是奇函数:A. f(x)=x^2B. f(x)=x^3C. f(x)=x+1D. f(x)=x^2+1答案:B7. 二重积分∬(x^2+y^2)dxdy在区域D上,其中D是由x^2+y^2≤1定义的圆盘,其值是:A. πB. 2πC. π/2D. 4π答案:A8. 微分方程dy/dx=2x的通解是:A. y=x^2+CB. y=2x+CC. y=x^2D. y=2x^2+C答案:A9. 函数f(x)=x^3在x=0处的泰勒展开式是:A. x^3B. x^3+3x^2+3x+1C. x^3+3x^2+3xD. x^3+3x^2答案:C10. 以下哪个级数是收敛的:A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+1/2+1/3+1/4+...D. 1-1/2+1/3-1/4+1/5-...答案:A二、填空题(每题3分,共5题)11. 函数f(x)=x^2+3x+2的二阶导数是________。

答案:212. 极限lim(x→∞) (x^2-3x+2)/(x^3+x)的值是________。

《高等数学》练习题库及答案

《高等数学》练习题库及答案

《高等数学》练习测试题库及答案一.选择题1.函数y=是()A.偶函数B.奇函数 C 单调函数 D 无界函数2.设f(sin)=cosx+1,则f(x)为()A 2x-2B 2-2xC 1+xD 1-x 3.下列数列为单调递增数列的有()A.0.9 ,0.99,0.999,0.9999 B.,,,C.{f(n)},其中f(n)= D. {} 4.数列有界是数列收敛的()A.充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是()A.发散数列必无界B.两无界数列之和必无界C.两发散数列之和必发散D.两收敛数列之和必收敛6.()A.1B.0C.2D.1/27.设e则k=( )A.1B.2C.6D.1/68.当x1时,下列与无穷小(x-1)等价的无穷小是()A.x-1B. x-1C.(x-1)D.sin(x-1)9.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ()A、是连续的B、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x不连续,则下列结论成立是()A、f(x)+g(x)在点x必不连续B、f(x)×g(x)在点x必不连续须有C、复合函数f[g(x)]在点x必不连续D、在点x0必不连续在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足14、设f(x)=()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线y=x与对数曲线y=log x相切,则()A、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、8.1/x9D、 -8.1/x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cosθ,y=2sinθ上相应于θ=л/4处的切线斜率,K=()A、-1B、0C、1D、 233、函数f(x)在点x0连续是函数f(x)在x可微的()A、充分条件B、必要条件C、充要条件D、无关条件34、函数f(x)在点x0可导是函数f(x)在x可微的()A、充分条件B、必要条件C、充要条件D、无关条件35、函数f(x)=|x|在x=0的微分是()A、0B、-dxC、dxD、不存在36、极限的未定式类型是()A、0/0型B、∞/∞型C、∞ -∞D、∞型37、极限的未定式类型是()A、00型B、0/0型C、1∞型D、∞0型38、极限=()A、0B、1C、2D、不存在39、x x0时,n阶泰勒公式的余项Rn(x)是较x x的()A、(n+1)阶无穷小B、n阶无穷小C、同阶无穷小D、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有()A、唯一的零点B、至少存在有一个零点C、没有零点D、不能确定有无零点41、曲线y=x2-4x+3的顶点处的曲率为()A、2B、1/2C、1D、042、抛物线y=4x-x2在它的顶点处的曲率半径为()A、0B、1/2C、1D、243、若函数f(x)在(a,b)内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数0|3x+1|dx=()47、∫-1A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛57.f(x)在点x=x0处有定义是f(x)在x=x处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л] B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+160设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在二、填空题1、求极限 (x2+2x+5)/(x2+1)=()2、求极限 [(x3-3x+1)/(x-4)+1]=()3、求极限x-2/(x+2)1/2=()4、求极限 [x/(x+1)]x=()5、求极限 (1-x)1/x= ()6、已知y=sinx-cosx,求y`|x=л/6=()7、已知ρ=ψsinψ+cosψ/2,求dρ/dψ|ψ=л/6=()8、已知f(x)=3/5x+x2/5,求f`(0)=()9、设直线y=x+a与曲线y=2arctanx相切,则a=()10、函数y=x2-2x+3的极值是y(1)=()11、函数y=2x3极小值与极大值分别是()12、函数y=x2-2x-1的最小值为()13、函数y=2x-5x2的最大值为()14、函数f(x)=x2e-x在[-1,1]上的最小值为()15、点(0,1)是曲线y=ax3+bx2+c的拐点,则有b=() c=()16、∫xx1/2dx= ()17、若F`(x)=f(x),则∫dF(x)=()18、若∫f(x)dx=x2e2x+c,则f(x)= ( )19、d/dx∫a b arctantdt=()20、已知函数f(x)=在点x=0连续,则a=()21、∫02(x2+1/x4)dx=()22、∫49 x1/2(1+x1/2)dx=()23、∫031/2a dx/(a2+x2)=()24、∫01 dx/(4-x2)1/2=()25、∫л/3лsin(л/3+x)dx=()26、∫49 x1/2(1+x1/2)dx=( )27、∫49 x1/2(1+x1/2)dx=()28、∫49 x1/2(1+x1/2)dx=()29、∫49 x1/2(1+x1/2)dx=()30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限 [x/(x+1)]x=()47函数y=x2-2x+3的极值是y(1)=()9 x1/2(1+x1/2)dx=()48∫449y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大?并求出其最大值。

