高三理数一轮讲义:11.7-离散型随机变量及其分布列(练习版)
离散型随机变量及分布列(一轮复习)
答案:D
离散型随机变量分布列
[例2] 袋中有4个红球,3个黑球,从袋中随机取球,设 取到1个红球得2分,取到1个黑球得1分,从袋中任取4个球.
(1)求得分X的分布列; (2)求得分大于6分的概率.
[自主解答] (1)从袋中随机取 4 个球的情况为 1 红 3 黑, 2 红 2 黑,3 红 1 黑,4 红四种情况,分别得分为 5 分,6 分, 7 分,8 分,故 X 的可能取值为 5,6,7,8.
[易误辨析] (1)本题由于离散型随机变量ξ的取值情况较多,极易 发生对随机变量取值考虑不全而导致解题错误. (2)此类问题还极易发生如下错误:虽然弄清随机变 量的所有取值,但对某个取值考虑不全而导致解题错 误. (3)避免以上错误发生的有效方法是验证随机变量的 概率和是否为1.
1-2q≥0, q2≥0, 12+1-2q+q2=1,
解得
q=1-
2 2.
或由 1-2q≥0⇒q≤12,可排除 A、B、C.
(2)由分布列的性质知0.2+0.1+0.1+0.3+m=1,解
得m=0.3.首先列表为:
ξ
01234
2ξ+1 1 3 5 7 9
|ξ-1| 1 0 1 2 3
离散型随机变量分布列的性质
[例1] (1)设ξ是一个离散型随机变量,其分布列为:
ξ -1
0
1
P
1 2
1-2q
q2
则q的值为
()
A.1
B.1±
2 2
C.1+
2 2
D.1-
2 2
(2)设离散型随机变量ξ的分布列为: ξ0 1 2 34 P 0.2 0.1 0.1 0.3 m
求:①2ξ+1的分布列;②|ξ-1|的分布列. [自主解答] (1)由分布列的性质,有
湘教版高考总复习一轮数学精品课件 第十一章 第六节 离散型随机变量的分布列、均值与方差
各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
解 (1)记甲学校获得冠军为事件A,则P(A)=0.5×0.4×(1-0.8)+0.5×(1-0.4)
×0.8+(1-0.5)×0.4×0.8+0.5×0.4×0.8=0.6,所以甲学校获得冠军的概率
首先列表为
X
2X+1
0
1
1
3
2
5
3
7
4
9
3
0.1
5
0.1
7
0.3
9
0.3
从而Y=2X+1的分布列为
Y
P
1
0.2
(2)首先列表为
X
|X-1|
0
1
1
0
∴P(η=0)=P(X=1)=0.1,
P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,
P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.
及p1+p2+…+pn=1检验.
3.离散型随机变量的均值与方差
离散型随机变量X的分布列为
X
x1
P
p1
x2
p2
…
…
xn
pn
(1)均值
称E(X)=
x1p1+x2p2+…+xnpn
为随机变量X的均值或数学期望.
反映了离散型随机变量取值的平均水平
(2)方差
称D(X)=
(x1-E(X))2p1+(x2-E(X))2p2+…+(xn-E(X))2pn
高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差
超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次
CMkCN-Mn-k
品,则P(X=k)=________C_N_n __,k=0,1,2,…,m,其中m
=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列:
X
0
P
CM0CN-Mn-0 CNn
为超几何分布列.
1
…
m
CM1CN-Mn-1 CNn
…
CMmCN-Mn-m CNn
如果随机变量X的分布列具有上表的形式,那么称随机变量
X服从超几何分布,记作X~H(N,M,n).
1.判断下列说法是否正确(打“√”或“×”). (1)抛掷均匀硬币一次,出现正面的次数是随机变量. (2)在离散型随机变量的分布列中,随机变量取各个值的概 率之和可以小于1. (3)离散型随机变量的各个可能值表示的事件是彼此互斥 的.
思考题2 (1)(2021·吉林省汪清县高三月考)已知随机变 量ξ的分布列如下表,则x=____12____.
ξ01 2
P x2 x
1 4
【解析】
由随机变量概率分布列的性质可知:x2+x+
1 4
=1,且0≤x≤1,解得x=12.
(2)(2021·青铜峡市高三期末)设随机变量ξ的概率分布列如下
表,则P(|ξ-3|=1)=( A )
3.设ξ是一个离散型随机变量,则下列不一定能成为ξ的概
率分布列的一组数是( C )
A.0,0,0,1,0
B.0.1,0.2,0.3,0.4
C.p,1-p(p为实数)
D.1×1 2,2×1 3,…,(n-11)·n,1n(n∈N*,n≥2)
解析
显然A、B满足分布列的两个性质;对于D,有
最新高考一轮总复习《11.3 离散型随机变量及其分布列》
X
P
2
0.3
5
0.7
此时X不服从两点分布,因为X的取值不是0和1.
