岩石力学论文
岩体力学优秀论文
![岩体力学优秀论文](https://img.taocdn.com/s3/m/6b72c27fa417866fb84a8e6f.png)
岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
国际上往往把岩体力学称为岩石力学。
它是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,属于应用型基础学科。
主要研究经过变形和破坏的岩体在地应力条件改变时产生再变形和再破坏的力学规律的学科。
是力学、地质学与工程学之间的一门边缘学科。
岩体力学研究的核心内容,是定量预测和评价岩体的稳定性,岩体的改造和加固措施。
它除了要研究岩体结构、岩体的基本特性、岩体所处的地质环境等因素以外,还要充分考虑工程因素,如工程规模、爆破、开挖程序和加固措施等的影响。
岩体力学研究可大致归纳为9个方面:岩体的结构型式岩体的地质特征,包括岩体的物质组成、岩体结构、岩体中的天然应力、岩体中水的状态以及岩体温度的研究;岩体的物理与水理性质,包括空隙性、渗透性、膨胀性、崩解性以及溶蚀性的研究;岩体的力学性质,包括岩体的变形和强度特性与测试方法,特别是不连续面力学效应和岩体结构力学效应的研究;岩体的动力特性与测试方法的研究;岩体的变形、破坏机制、本构关系与破坏判据的研究;岩体的稳定性,包括地基、边坡与地下工程围岩变形、失稳的预测、评价的理论和技术途径的研究;岩体性质改造和加固的研究;模型模拟试验,包括室内模型模拟试验和原位岩体工程模拟试验技术、理论与应用的研究;原型观测、施工监测、反分析,以及工程事故的分析与应用研究。
岩体力学的研究内容决定了在岩体力学研究中必须采用如下几种研究方法。
(1)工程地质研究法。
目的是研究岩块和岩体的地质与结构特征,为岩体力学的进一步研究提供地质模型和地质资料。
如用岩矿鉴定方法,了解岩体的岩石类型、矿物组成及结构构造特征;用地层学方法、构造地质学方法及工程勘察方法等,了解岩体的成因、空间分布及岩体中各种结构面的发育情况等;用水文地质学方法了解赋存于岩体中地下水的形成与运移规律,等等。
岩石力学论文
![岩石力学论文](https://img.taocdn.com/s3/m/298d8a3767ec102de2bd89d1.png)
对岩石力学的认识指导老师:路世豹摘要:人类改造地球的能力日新月异,各项工程蓬勃发展,这就需要我们对岩石工程有一定认识,岩石工程分析和设计的重点是对岩石工程条件的评价,岩石工程工程变形、破坏的预测以及相应工程措施的决策。
关键词:物理力学指标全应力-应变曲线脆性塑性1引言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
岩石属于固体,岩石力学应属于固体力学的范畴。
一般从宏观的意义上,把固体看做连续介质。
岩石工程的计算中存在大量不确定性因素,如岩石的结构、性质、节理、裂隙分布、工程地质条件等均存在大量不确定性,所以传统连续介质理论作为一种确定性研究方法是不适合用于解决岩石工程问题的2岩石的物理力学指标2.1岩石的工程性质自然界中有各种各样的岩石,不同成因的岩石具有不同的力学特性,因此有必要根据不同成因对岩石进行分类。
根据地质学的岩石成因分类可把岩石分为岩浆岩、沉积岩、和变质岩三大类。
2.1.1岩浆岩的性质岩浆岩具有较高的力学强度,可作为各种建筑物良好的地基及天然建筑石料。
但各类岩石的工程性质差异很大。
深成岩具结晶联结,晶粒粗大均匀,孔隙度小、裂隙较不发育,岩块大、整体稳定性好,但值得注意的是这类岩石往往由多种矿物结晶组成,抗风化能力较差,特别是含铁镁质较多的基性岩,则更易风化破碎,故应注意对其风化程度和深度的调查研究。
浅成岩中细晶质和隐晶质结构的岩石透水性小、抗风化性能较深成岩强,但斑状结构岩石的透水性和力学强度变化较大,特别是脉岩类,岩体小。
喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。
此外,喷出岩多呈岩流状产出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。
2.1.2 沉积岩的性质碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著。
此外,碎屑的成分、粒度、级配对工程性质也有一定的影响。
粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化和泥化。
岩石力学 论文
![岩石力学 论文](https://img.taocdn.com/s3/m/d49108d549649b6648d7471c.png)
岩石力学的研究现状和工程应用摘要:岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他广泛应用于设计采矿。
土木工程铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
关键词:岩石力学、现状、应用、On The Present State and engineering application of Rock mechanics inChinaAbstract:Modern rock mechanics is a rising and edge discipline, is a highly applied and practical application of basic science. Itis widely used in mining、civil engineering、railways、roads、geology、petroleum、underground engineering、marineengineering and many other related engineering fields. Keywords:rock mechanics、current situation、Applications、1、前言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他的应用范围设计采矿。
