带电粒子在匀强磁场中偏转(直线和平行边界)汇总
带电粒子在有界匀强磁场中的运动归类解析
带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
带电粒子在匀强磁场中偏转(直线和平行边界)
V
V
②平行边界
×××××× ××××××
×××××× ××××××
+
②平行边界
×××××× ×××××× ×××××× ××××××
+
②平行边界
×××××× ×××××× ×××××× ××××××
+
②平行边界
存在临界条件
带电粒子垂直射入有界匀强磁场 ①直线边界
进出磁场具有对称性
射入射出速度相同 圆心角等于=偏向角 一个中心,两个基本点 ②平行边界
Ɵ Ɵ
+
各带电粒子的圆轨迹有一个公共切点 各圆的圆心分布在同一条直线上 各带电粒子做匀速圆周运动的周期相等 速率大,半径大;但射出速度相同,偏转角度相同
①直线边界
3)沿某一方向射入速率为V的带电粒子,则粒子在 匀强磁场中运动的周期为多少?
2
V BqV m R ×××××× ×××××× × × × × × × × × × × × × R mV qB ×××××× ××××××
+
2R 2m T V qB
(2 2 ) 2m t T (1 ) 2 qB
①直线边界
2)在同一平面内沿某一方向发射速率不同的同种 带电粒子,有下列特点:
×××××× ×××××× ×××××× ×××××× ×××××× ×××××× ××××××Ɵ ××××××
一个中心----即确定圆心
两个基本点---即射入点和射出点
2:如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度 为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以 速度V进入磁场,粒子进入磁场时的速度方向垂直于磁场且与 x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴 的最大距离为a,(1)该粒子带正电还是负电?(2)该粒子 的荷质比为多少? (3) 磁场中运动的时间?
带电粒子在匀强磁场中运动的规律总结画图分析技巧
带电粒子在匀强磁场中运动的规律总结、画图分析技巧本文适用于高三学生复习参考、或者高二(已学习带电粒子在匀强磁场中的运动相关章节内容)的学生。
文中系统总结了带电粒子在匀强磁场中运动的相关知识点,列举了这类问题常用的方法技巧,比如,找半径的方法,粒子轨迹圆心的确定方法,周期的算法,粒子运动时间的算法;超出书本之外的方法技巧:如常用的画圆弧技巧,需要用到的几何知识,粒子运动最长时间最短时间的确定方法,磁聚焦类问题规律方法,并附有相关例题,以及详细的画图(附手绘画图步骤)、解析过程。
详见如下具体内容,谨供有需要的学生参考。
一些用红色字迹显示的结论,可以在理解的基础上记忆。
目录一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式、圆心的确定方法 (2)二、基本画图技巧 (2)三、常用画图相关几何知识、规律1.对称性的应用(1)直线边界磁场(附证明过程) (3)(2)圆形边界磁场(附证明过程) (4)2.缩放圆法 (5)3.旋转圆法 (5)四、粒子在有界磁场中运动过程的最长、最短时间的确定方法 (5)五、磁聚焦类问题原理(附详细证明过程)、规律与分析方法 (6)六、带电粒子在磁场中运动的多解情形举例 (8)七、精选带电粒子在匀强磁场中运动例题,附手绘画图步骤、分析过程、解答过程……………………………………………………9—23一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式(并附有推理过程)、圆心的确定方法1.基本知识点:物理情景模型:以下内容只讨论匀强磁场。
当带电粒子以一定的初速度v 沿垂直磁场方向进入匀强磁场时,带电粒子只受洛伦兹力,洛伦兹力与粒子运动的速度方向总是垂直的,因此,洛伦兹力只改变粒子的速度方向,不改变粒子运动的速度大小,由F 洛=qvB ,可知,v 大小不变,F 洛大小也不变,如右图,这一特征符合物体做匀速圆周运动的动力学特征——向心力总与物体运动的速度方向垂直,只改变速度方向,不改变速度大小。
带电粒子在磁场中的偏转
一、带电粒子在匀强磁场中的运动规律
1、带电粒子以一定的初速度进入匀强磁场, 带电粒子将做怎样的运动?