【知识巩固】
1.下列说法正确的画“√”,错误的画“×”.
(1)在离散型随机变量分布列中,各个概率之和可以小于1.( × )
(2)抛掷质地均匀的硬币一次,出现正面朝上的次数是随机变量.( √ )
(3)离散型随机变量的每个取值对应的概率都相等.( × )
X
0
1
2
P
5
13
4
13
4
13
=
2
.
13
第三环节
学科素养提升
对随机变量的意义理解有错
典例
某人进行一项试验.若成功,则停止试验;若失败,则重新试验一次;
2
若试验3次均失败,则放弃试验.已知每次试验成功的概率为 3 ,各次试验成
功与否互不影响,求此人试验次数X的分布列.
错误解法
试验次数X的可能取值为1,2,3.
1
+ 1-2 + 2 = 1,
2
第二环节
关键能力形成
能力形成点1
离散型随机变量分布列的性质
例1 (1)已知离散型随机变量X的分布列为
X
P
0
9c2-c
则c的值为( B )
2
A.3
2 1
C.3 或 3
1
B.3
D.以上都不对
0 ≤ 9 2 - ≤ 1,
1
由已知得 0 ≤ 3-8 ≤ 1,
解得 c=3.
进行检查,设抽取的2件产品中不合格品数为X,求X的分布列.
解 由题意知 X 服从两点分布,P(X=0)=
新高考数学一轮复习第十一章计数原理概率随机变量及其分布:离散型随机变量及其分布列pptx课件人教B版
【解析】选B.由分布列的性质知2q2+ 11 -3q+ 1 =1,解得q=1或q= 1 ,
6
6
2
又因为2q2<1,0< 11 3q <1,所以舍去q=1,
6
所以q= 1 .
2
3.(选修2-3 P47习题2-1BT2改编)设随机变量X的概率分布列为
X
1
2
3
4
P
1
m
1
1
3
4
6
则P(|X-3|=1)=________.
④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机 变量的是 ( ) A.①② B.①③ C.①④ D.①②④
2.若随机变量X的概率分布列为
X
x1
x2
P
p1
p2
且p1=
1 2
p2,则p1等于
(
)
A. 1
B. 1
C. 1
D. 1
2
3
4
6
3.某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加
n
pi
=1.
i1
2.常见的两类分布列 (1)两点分布: 若随机变量X服从两点分布,即其分布列为
X
0
1
P
_1_-_p_
p
其中p= _P_(_X_=_1_)_称为成功概率.
(2)超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=
C C k nk M NM
,
CnN
k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
【解析】选C.因为P(X=1)= 1 ,所以A,B不正确;
高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量及其分布列1
第七节 离散型随机变量及其分布列离散型随机变量及其分布列(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用. 知识点一 离散型随机变量分布列 1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n此表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)分布列的性质①p i ≥0,i =1,2,3,…,n . ②∑ni =1p i =1. 易误提醒 (1)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n )其作用可用于检验所求离散型随机变量的分布列是否正确.(2)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的.[自测练习]1.设随机变量X 的分布列如下:X 1 2 3 4 P161316p则p 为( ) A.16 B.13 C.23D.12解析:由16+13+16+p =1,∴p =13.答案:B2.已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)=________.解析:由分布列的性质知12a +22a +32a =1,∴a =3,∴P (X =2)=22a =13.答案:13知识点二 常见的离散型随机变量的分布列 1.两点分布列X 0 1 P1-pp若随机变量X 的分布列具有上表的形式,就称X 服从两点分布,并称p =P (X =1)为成功概率.2.超几何分布列在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.X 01… mPC 0M C n -N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC nN如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 易误提醒 对m =min{M ,n }的理解易忽视其含义如下:m 为k 的最大取值,当抽取的产品件数不大于总体中次品件数,即n ≤M 时,k (抽取的样本中次品的件数)的最大值为m =n ;当抽取的产品件数大于总体中次品件数,即n >M 时,k 的最大值为m =M .[自测练习]3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13D.23解析:由已知得X 的所有可能取值为0,1,且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1,得P (X =0)=13.答案:C考点一 离散型随机变量分布列的性质|1.已知随机变量X 的概率分布如下:X 1 2 3 4 5 6 7 8 9 10 P23232233234235236237238239mA.239B.2310C.139 D.1310 解析:由离散型随机变量分布列的性质可知23+232+233+…+239+m =1,∴m =1-⎝⎛⎭⎫23+232+233+…+239 =1-2·13⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=⎝⎛⎭⎫139=139.答案:C2.若随机变量X 的分布列为( )X -2 -1 0 1 2 3 P0.10.20.20.30.10.1则当P (X <a )=A .(-∞,2] B .[1,2] C .(1,2]D .