土木工程。
水里工程。
铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
中国的岩石力学与工程有着长时期的发展历史。
在当时,先辈们凭借丰富的实践经验设计施工,还没有建立岩土力学的概念。
近几十年,各项经济建设事业取得了极大的发展,同时,也遇到了许多与工程地质及岩土力学密切相关的技术难题。
交通、能源、水利水电与采矿工业各个经济领域的需要对岩石力学与工程学科在中国的发展起到了有力的促进作用。
岩石力学课程论文
![岩石力学课程论文](https://img.taocdn.com/s3/m/0c20ff20aef8941ea76e05fa.png)
岩石力学课程论文题目:地应力测量方法(这是一篇很优秀的课程论文)适合于岩石力学课程论文。
姓名:学号: 3131611151班级:土木135日期: 2016年6月27日地应力测量方法一绪论1选题的背景与意义岩体介质有许多区别于其他介质的重要特性,由于岩体的自重和历史上地壳构造运动引起并残留至今的构造应力等因素导致岩体具有初始地应力(或简称地应力)是其最有特色的性质之一。
其成因有两种解释:一是地壳运动或是岩石本身的重量发生变化,由此保留下来的构造应力;二是岩体发生了某些化学物理反应,或受到岩浆等多种因素作用,又称为绝对应力,即岩体初始应力。
随着我国建设事业的蓬勃发展,在道路、水电、采矿等行业中出现了很多深部岩体工程,如长大深埋隧道、深采矿巷道等,高地应力已经成为广大工程技术人员所关注的问题。
天然应力能影响人们的基础设施建设,比如开挖隧洞、兴修水利、修建铁路、山体爆破、采矿作业等。
就岩体工程而言,若不考虑岩体地应力这一因素,就难以进行合理正确的分析和提出符合实际的结论,也就无法做到经济合理耐久安全。
举个例子,地下空间的开挖必然使围岩应力场和变形场重新分布并引起围岩损伤,严重时导致失稳、坍塌和破坏,原因就是岩体中具有初始地应力,因为这种开挖荷载通常是地下工程问题中的重要荷载。
因此,在岩体工程建设中,为了合理利用岩体中地应力状态的有利方面、克服其不利方面,合理地确定地下洞室轴线、坝轴线及人工边坡走向,较准确地预测岩体中应力重分布应力和岩体的变形,使设计更合理,施工更科学,常常需要进行天然地应力实测工作。
由此可见,如何测定和评估岩体的地应力,是岩石力学与工程中不可回避的重要问题。
2岩体中的地应力2.1地应力的成因地应力的产生原因非常复杂,人们虽然对地应力做了长时间的深入研究,但仍未研究出地应力产生的真实原因。
但多年来的实测和理论分析表明,地应力的形成主要与地球的各种动力运动过程有关。
其中构造应力场和自重应力场为现今地应力场的重要组成部分。
高等岩体力学课程论文
![高等岩体力学课程论文](https://img.taocdn.com/s3/m/80363728b4daa58da0114a19.png)
一.引言地下洞室围岩稳定性的研究是岩体力学的重要应用课题之一。
由于该课题是一个较为复杂的非线性力学问题,通常伴随着变形非均匀性、非连续性和大位移等特点。
而且影响洞室稳定的因素很多,要建立一种能适应各种条件的理论,随时得到定量的解答,几乎是不可能的。
因而,使其到目前为止还缺乏比较成熟的理论和方法。
但是,近年来,随着岩体力学理论和测试技术的发展,电子计算机和有限元的推广与应用,以及广大的科研工作者的不懈努力,不断涌现出新的研究方法,在研究岩体的构造和力学特性、地下工程围岩失稳机理和支护结构的受力机理、探讨新的设计理论和方法等方面取得了许多成果【1】,为围岩稳定性评价方法提供更多的选择和改进。
为了正确的指导实践,有必要对目前地下洞室稳定分析方法进行总结,了解其优点和不足。
迄今对该问题的评判方法主要可以总结为以下几类:力学分析方法(弹性力学理论、塑性力学理论等)、围岩分类方法(RQD、R MR分类等) 、数值计算方法(限差分法、有限元法、离散元法等)、块体平衡理论法等。
为了使问题的解答更精确,现阶段比较合理方法是将问题分类解决。
每种特征不同的课题,突出主要矛盾,将问题适当简化,使之得到近似的解答。
在不能严格定量的情况下,至少得到定性或半定量的结果,特别是对工程设计能提出科学的指导原则。
二.影响洞室围岩稳定性因素影响洞室围岩稳定性因素比较多,这里着重阐述其中主要几中。
(1)岩石性质及岩体地质结构围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,粘土质岩石、破碎松散岩石以及吸水易膨胀的岩石对隧道围岩的稳定最为不利;脆性围岩,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。
岩体工程地质力学研究论文
![岩体工程地质力学研究论文](https://img.taocdn.com/s3/m/7b607c0642323968011ca300a6c30c225901f09f.png)
岩体工程地质力学研究论文随着经济和社会的发展,岩体工程地质力学越来越成为一个重要的学科,它关乎着各种工程的安全,这也使得关于岩体工程地质力学研究论文的不断增加。
在本文中,我们将介绍岩体工程地质力学研究论文的相关内容。
岩体工程地质力学在工程建设中有着极其重要的作用。
岩石是一种具有高强度和刚性的材料,因此经常用于各种工程项目中,例如道路、桥梁、水坝、隧道、地铁、煤矿和油田等。
在进行这些工程项目构建前,必须对岩体本身的力学性质进行深入的研究。
如果我们不充分了解岩石的工程力学性质,很容易导致建筑物的倒塌或不受损害的限制。
在岩体工程地质力学方面的研究主要包括岩体力学、岩体破坏的机理、岩体应力分布、基础工程以及边坡稳定性分析等多个研究方向。
其中,岩体破坏机理的研究旨在揭示岩石在受到外力后破裂的机理和规律,从而预测岩石的崩裂点,以便避免工程事故的发生。
岩体应力分布的研究可以为岩石力学的确知分析提供基础;基础工程则是指在工程中如何保证建筑物的稳定性,并且如何使其与地面保持连接,因此,基础工程的研究是极为重要的。