《高等数学》练习题库及答案

《高等数学》练习题库及答案

《高等数学》练习测试题库及答案一.选择题1.函数y=112+x 是( )A.偶函数B.奇函数 C 单调函数 D 无界函数2.设f(sin 2x)=cosx+1,则f(x)为( )A 2x 2-2B 2-2x 2C 1+x 2D 1-x 23.下列数列为单调递增数列的有( )A . ,,,B .23,32,45,54C .{f(n)},其中f(n)=⎪⎩⎪⎨⎧-+为偶数,为奇数n n nn n n1,1 D. {n n 212+}4.数列有界是数列收敛的( )A .充分条件 B. 必要条件C.充要条件 D 既非充分也非必要5.下列命题正确的是( )A .发散数列必无界B .两无界数列之和必无界C .两发散数列之和必发散D .两收敛数列之和必收敛6.=--→1)1sin(lim 21x x x ( ).0 C 27.设=+∞→x x x k)1(lim e 6 则k=( ).2 C 68.当x →1时,下列与无穷小(x-1)等价的无穷小是( )2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )A.必要条件B.充分条件C.充分必要条件D.无关条件10、当|x|<1时,y= ( )A 、是连续的B 、无界函数C、有最大值与最小值D、无最小值11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为()A、B、e C、-e D、-e-112、下列有跳跃间断点x=0的函数为()A、 xarctan1/xB、arctan1/xC、tan1/xD、cos1/x13、设f(x)在点x0连续,g(x)在点x0不连续,则下列结论成立是()A、f(x)+g(x)在点x0必不连续B、f(x)×g(x)在点x0必不连续须有C、复合函数f[g(x)]在点x0必不连续D、在点x0必不连续14、设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()A、a>0,b>0B、a>0,b<0C、a<0,b>0D、a<0,b<015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、 B、C、tan[f(x)]D、f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+120、曲线y=x2在x=1处的切线斜率为()A、k=0B、k=1C、k=2D、-1/2x相切,则()21、若直线y=x与对数曲线y=logaA、eB、1/eC、e xD、e1/e22、曲线y=lnx平行于直线x-y+1=0的法线方程是()A、x-y-1=0B、x-y+3e-2=0C、x-y-3e-2=0D、-x-y+3e-2=023、设直线y=x+a与曲线y=2arctanx相切,则a=()A、±1B、±л/2C、±(л/2+1)D、±(л/2-1)24、设f(x)为可导的奇函数,且f`(x0)=a,则f`(-x0)=()A、aB、-aC、|a|D、025、设y=㏑,则y’|x=0=()A、-1/2B、1/2C、-1D、026、设y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在27、设yf(x)= ㏑(1+X),y=f[f(x)],则y’|x=0=()A、0B、1/ ㏑2C、1D、㏑228、已知y=sinx,则y(10)=()A、sinxB、cosxC、-sinxD、-cosx29、已知y=x㏑x,则y(10)=()A、-1/x9B、1/ x9C、x9D、 x930、若函数f(x)=xsin|x|,则()A、f``(0)不存在B、f``(0)=0C、f``(0) =∞D、 f``(0)= л31、设函数y=yf(x)在[0,л]内由方程x+cos(x+y)=0所确定,则|dy/dx|x=0=()A、-1B、0C、л/2D、 232、圆x2cos θ,y=2sin θ上相应于θ=л/4处的切线斜率,K=( )A 、-1B 、0C 、1D 、 233、函数f(x)在点x 0连续是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数f(x)在点x 0可导是函数f(x)在x 0可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数f(x)=|x|在x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限)ln 11(lim 1xx x x --→的未定式类型是( ) A 、0/0型 B 、∞/∞型 C 、∞ -∞ D 、∞型37、极限 012)sin lim(→x x x x 的未定式类型是( )A 、00型B 、0/0型C 、1∞型D 、∞0型38、极限 x x x x sin 1sinlim 20 =( ) A 、0 B 、1 C 、2 D 、不存在39、x x 0时,n 阶泰勒公式的余项Rn(x)是较x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小D 、高阶无穷小40、若函数f(x)在[0, +∞]内可导,且f`(x) >0,xf(0) <0则f(x)在[0,+ ∞]内有( )A 、唯一的零点B 、至少存在有一个零点C 、没有零点D 、不能确定有无零点41、曲线y=x 2-4x+3的顶点处的曲率为( )A 、2B 、1/2C 、1D 、042、抛物线y=4x-x 2在它的顶点处的曲率半径为( )A 、0B 、1/2C 、1D 、243、若函数f(x)在(a,b )内存在原函数,则原函数有( )A、一个B、两个C、无穷多个D、都不对44、若∫f(x)dx=2e x/2+C=()A、2e x/2B、4 e x/2C、e x/2 +CD、e x/245、∫xe-x dx =( D )A、xe-x -e-x +CB、-xe-x+e-x +CC、xe-x +e-x +CD、-xe-x -e-x +C46、设P(X)为多项式,为自然数,则∫P(x)(x-1)-n dx()A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx=()A、5/6B、1/2C、-1/2D、148、两椭圆曲线x2/4+y2=1及(x-1)2/9+y2/4=1之间所围的平面图形面积等于()A、лB、2лC、4лD、6л49、曲线y=x2-2x与x轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л/15C、16л/15D、32л/1550、点(1,0,-1)与(0,-1,1)之间的距离为()A、 