(1)当v//B , F=0 ,带电粒子以速度v做匀速直线运 动 (2)当v⊥B,带电粒子以入射速度v做匀速圆周运动
洛伦兹力提供向 心力:
周期:
qvB mv 2 / r T 2r 2m
① 粒子进出单一直边界磁场, 入射角等于出射角。 ② 粒子进出圆边界磁场沿半径方向入,沿半径方向出。
作业题答案:
• 1D 2BD 3B 4C 5B 6A 7ABC 8ABCD 9D 10 ACD 11C
• 12 3.2X10-7m/s (π/96)X10-6S
• 0.2 0.1 3 m
• 13 V>Bqd/m t= m/2Bq
• 14 v>dBq/m( 1 cos ) • 15 U=B2L2e/2msin2
第11题、
t
2
T
T 2r 2m
v qB
R tan300 r
a VR o
r
600
c V
600
v qB
半径:
r
mv qB
2、粒子在磁场中运动的解题思路:
找圆心
利用v⊥R 利用弦的中垂线
画轨迹 利用轨迹和V相切
求半径 求时间
几何法求半径
向心力公式求半径
t
2
T
T 2r 2m
v qB
⑴粒子在磁场中运动的角度关系
偏向角 弦切角 圆心角
角度关系:2vຫໍສະໝຸດ A BvO
⑵粒子进入有界磁场的特点
专题 带电粒子在匀强电场中的偏转问题
专题带电粒子在匀强电场中的偏转问题【专题简介】带电粒子在匀强电场中的偏转问题是一种特殊的曲线运动,是高考的高频考点。
此类运动往往与平抛运动类似,故也称之为“类平抛运动”,故在处理此类问题时的方法和思想也是——“化曲为直”,即将运动分解为初速度方向的匀速直线运动和合外力方向的匀变速直线运动。
它与平抛的不同之处就在于要通过受力分析来求解合外力,从而根据牛顿第二定律求出加速度。
带电粒子在匀强电场中的偏转问题的特征:所受合外力为恒力且与初速度垂直。
带电粒子在匀强电场中的偏转问题的相关公式:1.牛顿第二定律:F合=ma2.匀强电场:E=Ud3.水初速度方向:x =v 0t,v x=v04.合外力方向:y=12at2,v y=at5.合运动:v=√v02+v y2,s=√x2+y26.角度问题:(1)速度夹角α:tanα=v yv0;(2)位移夹角θ:tanα=yx【高考真题】1.(2013广东卷)喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关2.(2022浙江卷)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。
t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为√2v0;平行M板向下的粒子,刚好从N板下端射出。
不计重力和粒子间的相互作用,则()A.M板电势高于N板电势B.两个粒子的电势能都增加C.粒子在两板间的加速度a=2v02LD.粒子从N板下端射出的时间t=(√2−1)L2v0速度关系位移关系2.(2007海南卷)一平行板电容器中存在匀强电场,电场沿竖直方向。
两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a和b,从电容器的P点(如图)以相同的水平速度射入两平行板之间。
带电粒子在磁场中的偏转
一、知识归纳1、 带电粒子在电场中运动 (1)匀加速运动:2022121mv mv qU t -=注意1:求解时间时,用运动学公式注意2:求解某一方向运动时,也可利用动能定理(2)类平抛运动: ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====-==+======αθtan 22tan 21212102002022220x yt v at v at v v mv mv y d U q qEy y v v at v dm Uqm Eq a at y tv x y y o y 或2、带电粒子在磁场中运动(1)匀速直线运动:利用平衡条件。
(2)匀速圆周运动:⎪⎪⎪⎩⎪⎪⎪⎨⎧=====⇒=Bq mT t Bq mv R T Bq mv R R v m qvB θπθππ2222,其中R 、θ主要通过几何关系确定。
注意1:确定圆心方法:利用三角函数、勾股定理等注意2:确定圆心角方法:利用速度的偏转角等于圆周运动的圆心角等 3、圆周运动的圆心确定方法法1:已知轨迹上两点的速度方向 法2:已知轨迹上的两点和其中一点的速度方向 法3:已知轨迹上一点的速度方向和半径R 法4:已知轨迹上的两点和半径R 4、带电粒子在有界磁场中运动的极值问题(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速度v 一定时,弧长(或弦长)越大,圆周角越大,则时间越长。