最后,边坡稳定性分析是指研究在施工过程中,应如何理解和判断岩石体的稳定性,从而避免山体滑坡等因重大事故造成的结果。
对于岩体工程地质力学研究论文的撰写,需要注意以下几点。
首先,选题应具有现实意义并可读、可行、具有实用价值。
其次,论文应该在研究方向领域中立足并具有独立发扬,要求对该领域进行深入探索和分析,并注重当前与未来的实际应用。
这样不仅可以提高研究领域的学术水平,而且可以为工程实践提供宝贵的科学依据。
此外,论文的撰写应具备清晰的逻辑结构和简介的语言,以方便理解和阅读。
最后,研究论文应注重创新与实用,兼具理论和实际应用,并注重科学模拟和数值仿真等实验手段及其结果的分析和应用。
在总结上述所述,岩体工程地质力学是岩石工程工程建设中不可缺少的一环。
对于该学科的调研和研究有助于更好地理解和把握岩石的力学特性,并在实际应用中降低工程风险和实现工程建设的更好效果。
岩土试验力学课程论文
![岩土试验力学课程论文](https://img.taocdn.com/s3/m/498b912402d8ce2f0066f5335a8102d276a26178.png)
岩土试验力学课程论文第一篇:岩土试验力学课程论文岩土试验力学课程论文题目:岩土试验力学发展现状和前景专业:岩土工程一、岩土力学试验1.岩土力学试验概况要很好的解决岩土工程问题、防灾、治灾,必须首先进行勘察与测试、试验与分析,并利用土力学、岩石力学、基础工程、工程地质学等的理论与方法,对各类工程进行系统研究。
因此,岩土力学试验是岩土工程规划设计、防灾的前期工程,也是地基与基础设计,治理地质灾害的不可缺少的重要环节。
2.岩土力学试验目的(1)了解岩石本身的物理和力学性质;(2)岩体质量分级、工程地质条件与问题评价;(3)边坡、地基和隧道围岩变形及稳定性分析,地质灾害防治工程方案论证等;(4)为岩土工程设计与施工提供参数和依据;(5)揭示岩土的变形规律和强度特征及破裂机理,建立其数学力学模型,进行岩土工程结构的力学分析。
3.岩土力学试验内容(1)岩石物理性质试验含水率、颗粒密度、块体密度;(2)岩石水理性质试验吸水性、渗透性、膨胀性、耐崩解性和冻融性。
(3)岩石力学性质试验单轴压缩强度和变形试验、三轴压缩强度和变形试验、抗拉强度试验、直剪强度试验和点荷载强度。
二、岩土试验力学概况岩土试验力学是土木工程岩土专业的一个分支,它是一门十分重要的技术基础课。
它主要包括学习岩土实验力学的基本理论,知道岩土的物理力学性质、强度变形计算、稳定性分析、挡土墙及基坑围护的设计与计算、地基承载力等岩土力学基本理论与方法。
结合有关交通土建、建筑工程、土木工程的理论和施工知识,分析和解决岩体工程及地基基础问题。
三、岩土试验力学的发展现状1.计算方面由于岩土材料比较特殊,那么在研究岩土试验力学方面就会比较复杂。
岩土体本身就是一个复杂的系统,具有不确定性,不规则性和不明确性。
目前,我国的岩土试验力学工作者倾向于采用理想数学模型和力学模型建立和描述岩土的各类特性,结果往往不是很理想,甚至出现很大的偏差。
那么,为解决这一现状,为突破创新,新的方法和技术是必不可少的。
岩石力学论文
![岩石力学论文](https://img.taocdn.com/s3/m/a81fb6194431b90d6c85c708.png)
(3) 突水事故趋于严重 自1984年6月2日开滦矿务局范各庄矿发生井下岩溶陷落柱特大突水灾害以来,先后在淮北杨庄矿、义马新安矿、峰峰梧桐矿、皖北任楼矿、徐州张集矿又相继发生特大型奥灰岩岩溶突水淹井事故,初步估计,经济损失超过27亿元,同时产生了若干地质环境负效应。
(1) 岩爆频率和强度均明显增加 有关统计资料表明,岩爆多发生在强度高、厚度大的坚硬岩(煤)层中,主要影响因素包括煤层顶底板条件、原岩应力、埋深、煤层物理力学特性、厚度及倾角等。目前的统计资料显示,尽管在极浅的硬煤层中(深度小于100 m,有即随着开采深度的增加,岩爆的发生次数、强度和规模也会随之上升。
(5) 地温升高、作业环境恶化 深部开采条件下,岩层温度将达到摄氏几十度的高温,如俄罗斯千米平均地温为30 ℃~40 ℃,个别达52 ℃,南非某金矿3 000 m时地温达70 ℃。地温升高造成井下工人注意力分散、劳动率减低,甚至无法工作。
参考文献:
[1]何满潮,钱七虎.深部岩体力学基础.北京:科学出版社,2010年
岩石力学读书报告
学 院:土木工程学院
专业班级:道桥10-03班
姓 名:方昆
学 号:************
岩石力学研究新进展
————深部岩体力学问题
方昆
道桥2010-3班
摘要:随着浅部资源的逐渐减少和枯竭,地下开采的深度越来越大,目前我国已有大批矿井进入千米以下开采深度。开采深度增加,地质环境趋于复杂,高地应力、高地温、高瓦斯、高水压等引起的突发性工程灾害和重大恶性事故增加、作业环境恶化和生产成本急剧增加等一系列问题,对深部资源开采提出了严峻挑战。地下空间开发不断走向深部——逾千米至数千米的矿山,水电工程埋深逾千米的引水隧道,核废料的深层处置,深层地下防护工程等。伴随着深部岩体工程发生了一系列新的岩体力学问题,这与浅部岩体工程相比具有较大的差异,而用传统的连续介质力学理论无法圆满解决,引起来全世界岩石力学工程领域专家学者的极大关注,成为了当前研究的热点。
岩石力学课程论文
![岩石力学课程论文](https://img.taocdn.com/s3/m/0f2b5c5ade80d4d8d15a4fd1.png)
百度文库- 让每个人平等地提升自我************《岩石力学》课程论文专业 *******年级班别 ******学号 *******姓名 ******土木工程与建设管岩体的强度在检测中的应用摘要:随着地球板块的运动越来越剧烈,地震等多种地质灾害的发生,人们 清晰地认识到岩体强度的重要性。
故此,岩体强度的确定方法尤其重要。
本 文介绍试验确定法以及及估算法。
关键字:试验确定法;估算法;岩体强度引言目前在岩石力学与工程领域中广泛采用了数值模拟技术,但是在进行数值模拟时遇到的最主要的困难之一就是如何准确地确定岩体强度参数以开展模拟计算。