(1,2)解析:由随机变量X 的分布列知:P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].答案:C(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.考点二 离散型随机变量分布列的求法|(2015·高考四川卷)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛.设X 表示参赛的男生人数,求X 的分布列和数学期望.[解] (1)由题意,参加集训的男、女生各有6名.代表队中的学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100. 因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)根据题意,X 的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15.所以X 的分布列为X 1 2 3 P153515因此,X 的数学期望为E (X )=1×15+2×35+3×15=2.离散型随机变量分布列步骤(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n ). (2)求出各取值的概率P (X =x i )=p i .(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确.1.某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列及数学期望. 解:(1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, ∵P (A )=C 23⎝⎛⎭⎫132⎝⎛⎭⎫231+C 33⎝⎛⎭⎫133=727.(2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3.P (X =0)=⎝⎛⎭⎫133=127;P (X =1)=C 13⎝⎛⎭⎫231⎝⎛⎭⎫132=627;P (X =2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫131=1227;P (X =3)=⎝⎛⎭⎫233=827. 因此X 的分布列为X 0 1 2 3 11276271227827E (X )=0×127+1×627+2×1227+3×827=2.考点三 超几何分布|(2016·南昌模拟)从某小组的5名女生和4名男生中任选3人去参加一项公益活动.(1)求所选3人中恰有一名男生的概率; (2)求所选3人中男生人数ξ的分布列.[解] (1)所选3人中恰有一名男生的概率P =C 25C 14C 39=1021.(2)ξ的可能取值为0,1,2,3.P (ξ=0)=C 35C 39=542,P (ξ=1)=C 25C 14C 39=1021,P (ξ=2)=C 15C 24C 39=514,P (ξ=3)=C 34C 39=121.∴ξ的分布列为ξ 0 1 2 3 P5421021514121对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.2.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为ξ,求ξ的分布列.解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0, 解得9≤n ≤16,故n 的最大值为16. (2)由题意得,ξ的可能取值为0,1,2,则P (ξ=0)=C 26C 212=522,P (ξ=1)=C 16C 16C 212=611,P (ξ=2)=C 26C 212=522,ξ的分布列为ξ 0 1 2 P52261152223.忽视分布列性质致误【典例】 随机变量ξ的分布列如下:其中a ,b ,c d 的取值范围是________. [解析] 因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13.所以P (|ξ|=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13,此即公差d 的取值范围.[答案] 23 ⎣⎡⎦⎤-13,13 [易误点评] 求解易忽视a ,b ,c 因大于或等于0而致误.[防范措施] 利用分布列的性质解决问题时要注意每一变量对应的概率值0≤P i ≤1. [跟踪练习] 设X 是一个离散型随机变量,其分布列为则q =________;P (X ≤解析:由分布列的性质得:⎩⎪⎨⎪⎧0≤q 2≤1,①0≤1-q ≤1,②0≤52q -1≤1,③q 2+(1-q )+⎝⎛⎭⎫52q -1=1,④由①②③,得25≤q ≤45.由④,得q 2+32q -1=0,即⎝⎛⎭⎫q -12(q +2)=0,解得q =12或q =-2(舍去).故q =12. 由分布列可知X 的可能取值只有1,2,3,故P (X ≤2)=P (X =1)+P (X =2)=q 2+(1-q )=⎝⎛⎭⎫122+⎝⎛⎭⎫1-12=34.答案:12 34A 组 考点能力演练1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( )A .5B .9C .10D .25解析:X 的所有可能取值为2,3,4,5,6,7,8,9,10共9个. 答案:B2.已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3,4),则P (2<X ≤4)等于( )A.910B.710C.35D.12 解析:由分布列的性质,12a +22a +32a +42a=1,则a =5.∴P (2<X ≤4)=P (X =3)+P (X =4)=310+410=710.答案:B3.在15个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4.答案:C4.(2016·厦门质检)设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k(k =1,2,3),则m 的值为( )A.1738B.2738C.1719D.2719解析:由分布列的性质得P (X =1)+P (X =2)+P (X =3)=m ×23+m ⎝⎛⎭⎫232+m ×⎝⎛⎭⎫233=38m 27=1.∴m =2738.答案:B5.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2)解析:依题意知,(n -m )A 2mA 3n 是取了3次,所以取出白球应为2个.