5、对称规律解题法(1)从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
(2)在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
(3)在圆形磁场区域内,不沿径向射入的粒子,也满足对称性。
1. 关于带负电的粒子(重力可忽略不计),下面说法中准确的是① 沿电场线方向飞入匀强电场,电场力做功,动能增加 ② 垂直电场线方向飞入匀强电场,电场力做功,动能增加 ③ 垂直磁感线方向飞入匀强磁场,磁场力不做功,动能不变 ④ 沿磁感线方向飞入匀强磁场,磁场力做功,动能增加 A. ①② B. ②③ C. ③④ D. ①④2、如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上。
带电粒子在匀强磁场中的运动
〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
图6 所示。
O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
带电粒子在匀强磁场中的运动-各个方向
高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练习题集【知识点梳理】在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。
当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。
当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。
这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。
【典题强化】1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。
一个粒子源在b点将质量为m,电荷量为q的带负电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是()A.qBL/3m B.√3qBL/3m C.√3qBL/2m D.√3qBL/m2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。
一个粒子源在a点将质量为m、电荷量为q的带正电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是()A.qBL/2m B.√3qBL/6m C.√3qBL/4m D.qBL/6m3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。
在磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片上,则这些粒子中速度最大的是()A.√2qBr/2m B.qBr/2m C.√2qBr/m D.(2+√2)qBr/m4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。
带电粒子在磁场中的运动 整理
E ① 当v>E/B粒子向哪个方向偏? B ② 当v<E/B粒子向哪个方向偏?
1.速度选择器只选择速度,与电荷的正负无关;
2.注意电场和磁场的方向搭配。
• 如图所示,为一速度选择器的原理图,K为电 子枪,由枪中沿虚线KS方向射出的电子速率 大小不一,当电子通过方向互相垂直的匀强磁 场和匀强电场时,只有一定速率的电子能沿直 线前进并通过小孔S,设板间电压为300V,板 间距为5cm,垂直纸面的匀强磁场为B=0.06T, 求: (1)磁场的指向是向里还是向外? (2)速度为多大的电子才能通过小孔?
运动轨迹:匀速圆周运动
二、轨道半径和运动周期
1.轨道半径r
r mv qB
在匀强磁场中做匀速圆周运动的带电粒子,轨 道半径跟运动速率成正比。 2.运动周期T 2 m
T qB
(1)周期跟轨道半径和运动速率均无关 t (2)粒子运动不满一个圆周的运动时间:
m
qB
θ为带电粒子运动所通过的圆弧所对的圆心角
4、回旋加速器
V5
1.磁场偏转
R T 取决于磁场
电场加速
v Ek取决于电场
V4 V2
V1 V3
V0
2.工作条件:合拍
T粒子=T电源
3.获得最大速度、能量取决于
Em
Rm
1 2
mv
2
m
m vm qB
Em
B q Rm 2m
2
2
2
解题关键: 1.粒子每经过一个周期,被 电场加速二次
V4 V0
练习:回旋加速器中磁场的磁感应强度为B,D形盒的
直径为d,用该回旋加速器加速质量为m、电量为q的粒
带电粒子在匀强磁场中运动公式大全