B、2 C、31/2 D、 21/251、设曲面方程(P,Q)则用下列平面去截曲面,截线为抛物线的平面是()A、Z=4B、Z=0C、Z=-2D、x=252、平面x=a截曲面x2/a2+y2/b2-z2/c2=1所得截线为()A、椭圆B、双曲线C、抛物线D、两相交直线53、方程=0所表示的图形为()A、原点(0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程3x2+3y2-z2=0表示旋转曲面,它的旋转轴是()A、X轴B、Y轴C、Z轴D、任一条直线55、方程3x2-y2-2z2=1所确定的曲面是()A、双叶双曲面B、单叶双曲面C、椭圆抛物面D、圆锥曲面56下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛(x)在点x=x0处有定义是f(x)在x=x0处连续的()A、.必要条件B、充分条件C、充分必要条件D、无关条件58函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л] B、(0,л)C、[-л/4,л/4]D、(-л/4,л/4)59下列函数中能在区间(0,1)内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x4-4x+160设y=(cos)sinx ,则y’|x=0=( ) A 、-1 B 、0 C 、1 D 、 不存在二、填空题1、求极限1lim -→x (x 2+2x+5)/(x 2+1)=( )2、求极限 0lim →x [(x 3-3x+1)/(x-4)+1]=( )3、求极限2lim →x x-2/(x+2)1/2=( )4、求极限∞→x lim [x/(x+1)]x =( )5、求极限0lim →x (1-x)1/x = ( )6、已知y=sinx-cosx ,求y`|x=л/6=( )7、已知ρ=ψsin ψ+cos ψ/2,求d ρ/d ψ| ψ=л/6=( ) 8、已知f(x)=3/5x+x 2/5,求f`(0)=( )9、设直线y=x+a 与曲线y=2arctanx 相切,则a=( ) 10、函数y=x 2-2x+3的极值是y(1)=( ) 11、函数y=2x 3极小值与极大值分别是( ) 12、函数y=x 2-2x-1的最小值为( )13、函数y=2x-5x 2的最大值为( )14、函数f(x)=x 2e -x 在[-1,1]上的最小值为( )15、点(0,1)是曲线y=ax 3+bx 2+c 的拐点,则有b=( ) c=( ) 16、∫xx 1/2dx= ( )17、若F`(x)=f(x),则∫dF(x)= ( ) 18、若∫f(x)dx=x 2e 2x +c ,则f(x)= ( ) 19、d/dx ∫a b arctantdt=( )20、已知函数f(x)=⎪⎩⎪⎨⎧=≠⎰-0,0,022)1(1x a x x t dte x在点x=0连续, 则a=( ) 21、∫02(x 2+1/x 4)dx=( ) 22、∫49 x 1/2(1+x 1/2)dx=( ) 23、∫031/2a dx/(a 2+x 2)=( ) 24、∫01 dx/(4-x 2)1/2=( ) 25、∫л/3лsin(л/3+x)dx=( )26、∫49 x1/2(1+x1/2)dx=( )27、∫49 x1/2(1+x1/2)dx=()28、∫49 x1/2(1+x1/2)dx=()29、∫49 x1/2(1+x1/2)dx=()30、∫49 x1/2(1+x1/2)dx=()31、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式|x-2|<1的X所在区间为 ( )34、设f(x) = [x] +1,则f(л+10)=()35、函数Y=|sinx|的周期是()36、y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()37、 y=3-2x-x2与x轴所围成图形的面积是()38、心形线r=a(1+cosθ)的全长为()39、三点(1,1,2),(-1,1,2),(0,0,2)构成的三角形为()40、一动点与两定点(2,3,1)和(4,5,6)等距离,则该点的轨迹方程是()41、求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()42、求三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=0的交点是( )43、求平行于xoz面且经过(2,-5,3)的平面方程是()44、通过Z轴和点(-3,1,-2)的平面方程是()45、平行于X轴且经过两点(4,0,-2)和(5,1,7)的平面方程是()46求极限lim [x/(x+1)]x=()∞x→47函数y=x2-2x+3的极值是y(1)=()48∫49 x1/2(1+x1/2)dx=()49y=sinx,y=cosx直线x=0,x=л/2所围成的面积是()50求过点(3,0,-1),且与平面3x-7y+5z-12=0平行的平面方程是()三、解答题1、设Y=2X-5X2,问X等于多少时Y最大并求出其最大值。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)一、选择题1. 设函数 $ f(x) = x^3 3x + 2 $,则 $ f'(0) $ 的值为多少?A. 0B. 1C. 1D. 3答案:A2. 设 $ f(x) = e^x $,则 $ f''(x) $ 等于多少?A. $ e^x $B. $ e^x + x $C. $ e^x x $D. $ e^x + 2 $答案:A3. 设 $ y = \ln(x + 1) $,则 $ y' $ 等于多少?A. $ \frac{1}{x + 1} $B. $ \frac{1}{x} $C. $ \frac{1}{x 1} $D. $ \frac{1}{x + 2} $答案:A4. 设 $ y = x^2 $,则 $ y'' $ 等于多少?A. 2B. 4D. 1答案:B5. 设 $ y = \sin(x) $,则 $ y' $ 等于多少?A. $ \cos(x) $B. $ \cos(x) $C. $ \tan(x) $D. $ \tan(x) $答案:A二、填空题1. 设函数 $ f(x) = x^4 2x^3 + x^2 $,则 $ f'(x) $ 的表达式为______。