答案:D6.设随机变量X 的概率分布列为则P (|X -3|=1)=解析:由13+m +14+16=1,解得m =14,p (|X -3|=1)=P (X =2)+P (X =4)=14+16=512.答案:5127.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完即为旧,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为________.解析:事件“X =4”表示取出的3个球有1个新球,2个旧球,故P (X =4)=C 19C 23C 312=27220.答案:272208.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤ξ≤x 2)等于________. 解析:由分布列性质可有:P (x 1≤ξ≤x 2)=P (ξ≤x 2)+P (ξ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).答案:1-(α+β)9.(2016·大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的分布列. 解:(1)由题意知X 的可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-23=19, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×23=718, P (X =2)=12×13×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-12×13×23+12×⎝⎛⎭⎫1-13×23=718,P (X =3)=12×13×23=19.∴X 的分布列为(2)该高中得分η的可能取值为6,9,12,15. P (η=6)=19,P (η=9)=718,P (η=12)=718,P (η=15)=19,该高中得分η的分布列为10.(2016·开封模拟)厂生产的产品中分别抽取14件和5件,测量产品中微量元素x 、y 的含量(单位:mg),下表是乙厂的5件产品测量数据.(1)(2)当产品中微量元素x 、y 满足x ≥175,y ≥75时,该产品为优质品,试估计乙厂生产的优质品的数量;(3)从乙厂抽出的上述5件产品中任取3件,求抽取的3件产品中优质品数ξ的分布列. 解:(1)设乙厂生产的产品为m 件,依题意得1498=5m ,∴m =35.(2)∵上述样本数据中满足x ≥175且y ≥75的只有2件, ∴估计乙厂生产的优质品为35×25=14(件).(3)依题意,ξ可取0,1,2,则P (ξ=0)=C 33C 35=110,P (ξ=1)=C 23C 12C 35=610,P (ξ=2)=C 13C 22C 35=310.∴ξ的分布列为:1.(2014·高考天津卷改编)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列. 解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13C 27+C 03C 37C 310=4960.所以,选出的3名同学是来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k 4·C3-k 6C 310(k =0,1,2,3). 所以,随机变量X 的分布列是2.(2015·10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上可知,X的分布列为。
2023年高考数学一轮复习讲义——离散型随机变量及其分布列、数字特征
§10.7 离散型随机变量及其分布列、数字特征考试要求 1.理解取有限个值的离散型随机变量及其分布列的概念.2.理解并会求离散型随机变量的数字特征.知识梳理1.离散型随机变量一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X (ω)与之对应,我们称X 为随机变量;可能取值为有限个或可以一一列举的随机变量称为离散型随机变量. 2.离散型随机变量的分布列一般地,设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,称X 取每一个值x i 的概率P (X =x i )=p i ,i =1,2,…,n 为X 的概率分布列,简称分布列. 3.离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n ); ②p 1+p 2+…+p n =1.4.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为X x 1 x 2 … x n Pp 1p 2…p n(1)均值则称E (X )=x 1p 1+x 2p 2+…+x n p n =∑i =1nx i p i 为随机变量X 的均值或数学期望,数学期望简称期望.它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=(x 1-E (X ))2p1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,并称D (X )为随机变量X 的标准差,记为σ(X ),它们都可以度量随机变量取值与其均值的偏离程度. 5.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X )(a ,b 为常数).常用结论均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数. (2)E (X 1+X 2)=E (X 1)+E (X 2). (3)D (X )=E (X 2)-(E (X ))2.(4)若X 1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)抛掷一枚质地均匀的硬币,出现正面的次数是随机变量.( √ )(2)在离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ ) (4)方差或标准差越小,则偏离均值的平均程度越小.( √ ) 教材改编题1.设随机变量X 的分布列如下:X 1 2 3 4 5 P112161316p则p 为( ) A.16 B.13 C.14 D.112 答案 C解析 由分布列的性质知, 112+16+13+16+p =1, ∴p =1-34=14.2.