线性代数复习
线性代数复习要点
2
2、初等变换的性质 (1) 对调变换使得行列式的值反号; (2) 倍乘变换只是放大或缩小行列式的值; (3) 倍加变换不改变行列式的值. 3、加法原理:若行列式的某一行(或列)的元都是两数之和,则此行列式等于两个行列式的和. 4、乘积法则:对任何 n 阶矩阵 A 和 B ,均有 | AB | | Α | | B | . 5、转置运算不改变行列式的值. 三、行列式的计算 1、典型方法:三角化方法、降阶法、归纳法、递推法、分拆法、升阶法. 2、设 A 为 n 阶矩阵, k 为任意数,则 kA k A .
1 * * 1 * T T *
4、 ( A ) ( A ) , ( A ) ( A ) , ( A ) ( A ) .
T 1
AT A 5、 B
T
, T B B
1
A T A
T
BT ;
A1 A 当 A, B 可逆时,有 B
一、行列式的概念
n 阶行列式 A 或 det A 是 n 阶矩阵 A [aij ] 按下述运算法则得到的一个算式: 当 n 1 时, A a11 a11 ; 当 n 2 时,
A a11 A11 a12 A12
这里 A1 j (1)
三、分块矩阵的求逆公式 当 A, B 可逆时,有
, 1 B B
A 1 A
1
B 1 .
A 1 A C 0 B 0
四、重要结论
1
A1 A1CB 1 A 0 , 1 1 B 1 C B B CA
(5) rank
A 0 0 rankA rankB , rank 0 B B
线性代数重点复习(16页)
齐次线性方程组给出系数矩阵,
1
非齐次线性方程组给出增广矩阵 。
对矩阵进行初等行变换得到行最
2
简形。
3
把行最简形矩阵写回线性方程 组的形式。
4
给出方程组的通解。
若线性方程组的系数带有未知数,需分各种情况讨论,灵活处理。
相似矩阵与二次型 05 Guidance for Final Exams at XXX University in 2025 2025
交向量组,由此便可得到相应的正交变换矩阵和相似对
角矩阵。
2025
马到成功!
XXX大学2025年期末考试指导
2025
公众号:安全生产管理
线性代数复习重点
第一章 行列式 01 Guidance for Final Exams at XXX University in 2025 2025
容易出选择填空题的内容:
(1)求逆序数; (2)含某个因子的项(注意正负号); (3)与余子式或代数余子式相关的内容; (4)已知 |A| 求某个与A相关的行列式。。
第三章 向量空间 03 Guidance for Final Exams at XXX University in 2025 2025
向量空间
本章提到的的性质和定理较多,需要灵活运用。
容易出选择填空题的内容: 二 (1)向量的加法、数乘和内积运算; (2)线性相关和线性无关的定义,以及它们与向量组秩的关系(线性无关意
容易出大题的内容:行列式的计算。 其中,若已知行列式的阶数和每个元素的数值, 则问题很简单,但要注意,对于2阶和3阶行列式, 可用划斜线的方式(对角线法则)来计算。而对于4 阶或更高阶的行列式,不能采用对角线法则计算, 此时必须利用行列式的性质将其化为上三角行列式 从而得出结果,或者当某一行(列)非零元很少时, 运用展开定理将该行(列)展开从而得到经过降阶 的行列式计算。 对于n阶行列式的情形或者行列式元素中出现未 知数,求解的难度较大,需要灵活的结合运用行列 式的性质和展开定理。一般来说,考试中都会出课 本中已有的例题、习题,或者非常相似的题目。
线性代数--总复习
可见, 当λ=-4/5时, R(A)=2, R(A|b)=3, 方程组无解. 当λ≠-4/5, 且λ≠-1时 R(A)=R(A|b)=3, 方程组有唯一解.
当λ=-1时, 有
1 −1 −2 1 1 −1 0 3 ( A | b) → 0 0 1 1 → 0 0 1 1 0 0 1 1 0 0 0 0
第三章 向量 线性关系 秩
1. 理解n维向量的概念以及向量的线性运算; 2. 理解向量组的线性组合与线性表示的概念; 3. 理解向量组线性相关, 线性无关的定义, 了解并会用 向量组线性相关, 线性无关的有关性质及判别法; 4. 理解向量组的极大线性无关组和向量组的秩的概念, 会求向量组的极大无关组和秩,理解向量组等价的概念; 5. 理解矩阵秩的概念及与向量组秩的关系及其计算.
0 2/3 0 B = 6 0 3/ 4 0 0 0 6/ 7
−1
0 3 0 0 1/ 3 0 = 0 2 0 0 1/ 4 0 0 0 1/ 7 0 0 1
49页:10, 11, 12, 18
第六章 矩阵的特征值与特征向量
1. 了解矩阵的特征值和特征向量的概念及其求法; 2. 了解矩阵的特征值和特征向量的性质; 3. 了解相似矩阵的概念及性质; 4. 掌握将(实对称)矩阵(正交)相似对角化的方法.