答案:$ 4x^3 6x^2 + 2x $2. 设 $ y = \ln(x) $,则 $ y' $ 的表达式为______。

答案:$ \frac{1}{x} $3. 设 $ y = e^x $,则 $ y'' $ 的表达式为______。

答案:$ e^x $4. 设 $ y = \cos(x) $,则 $ y' $ 的表达式为______。

答案:$ \sin(x) $5. 设 $ y = \sqrt{x} $,则 $ y' $ 的表达式为______。

答案:$ \frac{1}{2\sqrt{x}} $三、解答题1. 求函数 $ f(x) = x^3 3x + 2 $ 在点 $ x = 1 $ 处的切线方程。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

完整版)高等数学测试题及答案

完整版)高等数学测试题及答案

完整版)高等数学测试题及答案高等数学测试试题一、是非题(3’×6=18’)1、$\lim_{x\to 1}(1-x)=e$。

(×)2、函数$f(x)$在点$x=x_0$处连续,则它在该点处必可导。

(×)3、函数的极大值一定是它的最大值。

(×)4、设$G(x)=f(x)$,则$G(x)$为$f(x)$的一个原函数。

(√)5、定积分$\int_{-1}^1 x\cos x dx=0$.(√)6、函数$y=x-2$是微分方程$x\frac{dy}{dx}+2y$的解。

(√)二、选择题(4’×5=20’)7、函数$f(x)=\sin\frac{1}{x}$是定义域内的()A、单调函数B、有界函数C、无界函数D、周期函数答案:C8、设$y=1+2x$,则$dy$=()A、$2xdx$B、$2x\ln2$C、$2x\ln2dx$D、$(1+2x\ln2)dx$答案:A9、设在区间$[a,b]$上$f'(x)>0$,$f''(x)>0$,则曲线$y=f(x)$在该区间上沿着$x$轴正向A、上升且为凹弧B、上升且为凸弧C、下降且为凹弧D、下降且为凸弧答案:B10、下列等式正确的是()A、$\int f'(x)dx=f(x)$B、$\int f(x)dx=f'(x)$C、$\int f'(x)dx=f(x)+C$D、$\int f(x)dx=f'(x)+C$答案:C11、$P=-\int \cos^2 x dx$,$Q=3\int dx$,$R=\int xdx$,则int_0^{\frac{\pi}{2}} \sin x dx < \int_0^1 \sin^2 x dx <\int_0^{\frac{\pi}{2}} \sin 2x dx$A、$P<Q<R$B、$Q<P<R$C、$P<R<Q$D、$R<Q<P$答案:D三、选择题(4’×5=20’)12.函数$f(x)=\frac{x^2}{3x-3}$的间断点为()A、3B、4C、5D、6答案:A13、设函数$f(x)$在点$x=0$处可导,且$\lim_{h\to 0}\frac{f(-h)-f(0)}{h}=\frac{1}{2}$,则$f'(0)$=()A、2B、1C、-1D、-2答案:B14、设函数$f(x)=x^2\ln x$,则$f''(1)$=()A、2B、3C、4D、5答案:B15、$\frac{d}{dx}\int_0^{\ln(1+x)}\ln(1+t)dt=$A、$\ln(1+x)$B、$\ln(1+x^2)$C、$2x\ln(1+x^2)$D、$x^2\ln(1+x^2)$答案:C16、$\int f'(e^x)e^xdx=$A、$f(e^x)$B、$f(e^x)+C$C、$f'(e^x)$D、$f'(e^x)+C$答案:B四、选择题(7’×6=42’)17、$\lim_{x\to 2x-2}\frac{x^2+x-6}{x-2x+2}=$A、5B、6C、7D、8答案:B18、函数$y=x^3-3x$的单调减少区间为()A、$(-\infty,-1)$B、$(-\infty,1)$C、$(-1,+\infty)$D、$[-1,1]$答案:A19、已知曲线方程$y=\ln(2+x)$,则点$M(0,\ln2)$处的切线方程为()A、$y=\frac{x}{2}+\ln2$B、$y=\frac{x}{2}-\ln2$C、$y=2x+\ln2$D、$y=2x-\ln2$答案:AB、y=x+1C、y=x^2+ln2D、y=x+ln2x10、函数f(x)=∫lntdt的极值点与极值分别为:A、x=2,极小值f(2)=1B、x=1,极小值f(1)=1/2(ln2-1)C、x=2,极大值f(2)=1D、x=1,极大值f(1)=1/2(ln2-1)21、曲线y=4-x^2,x∈[0,4]与x轴,y轴以及x=4所围的平面图形的面积值S=A、4B、8C、16D、3222、微分方程dy/dx=ex-2y满足初始条件y(0)=1的特解为:A、lny=ex-1B、e2y=2ex-1C、e2y=ex-1D、e2y=e2x-1。