若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________. 答案 0解析 因为P (X =c )=1, 所以E (X )=c ×1=c , 所以D (X )=(c -c )2×1=0.3.已知随机变量X 的分布列如下:X -1 0 1 P121316若Y =2X +3,则E (Y )的值为________. 答案 73解析 E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.题型一 分布列的性质例1 (1)设X 是一个离散型随机变量,其分布列为X -1 0 1 P121-qq -q 2则q 等于( ) A .1 B.22或-22 C .1+22D.22 答案 D解析 由离散型随机变量分布列的性质得⎩⎪⎨⎪⎧12+1-q +q -q 2=1,0≤1-q ≤12,0≤q -q 2≤12,解得q =22. (2)(多选)设随机变量ξ的分布列为P ⎝⎛⎭⎫ξ=k5=ak (k =1,2,3,4,5),则( ) A .a =115B .P ⎝⎛⎭⎫12<ξ<45=15C .P ⎝⎛⎭⎫110<ξ<12=215D .P (ξ=1)=310答案 AB解析 对于选项A , ∵随机变量ξ的分布列为 P ⎝⎛⎭⎫ξ=k5=ak (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫ξ=15+P ⎝⎛⎭⎫ξ=25+P ⎝⎛⎭⎫ξ=35+P ⎝⎛⎭⎫ξ=45+P (ξ=1) =a +2a +3a +4a +5a =15a =1, 解得a =115,故A 正确;对于B ,易知P ⎝⎛⎭⎫12<ξ<45=P ⎝⎛⎭⎫ξ=35=3×115=15, 故B 正确; 对于C ,易知P ⎝⎛⎭⎫110<ξ<12=P ⎝⎛⎭⎫ξ=15+P ⎝⎛⎭⎫ξ=25 =115+2×115=15, 故C 错误;对于D ,易知P (ξ=1)=5×115=13,故D 错误. 教师备选1.设X 是一个离散型随机变量,其分布列为X 0 1 P9a 2-a3-8a则常数a 的值为( ) A.13 B.23C.13或23D .-13或-23答案 A解析 由分布列的性质可知⎩⎪⎨⎪⎧0≤9a 2-a ≤1,0≤3-8a ≤1,9a 2-a +3-8a =1,解得a =13.2.离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=54×12+54×16=56. 思维升华 离散型随机变量分布列的性质的应用 (1)利用“概率之和为1”可以求相关参数的值.(2)利用“在某个范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率.(3)可以根据性质判断所得分布列结果是否正确.跟踪训练1 (1)若随机变量X 的分布列如下表,则mn 的最大值是( )A.116 B.18 C.14 D.12 答案 A解析 由分布列的性质, 得m +n =12,m ≥0,n ≥0,所以mn ≤⎝⎛⎭⎪⎫m +n 22=116, 当且仅当m =n =14时,等号成立.(2)随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______. 答案 23 ⎣⎡⎦⎤-13,13 解析 因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.题型二 离散型随机变量的分布列及数字特征 例2 (1)(多选)设离散型随机变量X 的分布列为若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有( ) A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8 D .E (Y )=5,D (Y )=7.2 答案 ACD解析 因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确; 因为Y =2X +1,所以E (Y )=2E (X )+1=5, D (Y )=4D (X )=7.2,故D 正确.(2)(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于( ) A.32 B.53 C.74 D.95 答案 A解析 由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种, 当X =1时,取法有C 24种, 即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种, 即P (X =2)=C 23C 35=310;当X =3时,取法有C 22种, 即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.教师备选1.已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 0 1 2 P1613a则随机变量Y 的方差D (Y )等于( ) A.59 B.209 C.43D.299答案 B解析 由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )=⎝⎛⎭⎫0-432×16+⎝⎛⎭⎫1-432×13+⎝⎛⎭⎫2-432×12=59, 又Y =2X +1,所以D (Y )=4D (X )=209.2.已知m ,n 为正常数,离散型随机变量X 的分布列如表:若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________. 答案118 13解析 由题意知⎩⎨⎧m +n +14=1,n -m =712,解得⎩⎨⎧m =112,n =23,所以mn =118,P (X ≤0)=m +14=13.思维升华 求离散型随机变量ξ的均值与方差的步骤 (1)理解ξ的意义,写出ξ可能的全部值. (2)求ξ取每个值的概率. (3)写出ξ的分布列.(4)由均值、方差的定义求E (ξ),D (ξ).跟踪训练2 (2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1表2(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率; (2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.