公认比较准确的仅限于室内岩石力学试验参数,同时现场岩体原位试验成本都十分昂贵,因此寻找适合的岩体强度估算方法就成为摆在众多研究人员面前的一个问题。
1 岩体强度的确定方法1.试验的确定法(一)岩体单轴抗压强度的测定切割成的试件。
在拟加压的试件表面抹一层水泥砂浆,将表面抹平,并在其上放置方木和工字钢组成的垫层,以便把千斤顶施加的荷载经垫层均匀传给试体。
根据试体受载截面积,计算岩体的单轴抗压强度。
(二)岩体的抗剪强度的测定一般采用双千斤顶法:一个垂直千斤顶施加的正压力,另一个千斤顶施加的横推力。
为使剪切面上不产生力矩效应,合力通过剪切面中心,使其接近于纯剪切破坏,另外一个千斤顶成倾斜布置。
一般采取倾角a=15°。
试验时,每组试体应有5个以上,剪切面上应力按式(1-1)计算。
然后根据τ、σ绘制岩体的强度曲线。
F a T P sin +=σ a ft cos =τ (1-1)(三)岩体三轴压缩强度试验地下工程的受力状态是思维的,所以做三轴力学试验非常重要。
但由于现场原位三轴力学实验在技术上很复杂,只在非常必要时才进行。
现场岩体三轴试验装置,用千斤顶施加轴向荷载,用压力枕施加围压荷载。
根据围压情况可分为等围压三轴试验(32σσ=)和真三轴试验(321σσσ>>)。
岩石工程关键理论与技术论文(锦集15篇)
![岩石工程关键理论与技术论文(锦集15篇)](https://img.taocdn.com/s3/m/7339549cf424ccbff121dd36a32d7375a417c60a.png)
岩石工程关键理论与技术论文(锦集15篇)篇1:岩石工程关键理论与技术论文岩石工程关键理论与技术论文为纪念中国岩石力学与工程学科的奠基人陈宗基院士,《岩石力学与工程学报》自年设立“陈宗基讲座”,每年邀请一位著名专家全面介绍各自领域的研究成果。
至今已举办 6 次,讲座内容主要以当前岩石工程的关键理论为主线,其主要研究成果。
值得指出的是,年以何满潮和钱七虎为首席主持了“深部岩体力学基础研究与应用”第一个涉及岩石工程的国家自然科学基金委重大项目,围绕“深部构造及地应力场分布特征与变异规律”、“深部岩体力学特性与时效特征”、“深部开采围岩变形破坏机制”、“深部多相多场耦合作用机制”、“深部采场瓦斯渗流及相关的非线性动力学机制”等五大科学问题开展了系统、深入的研究工作。
主要创新性成果包括:(1)系统研究了矿山开采的深部岩体力学问题,初步形成了以深部地质构造精细探测理论与方法、深部岩体力学特性和工程响应特征、深部采动覆岩移动规律及巷道稳定性控制理论、深部多相多场耦合作用及其灾害发生机制、深部工程围岩分破裂化理论为主体的深部岩体力学理论框架;(2)探索了深部开采工程稳定性及灾害防治技术,包括深部煤岩精细构造探测技术、深部地应力测试技术、深部采场覆岩隔水关键层防水技术、深部开采围岩控制技术、深部采空区探测与灾害防治技术、深部煤和瓦斯突出预测技术等;(3)研发了适用于深部矿山开采的原创性试验平台及软件系统,包括硬岩岩爆过程试验系统、破碎岩体渗透性及软岩水理作用测试系统、巷道工程破坏过程及新型真三轴巷道模型试验系统、动静组合加载与卸载试验系统、煤与瓦斯突出测试仪器、岩体区域化交替破裂模型试验装置及深部软岩工程大变形力学分析设计软件等。
1孙钧/岩石流变力学及其工程应用研究的若干进展/上海。
流变模型辨识及其参数确定;岩石弹C非线性黏塑性流变模型及其蠕变状态方程;考虑岩体非线性流变效应的隧洞围岩C支护系统有限元法分析。
软岩和节理裂隙发育岩体的流变试验研究、流变模型辨识与参数估计、流变力学手段在收敛约束法及隧道结构设计优化中的应用、高地应力隧洞围岩非线性流变及其对洞室衬护的力学效应,以及岩石流变损伤与断裂研究。
岩石力学论文
![岩石力学论文](https://img.taocdn.com/s3/m/5e729822647d27284a735101.png)
岩石力学之浅谈边坡通过10周的岩石力学课程学习,对岩石力学及岩土工程有了初略的了解。
首先,岩石力学是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。
又称岩体力学,是力学的一个分支。
研究目的在于解决水利、土木工程等建设中的岩石工程问题。
它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。
岩石和岩体是岩石力学的直接研究对象。
要学习和研究岩石力学,首先要建立岩石(或岩块)和岩体的基本概念。
岩石是组成地壳的基本物质,它是由矿物或岩屑在地质作用下按一定规律凝聚而成的自然地质体。
例如,我们通常所见到的花岗岩、石灰岩、片麻岩,都是具有一定成因、一定矿物成分及结构构造的岩石。
岩体是地质历史的产物,在长期的成岩及变形过程中形成了他们特有的结构。
人类生活在地球上,很多活动都离不开利用岩石进行工程建设。
随着我国经济建设的蓬勃发展,出现了大量岩石工程的建设与开发,从而岩石力学在建筑、矿山、水工、铁路和国防等领域得到日益广泛的应用和深入研究。
例如,在很多工程建设中,会遇到岩石边坡。
如公路或铁路的路堑边坡,露天开采的矿山边坡,水利水电工程的库岸边坡,渠道边坡,隧道进出口边坡等。
边坡稳定性问题是工程中常见的问题之一。
众所周知,岩体常被各种方位的地质结构面切割成不同形状的块体。
因此,工程实践中所遇到的岩坡,多为岩块组成。
在一般情况下,结构面的强度远远低于完整岩体的强度,岩坡中结构面的规模、性质以及组合方式在很大程度上决定着岩坡失稳时的破坏形式。
结构面的性质或形状稍有改变,则边坡的稳定性将会受到显著的影响。
我国位于世界两大地震带:环太平洋地震带与欧亚地震带之间,地震断裂带十分发育,是一个地震灾害严重的国家。
同时,我国地形地貌复杂的地区,面积大,分布广,高山河谷数量众多,山地面积占国土面积1/4,从而客观上决定了我国有大量的自然边坡。
【论文】岩石力学结课论文
![【论文】岩石力学结课论文](https://img.taocdn.com/s3/m/26a6c64d284ac850ac02424b.png)