高等数学练习题附答案

高等数学练习题附答案

第一章自测题一、填空题(每小题3分,共18分)1.lim sin x -tan x= .3x →0ln (1+2x )3-x -1+x= .2x +x -22.limx →12x 2+ax +b=3,其中为a ,b 常数,则a =,b = .3.已知limx →-1x +1⎧sin 2x +e 2ax -1,x ≠0⎪4.若f (x )=⎨在(-∞,+∞)上连续,则a = .x⎪a ,x =0⎩5.曲线f (x )=x -1的水平渐近线是,铅直渐近线是 .2x -4x +31e x6.曲线y =(2x -1)的斜渐近线方程为 .二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N ,当n ≥N 时,恒有x n-a ≤2ε”是数列{x n}收敛于a 的 .A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分也非必要条件⎧x 2,⎧2-x ,x ≤02.设g (x )=⎨,f (x )=⎨⎩x +2,x >0⎩-x ,x <0则g ⎡f (x )⎤= .⎣⎦x ≥0⎧2+x 2,x <0⎧2-x 2,x <0⎧2-x 2,x <0⎧2+x 2,x <0A.⎨B.⎨C.⎨D.⎨⎩2-x ,x ≥0⎩2+x ,x ≥0⎩2-x ,x ≥0⎩2+x ,x ≥03.下列各式中正确的是 .⎛1⎫⎛1⎫A.lim 1-⎪=e B.lim 1+⎪=e+ x →0x →0x ⎝x ⎭⎝⎭+x x⎛1⎫⎛1⎫ C.lim 1-⎪=-e D.lim 1+⎪x →∞x →∞⎝x ⎭⎝x ⎭4.设x →0时,e tan x x -x=e -1-1与x n 是等价无穷小,则正整数n = .A. 1 B. 2 C. 3 D. 45.曲线y =1+e -x 1-e2-x 2.A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.下列函数在给定区间上无界的是 .A.11sin x ,x ∈(0,1] B.sin x ,x ∈(0,+∞)x x 111C.sin ,x ∈(0,1]D.x sin ,x ∈(0,+∞)x x x三、求下列极限(每小题5分,共35分)x 2-x -21.limx →24x +1-32.lim x +ex →0(12x -x)3.lim 1+2+3n →∞(n1n n)x 2sin4.x →+∞lim 1x 2x 2-15.设函数f (x )=a x (a >0,a ≠1),求lim1ln ⎡⎣f (1)f (2)n →∞n 2f (n )⎤⎦.1⎛⎫x 2+e sin x ⎪+6.lim 4x →0x ⎪ 1+e x ⎪⎝⎭7.lim+x →01-cos x1-cos x四、确定下列极限中含有的参数(每小题5分,共10分)ax 2-2x +b=-21.lim2x →1x +x -22.lim x +ax 2+bx -2=1x →-∞()⎧a x -b x,x ≠0⎪五、讨论函数f (x )=⎨x (a >0,b >0,a ≠1,b ≠1)在x =0处的连续性,⎪0,x =0⎩若不连续,指出该间断点的类型.(本题6分)⎛sin t ⎫六、设f (x )=lim ⎪t →x sin x ⎝⎭x sin t -sin x,求f (x )的间断点并判定类型.(本题7分)⎡1⎤七、设f (x )在[0,1]上连续,且f (0)=f (1).证明:一定存在一点ξ∈⎢0,⎥,使得⎣2⎦1⎫⎛f (ξ)=f ξ+⎪.(本题6分)2⎭⎝第二章自测题一、填空题(每小题3分,共18分)1.设f (x )在x 0可导,且f (x 0)=0,f '(x 0)=1,则lim hf x 0-h →∞⎛⎝1⎫⎪= .h ⎭2.设f x ⎛1⎫2'd x =d .=cos x ,则 . 3.f (x )=⎪2x ⎝⎭1-x sin x 4.设y =f (e ),其中f (x )可导,则d y = .5.设y =arccos x ,则y ' ⎛1⎫⎪= .⎝2⎭⎛1⎫,π⎪的切线方程为 .π⎝⎭6.曲线xy =1+x sin y 在点 二、单项选择题(每小题3分,共15分)1.下列函数中,在x =0处可导的是 .A.y =|x |B.y =|sin x |C.y =ln xD.y =|cos x |2.设y =f (x )在x 0处可导,且f '(x 0)=2,则limf (x 0+2x )-f (x 0-x )= .x →0x 11A.6B.-6C.D.-6623.设函数f (x )在区间(-δ,δ)内有定义,若当x ∈(-δ,δ)时恒有|f (x )|≤x ,则x =0是f (x )的 .A.间断点B.连续而不可导的点C.可导的点,且f '(0)=0D.可导的点,且f '(0)≠0⎧sin x ,x <04.设f (x )=⎨2,则在x =0处f (x )的导数 .x ,x ≥0⎩A.0 B.1 C.2 D.不存在5.设函数f (u )可导,y =f (x )当自变量x 在x =-1处取得增量x =-0.1时,相应的函数增量y 的线性主部为0.1,则f '(1)= .A.-1B.0.1C.1D.0.52三、解答题(共67分)1.求下列函数的导数(每小题4分,共16分)(1)y =ln e +1+e(2)y =a x a (3)y =x +a +a a a x(x2x)(⎛1⎫x +1 -1⎪⎝x ⎭)(4)y =(sin x )cos x2.求下列函数的微分(每小题4分,共12分)(1)y =x ln x +sin x (2)y =ecot 21x2(3)y =x 21-x1+x3.求下列函数的二阶导数(每小题5分,共10分)(1)y =cos x ln x(2)y =21-x1+x⎧e x ,x ≤14.设f (x )=⎨在x =1可导,试求a 与b .