解 (1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分; ②购买实物商品积分为4分,购买虚拟商品的积分为4分, 故小张一个月积分不低于8分的概率为 14×⎝⎛⎭⎫1-13+12×16=14. (3)由条件可知X 的可能取值为3,4,5. P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:E (X )=3×25+4×310+5×310=3910.题型三 均值与方差中的决策问题例3 (12分)(2021·新高考全国Ⅰ)某学校组织“一带一路”知识竞赛,有A ,B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;[切入点:X 的取值情况] (2)为使累计得分的均值最大,小明应选择先回答哪类问题?并说明理由. [关键点:均值大小比较]高考改编某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.解(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P(Y=6)=0.7×(1-0.8)=0.14,P(Y=10)=0.7×0.8=0.56,则Y的均值为E(Y)=0×0.3+6×0.14+10×0.56=6.44,因为E(X)>E(Y),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.思维升华随机变量的均值和方差从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.跟踪训练3(2021·北京)为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和均值E(X);(2)若采用“5合1检测法”,检测次数Y的均值为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).解 (1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次, 所以总检测次数为20. ②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 20 30 P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599, 则E (Y )=25×499+30×9599=2 95099>E (X ).课时精练1.一串钥匙有6枚,只有一枚能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为( ) A .6 B .5 C .4 D .2 答案 B解析 由于是逐次试验,可能最后一枚钥匙才能打开锁,即前5次都打不开锁,所以试验次数X 的最大可能取值为5. 2.若随机变量X 的分布列为X 1 2 3 Paba则X 的均值E (X )等于( ) A .2a +b B .a +2b C .2 D .3答案 C解析 E (X )=1×a +2×b +3×a =2(2a +b ),由分布列的性质可知2a +b =1,所以E (X )=2. 3.已知随机变量X 的分布列是则E (2X +a )等于( ) A.53 B.73 C.72 D.236 答案 C解析 由分布列的性质可得12+13+a =1,解得a =16,所以E (X )=1×12+2×13+3×16=53,因此E (2X +a )=E ⎝⎛⎭⎫2X +16=2E (X )+16=2×53+16=72. 4.(2022·南平模拟)某企业计划加大技改力度,需更换一台设备,现有两种品牌的设备可供选择,A 品牌设备需投入60万元,B 品牌设备需投入90万元,企业对两种品牌设备的使用年限情况进行了抽样调查:更换设备技改后,每年估计可增加效益100万元,从年均收益的角度分析( ) A .不更换设备 B .更换为A 设备 C .更换为B 设备D .更换为A 或B 设备均可 答案 C解析 设更换为A 品牌设备使用年限为X ,则E (X )=2×0.4+3×0.3+4×0.2+5×0.1=3,更换为A 品牌设备年均收益为3×100-60=240(万元);设更换为B 品牌设备使用年限为Y ,则E (Y )=2×0.1+3×0.3+4×0.4+5×0.2=3.7,更换为B 品牌设备年均收益为3.7×100-90=280(万元).280>240,所以更换为B 品牌设备.5.(多选)(2022·烟台模拟)中华人民共和国第十四届运动会于2021年9月在陕西省举办.为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍,向全国人民奉献一场精彩圆满的体育盛会,第十四届全国运动会组织委员会欲从4名男志愿者,3名女志愿者中随机抽取3人聘为志愿者队的队长.下列说法正确的有( )A .设事件A :“抽取的三人中既有男志愿者,也有女志愿者”,则P (A )=67B .设事件A :“抽取的3人中至少有一名男志愿者”,事件B :“抽取的3人中全是男志愿者”,则P (B |A )=217C .用X 表示抽取的三人中女志愿者的人数,则E (X )=127D .用Y 表示抽取的三人中男志愿者的人数,则D (Y )=2449答案 ABD解析 对于A ,所有可能的情况有C 37=35(种),其中既有男志愿者,也有女志愿者的情况有C 14C 23+C 24C 13=30(种), 故P (A )=3035=67,故A 正确;对于B ,P (AB )=C 34C 37=435,P (A )=C 14C 23+C 24C 13+C 34C 37=3435, 所以P (B |A )=P (AB )P (A )=434=217,故B 正确;对于C ,X 的所有可能取值为0,1,2,3, 则P (X =0)=C 34C 37=435,P (X =1)=C 13C 24C 37=1835,P (X =2)=C 23C 14C 37=1235,P (X =3)=C 33C 37=135,所以E (X )=0×435+1×1835+2×1235+3×135=97,故C 错误;对于D ,Y 的所有可能取值为0,1,2,3, 则P (Y =0)=C 33C 37=135,P (Y =1)=C 23C 14C 37=1235,P (Y =2)=C 13C 24C 37=1835,P (Y =3)=C 34C 37=435,则E (Y 2)=0×135+1×1235+4×1835+9×435=247,E (Y )=0×135+1×1235+2×1835+3×435=127,则D (Y )=E (Y 2)-(E (Y ))2=247-⎝⎛⎭⎫1272=2449,故D 正确.6.