第七章 二次型
1. 掌握二次型及其矩阵表示, 了解二次型秩的概念, 了解合同变换与合同矩阵的概念, 了解二次型的标准形和 规范形的概念以及惯性定理; 2. 掌握用正交变换化二次型为标准形的方法, 会用 配方法化二次型为标准形; 3. 理解正定二次型和正定矩阵的概念, 掌握其判别法.
线性代数复习课
(ii) 设 λi 为 A 的特征值,ηi (ηi ≠ 0) 为 A 属于 λi 的 特征向量,则 Aηi =λiηi;
n
n
∑ ∑ (iii)= A λ1λ2λn,tr= ( A) = aii λi;
=i 1=i 1
A= A* A= * A A E、A* = A n−1 、A* = A A−1
(3) r( A) 与 r( A* ) 的关系
n 当 r( A) = n; r( A* )= 1 当 r( A)= n − 1;
0 当 r( A) < n − 1.
6. 可逆矩阵 (1) 定义; (2) 矩阵可逆的等价命题;
(i) 计算 A的全部特征值;
(ii) 对每一个不同的特征值 λi,求出属于 λi 的线性
无关的特征向量 (即求出齐次线性方程组
(λi E − A)X = 0 的一个基础解系);
λ1
(iii)令 U
(η= 1 η2 ηn ),则 U −1 AU
λ2
.
λn
A 属于不同特征值的特征向量必线性无关.
(1) 化三角形法 (行列式的性质); (2) 行列式按行、列展开定理及推论; *(3) 数学归纳法.
*3. 克莱姆法则
二、线性方程组 1. n 维向量 (1)向量定义及运算 (加法、数量乘法、内积); (2)向量组线性组合、线性表出及等价 (判定定理); (3)向量组线性相关及线性无关 (判定定理); (4)向量组的秩及极大线性无关组;
n 阶矩阵 A 可逆 ⇔ A ≠ 0 ⇔ 存在 n 阶矩阵 B 使= AB E (= 或 BA E) ⇔ r( A) = n ⇔ A的行 (列)向量组线性无关 ⇔ A的标准形为En ⇔ A的所有特征值均大于0
线性代数-要点考点复习
六、行列式的计算
1.基本计算方法 (1)化三角形法 (2)展开法(降阶法)
展开前尽量化 0 按特殊的一行、列展开 按0多的一行、列展开
2.常见行列式的计算方法
(1)各行(列)和相等
b a"a
a b"a
# #%#
a a"b
a1 + b a2 " an
a1 a2 + b " an
#
#%#
a1
a2 " an + b
2.向量的长度及其性质 向量的单位化 (标准化 ) 3.向量的正交 (1)夹角 (2)正交 (3)求与一个或几个向量均 正交的向量 解齐次方程组 由部分特征向量求实对 称矩阵的其余特征向量
(4)正交向量组与标准正交 向量组
4.施密特正交化方法
向量组的正交化
向量组的标准正交化
六、正交矩阵
1.定义 AT A = I
QT AQ = Λ QT AkQ = Λk Ak = QΛkQT
( ) AX = 0与 AT A X = 0同解 : ( ) AX = 0 ⇒ AT A X = AT ( AX ) = 0 ( ) ( ) AT A X = 0 ⇒ XT AT A X = 0
⇒ ( AX )T ( AX ) = 0
⇒ AX = 0
第一章 行列式
复习要点 :
一、排列及其逆序
τ (i1"in ) = a,
τ
(in " i1 )
=
n(n − 2
1)
a.