带电粒子在匀强磁场中运动公式大全基础规律一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场。
带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要。
带电粒子在匀强磁场中运动公式大全 31.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动。
3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用。
2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关。
3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直。
4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小。
5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能。
6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧。
知识归纳一、方法总结带电粒子在匀强磁场中运动公式大全 7(1)匀加速运动:注意1:求解时间时,用运动学公式。
注意2:求解某一方向运动时,也可利用动能定理。
(2)类平抛运动:带电粒子在匀强磁场中运动公式大全 8(1)匀速直线运动:利用平衡条件。
(2)匀速圆周运动:其中R、θ主要通过几何关系确定。
(3)关于“几何关系”注意1:确定圆心方法:利用三角函数、勾股定理等。
高中物理带电粒子的偏转重点知识讲解汇总
复习第六章电场——带电粒子在电场中的运动电容器二. 重点、难点:〔一〕带电粒子在电场中的运动1. 带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做匀加〔减〕速直线运动。
2. 带电粒子〔假设重力不计〕由静止经电场加速如下图,可用动能定理:表达式为3. 带电粒子在匀强电场中的偏转〔重力不计〕,如下图。
〔1〕侧移:结合加速时的表达式可得:,可知在加速电压、偏转极板的长度和极板间距不变的情况下,侧向位移y 与偏转电压成正比。
〔2〕偏角:注意到,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
这一点和平抛运动的结论相同。
两样,在加速电压、偏转极板的长度和极板间距不变的情况下,偏角的正切与偏转电压成正比。
〔3〕穿越电场过程的动能增量:〔注意,一般来说不等于〕〔二〕电容器1. 电容器:两个彼此绝缘又相隔很近的导体都可以看成一个电容器。
2. 电容器的电容:电容是表示电容器容纳电荷本领的物理量,定义式〔比值定义法〕,电容是由电容器本身的性质〔导体大小、形状、相对位置及电介质〕决定的。
3. 平行板电容器的电容的决定式是:,其中,k为静电力常量,S为正对面积,是电介质的介电常数。
4. 两种不同变化:电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化。
这里一定要分清两种常见的变化:〔1〕电键K保持闭合,则电容器两端的电压U恒定〔等于电源电动势〕,这种情况下带电荷量,而,。
〔2〕充电后断开K,保持电容器带电荷量Q恒定,这种情况下。
5. 常用电容器有:固定电容器和可变电容器,电解电容器有正负极,不能接反。
【典型例题】电场中常见问题:〔一〕平行板电容器的动态分析平行板电容器动态分析这类问题关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量。
讨论电容器动态变化问题时一般分两种基本情况:1. 充电后仍与电源连接,则两极板间电压U保持不变。
带电粒子在匀强磁场中的运动(含各种情况)
回旋加速器
回旋加速器是一种利用磁场和电场控制带电粒子运动轨迹的装置,常用于高能物理 实验和核物理研究。
在回旋加速器中,带电粒子在磁场中做匀速圆周运动,通过改变电场强度使粒子不 断加速,最终获得高能粒子束。
回旋加速器在高能物理实验中用于研究基本粒子的性质和相互作用,对于深入理解 物质的基本结构和性质具有重要意义。
带电粒子在磁场中的偏转角度和偏转量
总结词
带电粒子在匀强磁场中的偏转角度和偏 转量取决于粒子的速度、质量和磁感应 强度。
VS
详细描述
带电粒子在匀强磁场中的偏转角度和偏转 量可以通过洛伦兹力公式和牛顿第二定律 计算得出。具体计算需要考虑粒子的速度 、质量和磁感应强度等因素。
04 带电粒子在匀强磁场中的 能量问题
1 2 3
匀速圆周运动
当带电粒子以一定的速度进入匀强磁场时,会受 到洛伦兹力的作用,使粒子做匀速圆周运动。