【关键字】论文岩体分级及其在工程上的应用摘要:工程岩体分类在工程建设中起着重要的作用。
近年来,国内外专家通常采用各种方法来评价岩体的工程性质,并根据其工程类型和使用目的对工程岩体进行分类。
本文主要介绍RQD分类方法,Q系统分类方法,RMR分类方法和中国国家标准《工程岩体分级标准》四种分类方法,并分析其在工程中的应用。
关键词:工程岩体;岩体分类;应用Abstract: Engineering rock mass classification plays an important role in engineering construction. In recent years, domestic and foreign experts usually employ a variety of methods to evaluate the engineering properties of rock, and according to their type and purpose of the project engineering rock mass classification. This paper describes the RQD classification, Q system classification, RMR classification and Chinese national standard "of engineering rock classification standard" four classification methods, and analyzes its application in engineering.Keywords: engineering rock; rock mass classification; application1、引言岩体是指在地质历史过程中形成的,由岩石单元体和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环境中的地质体。
岩石力学课程论文
![岩石力学课程论文](https://img.taocdn.com/s3/m/22dd9582bceb19e8b8f6ba15.png)
岩石力学课程论文——节理对岩体力学性质的影响指导老师:王乐华三峡大学土木水电学院摘要:人类改造地球的能力日新月异,各项工程蓬勃发展,在水利水电、民用建筑等工程中,地基岩体的强度是我们关注的重点。
我们知道,影响岩体强度的主要因素有节理和裂隙,节理面和裂隙处是岩体薄弱的地方。
岩体的节理在工程上除了有利于开挖外,对岩体强度及稳定性均有不理的影响。
通过对节理更全面的描述以及深入的受力分析,充分了解节理对岩体力学性质的影响,对我们施工一定的意义和启发。
关键词:节理岩体岩体强度1节理的定义及分类构成地壳的岩体受力的作用后发生变形,当变形达到一定程度时,岩体的连续性与完整性遭到破坏,产生各种大小不一的破裂,如果沿破裂面没有发生显著的位移,这个破裂面就称为节理;如果发生过显著的位移,就叫做断层。
节理是很常见的一种构造地质现象,就是我们在岩石露头上所见的裂缝,或称岩石的裂缝。
在岩石露头上,到处都能见到节理。
节理以平面居多,多相互平行,形成节理组,可把岩石分割成具有一定几何形状的块状裂隙系统。
古老节理常有造岩矿物填充。
1.1按节理的成因,节理包括原生节理和次生节理两大类。
原生节理是指成岩过程中形成的节理。
例如沉积岩中的泥裂,火花熔岩冷凝收缩形成的柱状节理,岩浆入侵过程中由于流动作用及冷凝收缩产生的各种原生节理等。
次生节理是指岩石成岩后形成的节理,包括非构造节理(风化节理)和构造节理。
其中构造节理是所有节理中最常见的,它是在地质构造运动作用下于岩石中所形成的节理,常成组出现,与当地的褶皱、断层构造有关;在空间分布上具有一定的规律性。
非构造节理是岩石在非地质动力(如风化、山崩、地陷、河谷解压、冰川活动、人工爆破等)作用下所形成的,多发育在靠近地表或浅部的岩石中。
岩石在成岩过程中因冷凝或干缩所形成的原生节理也属于非构造节理。
1.2按节理与岩层的产状要素的关系,可分为四种节理:走向节理:节理的走向与岩层的走向一致或大体一致。
史晓杰岩石力学结课论文
![史晓杰岩石力学结课论文](https://img.taocdn.com/s3/m/7677c8755acfa1c7aa00cc41.png)
分类号编号华北水利水电学院North China Institute of Water Conservancy and Hydroelectric Power结课论文科目岩石力学专业地质工程姓名史晓杰学号201210215102指导教师王安明成绩2013年3月20日在理论力学、材料力学、结构力学、弹性力学的基础铺垫之后,我们开始接触到了更多的实践性科目,岩石力学作为工程力学专业的专业选修课之一,向我们介绍了继土力学之后更加深入的岩土分析方法和技巧。
我们首先学习了岩石的物理性质,知道了岩石是构成地壳的基本材料,是经过地质作用而天然形成的(一种或多种)矿物集合体。
岩石通常按地质成因分为岩浆岩、沉积岩和变质岩等三种类型。
岩浆岩是岩浆冷凝而形成的岩石,绝大多数岩浆岩是由结晶矿物所组成,由于组成它的各种矿物化学成分和物理性质较为稳定,它们之间的联结是牢固的,因此岩浆岩通常具有较高的力学强度和均质性。
工程中常遇到的岩浆岩有花岗岩、玄武岩等。
沉积岩是母岩(岩浆岩、变质岩和早已形成的沉积岩)经风化剥蚀而产生的物质在地表经搬运沉积和硬结成岩作用而形成的岩石组成。
沉积岩的主要物质成分为颗粒和胶结构。
颗粒包括各种不同形状及大小的岩屑及某些矿物;胶结物常见的成分有钙质、硅质、铁质以及泥质等。
沉积岩的物理力学性质不仅与矿物和岩屑有关,而且也与胶结物性质有关。
沉积岩具有层理构造,这使得它的物理力学性质具有方向性。
工程建设中常见的沉积岩有灰岩、砂岩、页岩等。
变质岩是由岩浆岩、沉积岩甚至变质岩在地壳中受到高温、高压及化学活动性流体的影响下发生变质而形成的岩石。
它在矿物成份、结构构造上具有变质过程中产生的特征,也常常残留有原岩的某些特点。