二、2、3阶行列式的对角线原理
三、行列式的定义
D
=| aij
|=
p1
∑
p2"
线性代数期末复习
二、相似矩阵 1、相似矩阵的定义与性质。 、相似矩阵的定义与性质。 性质 2、区分矩阵相似、矩阵等价(P.54 定义 1. 15) 、矩阵合 、区分矩阵相似、矩阵等价( 等价 ) 同的概念。 同的概念。
三、矩阵的对角化 1、矩阵可以对角化的判定(定理 4 . 9 及其推论 、 、矩阵可以对角化的判定( 判定 定理 4 . 10 ) 。 2、当矩阵 A 可以对角化时,求出可逆矩阵 P、对角矩阵 、 可以对角化时, 、 Λ,使 P −1 A P = Λ 。 进而, 可以对角化时, 进而,当矩阵 A 可以对角化时,r ( A ) = 矩阵 A 的非零特 征值的个数。 征值的个数。 3、实对称矩阵 A 的对角化:求出正交矩阵 Q、对角矩阵 、实对称矩阵 对角化: 、 Λ , 使 Q− 1 A Q = Λ 。 4、当矩阵 A 可以对角化时,利用矩阵 A 的特征值和特征 、 可以对角化时, 向量, 向量,求出矩阵 A 以及 A k 。
9、练习1. 6 的 3、求解下列矩阵方程: 、练习 求解下列矩阵方程:
2 1 0 5 1 1 (3*)X 1 1 2 = 0 0 − 6 3*) 1 2 5 1 0 − 1
0 0 1 ( − 1 2 − 1 )、 0 2 − 1
16、习题二的 8 : 、 考题有时会更难; 注:① 考题有时会更难; ② 题中方程组的两个解 γ1 ,γ2 可能会以另一种形式给 出: 设 4 × 3 矩阵 A 分块为 A = ( α1 ,α2 ,α3 ) ,其中 α i ∈ R4 ,i = 1,2,3,− α1 + α2 = β ,α1 + α3 = β ,且线性 , , , 方程组 A x = β 满足 r ( A ) = r (A ) = 2 ,试求出该方程组 的全部解。 的全部解。 17、习题二的 10 ; 、 18、习题二的 12 。 、
线性代数期末复习知识点参考
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。
线性代数复习
三、向量 1、定义: α = ( a1 , a 2 ,L a n ) 、
2、运算及运算律:α 、
(行、列、零、负 向量 行 向量)
±β
kα α T β = [α , β ]
3、线性关系:组合、相关、无关。 、 组合、相关、无关。
4、相关性的判别: 、
1) 定义 与数线性组合为零向量时,系数不全为零。 与数线性组合为零向量时,系数不全为零。 向量个数 2) 构成矩阵 A = (α 1α 2 Lα s ) r ( A) < s (向量个数 ) 3) 个数 维数时 个数=维数时
A −1 =
(AB = BA = E)
A ≠0
a
−1
二阶(三阶 二阶 三阶) 三阶
1 * A A
r
1 = a
A* = ( Aij )T
三阶,三阶以上 三阶 三阶以上 ( A, E ) → L → ( E , A−1 )
5、矩阵的秩: 、 定义: A中不为 0 的子式的最高阶数 定义: 中不为 求法: 求法: 求各阶子式的值 初等变换化为标准形D, 中数 中数1的个数 初等变换化为标准形 ,D中数 的个数 初等变换化为阶梯形B, 中非零行的行数 初等变换化为阶梯形 ,B中非零行的行数 6、分块矩阵的运算规律与技巧: 、 分块三角阵,分块对角阵 分块三角阵,
n
i
= A
对角化的充要条件: 有 对角化的充要条件:A有n 个线性无关的特征向量 熟练掌握:求可逆阵 ,使方阵对角化的方法。 熟练掌握:求可逆阵P,使方阵对角化的方法。
3、实对称阵A 必能找到正交矩阵 使UTAU=Λ 、实对称阵 必能找到正交矩阵U,使 = 掌握求此正交阵的方法。 掌握求此正交阵的方法。 向量的正交化和单位化
线性代数复习
例1
a x L x x a L x Dn = , Dn = M M M x x L a
a1 + b a2
M L an + bn
a1 − a1 a2 − a2 Dn+1 = O O an − an 1 1 L 1 1
0 a12 L a1n a b 0 L a2n a O , D = − a12 Dn = (n为奇数) n M M M O b − a1n − a2n L 0 a b
阶方阵, 维列向量, 例1 设A是n阶方阵,x 是n维列向量,若存在一正整数 是 阶方阵 维列向量 k使得 Ak-1x≠0,Akx=0,证明 向量组 Ax, …,Ak-1x 向量组x, ≠ , , 使得 线性无关. 线性无关 是三阶方阵, 的两个互异特征值, 例2 设A是三阶方阵,λ1,λ2是A的两个互异特征值,x1 是三阶方阵 的两个互异特征值 是对应的特征向量, 与x2是对应的特征向量,又Ax3= x2+ λ2 x3, 证明向量组 x1, x2, x3线性无关。 线性无关。 例3 设向量空间 V={(x1,x2,…xn)|x1-2x2=0, x2+x3-x4=0, x1-x2+x3-x4=0}, 则dimV=_______ 例4 设A,B分别是 ×n与n×p 矩阵,且AB=0,证明 分别是m 与 矩阵, , 分别是 rankA+rankB≤n ≤