(多选)(2022·永州模拟)已知14<p <1,随机变量X 的分布列如下,则下列结论正确的有( )A .P (X =2)的值最大B .P (X =0)<P (X =1)C .E (X )随着p 的增大而减小D .E (X )随着p 的增大而增大 答案 BD解析 当p =12时,P (X =2)=14,P (X =1)=1-12=12>14,A 错误;因为14<p <1,所以p -p 2=p (1-p )<1-p , 即P (X =0)<P (X =1),B 正确; E (X )=1-p +2p 2=2⎝⎛⎭⎫p -142+78, 因为14<p <1,所以E (X )随着p 的增大而增大,C 错误,D 正确.7.(2022·无锡质检)设X 是一个离散型随机变量,其分布列为则X 的均值为__________. 答案 1+22解析 由12+1-q +q -q 2=1得,q 2=12,q =22,∴E (X )=12+2-2q +3q -3q 2=52+q -3q 2 =52+22-32 =1+22. 8.某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率相等,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,若P (X =3)=316,则E (X )=__________.答案 74解析 乙、丙科目合格的概率相等,可设乙、丙科目合格的概率均为p , 则P (X =3)=34p 2=316,解得p =12,故P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-34=116, P (X =1)=12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-34+12×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-34+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-12×34=516, P (X =2)=12×12×⎝⎛⎭⎫1-34+12×⎝⎛⎭⎫1-12×34+⎝⎛⎭⎫1-12×12×34=716, 故X 的分布列为E (X )=0×116+1×516+2×716+3×316=74.9.2021年,“十四五”开启全面建设社会主义现代化国家新征程,这一年,中国共产党迎来建党100周年.某企业开展“学党史,颂党恩,跟党走”的知识问答活动,该企业收集了参与此次知识问答活动的员工得分情况,得到如下频率分布表:其中样本的平均数是73.6.(假设同一组中的每个数据可用该组区间的中点值代替) (1)求a ,b 的值;(2)根据此次知识问答活动的得分,评出四个等级,并根据等级给予如下的奖励:每次抽奖的中奖率均为12,每次中奖的奖金都为100元,求参与此次知识问答活动的某员工所获奖金X 的均值.解 (1)因为样本的平均数是73.6,所以45×0.04+55×0.10+65a +75b +85×0.20+95×0.12=73.6, 即65a +75b =37.9,①又a +b =1-0.04-0.10-0.20-0.12=0.54,② 由①②解得a =0.26,b =0.28.(2)当该员工的评定等级为优秀时,奖金的均值为12×4×100=200,当该员工的评定等级为良好时,奖金的均值为12×2×100=100,当该员工的评定等级为合格时,奖金的均值为12×1×100=50,当该员工的评定等级为不合格时,奖金的均值为12×0×100=0,E (X )=0×0.14+50×0.26+100×0.28+200×0.32=105, 故参与此次知识问答活动的某员工所获奖金X 的均值为105元.10.(2022·广州模拟)已知袋中装有大小、形状都相同的小球共5个,其中3个红球,2个白球. (1)若从袋中任意摸出4个球,求恰有2个红球的概率;(2)若每次随机地摸出一个球,记下颜色后放回,摸到白球即停止摸球,这样的摸球最多四次,η1表示停止时的摸球次数;又若每次随机地摸出一个球,记下颜色后不放回,摸到白球即停止摸球,η2表示停止时的摸球次数.分别求出η1和η2的分布列,并计算η1≠η2的概率. 解 (1)设事件A 为“从袋中任意摸4个球,恰有2个红球”, 则P (A )=C 23C 45=35.(2)η1的所有可能取值为1,2,3,4, 则P (η1=1)=C 12C 15=25,P (η1=2)=3×25×5=625,P (η1=3)=3×3×25×5×5=18125,P (η1=4)=3×3×3×55×5×5×5=27125,η1的分布列为η2的所有可能取值为1,2,3,4, 则P (η2=1)=C 12C 15=25,P (η2=2)=3×25×4=310,P (η2=3)=3×2×25×4×3=15,P (η2=4)=3×2×1×25×4×3×2=110,η2的分布列为η2 1 2 3 4 P2531015110从而P (η1≠η2)=1-P (η1=η2)=1-⎝⎛⎭⎫25×25+625×310+18125×15+27125×110 =8971 250.11.某公司圆满完成年初制定的生产目标,为答谢各位员工一年来的辛勤工作,公司决定召开年终总结联欢晚会,在联欢晚会上准备举行一个抽奖游戏,规定每位员工从一个装有4张奖券的箱子中,一次性随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.若箱子中所装的4张奖券中有1张面值为80元,其余3张面值均为40元,则每位员工所获得的奖励额的均值是( ) A .80元 B .100元 C .120元 D .140元答案 B解析 设每位员工所获得的奖励额为X 元,则X 所有可能的取值为80,120, 且P (X =80)=C 23C 24=12,P (X =120)=C 13C 11C 24=12,所以每位员工所获得的奖励额的均值 E (X )=80×12+120×12=100.12.(2022·榆林模拟)设0<a <12,0<b <12,随机变量的分布列为则当a 在⎝⎛⎭⎫0,12内增大时,( ) A .E (ξ)增大,D (ξ)增大 B .E (ξ)增大,D (ξ)减小 C .E (ξ)减小,D (ξ)增大 D .E (ξ)减小,D (ξ)减小答案 D解析 由分布列中概率之和为1, 可得a +b =12,∴E (ξ)=-12+b =-12+⎝⎛⎭⎫12-a =-a , ∴当a 在⎝⎛⎭⎫0,12内增大时,E (ξ)减小, 又由D (ξ)=(-1+a )2×12+(0+a )2×a +(1+a )2×b =-⎝⎛⎭⎫a +122+54, 可知当a 在⎝⎛⎭⎫0,12内增大时,D (ξ)减小. 13.