(本题6分)⎩ax +b ,x >15.设f (x )=⎨⎧sin x ,x <0',求f (x ).(本题6分)⎩ln(1+x ),x ≥0x 2-xy 2=1所确定,求d y .(本题6分)6.设函数y =y (x )由方程ln y⎧t ⎛⎫x =a ln tan +cos t ⎪d y d 2y ⎪ 7.设y =y (x )由参数方程⎨2⎝⎭,求,2.(本题6分)d x d x ⎪y =a sin t ⎩1+t ⎧x =⎪⎪t 38.求曲线⎨在t =1处的切线方程和法线方程.(本题5分)31⎪y =+⎪2t 22t ⎩第三章自测题一、填空题(每小题3分,共15分)1.若a >0,b >0均为常数,则lim ⎛a +b ⎫= .⎪x →0⎝2⎭x x 3x2.lim 1⎫⎛1-⎪= .2x →0x x tan x ⎝⎭3.limx →0arctan x -x= .3ln(1+2x )2-x 4.曲线y =e 的凹区间,凸区间为 .5.若f (x )=x e ,则f x (n )(x )在点x =处取得极小值.二、单项选择题(每小题3分,共12分)1.设a ,b 为方程f (x )=0的两根,f (x )在[a ,b ]上连续,(a ,b )内可导,则f '(x )=0在(a ,b )内 .A.只有一个实根B.至少有一个实根C.没有实根D.至少有两个实根2.设f (x )在x 0处连续,在x 0的某去心邻域内可导,且x ≠x 0时,(x -x 0)f '(x )>0,则f (x 0)是 .A.极小值B.极大值C.x 0为f (x )的驻点 D.x 0不是f (x )的极值点3.设f (x )具有二阶连续导数,且f '(0)=0,lim x →0f ''(x )=1,则 .|x |A.f (0)是f (x )的极大值 B.f (0)是f (x )的极小值C.(0,f (0))是曲线的拐点D.f (0)不是f (x )的极值,(0,f (0))不是曲线的拐点4.设f (x )连续,且f '(0)>0,则∃δ>0,使 .A.f (x )在(0,δ)内单调增加.B.f (x )在(-δ,0)内单调减少.C.∀x ∈(0,δ),有f (x )>f (0)D.∀x ∈(-δ,0),有f (x )>f (0).三、解答题(共73分)1.已知函数f (x )在[0,1]上连续,(0,1)内可导,且f (1)=0,证明在(0,1)内至少存在一点ξ使得f '(ξ)=-2.证明下列不等式(每小题9分,共18分)(1)当0<a <b 时,(2)当0<x <f (ξ).(本题6分)tan ξb -a b b -a.<ln <b a aπ2时,2πx <sin x <x .3.求下列函数的极限(每小题8分,共24分)e x -e -x -2x(1)limx →0x -sin x1(2)lim(cos x )x →0sin 2x(3)limx →01x(1+x )-ex 4.求下列函数的极值(每小题6分,共12分)(1)f (x )=x (1-x )1323⎧x 2x ,x >0(2)f (x )=⎨⎩x +1,x <05.求y =2x的极值点、单调区间、凹凸区间和拐点.(本题6分)ln x6.证明方程x ln x +第一章自测题一、填空题(每小题3分,共18分)1=0只有一个实根.(本题7分)e1. 2. 3.,铅直渐近线是, 4.6.5.水平渐近线是二、单项选择题(每小题3分,共18分)1. C2. D3. D4. A5. D 6.C 三、求下列极限(每小题5分,共35分)解:1..2..3.,又.4.. 5.. 6.,,所以,原式.7.四、确定下列极限中含有的参数(每小题5分,共10分).解:1.据题意设,令得,则,故.,令得2.左边故,则.,右边五、解:,故在处不连续,所以为得第一类(可去)间断点.六、解:,而,故,都是的间断点,,故为的第一类(可去)间断点,均为的第二类间断点.七、证明:设,显然在上连续,而,,,故由零点定理知:一定存在一点,使,即.第二章自测题一、填空题(每小题3分,共18分)1. 2. 3. 4.5. 6.或二、单项选择题(每小题3分,共15分)1. D2. A3. C4. D5. D三、解答题(共67分)解:1.(1)..(2)(3).(4)两边取对数得,两边求导数得.,2.求下列函数的微分(每小题4分,共12分)(1).(2)..(3)3.求下列函数的二阶导数(每小题5分,共10分)(1),.(2),.4.首先在处连续,故,故,其次,,,由于在处可导,故,故,.5.,,故,由于在,时均可导,故,两边求微分得.6.方程可变形为,故.7.,.8.,故.当时,.故曲线在处的切线方程为,即,法线方程为,即.第三章自测题一、填空题(每小题3分,共15分)1. 2. 3. 4., 5.二、单项选择题(每小题3分,共12分)1.B 2.A3.B,提示:由题意得,,当时,,当时,,从而在;即当取得极小值时,4. C,提示:由定义,由极限的保号性得,当时,三、解答题(共73分)证明:1.令,即,则在,使得上连续,,内可导,且;由罗尔定理知,至少存在一点故,即.2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.(2)令,则,从而当时单调递增,即,故;令,则,即当时单调递减,即,故;从而当时,.解:3.(1).(2).(3).4.⑴函数的定义域为;,令得驻点,不可导点;当时,;当时,;当时,;当小值点,极小值为时,.;故为极大值点,极大值为;为极⑵,令得驻点,为不可导点.当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.5.定义域为得;;列表得:,,令得驻点,令---++极小值点++++-拐点单减凸单减凹单增凹单增凸6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.。