设矩阵A,B 都是 阶方阵,证明:若 都是n阶方阵 证明: 阶方阵, 例5 设矩阵 rankA+rankB<n, 则Ax=0与Bx=0必有公共非零解。 必有公共非零解。 与 必有公共非零解 若方阵A,B满足 A-B=AB, 例6 若方阵 满足 证明: 不是 的特征值( 不是B的特征值 可逆) 证明 1不是 的特征值(B-E可逆); 可逆 正交矩阵的实特征值只能是正负1. 例7 正交矩阵的实特征值只能是正负
线性代数总复习知识点
M
M
am1 L amm
0L 0
M
M
0L 0
0L0
M 0 b11 M
L L
Ma
0 b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L L
b1n
M bnn
bn1 L bnn
∗L∗
M ∗
b11 M
L L
Ma
∗ b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L b1n
M L bnn
)
=
1 det
A
2)分块上下三角阵的行列式
det CA
O B
=
det
A
⋅
det
B
,
det
A O
C B
=
det
A
⋅
det
B
3)利用
det A = λ1λ2 Lλn
其中 λ1,λ2 ,L,λn 是A的n个特征值。
四、求逆矩阵★★★
1.具体矩阵:
① 2阶矩阵——伴随阵法(公式法)
对
A
=
a11 a21
n(n−1)
= (−1) 2 a1na2,n−1Lan1
a1n
a2,n−1 NM
a2n M
n(n−1)
= (−1) 2 a1na2,n−1Lan1
an1 L an,n−1 ann
③范德蒙行列式
1 1L1
x 1
x 2
L
xn
Dn =
x2 1
M
∏ x2 2
线性代数总复习
性质1
例5---相似矩阵 设3阶矩阵A、B相似,A-1的特征值分别为1,2,3, 求 (1)A的特征值; (2) 解 (1)因为A-1的特征值分别为1,2,3,所以A的特征值
分别为 (2) 因为A、B相似,所以A,B的特征值相同,所以B的 特征值分别为 所以6B-E的特征值为
3---特征向量的性质 1)方阵A的不同特征值所对应的特征向量必线性无关。
1、定义 由m×n个数
排成的m行n列数表
(i=1,2, …,m ; j=1,2, …,n)
称为一个m行n列矩阵, 简称为m×n矩阵,
矩阵的秩(续) 3、关于秩的重要结论:
例题2 ---(矩阵3)
解
例题3---(逆阵2)
解
2)
例题3---(逆阵3) 3、设方阵 A满足2A2-5A-8E = 0,证明 A-2E 可逆,
6---例8(1)---几个证明1 1、设A~B,证明: A2~B2; tA-E~tB-E, t是实数
2. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1, 2必线性无关;
3. 设1,2 是A的两个不同的特征值,1, 2 是相应的 特征向量, 证明:1 2 必不是 A的特征向量
3)正交向量组必是线性无关组。
4---n阶方阵A可对角化的条件、方法 1、一个充分必要条件: n阶方阵A可对角化 A有n个线性无关的特征向量 2、两个充分条件: 1)如果A有n个互不相同的特征值,则A必可对角化 2)如果A是实对称矩阵,则A必可用正交矩阵对角化。
3、对角化方法:
4、正交对角化
5---例6---对角化 分别求可逆矩阵P、正交矩阵Q, 将矩阵A对角化。 解 1)
向量4---例题4
线性代数各章复习重点汇总
4、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系5、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
第四章:线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则齐次线性方程组有一非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解
3、掌握实对称矩阵的特征值和特征向量的性质。第六章:二次型
考试内容
二次型及其矩阵表示合同变换和合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
考试要求
1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念。
2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。
线性代数各章复习重点汇总
线性代数
第一章:行列式
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1、了解行列式的概念,掌握行列式的性质
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章:矩阵
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
3、理解正定二次型、正定矩阵的概念,并掌握其判别法。
考试要求
1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
线性代数总复习