因此,变质岩的物理力学性质不仅与原岩的性质有关,而且与变质作用的性质及变质程度有关。
工程建设中常见的变质岩类有大理岩、片麻岩、板岩等。
岩石是自然历史的产物,由于它们的生成条件及在生成以后的漫长地质历史时期中,形成了许多各式各样的结构面,例如岩浆侵入岩与围岩接触面,不同侵入岩体彼此的接触面、冷凝裂隙,喷出岩和沉积岩的层理、不整合面,变质岩的片理、片麻理,组成各种岩石的矿物晶体的各种优势定向排列面以及由于地质构造运动、风化、重力和卸荷等各种不同动力的作用而产生的断层、节理、裂隙等。
【完整版毕业论文】岩石的基本物理力学性质及其试验方法
![【完整版毕业论文】岩石的基本物理力学性质及其试验方法](https://img.taocdn.com/s3/m/1ebf835a77232f60ddcca1e4.png)
第一讲岩石的基本物理力学性质及其试验方法(之一)一、内容提要:本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。
二、重点、难点:岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。
一、概述岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。
所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。
由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。
岩体是指在一定工程范围内的自然地质体。
通常认为岩体是由岩石和结构面组成。
所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。
这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。
从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。
因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。
【例题1】岩石按其成因可分为( )三大类。
A. 火成岩、沉积岩、变质岩B. 花岗岩、砂页岩、片麻岩C. 火成岩、深成岩、浅成岩D. 坚硬岩、硬岩、软岩答案:A【例题2】片麻岩属于( )。
A. 火成岩B. 沉积岩C. 变质岩答案:C【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。
A. 岩石的种类B. 岩石的矿物组成C. 结构面的力学特性D. 岩石的体积大小答案:C二、岩石的基本物理力学性质及其试验方法(一)岩石的质量指标与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。
1 岩石的颗粒密度(原称为比重)岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。
岩石颗粒密度通常采用比重瓶法来求得。
其试验方法见相关的国家标准。
岩石颗粒密度可按下式计算2 岩石的块体密度岩石的块体密度是指单位体积岩块的质量。
按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。
岩体力学论文
![岩体力学论文](https://img.taocdn.com/s3/m/b5f6f2c90c22590103029d05.png)
岩体力学在深井开采摘要:深部开采工程中产生的岩石力学问题是目前国内外采矿及岩石力学界研究的焦点,国内外学者通过理论研究、室内及现场实验研究取得了大量的成果。
本文结合笔者的研究工作,总结分析了深部开采与浅部开采岩体工程力学特性的主要区别,主要表现在“三高一扰动”的恶劣环境、五个力学特性转化特点、四个方面的矿井转型、六大灾害表现形式。
针对深部工程所处的特殊地质力学环境,通过对深部工程岩体非线性力学特点的深入研究,指出进入深部的工程岩体所属的力学系统不再是浅部工程围岩所属的线性力学系统,而是非线性力学系统,传统理论、方法与技术已经部分或相当大部分失效,深入进行深部工程岩体的基础理论研究已势在必行。
关键词岩石力学深部开采三高一扰动工程特性灾害控制一 .国内外研究现状深部开采工程岩石力学主要是指在进行深部资源开采过程中而引发的与巷道工程及采场工程有关的岩石力学问题。
而目前深部资源开采过程中所产生的岩石力学问题已成为国内外研究的焦点[1, 2, 4, 10~17]。
早在20世纪80年代初,国外已经开始注意对深井问题的研究。
1983年,原苏联的权威学者就提出对超过1600m的深(煤)矿井开采进行专题研究。
当时的西德还建立了特大型模拟试验台,专门对1600m深矿井的三维矿压问题进行了模拟试验研究。
1989年岩石力学学会曾在法国召开“深部岩石力学”问题国际会议,并出版了相关的专著。
近二十年来,国内外学者在岩爆预测、软岩大变形机制、隧道涌水量预测及岩爆防治措施(改善围岩的物理力学性质、应力解除、及时进行锚喷支护施工、合理的施工方法等)、软岩防治措施(加强稳定掌子面、加强基脚及防止断面挤入、防止开裂的锚、喷、支,分断面开挖等)等各方面进行了深入的研究,取得了很大的成绩。
一些有深井开采矿山的国家,如美国、加拿大、澳大利亚、南非,波兰等,政府、工业部门和研究机构密切配合,集中人力和财力紧密结合深部开采相关理论和技术开展基础问题的研究。
岩石力学课程论文+总结
![岩石力学课程论文+总结](https://img.taocdn.com/s3/m/f8b13ac3aa00b52acfc7ca86.png)
岩石力学课程论文——主要前沿方向和实验方法分析学院:班级:学号:姓名:通过6周的岩石力学课程的学习,对岩石力学以及岩土工程的相关方面有了粗略的了解。
首先,岩石力学是研究岩石的力学性态的理论和应用的科学,是探讨岩石对其周围物理环境中力场反应的学科,是一门应用型基础学科。
通过对岩石力学性态的理论和实验研究,解决岩土工程领域的破坏和稳定问题。