螺旋线运动
当带电粒子的速度方向与磁感应强度平行时,不 受洛伦兹力作用,粒子将沿磁感应强度方向做等 距螺旋线运动。
匀速直线运动
当带电粒子的速度方向与磁感应强度平行且大小 相等时,不受洛伦兹力作用,粒子将沿磁感应强 度方向做匀速直线运动。
详细描述
带电粒子在匀强磁场中做匀速圆周运动的周期T和频率f由公式T=2πm/qB和f=qB/2πm决定,其中m为粒 子的质量,q为粒子的电荷量,B为磁感应强度。这两个公式描述了粒子运动的周期和频率与各个物理量 之间的关系。
03 带电粒子在匀强磁场中的 偏转问题
垂直射入情况
总结词
当带电粒子以垂直方向射入匀强磁场 时,将做匀速圆周运动。
THANKS FOR WATCHING
感谢您的观看
线运动,从而实现带电粒子的加速。
带电粒子在匀强电场中运动的规律总结
带电粒子在匀强电场中运动的规律总结1.带电粒子在匀强电场中平衡带电粒子在电场中处于静止状态或匀速直线运动状态。
设匀强电场两极电压为U ,板减距离为d ,则:mg=qE ,Umgd E mg q ==2.带电粒子在匀强电场中的加速 带电粒子沿电场线平行的方向进入匀强电场,受到电场俩的方向与运动方向在同一条直线上,做匀加速直线运动,粒子的动能的变化量等于电势能的变化量。
即:2022121mv mv qU -=。
3.带电粒子在匀强电场中的偏转 带电粒子以速度v 0垂直于电场线方向飞入匀强电场时,受到的恒的与初速度方向成900角的电场力作用做匀变速曲线运动,可用类似平抛运动的方法处理。
即: md qU m qE a ==,0v L t =(L 为平行板的板长)。
偏转距离:2022221mdv qUL at y ==; 偏转角:200mdv qUL v at tg ==θ; 横向速度:0mdv qUL ai v ==⊥ 拓展讨论:如图3所示,质量为m ,带电量为q 的带正电的粒子,以初速度v 0垂直于电场的方向,从两个极板中间射入匀强电场。
已知极板间的电压为U ,且上极板带正电,极板的长度为L ,两极板间的距离为d 。
则带电粒子在匀强电场中运动的时间为:(1)带电粒子打不出电场时,带电粒子在电场中运动的时间是由电场中的加速时间决定的,其值为:mqU Uqd t =1。
(2)带电粒子打出电场时,带电粒子在电场中运动的时间是由垂直电场方向上的匀速运动时间决定的,其值为:2v L t =。
(3)带电粒子恰打出电场时,带电粒子在电场中运动的时间是由垂直电场方向上的匀速运动时间决定的,也可以说是由沿电场方向上的加速运动决定。
即有:图3t 1=t 2。
4.带同种电荷的不同粒子经过同一个加速电场进入同一个偏转电场,它们的运动轨迹相同。
即偏转位移、横向速度、偏转角皆相同,如果在偏转电场一侧沿电场方向放一个荧光屏,则荧光屏上只有一个亮点。
《带电粒子在匀强电场中的偏转》 知识清单
《带电粒子在匀强电场中的偏转》知识清单一、匀强电场的概念匀强电场是指电场强度大小和方向处处相同的电场。
在这种电场中,带电粒子所受的电场力是恒定的,这为我们研究带电粒子的运动提供了较为简单的条件。
想象一下,一个空间内,电场强度的大小和方向就像被一个神奇的力量固定住了,无论带电粒子在哪个位置,它所感受到的电场的作用都是一样的。
二、带电粒子在匀强电场中的受力分析当带电粒子进入匀强电场时,它会受到电场力的作用。
电场力的大小可以通过公式 F = qE 来计算,其中 q 是带电粒子的电荷量,E 是电场强度。
如果带电粒子带正电,那么电场力的方向与电场强度的方向相同;如果带电粒子带负电,电场力的方向则与电场强度的方向相反。
比如说,一个带正电的粒子进入电场,就好像有一股力量在推着它沿着电场强度的方向前进;而一个带负电的粒子进入电场,就像是有一股力量在拉着它朝着电场强度相反的方向移动。
三、带电粒子在匀强电场中的运动类型带电粒子在匀强电场中的运动可以分为两种情况:直线运动和偏转运动。
1、直线运动当带电粒子的初速度方向与电场强度方向平行时,粒子将做直线运动。
这种情况下,粒子所受的电场力不会改变其速度的方向,只会改变速度的大小。
举个例子,就像一个运动员沿着笔直的跑道跑步,只有速度的快慢在变化,方向始终不变。
2、偏转运动当带电粒子的初速度方向与电场强度方向垂直时,粒子将做偏转运动。
这是我们重点要研究的情况。
好比一个球被横着抛出去,然后受到一个垂直方向的力,它的运动轨迹就会发生偏转。
四、带电粒子在匀强电场中的偏转规律1、运动的分解对于带电粒子的偏转运动,我们可以将其分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动。
水平方向上,由于不受力,粒子以初速度 v₀做匀速直线运动,位移 x = v₀t。