§2 线性代数的“解析理论” §3 线性代数的“几何理论” 线性 代 数 总 复 习§4 线性代数典型证明题§1 线性代数概况1. 线性代数的解析理论——矩阵理论行列式的定义、性质、计算、证明;1/3/4.1行列式、矩阵、线性方程组、二次型 矩阵的定义、性质、运算、初等变换、秩、特征值、特征向量、相似对角化、正交对角化; 方程组的Gauss 消元法、初等变换、基础解系、 通解、特解;二次型的标准化、规范化、惯性指数、正定负定;§1 线性代数概况向量、向量的线性运算;向量间的线性关系;向量组间的关系; 向量与向量组的关系;向量空间;2/3/4.1向量欧氏空间、线性方程组解空间、二次型主轴定理 空间与空间的转换关系:过渡矩阵2. 线性代数的几何理论——空间理论内积运算、欧氏空间;向量的长度、夹角、正交、规范正交向量组; 规范正交基、Schmidt 正交化;线性方程组解空间的结构、二次型的主轴定理; 空间为体,矩阵为用几何是脑力劳动,代数是体力劳动.3/3/4.13. 线性代数主线 ——教学名师 中国科技大学 李尚志1/12/4.2解析理论第一大块:行列式11121 21222 12 n n n n nna a a a a a a a a L L MMOML D =n nnj j j j j nj j j j a a a 12 12 12 ()12 (1)t L L L =- å §2 线性代数的解析理论——矩阵理论11 1122 1122 ,1 ,1,1 i i i i in in j j j j nj nj a n D a A a A a A n a A a A a A n ì = ï =+++> í ï ++> îL L 行列式的性质:(辅导P2) 1.行列式等于0;(4点) 2.行列式的值不变;(4点)3.行列式的值改变;(2点)4.特殊行列式的值。
线性代数复习资料
第一部分、复习纲要1、行列式:掌握行列式的计算:①利用行列式的性质②按行(列)展开③利用已知特征值.2、矩阵及其运算:熟练掌握矩阵的运算(线性运算及矩阵乘法),会用伴随矩阵求逆阵,知道矩阵分块的运算律.3、矩阵的初等变换与线性方程组:熟练掌握用矩阵的初等行变换把矩阵化成行阶梯形和行最简形;掌握用初等变换求可逆矩阵的逆矩阵的方法(包括求B A 1-);熟练掌握用矩阵的初等变换求解线性方程组的方法;会讨论带参数的方程组的解的情况.4、向量组的线性相关性:熟悉一个向量能由一个向量组线性表示这一概念与线性方程组的联系;知道两向量组等价的概念;熟悉向量驵线性相关、线性无关的概念与齐次线性方程组的联系;会用初等变换求向量组的秩和最大无关组;掌握齐次方程组的秩与解空间的维数之间的关系,熟悉基础解系的求法;会求向量组生成的向量空间的维数,会求从旧基到新基的过渡矩阵及向量的一个基下的坐标.5、相似矩阵及二次型:了解内积、长度、正交、规范正交基、正交阵、特征值与特征向量的概念;掌握特征值与特征向量的求法,熟悉特征值的性质;知道矩阵相似、合同的概念及性质,熟悉二次型及其矩阵表示,掌握用正交变换把二次型化为标准型的方法;知道对称阵的性质、可对角化的条件,二次型的正定性及判别法等.第二部分、典型题型一、填空题1、设4阶矩阵A 的秩()2R A =,S 是齐次线性方程组0Ax =的解空间,则S 的维数为__2_____,A 的伴随矩阵*A 的秩是______0_______.2、 已知3阶方阵A 的特征值为1,2,-3,则A 的迹t r A =___0_____,det A =___-6_____,*|32|A A E ++=_____25________,3、n 阶矩阵A 可对角化的充分必要条件是_____A 有n 个线性无关的特征向量_________________.对称阵A 为正定的充分必要条件是________ A 合同于单位矩阵E__________.4、向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦它的秩是__3_______,一个最大无关组是_____321,,ααα_______________________.5、 实二次型22212312133924f x x x x x x x =++-+的秩r = ,正惯性指数p = ,它是 定的. 6、设1200250000250038A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则||A = 1 ,1A -= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2300580000120025 . 7、设n 元线性方程组Ax b =的系数矩阵A 的秩为r ,若此方程组有解,则当 r =n 时,方程组有惟一解;当 r <n 时方程组有无穷多解. 8、矩阵00A C B ⎛⎫=⎪⎝⎭的伴随矩阵*C =___⎪⎪⎭⎫⎝⎛A B 00___________. 9、向量123α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵T A αβ=,则6A =___A 510___________.10、设A 为n 阶矩阵(n ≥2),*A 为A 的伴随阵,则当()R A n =时,)(*A R = n ___;当()1R A n =-时,)(*A R = _1 _ ;当()1R A n <- 时,)(*A R = 0 .11、设3阶矩阵A 的特征值为2,1,3-,*2B E A =-(其中*A 是A 的伴随矩阵),则B 的行列式||B =__-385____.12、设12243311A t-⎛⎫⎪=- ⎪ ⎪-⎝⎭,并且A 的列向量组线性相关,则t = 3 . 