主要的研究方法围绕工程地质研究方法、数学和力学分析法以及综合评价法展开,衍生出各种应用手段和实验方法,较好的解决了岩土工程中所遇到的相关问题。
例如,在很多工程建设中,会遇到岩石边坡。
如公路或铁路的路堑边坡,露天开采的矿山边坡,水利水电工程中的库岸边坡,渠道边坡,隧洞进出口边坡等等。
为某些工程边坡,边坡稳定问题是工程建设中经常遇到的问题之一。
众所周知,岩体常被各种方位的地质结构面切割成不同形状的块体。
因此,工程实践中所遇到的岩坡,多为岩块所组成。
在一般情况下,结构面的强度远低于完整岩体的强度,岩坡中结构面的规模、性质及其组合方式在很大程度上决定着岩坡失稳时的破坏形式。
结构面的形状或性质稍有改变,则岩坡的稳定性将会受到显著的影响。
岩坡的失稳情况,按其破坏方式主要可分为崩塌与滑坡两种。
1、崩塌是指块状岩体与岩坡分离向前翻滚而下,其特点是:在崩塌过程中,岩体中无明显滑移面,同时下落岩块或未经阻挡而直接坠落于坡脚;或于斜坡上滚翻,滑移,碰撞,最后堆积于坡脚。
2、滑坡滑坡是指岩体在重力作用下,沿坡内软弱结构面产生整体滑动,其滑动面往往深入坡体内部,有时甚至延伸到坡脚以下。
边坡实际的破坏形式是很复杂的,除上述两种主要破坏形式外,还有介于崩塌与滑坡之间的坍滑以及倾倒、剥落等破坏形式,有时也可能出现以某种破坏方式为主,有其他若干破坏形式的综合破坏。
特别是含有软弱结构面的高边坡工程,其失稳是一个渐进累积到突发破坏的过程。
对岩石流变力学特性和流变模型的研究能够较好地描述岩石的粘弹塑性性质,修正从流变试验数据进行模型辩识和参数拟合的方法,并对高边坡的稳定性状况作出合理的评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水工隧洞围岩稳定性浅析摘要:水工隧洞周围的围岩受到开挖影响,引起洞室周围一定范围内的岩体应力重新分布,从而使岩体产生变形、位移,甚至破坏。
因此,对水工洞室围岩的稳定性进行分析是十分必要的。
关键字:岩体结构;引水隧洞;围岩应力;围岩变形、围岩稳定在水利、水电建设中经常遇到一些洞室工程问题,其中最常遇到的作为引水建筑物之一的是水工隧洞。
水工隧洞是指水利工程中穿越山岩建成的封闭式过水通道,按过水时洞身流态区别,水工隧洞可分为无压隧洞及有压隧洞两大类。
无压隧洞初砌所承受的荷载主要是山岩压力、外水压力。
有压隧洞除了承受这些压力之外,特别重要的是承受内水压力。
当围岩受到这种压力之后必然要引起一些力学现象和变形,以及一些稳定性的问题。
洞室周围的岩土体通称围岩。
狭义上,围岩常指洞室周围受到开挖影响,大体相当地下洞室宽度或平均直径3倍左右范围内的岩土体。
由于初始地应力的存在,洞室开挖势必打破原来岩(土)体的自然平衡状态,引起洞室周围一定范围内的岩体应力重新分布,有的围岩的强度能够适应变化后的应力状态,可不采取任何人力措施,便能保持洞室稳定;但有时因围岩强度低,或其中应力状态的变化大,以致围岩不能适应变化后的应使岩体产生变形、位移,甚至破坏,若不加固或加固而未保证质量,都会引起破坏事故,对施工、运营造成危害。
工程中将洞室开挖后周围发生应力重新分布的岩体称为围岩。
因此,围岩的变形和稳定性是地下洞室能否在服务年限内正常使用的关键。
一、围岩的应力未开挖的天然地下岩体在自重及地质构造运动后形成的初始应力场状态下维持相对稳定。
当在岩体内开挖洞室后,洞室四周一定范围的围岩相对稳定性的应力场受到破坏,发生应力重分布。
随具体围岩部位、产状等状况的不同,应力重分布的结果既可能仍归于稳定,也可能出现洞顶崩塌等失稳现象。
对此,水工地下洞室设计时必须作出分析,并相应对工程措施作出抉择。
导致围岩变形的根本原因是地应力的存在。
洞室开挖前,岩体处于自然平衡状态,内部储存着大量的弹性能,洞室开挖后,这种自然平衡状态被打破,弹性能释放。
洞室在开挖前,岩体一般处于天然应力平衡状态,称一次应力状态或初始应力状态(包括自重应力和构造应力),是一个三向应力不等的空间应力场。
由于影响天然应力的因素十分复杂,竖向应力与水平应力间的比例系数即使在同一地质环境里也有较大变化。
实测结果,有些地区铅直应力大于水平应力;有的则水平应力大于铅直应力;也有的两者相近,特别是在地壳的相当深处,天然应力比值系数接近于1。
洞室开挖后,便破坏了这种天然应力的平衡状态。
洞室周边围岩失去原有支撑,就要向洞室空间松胀,结果又改变了围岩的相对平衡关系,形成新的应力状态。
作用于洞室围岩上的外荷,一般不是建筑物的重量,而是岩土体所具有的天然应力。
这种由于洞室的开挖,围岩中应力、应变调整而引起原有天然应力大小、方向和性质改变的过程和现象,称为围岩应力重分布。
它直接影响围岩的稳定性。
洞室内若有高压水流作用,对围岩便产生一种附加应力。
它叠加到开挖、衬砌后围岩中的应力上,也是影响围岩稳定性的一种因素。
二、围岩的变形重新分布的围岩应力在未达到或超过其强度以前,围岩以弹性变形为主。
由于围岩应力重新分布,各点的应力状态发生变化,导致围岩产生新的弹性变形。
这种弹性变形是不均匀的,从而导致洞室周边位移的不均匀性。
一般认为,弹性变形速度快、量值小,是随着开挖过程几乎同时完成的。
当应力超过围岩强度时,围岩出现塑性区域,甚至发生破坏,此时围岩变形将以塑性变形为主。
塑性变形延续时间长、变形量大,是围岩变形的主要组成部分。
如果围岩节理、裂隙十分明显或者围岩破坏严重时,节理、裂晾间的相互错位、滑动及裂隙张开或压缩变形将会占据主导地位,而岩块本身的变形成分退居次要地位。
按照岩体结构力学的原理,由于岩体中大小结构面的存在,围岩的变形都会或多或少地存在结构面的变形。
由于岩石的流变效应十分明显,围岩长期处于一种动态变化的高应力作用之中,流变也是围岩变形不可忽略的组成部分。
固体介质在长期静载荷作用下,应力、应变随时间延长而变化的性质,称为流变性。
蠕变和松弛则是流变性的两种宏观表现。
蠕变是在一定温度和应力作用下的固体介质随时间而产生的缓慢、连续的变形;松弛是在一定温度和变形条件下的固体介质随时间而产生缓慢、连续的应力减小。
工程实践证明,岩石具有流变性,某些岩石或受高温高压的岩石,蠕变现象更是多见。
岩体同样也会发生蠕变。