高等数学练习册及答案

高等数学练习册及答案

第一章第一章 函数与极限§1 函数一、单项选择题1、下面四个函数中,与y=|x |不同的是( A ) (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =)上是(,在其定义域、B x x f )()3(cos )(22∞+−∞=非周期函数。

的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 最小正周期为)(32)(3)(3)(D C B A πππ )函数的是( 、下列函数中为非偶数B 3)1lg(1)(4343)(arccos )(1212sin )(2222x x x x y D x x x x y C x y B x y A x x +++=++++−==+−⋅=;;4、是 函数)0(ln)(>+−=a xa xa x f (A ) 的值奇偶性决定于非奇非偶函数;偶函数; 奇函数; a D C B A )()()()(二、填空题1、=则时且当设 z x z y y x f y x z , , 0 , )(2==−++= . 解:2 , 0 x z y ==时因 2)(x x f x =+∴ 故有 x x x f −=2)( )()()(2y x y x y x f −−−=−)()(2y x y x y x z −−−++=∴2)(2y x y −+=2、的定义域为,则设 )()65lg(56)(22x f x x x x x f +−+−+=解:由 解得 ,650162+−≥−≤≤x x x由 解得 或x x x x 256023−+><>[)(]故函数的定义域是 ,,−1236Υ.3、[]=则., ;,设)(0202)(x f f x x x x f≥<+=解:[]f f x x x x ()=+<−≥−4222,;, 4、=的反函数则.,;,;,设)()(42411)(2x x f x x x x x x f xφ+∞<<≤≤<<∞−=解:当时,,即−∞<<==x y x x y 1 −∞<<y 1 当时,, .141162≤≤=∴=≤≤x y x x yy当时,, .42162<<+∞=∴=>x y x y x y log>≤≤<<∞−=φ.,;,;,的反函数故16log 1611)()(2x x x x x x x x f 5,,且成立,对一切实数设0)0()()()()(212121≠=+f x f x f x x f x x x f ,a f =)1(=则)0(f ,=)(n f )(为正整数.n解)0()0()0()00(021≠⋅=+==f f f f x x ,代入已知式取∴=f ()01又 f af f f f a ()()()()()1211112==+==设则f k a f k f k f a a akkk ()()()()=+=⋅=⋅=+111nan f n =)(有故对一切§2 数列的极限一.单项选择题1、{}无界是数列发散的数列n a ( B )件..既非充分又非必要条 .充分必要条件.充分条件 .必要条件D C B A ;;;2、=−为偶数当为奇数当n n n x n ,10,17则 D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 、有最大值与最小值D 、无最小值高等数学》练习测试题库及答案n,n 为奇数 C . {f(n)}, 其中 f(n)= 1n nn , n 为偶数 1n4. 数列有界是数列收敛的( ) A .充分条件 C.充要条件 5.下列命题正确的是( )A .发散数列必无界 C .两发散数列之和必发散sin( x 26. lim1) ( )x 1 x 1A.1B.0C.2D.1/27.设 lim(1 kxxxe 6 则 k=( )A.1B.2C.6D.1/68.当 x 1 时, 下列与无穷小( x-)等价的无穷小是()1 1.函数 y=2 2是( )A.偶函数B.奇函数C 单调函数x2.设 f(sin )=cosx+1,则 f(x) 为( 2)A 2x 2- 2 B 2- 2x 2C 1+x 2D 无界函数D 1-x 23.下列数列为单调递增数列的有(A . 0.9 ,0.99,0.999,0.9999B . 3,2,5,42345D. {2n1 2nB. 必要条件D 既非充分也非必要 B .两无界数列之和必无界 D .两收敛数列之和必收A.x 2 -1B. x 3-1C.(x-1)D.sin(x-1)9. f (x )在点 x=x 处有定义是 f (x )在 x=x 处连续的( ) A. 必要条件 C.充分必要条件 10、当 |x|<1 时,y=B.充分条件 D.无关条件 ) A 、是连续的B 、无界函数.选择题)11、设函数 f (x )=(1-x )cotx要使 f (x )在点:x=0连续,则应补充定义 为( )A 、B 、 eC、-e D 、 -e12、下列有跳跃间断点 x=0 的函数为()A 、 xarctan1/xB 、 arctan1/xC 、 tan1/xD、 cos1/x13、设 f(x) 在点 x 0连续, g(x) 在点 x 0不连续,则下列结论成立是( )A 、 f(x)+g(x) 在点 x 0 必不连续B 、f(x) ×g(x) 在点 x 0 必不连续须有C 、复合函数 f[g(x)] 在点 x 0 必不连续A 、、f[f(x)]16、函数 f(x)=tanx 能取最小最大值的区间是下列区间中的(A 、[0, л]B 、( 0, л)C 、[- л/4, л/4]D、( - л/4, л/4 )17、在闭区间 [a ,b] 上连续是函数 f(x) 有界的( )A 、充分条件B 、必要条件C 、充要条件D、无关条件18、f(a)f(b) <0 是在[a,b] 上连续的函 f(x) 数在( a,b )内取零值的(A 、充分条件B 、必要条件C 、充要条件D 、无关条件D 、在点 x 0 必不连续14、设 f(x)= 在区间 (- ∞,+ ∞) 上连续,且f(x)=0 ,则 a, 满足A 、a >0,b >0 、a >0,b <0 C 、a <0,b >0、a <0,b <015、若函数 f(x) 在点 x 0 连续,则下列复合函数在 x 0 也连续的有( C 、tan[f(x)]A 、-1B 、0C 、л /2 D219、下列函数中能在区间 (0,1) 内取零值的有( )A 、 f(x)=x+1B、f(x)=x-1 C 、 f(x)=x 2-1 D、f(x)=5x 4-4x+120、曲线 y=x 2在 x=1 处的切线斜率为()A 、k=0B 、k=1C 、k=2D 、-1/221、若直线 y=x 与对数曲线 y=log a x 相切,则( )x 1/eA 、eB 、1/eC 、eD 、 e曲线 y=lnx 平行于直线 x-y+1=0 的法线方程是( )-2 -2C 、 x-y-3e -2=0D 、 -x-y+3e -2=0A 、 aB 、-aC、|a|设 y=(cos)sinx ,则 y ' |x =0=(22、 -2A 、x-y-1=0B 、x-y+3e -2=0 23、 设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()24、 A 、±1 B 、±л /2 C±( л/2+1)、±( л/2-1)设 f(x) 为可导的奇函数,且 f`(x 0)=a , 则 f`(-x 0)=25、 设 y=㏑,则 y '|x =0=(A 、 -1/2B 、1/2C、-126、 27、 28、29、A 、 -1B 、0C 、1设 yf(x)= ㏑(1+X) ,y=f[f(x)],A 、0B 、1/ ㏑ 2已知 y=sinx ,则 y (10)=(A 、 sinxB 、cosx已知 y=x ㏑ x ,则 y (10)=(9A 、 -1/x 9 B若函数 f(x)=xsin|x| A 、f``(0) 不存在 B30、31、设函数 y=yf(x) 在[0 C 、9、1/ x 9 ,则( 、f``(0)=0不存在则 y ' |x =0=(、-sinx-cosxC 、 8.1/x 、f``(0) =,л] 内由方程 x+cos(x+y)=0 -8.1/xf``(0)= л所确定,则|dy/dx| x=0=( )41、曲线 y=x 2-4x+3 的顶点处的曲率为()32、圆 x2cos θ,y=2sin θ上相应于θ =л/4 处的切线斜率, K=()A 、-1B 、0C 、1D 