13、已知4维列向量组123451122102151,,,,.2031311041ααααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦所生成的向量空间为V ,则V的维数dim V = _3____.二、解答题1、设3112513420111533D ---=---,D 的(,)i j 元的代数余子式记作ij A ,求31323334322A A A A +-+. 2、计算n 阶行列式121212333nn n n x x x x x x D x x x ++=+4、设112201102P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,500010005-⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .5、设202010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 200010002⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,并且AP P =Λ,求100A .6、非齐次线性方程组123123212322,2,2.x x x x x x x x x λλ-++=-⎧⎪-+=⎨⎪+-=⎩当λ取何值时有解?并求出它的通解.7、非齐次线性方程组13123123,421,642 3.x x x x x x x x λλλ+=⎧⎪++=+⎨⎪++=+⎩当λ取何值时有解?并求出它的通解.8、设方阵A 满足:220A A E --=,证明A 及2A E +都可逆,并求1A -及1(2)A E -+9、设n 阶矩阵A 和B 满足AB A B =+,(i )证明A E -为可逆矩阵;(ii )若350120002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求B .10、已知向量11010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,2222a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,,33111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,416b β⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, (a )问a ,b 取何值时,β不能由向量组123,,ααα线性表示?(b )问a ,b 取何值时,β能由向量组123,,ααα线性表示?并且写出其一般表示式.、D 、之和的值求第四行各元素余子式设行列式22350070222204033--=11、求向量组1133α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3112α⎛⎫ ⎪=- ⎪ ⎪⎝⎭,4213α⎛⎫ ⎪= ⎪ ⎪⎝⎭的一个最大无关组与秩,并把其余向量用最大无关组线性表示.12、已知二次型为 222123232334f x x x x x =+++(1)写出二次型f 的矩阵表达式;(2)求一个正交变换x Py =,把二次型f 化为标准形,并写出该标准形..、ax x x x b x x a x x x x x x x x b a 、通解并在有无穷多解时求其无解或有无穷多解有惟一解线性方程组为何值时问?.123,2)3(,122,0,,1343214324324321⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++.AP P P ,a a A 、Λ=Λ⎪⎪⎪⎭⎫ ⎝⎛=-1,,6002802214使并求可逆矩阵的值试求常数相似于对角阵若矩阵。
线性代数复习总结(重点精心整理)
线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数复习提纲
线性代数复习提纲第一章行列式本章重点是行列式的计算,对于n阶行列式的定义只需了解其大概的意思。
要注重学会利用行列式的各条性质及按行(列)展开等基本方法来简化行列式的计算,对于计算行列式的技巧毋需作过多的探索。
1、行列式的性质(1)行列式与它的转置行列式相等,即D = D T。
(2)互换行列式的两行(列),行列式变号。
(3)行列式中如有两行(列)相同或成比例,则此行列式为零。
(4)行列式的某一行(列)中所有元素都乘以同一数k,等于用数k乘此行列式;换句话说,若行列式的某一行(列)的各元素有公因子k,则k可提到行列式记号之外。
(5)把行列式某一行(列)的各元素乘以同一数k,然后加到另一行(列)上,行列式的值不变。