竖直方向上,粒子受到恒定的电场力,加速度 a = qE/m,做匀加速直线运动,位移 y = 1/2 at²。
2、偏转角度粒子离开电场时的偏转角度可以通过正切值tanθ = vy / v₀来计算,其中 vy 是竖直方向的末速度。
高考复习:带电粒子在电磁场中的运动问题归纳总结
带电粒子在电磁场中的运动带电粒子在电磁场中的运动包括带电粒子在匀强电场、交变电场、匀强磁砀及包含重力场在内的复合场中的运动问题,是高考必考的重点和热点。
纵观近几年各种形式的高考试题,题目一般是运动情景复杂、综合性强,多把场的性质、运动学规律、牛顿运动定律、功能关系以及交变电场等知识有机地结合,题目难度中等偏上,对考生的空间想像能力、物理过程和运动规律的综合分析能力,及用数学方法解决物理问题的能力要求较高,题型有选择题,填空题、作图及计算题,涉及本部分知识的命题也有构思新颖、过程复杂、高难度的压轴题。
带电粒子在电磁场中的运动问题属于场的性质和力学规律及能量观点的综合应用,解决此类问题以力学思路为主线,突出场的性质,实现场、力和能的结合。
针对带电粒子在电磁场中的运动为核心的专题,可设置从运动和力的观点解决带电粒子在电场中的加速和偏转问题;从能量的观点解决带电粒子中的加速与偏转问题;从运动和力的观点解决带电粒子在磁场中的圆周运动问题。
近几年物理高考题总有一些似曾相识的题目。
所以应根据高考命题的热点改造试题、变换设问方式,克服思维定势。
同时设计出一些贴近高考的新颖试题:比如理论联系实际的题目、设计性的实验题目等,以使训练贴近高考。
一.带电粒子在电场中运动高考命题涉及的电场有匀强电场,也有非匀强电场和交变电场。
带电粒子在电场中的运动可分为三类:第一类为平衡问题;第二类为(包括有往复)问题;第三类为偏转问题。
解题的基本思路是:首先对带电粒子进行受力分析,再弄清运动过程和运动性质,最后确定采用解题的观点(力的观点、能的观点和动量观点)。
平衡问题运用物体的平衡条件;直线运动问题运用运动学公式、牛顿运动定律、动量关系及能量关系;偏转问题运用运动的合成和分解,以及运动学中的抛体运动规律等。
例1、如图所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行金属板间的电场中,板长为l ,板间距离为d ,入射方向跟极板平行。
专题7带电粒子在直线边界匀强磁场中的运动(解析版)
专题七 带电粒子在直线边界匀强磁场中的运动基本知识点 1.轨迹圆心的两种确定方法(1)已知粒子运动轨迹上两点的速度方向时,作这两速度方向的垂线,交点即为圆心,如图所示。
(2)已知粒子轨迹上的两点和其中一点的速度方向时,画出粒子轨迹上的两点连线(即过这两点的圆的弦),作它的中垂线,并画出已知点的速度方向的垂线,则弦的中垂线与速度方向的垂线的交点即为圆心,如图所示。
2.三种求半径的方法 (1)根据半径公式r =m vqB求解。
(2)根据勾股定理求解,如图所示,若已知出射点相对于入射点侧移了x ,则满足r 2=d 2+(r -x )2。
(3)根据三角函数求解,如图所示,若已知出射速度方向与入射方向的夹角为θ,磁场的宽度为d ,则有关系式r =dsin θ。
3.四种角度关系 (1)如图所示,速度的偏向角(φ)等于圆心角(α)。
(2)圆心角α等于AB 弦与速度方向的夹角(弦切角θ)的2倍(φ=α=2θ=ωt )。
(3)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。
(4)进出同一直线边界时速度方向与该直线边界的夹角相等。
4.两种求时间的方法(1)利用圆心角求解,若求出这部分圆弧对应的圆心角,则t =θ2πT 。
(2)利用弧长s 和速度v 求解,t =sv 。
5.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.6.带电粒子的电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,当粒子具有相同速度时,正负粒子在磁场中运动轨迹不同,导致多解。
如图所示,带电粒子以速率v垂直进入匀强磁场,若带正电,其轨迹为a;若带负电,其轨迹为b.7.磁场方向的不确定形成多解磁感应强度是矢量,如果题述条件只给出磁感应强度的大小,而未说明磁感应强度的方向,则应考虑因磁场方向不确定而导致的多解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业1:如图所示,一带正电的质子以初速度V0从 O点垂直射入平行板NP和MQ之间,两个板间存 在垂直于纸面向里的匀强磁场.已知两板之间 距离为d,板长为d,O点是NP的中点,为使粒 子能从两板间射出,试求磁感应强度B应满足 的条件.(已知质子的带电荷量为e,质量为m)
作业2:P98页笫9题
请用圆规绘图!