、 233、函数 f (x ) 在点 x 0连续是函数 f (x ) 在 x 0 可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数 f (x ) 在点 x 0可导是函数 f (x ) 在 x 0 可微的( )A 、充分条件B 、必要条件C 、充要条件D 、无关条件35、函数 f (x )=|x| 在 x=0的微分是( )A 、0B 、-dxC 、dxD 、 不存在36、极限 lim ( x 1 )的未定式类型是( ) x 1 1 x ln xA 、0/0 型B 、∞/ ∞型C 、∞ - ∞D 、∞型 137、极限 lim ( sinx) x 的未定式类型是( ) xx0内有( )A 、唯一的零点 、至少存在有一个零点C 、没有零点、不能确定有无零点A 、00型 B∞0/0 型 C 、1∞型 D 、∞ 0型38、极限21x sin x=( )sinx A 、B 、1 CD 、不存在39、x x 0时, n 阶泰勒公式的余项Rn (x ) 是较 x x 0 的( )A 、(n+1)阶无穷小B 、n 阶无穷小C 、同阶无穷小、高阶无穷小40、若函数 f (x ) 在[0, +∞]内可导, 且 f`(x) >0,xf(0) <0则 f(x) 在[0,+ ∞]2 mA 、2 B、 1/2 C 、1 D 、0 42、抛物线 y=4x-x 2在它的顶点处的曲率半径为()43、若函数 f (x ) 在(a,b )内存在原函数,则原函数有()-n46、设 P (X )为多项式,为自然数,则∫ P (x )(x-1) -n dx ()A 、不含有对数函数B 、含有反三角函数C 、一定是初等函数D 、一定是有理函数47、∫ -10|3x+1|dx= ()A 、5/6B 、1/2C 、-1/2D 、148、两椭圆曲线 x 2/4+y 2=1 及(x-1) 2/9+y 2/4=1 之间所围的平面图形面积等于()A 、лB 、2лC 、4лD 、6л49、曲线 y=x 2-2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()A 、лB 、 6л /15C 、 16л/15D 、32л/1550、点( 1, 0, -1 )与( 0, -1 ,1)之间的距离为( )A 、B 、2C 、31/2D 、 2 1/251、设曲面方程( P , Q )则用下列平面去截曲面,截线为抛物线的平面是( )A 、 Z=4B 、Z=0C 、 Z=-2D 、x=252、平面 x=a 截曲面 x 2/a 2+y 2/b 2-z 2/c 2=1 所得截线为( )A 、椭圆B 、双曲线C 、抛物线D 、两相交直线53、方程 =0所表示的图形为()A、2ex/2B 、 x/24 eC 、 e x/2 +CD45、∫xedx =(D)-x-x-x -xA 、 xe -e -x +CB 、-xe +e+CC 、-xxe +e -x-+CD-x -x、 -xe -e +C44、若∫ f(x)dx=2e x/2 +C=()x/2、e、1/2C、1D 、 2A 、一个B 、两个C 、无穷多个D 、都不对A、原点(0,0,0) B 、三坐标轴C 、三坐标轴D 、曲面,但不可能为平面54、方程 3x 2+3y 2-z 2=0 表示旋转曲面,它的旋转轴是()A 、X 轴B 、Y 轴C 、Z 轴D 、任一条直线55、方程 3x 2-y 2-2z 2=1所确定的曲面是( )A 、双叶双曲面B 、单叶双曲面C 、椭圆抛物面D 、圆锥曲面 56 下列命题正确的是( ) A 、发散数列必无界B 、两无界数列之和必无界C 、两发散数列之和必发散D 、两收敛数列之和必收敛57.f (x ) 在点 x=x 0处有定义是 f (x ) 在 x=x 0 处连续的( A 、 . 必要条件 B 、充分条件 A 、[0, л]B、(0, л)C 、充分必要条件D 、无关条件58 函数 f(x)=tanx 能取最小最大值的区间是下列区间中的( C 、 [- л /4, л /4]D、(- л/4, л/4 )A 、f(x)=x+1C 、f(x)=x 2-1 B、 f(x)=x-1D 、 f(x)=5x 4-4x+1A 、-1B 、0C 、 1)不存在二、填空题1、求极限 lim (x 2+2x+5)/(x 2+1)= ( ) x1 32、求极限 lim [(x 3-3x+1)/(x-4)+1]= ( ) x0 3、求极限 lim x-2/(x+2) 1/2=( ) x2 x 4、求极限 lim [x/(x+1)]=( )1/x5、求极限 lim (1-x) = ( )x06、已知 y=sinx-cosx ,求 y`| x=л/6 =( )7、已知ρ =ψsin ψ+cos ψ/2 ,求 d ρ/d ψ| ψ=л/6 =( )59 下列函数中能在区间 (0,1) 内取零值的有( ) 60 设 y=(cos)sinx ,则 y '|x=0=(精品文档8、已知 f(x)=3/5x+x 2/5,求 f`(0)= ( )9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=( ) 10、函数 y=x 2-2x+3 的极值是 y(1)= ( ) 11、函数 y=2x 3 极小值与极大值分别是( ) 12、函数 y=x 2-2x-1 的最小值为( ) 13、函数 y=2x-5x 2的最大值为()14、函数 f(x)=x 2e -x 在[-1,1] 上的最小值为( )3215、点( 0, 1)是曲线 y=ax +bx 2+c 的拐点,则有 b=( ) 16、∫ xx 1/2dx= ()17、若 F`(x)=f(x) ,则∫ dF(x) = ( )18、若∫ f(x)dx =x 2e 2x +c ,则 f(x)= ( ) 19、d/dx ∫ a b arctantdt =( )1 xt 2x 12 0(e t21)dt 20、已知函数 f(x)=x ,x 0a,x 021、∫ 02(x 2+1/x 4)dx =( ) 22、∫49x 1/2(1+x 1/2)dx=( ) 23、∫ 031/2a dx/(a 2+x 2)=( )24、∫ 01 dx/(4-x 2)1/2=( )л25、∫ л/3 sin (л /3+x)dx=( )26、91/2 1/2 ∫ 4 x(1+x )dx=()27、 91/2 1/2 ∫ 4 x(1+x )dx=()28、9 1/2 1/2 ∫ 4 x (1+x )dx=()29、 9 1/2 1/2 ∫ 4 x(1+x )dx=()30、 ∫ 49 x 1/2(1+x 1/2)dx=()31、∫49 x 1/2(1+x 1/2)dx=()32、∫49 x 1/2(1+x 1/2)dx=()c= ( )在点 x=0 连续, 则 a=33、满足不等式 |x-2|<1的 X 所在区间为 ( ) 34、设 f (x ) = [x] +1 ,则 f (л +10)=( ) 35、函数 Y=|sinx|的周期是 ( )36、y=sinx,y=cosx 直线 x=0,x= л/2 所围成的面积是 ( ) 37、 y=3-2x-x 2 与 x 轴所围成图形的面积是 ( ) 38、心形线 r=a (1+cos θ )的全长为 ( )39、三点( 1,1,2),(-1,1,2),(0,0,2)构成的三角形为 ( ) 40、一动点与两定点( 2,3,1)和( 4,5,6)等距离,则该点的轨迹方程是()41、求过点( 3,0,-1),且与平面 3x-7y+5z-12=0 平行的平面方程是( )42、求三平面 x+3y+z=1 ,2x-y-z=0,-x+2y+2z=0 的交点是 ( ) 43、求平行于 xoz 面且经过( 2,-5, 3)的平面方程是 ()44、通过 Z 轴和点( -3, 1,-2)的平 面方程是 ( )45、平行于 X 轴且经过两点 ( 4, 0, -2)和( 5,1,7) 的平面方程是( )46求极限 lim [x/(x+1)] x=(x)47 函数 y=x 2-2x+3 的极值是y(1)= ()9 1/2 1/2 48∫49 x 1/2(1+x 1/2 )dx=()49y=sinx,y=cosx 直线 x=0,x= л /2 所围成的面积是 ()50 求过点( 3,0,-1 ),且与平面 3x-7y+5z-12=0 平行的平面方程是 ( )三、解答题1、设 Y=2X-5X 2,问 X 等于多少时 Y 最大?并求出其最大值。

相关文档
最新文档