(6)若行列式的某一行(列)的各元素均为两项之和,则此行列式等于两个行列式之和2、行列式的按行(按列)展开(1)代数余子式:把n 阶行列式中i , j 元a .j 所在的 第i 行和第j 列划掉后所剩的n -1阶行列式称为i , j _i + j元3ij 的余子式,记作M ij ;记Aj 二-1 M ij ,则称 Aj 为i , j 元a ij 的代数余子式。
(2)按行(列)展开定理:n 阶行列式等于它的任意一行(列)的各元素与 对应于它们的代数余子式的乘积之和 ,即可按第i 行 展开:D = a i i Ai a i 2A 2 …a^A n , (1 = 1,2,...,n ) 也可按第j 列展开:…a nj A nj , (j = 1,2,..., n )(3)行列式中任意一行(列)的各元素与另一行的 对应元素的代数余子式乘积之和等于零,即 a i 1 A j 1 a i 2 A j 2…a in A jn = 0, (i = j ); 或 a 1i A 1 j a 2i A 2 j …a ni A , (i = j )D3、 克拉默法则:X 厂一L , (i = 1,2,..., n ),其中D j 是D把D 中第i 列元素用方程右端项替代后所得到的行列 式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数复习一、行列式1、概念:余子式,代数余子式(对方阵而言)2、重要性质:|k A|=k n|A|(A为n阶矩阵);行列式的倍加行(列)变换其值不变;3、克拉默法则:※方程组Ax=B,x j=D j/D(D是系数矩阵行列式,D j是常数项替换系数矩阵第j列后得到的矩阵的行列式)二、矩阵1、概念:系数矩阵、增广矩阵、单位矩阵(I、E)、对角矩阵、上(下)三角矩阵、转置矩阵、(反)对称矩阵、伴随矩阵、逆矩阵2、重要性质:(k A)-1=k-1A-1|A-1|=|A|-1(A*)*=|A|n-2A A*A=|A|E矩阵的初等变换:初等矩阵前乘为行变换;后乘为列变换。
初等倍乘矩阵E i(c),表示将A的第i行(列)乘c。
初等倍加矩阵E ij(c),表示将A的第i行(列)乘c加至第j行(列)。
初等对换矩阵E ij表示将A的第i和第j行互换。
A可逆,(A,E)--------对A,E同时做同样的初等行变换--------(E,A-1)3、分块矩阵求行列式A 0 其中A,B为方阵。
|Q|=|A||B|。
0 B0 A 其中A,B为m,n阶方阵。
|Q|=(-1)mn|A||B|。
B 0A B |Q|=|A||D-CA-1B|。
C D三、线性方程组1、概念:线性相关(线性无关)、秩、极大线性无关组、自由未知量2、重要性质:①判断多个向量间的线性相关关系:系数k i不全为零,∑k i a i=0(定义)向量组有一部分向量线性相关,则整个向量组也线性相关。
各向量组成的矩阵A=(a T1,a T2,…,a T n)的行列式为0。
向量组b1,b2,…,b t能被a1,a2,…,a s线性表示且t>s,则b1,b2,…,b t线性相关。
②a4能否被a1,a2,a3(或更多向量)向量组线性表示?(a T1,a T2,a T3)(x1,x2,x3)T= a T4,有解即能线性表示,解即为对应各向量系数。
③矩阵的秩矩阵A m*n的秩等于行秩、等于列秩、恒不大于min{m,n}。
矩阵的初等变换、转置不改变矩阵的秩。
r(A)=r(PA)=r(AQ)=r(PAQ),其中A m*n,P是m阶可逆矩阵、Q是n阶可逆矩阵。
A(n阶矩阵)为满秩矩阵的充要条件是|A|≠0。
(即A为奇异矩阵↔A的秩不为n)。
矩阵秩的运算:r(A)+ r(B)≥r(A+B) r(AB)≤min {r(A), r(B)}④齐次线性方程组有解的条件齐次线性方程组Ax=0有非零解:r(A)<n(n是未知数的个数/A的列数)。
有非零解时,解的数量为无穷多个。
只有零解:r(A)=A的列数/|A|≠0。
※A m*n,r(A)=r<n,则Ax=0存在基础解系且其中包含了n-r个解向量。
⑤非齐次线性方程组有解的条件非齐次线性方程组Ax=b有唯一解:r(A)=r(A,b)=n(n是未知数的个数/A的列数)有无穷解:r(A)=r(A,b)<n无解:r(A)<r(A,b)3、齐次(非齐次)线性方程组有非零解的结构①求基础解系的步骤:Ⅰ将系数矩阵进行初等行变换化为简化阶梯矩阵(不能有两行非零起始值位于同一列)。
Ⅱ非零行的首个非零元所在列的对应未知量为约束未知量,其余列对应的未知量为自由未知量(引申:约束未知量即构成列向量组的一个极大线性无关组,其他自由未知量均可用约束未知量线性表示)。
Ⅲ根据自由未知量所在列的位置确定x i的个数,赋其中一个x i=1,其他为0……依次进行下去,得到多组基础解系,便确定一般解∑k i x i(k i为任意常数)。
②非齐次线性方程组中求一般解:确定自由未知量后,取所有x i=0,求得一个特解x0;特解与该方程对应的齐次线性方程组的多组基础解系加起来构成一般解x0+∑k i x i。
四、向量空间与线性变换1、概念:自然基(标准基)、过渡矩阵、标准正交基、正交矩阵(n阶矩阵)2、重要性质:①y1=a11x1+a21x2+…+a n1x n;y2=a12x1+a22x2+…+a n2x n;……;y2=a12x1+a22x2+…+a n2x n;{x1,x2,…x n}是一组基;则y1,y2,…y n线性无关的充要条件是系数矩阵A满足|A|=0。