各带电粒子做匀速圆周运动的周期相等 速率大,半径大;但射出速度相同,偏转角度相同
①直线边界
3)沿某一方向射入速率为V的带电粒子,则粒子在
匀强磁场中运动的周期为多少?
BqV m V 2
×××××× ××××××
R
× × × × × × × × × × × × R mV
×××××× ××××××
qB
解:由几何知识可得
r+rcosθ=d
又又BBeevv00=又=mBmvervr20v20②0②=mvr20②
θ
由由①①②②得由得v①v00=②=m得m((1v1B+B+0e=ecdcdomossθ(θ1))B+ecdosθ)
0
故故电电子子要故要射电射出子出磁要磁场射场,出,速磁速率场率至,至少速少应率应为至为m少m((1应1B+B+为eecdcdomossθ(θ1)).B+. ecdosθ). V0
-
①直线边界
1)沿某一方向射入速率为V的带电粒子,则粒子在
匀强磁场中运动的周期为多少?
BqV m V 2
RБайду номын сангаас
×××××× ××××××
× × × × × × × × × × × × R mV
×××××× ××××××
qB
× × ×Ɵ×Ɵ × × Ɵ× × × × × ×
+
T 2R 2m
V qB
× × × ×Ɵ× × × × × × × ×
ƟƟ +
T 2R 2m
V qB
t 2 T 2m
2
qB
①直线边界 进出磁场具有对称性
例1:如图所示,在垂直纸面向里的匀强磁场的边界上, 有两个电荷量绝对值相同、质量相同的正、负粒子(不计 重力),从O点以相同的速度先后射入磁场中,入射方向
与边界成θ角,则正、负粒子在磁场中(BC )
解:(1)粒子带负电
(2)由图中几何关系得:
R R sin a
又: BqV m V 2 R
由上两式得: q 3V m 2aB
3:如图所示,匀强磁场的磁感应强度为B,宽度为d,边界为 CD和EF.一电子从CD边界外侧以速率V0垂直射入匀强磁 场,入射方向与CD边界间夹角为θ.已知电子的质量为m, 电荷量为e,为使电子能从磁场的另一侧EF射出,求电子 的速率V0至少多大?
A.运动时间相同 B.运动轨迹的半径相同 C.重新回到边界时速度大小和方向相同 D.重新回到边界时与O点的距离不相等
V
V
②平行边界
×××××× ×××××× ×××××× ××××××
+
②平行边界
×××××× ×××××× ×××××× ××××××
+
②平行边界
×××××× ×××××× ×××××× ××××××
+
②平行边界 存在临界条件
带电粒子垂直射入有界匀强磁场 ①直线边界 进出磁场具有对称性
射入射出速度相同 圆心角等于=偏向角
②平行边界
一个中心,两个基本点
一个中心----即确定圆心
两个基本点---即射入点和射出点
2:如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度 为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以 速度V进入磁场,粒子进入磁场时的速度方向垂直于磁场且与 x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴 的最大距离为a,(1)该粒子带正电还是负电?(2)该粒子 的荷质比为多少? (3) 磁场中运动的时间?
t (2 2 ) T (1 ) 2m
2
qB
①直线边界
2)在同一平面内沿某一方向发射速率不同的同种 带电粒子,有下列特点:
×××××× ×××××× ×××××× ××××××
×××××× ×××××× × × ×Ɵ×Ɵ × × Ɵ× × × × × ×
+
各带电粒子的圆轨迹有一个公共切点 各圆的圆心分布在同一条直线上
带电粒子在有界磁场中运动
直线边界, 平行边界
①直线边界
×××××× ××××××
×××××× ××××××
+
BqV m V 2 R
R mV qB
速度越大,半径越大
T 2R 2m
V qB
t T m
2 qB
①直线边界
×××××× ×××××× ×××××× ×××××× ×××××× ×××××× ×××××× ××××××