花岗岩一类岩石在低温、低应力下,蠕变量微小,可忽略不计;而粘土岩、泥质页岩和具有充填粘土和泥化结构面的岩体,蠕变量通常很大,必须重视,以便对岩体变形和稳定性作出正确论证。
试验表明,岩体蠕变可以划为三个阶段。
第一阶段称为减速(初始)蠕变阶段。
第二阶段为围岩应力调整期的变形阶段,称为等速蠕变阶段,其变形缓慢平稳,变形速度保持常量。
第三阶段称为加速蠕变阶段,它出现在应力值等于或超过岩体的蠕变极限应力条件下,其变形速度逐渐加快,最终导致岩体破坏。
岩体的三个蠕变阶段,并不是在任何应力值下都可全部出现。
应力值较小,岩体仅出现第一阶段或第一与第二阶段;应力值等于或超过岩体蠕变极限应力,岩体才可能蠕变至破坏。
通常把蠕变破坏的最低应力值,称为长期强度。
研究软弱岩体和岩体沿某些结构面滑动的稳定性问题,应特别注意其长期强度和蠕变特性。
根据原位剪切流变试验资料,软弱岩体和泥化夹层的长期抗剪强度与短期抗剪强度的比值约为0.8左右,大体相当于快剪试验的屈服极限与强度极限的比值。
根据变形与时间和变形与荷载的关系曲线,可以区分岩体的稳定变形和非稳定变形,把将会导致岩体全面破坏的变形与那种虽然延续但不会引起岩体全面破坏的变形区别开来。
恒定荷载作用下,若变形与时间的变化率减小,或者为一很小的常数,则变形稳定。
若变形与时间的变化率增大,则变形不稳定,并将导致岩体发生全面破坏。
荷载不断增加的条件下,若变形与载荷的比率减小,或者为某一个常数,则变形稳定。
若变形与荷载的变化率增加,则变形不稳定,并将导致岩体发生全面破坏。
三、地层与岩性的影响地层与岩性条件的好坏对洞室的稳定性也有直接影响。
对于坚硬岩石,如火成岩中的花岗岩、闪长岩、辉长岩、辉绿岩、灰岩、安山岩、玄武岩、流纹岩;变质岩中的片麻岩、石英岩、硅质大理岩等,这些岩石一般都是比较好的。
但对某些软弱的火成岩及变质岩,如凝灰岩、片岩、千枚岩、泥质板岩等,洞室施工容易造成塌方、变形。
沉积岩总的来说不如火成岩和变质岩,但其中坚硬的石灰岩、胶结良好的砂岩、砾岩等,一般也是比较好的。
值得注意的是软弱沉积岩,如泥质、炭质页岩,泥灰岩,粘土岩,斑脱岩,石膏,盐岩,煤层以及胶结不良的砂砾岩等,这些岩石强度低,易风化或膨胀变形,对洞室稳定性极为不利。
四、围岩应力的弹塑性理论分析试验研究表明,岩体的应力应变关系有明显的非线性,宜用弹塑性理论进行分析。
此理论假设岩体为均匀、连续、各向同性的弹塑性体,当大小主应力差值()小于极限值时岩体为弹性体,当()大于极限值时岩体按塑性体考虑。
极限值由围岩开始发生塑性破坏的应力圆包络线所确定,他满足岩石的塑性判别准则公式。
(一)围岩应力分布当岩体被开挖出圆形洞室后,洞周产生应力集中,如果围岩仍处于弹性状态,且,则由前文可知,周界切向应力的极限值。
如果超过弹性极限,洞室附近将出现塑性变形,形成塑性区而出现应力重分布。
这时洞的周界上,,的具体大小由岩体应力圆包络线图决定。
此后,塑性区不断向围岩深部发展,直到()等于所允许的最大极限值时塑性区停止发展,塑性区外仍保持弹性状态。
塑性区外缘应力与弹性区边缘应力相容。
根据上述分析,可列出塑性区平衡微分方程,按照塑性判别准则以及弹性区与塑性区相交边界上应力相等条件,解得塑性区范围的半径为:塑性区内任一半径为的点的应力计算公式为(二)围岩稳定性判别出现塑性变形区并不意味着围岩一定失稳,因为变形过程中,岩块有可能重新组合称支承拱,以承担荷载。
故在得知塑性区范围及其中应力分布情况后,还应对围岩稳定性进行判断。
假设围岩出现塑性区后沿半径为的塑性区弧线与弹性区分离,并在洞顶形成承载拱环。
根据承载拱环中微元体在自重及、作用下平衡的微分方程,可求得环内径向正应力公式为:由式可见,当时,因为原本假定塑性区与弹性区是分离的。
为判别洞顶稳定性,则可以代入考查,如则洞顶处于极限平衡状态;如,则洞顶稳定;如则洞顶不稳定,必须衬砌。
这里所论述围岩稳定性判别法只能用于的圆洞情况如或非圆洞,只得先按弹性理论分析围岩应力,再把所求得得应力超过弹性极限部分当作塑性区考虑。
五、判别围岩稳定性的经验法关于地下洞室围岩稳定性的判别虽然有前述各种理论方法,但由于地质条件的复杂性,实际上各方法的准确应用仍很困难,工程上为此还经常依赖经验判别。
下面介绍国内外两种经验判别法。
(一)围岩分类法根据国内外经验,按照围岩工程地质特征和地下水状态所决定的围岩稳定程度,我国将水工地下洞室的围岩分为以下五类。
(1)Ⅰ类为稳定围岩,包括呈整体结构或大块状结构的坚硬岩体以及层间结合良好,且层面与洞轴线正交的厚层层状岩体,岩性新鲜或微风化;地质构造影响轻微,节理裂隙不发育,其间距大于1m;没有或仅遇有软弱结构面,宽度小于0.1m;洞壁干燥或潮湿或仅有微弱渗水。
这种洞室围岩无塌落块,能长期稳定,但埋深特大时可能有岩爆。
(2)Ⅱ类为基本稳定围岩,又分为两小类。
Ⅱ1类为块状结构的新鲜或微风化的坚硬岩体;受地质构造影响一般,节理裂隙较发育,其间距为0.5~1m;有少量宽度小于0.5m的小型断层软弱带;地下水活动微弱,沿裂隙渗水、滴水。
Ⅱ2类为层面与洞轴夹角大于70°的中厚层状的硬岩层;受地质构造影响轻微,裂隙不发育,间距大于1m;地下水状态同Ⅱ1类。
这类洞室围岩有超挖掉块现象或个别小型塌落,仍可在较长时间维持稳定。
(3)Ⅲ类为稳定性差的围岩,又再分为三小类。
Ⅲ1类为具有碎裂结构或镶嵌结构的微风化或弱风化的坚硬岩体;受地质构造影响严重,节理裂隙发育,间距0.2~0.5m,多张开并夹泥;结构面平直光滑并有泥充填,还有方形、梯形、尖拱形等不稳定组合;地下水活动显著,有大量滴水、线状流水或喷水,对软弱岩体稳定性影响严重。
Ⅲ2类为块状结构或层状结构的微风化或弱风化的中硬岩;结构面及其组合状态同Ⅲ1类,层面及结构面与洞轴夹角一般大于70°;受地质构造影响一般,裂隙较发育间距0.5~1m,多微张或局部张开并有夹泥;地下水状态与Ⅲ1类同。
Ⅲ3类为微风化的层状结构软岩;受地质构造影响轻微,裂隙不发育;地下水状态与Ⅲ1类同。
Ⅲ1、Ⅲ2类围岩稳定受软弱结构面组合控制,表现为洞顶局部塌落,但一般仍具有自稳能力,短时间内可维持稳定;但Ⅲ3类软岩具有流变特征,对裂隙稍发育段自稳能力差。