依次性质得到:(y1,y2,…y n)=(x1,x2,…x n)A,A称为x到y的过渡矩阵。
从而:要求解{a T1,a T2,…,a T s}(形成A矩阵)到{b T1,b T2,…,b T n}(形成B矩阵)的过渡矩阵,即求Ax=B的解x。
易知:过渡矩阵可逆。
②A是正交矩阵:A-1=A T;A是n阶正交矩阵↔A的列向量组为R n的一组标准正交基。
如:0 0 1 0 的转置矩阵是0 1 0 0 ,两者的乘积为单位矩阵E4*4。
1 0 0 0 0 0 1 00 1 0 0 1 0 0 00 0 0 1 0 0 0 13、施密特正交化方法由{a1,a2,a3}构造一组标准正交基{n1,n2,n3}的方法:b1=a1;b2=a2-b1*(a2,b1)/(b1,b1);b3=a3- b2*(a3,b2)/(b2,b2)- b1*(a3,b1)/(b1,b1).再将b1 ,b2 ,b3单位化得到n1,n2,n3。
(以上表达式中(a2,b1)表示内积)五、特征值和特征向量矩阵的对角化1、概念:特征值、特征向量、特征方程、相似矩阵、相似标准形2、重要性质:①A n*n,若存在λ和非零向量x使Ax=λx,称λ是A的特征值。
特征值λ满足方程|λI-A|=0。
(特征方程)矩阵A属于不同特征值的特征向量线性无关。
②对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数。
③∑λi=∑a ii(主对角元之和)=tr(A)(矩阵的迹)∏λi=|A| (以上二性质可作为验证计算得到的λ的准确性)矩阵的特征值满足线性性质(λ-A; kλ-k A; λm-A m;λ-1-A-1(A可逆时))A和A T的特征值相同。
④PAP-1=B↔A~B;矩阵相似具有传递性。
矩阵A1A2的相似矩阵可表示为同一相似过程的两个因子的相似矩阵之积。
⑤矩阵可对角化:即指n阶矩阵和对角阵相似。
Λ=PAP-1。
充要条件:n阶矩阵A有n个线性无关的特征向量。
3、判断方阵A n*n能否对角化、求特征值和特征向量、求P、T和Λ的方法:①由方程|λI-A|=0求出λ的值(特征值);②将得到的单个或多个λ分别代入方程(λI-A)x=0,这是一个齐次线性方程组,求解x的基础解系,即得到特征向量和其个数,从而判定A能否对角化。
③若A能够对角化,则一定有n个特征向量x1,x2,…,x n;它们组成一个新的矩阵P=(x1,x2,…,x n),由Λ=PAP-1求出Λ。
(Λ的各项实际上就是A的特征值λ1,λ2,…,λn)④若Λ=TAT-1,则按不同特征值对应的多个特征向量分组进行施密特正交化、单位化处理,再将各向量并列写作正交矩阵T。
六、二次型1、概念:二次型、正定矩阵2、重要性质:①把一般的二次型f(x1,x2,…,x n)= ∑x i x j(i,j=1,2,…,n)化为y1,y2,…,y n的纯平方项之代数和∑y2i的基本方法,从矩阵的角度而言,是对于一个实对称矩阵A,寻找一个可逆矩阵C,使得C T AC成为对角形。
②若对于任意的非零向量x=(x1,x2,…,x n)T,恒有x T Ax>0,则称x T Ax为正定二次型,A为正定矩阵。
当A是实对称矩阵时,x T Ax是正定二次型;且A的n个特征值全大于零。
正定矩阵A是满秩矩阵,且A-1也是正定矩阵。
③判定二次型的正定性;Ⅰ任何二次型都可以用配方法判定其正定性;Ⅱ可以用赋值法判定某二次型非正定;Ⅲn阶矩阵A的n个顺序主子式全大于零。
(顺序主子式:自左上角开始取方阵,取1*1、2*2、…、k*k方阵的行列式即为k阶顺序主子式。
n阶方阵中这样的主子式能取n个)④二次型正定的性质:Ⅰx T Ax>0(定义)ⅡA的主对角元a ii>0;|A|=0。
3、化二次型(∑x i x j)为标准形(∑y2i)的方法:①写出二次型对应的方阵A n*n,注意写成实对称矩阵的形式。
②求出矩阵的特征值和特征向量;将特征向量按组进行施密特正交化和单位化;将各向量并列形成正交矩阵Q;由Λ=QAQ-1求出Λ。
③做正交变换x=Qy,将二次型化成标准形。
※简捷方法:x T Ax=y T(Q T AQ)y=λ1y12+λ2y22+…+λn y n2,其中λ1,λ2,…,λn是实对称矩阵A的n个特征值,也是对角矩阵Λ的各项diag(λ1,λ2,…,λn)。
(这些特征值的先后顺序可以对换,但必须先后一一对应)附1:各种矩阵对比附二:矩阵行列式和零的关系|A|=0 的充分必要条件:<=> A不可逆(又称奇异)<=> A的列(行)向量组线性相关<=> r(A)<n<=> Ax=0有非零解<=> A有特征值0<=> A不能表示成初等矩阵的乘积|A|≠0的充分必要条件:<=> A可逆(非奇异矩阵)<=> 存在同阶方阵B满足AB = E (或BA=E)(可逆的性质)<=> r(A)=n(满秩)<=> r(A*)=n<=> |A*|≠0<=> A的列(行)向量组线性无关<=> A x=0仅有零解(齐次线性方程组)<=> A x=b有唯一解(非齐次线性方程组)<=> 任一n维向量都可由A的列向量组唯一线性表示(满秩)<=> A可表示成初等矩阵的乘积<=> A的特征值都不等于0<=> A T A是正定矩阵。