(多选)(2022·烟台质检)某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择每个餐厅的概率相同),则下列结论正确的是( ) A .四人去了四个不同餐厅就餐的概率为518B .四人去了同一餐厅就餐的概率为11 296C .四人中恰有两人去了第一餐厅就餐的概率为25216D .四人中去第一餐厅就餐的人数的均值为23答案 ACD解析 四人去餐厅就餐的情况共有64种,其中四人去了四个不同餐厅就餐的情况有A 46种,则四人去了四个不同餐厅就餐的概率为A 4664=518,故A 正确;同理,四人去了同一餐厅就餐的概率为664=1216,故B 错误;四人中恰有两人去了第一餐厅就餐的概率为C 24×5264=25216,故C正确;设四人中去第一餐厅就餐的人数为ξ,则ξ=0,1,2,3,4.则P (ξ=0)=5464,P (ξ=1)=C 145364,P (ξ=2)=C 245264,P (ξ=3)=C 34×564,P (ξ=4)=164,则四人中去第一餐厅就餐的人数的分布列为ξ 0 123 4 P5464C 145364C 245264C 34×564164则四人中去第一餐厅就餐的人数的均值E (ξ)=0×5464+1×C 145364+2×C 245264+3×C 34×564+4×164=23,故D 正确. 14.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=______. 答案310解析 由题意可知,P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=310.15.(多选)设随机变量ξ的分布列如表:ξ 1 2 3 … 2 021 2 022 Pa 1a 2a 3…a 2 021a 2 022则下列说法正确的是( )A .当{a n }为等差数列时,a 2+a 2 021=11 011B .数列{a n }的通项公式可能为a n = 2 0232 022n (n +1)C .当数列{a n }满足a n =12n (n =1,2,…,2 021)时,a 2 022=122 022D .当数列{a n }满足P (ξ≤k )=k 2a k (k =1,2,…,2 022)时,(n +1)a n =(n -1)a n -1(n ≥2)答案 ABD解析 对于A ,因为{a n }为等差数列, 所以S 2 022=2 022(a 1+a 2 022)2=1,则有a 2+a 2 021=a 1+a 2 022=11 011, 故A 正确;对于B ,若数列{a n }的通项公式为 a n = 2 0232 022n (n +1)=2 0232 022⎝⎛⎭⎪⎫1n -1n +1,则S 2 022=2 0232 022⎝⎛⎭⎫1-12+12-13+…+12 022-12 023 =2 0232 022⎝⎛⎭⎫1-12 023=1, 故B 正确;对于C ,因为a n =12n ,所以S 2 022=12⎝⎛⎭⎫1-122 0211-12+a 2 022=1-122 021+a 2 022=1,则有a 2 022=122 021,故C 错误;对于D ,令S k =P (ξ≤k )=k 2a k , 则a k +1=S k +1-S k =(k +1)2a k +1-k 2a k , 故a k +1a k =k k +2, 所以a na n -1=n -1n +1(n ≥2),即(n +1)a n =(n -1)a n -1(n ≥2),故D 正确.16.(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一表二(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.解 (1)由题意可知,η的所有可能取值为23,8,5, 产品为一等品的概率为0.5×0.75×0.8=0.3, 产品为二等品的概率为(1-0.5×0.75)×0.8=0.5, 产品为三等品的概率为1-0.3-0.5=0.2, 所以η的分布列为E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x , 设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,所以一等品的概率为⎝⎛⎭⎫0.5+19x ×0.75×0.8=0.3+x 15,二等品的概率为⎣⎡⎦⎤1-⎝⎛⎭⎫0.5+x 9×0.75×0.8=0.5-x 15,三等品的概率为1-⎝⎛⎭⎫0.3+x 15-⎝⎛⎭⎫0.5-x15=0.2, 所以E (ξ)=⎝⎛⎭⎫0.3+x 15(23-x )+⎝⎛⎭⎫0.5-x15(8-x )+0.2×(5-x ) =6.9-0.3x +2315x -115x 2+4-0.5x -815x +115x 2+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.。
离散型随机变量及其分布列(基础+复习+习题+练习).docx
`课题:离散型随机变量及其分布列考纲要求:① 理解取有限个的离散型随机量及其分布列的概念,了解分布列于刻画随机象的重要性;②理解超几何分布及其推程,并能行的用.教材复习1.随机量:如果随机的果可以用一个量来表示,那么的量叫做随机量随机量常用希腊字母、等表示2.离散型随机量 : 于随机量可能取的,可以按一定次序一一列出,的随机量叫做离散型随机量若是随机量,a b ,其中 a 、b是常数,也是随机量3.型随机量:于随机量可能取的,可以取某一区的一切,的量就叫做型随机量4. 离散型随机量与型随机量的区与系: 离散型随机量与型随机量都是用量表示随机的果;但是离散型随机量的果可以按一定次序一一列出,而性随机量的果不可以一一列出5.离散型随机量的分布列:离散型随机量可能取的x1、 x2、⋯、 x i、⋯取每一个x i i 1,2,的概率P(x i ) p i,称表x1x2⋯x i⋯P p1p2⋯p i⋯随机量的概率分布,称的分布列6.离散型随机量分布列的两个性:任何随机事件生的概率都足: 0≤P( A)≤1,并且不可能事件的概率0 ,必然事件的概率 1.由此你可以得出离散型随机量的分布列都具有下面两个性:1p i≥0, i 1,2, ⋯;2 p1p2⋯1于离散型随机量在某一取的概率等于它取个各个的概率的和. 即P( ≥ x k ) P(x k ) P(x k 1 )7.两点分布:若随机量服从两点分布,即其分布列:X01其中 P P( X1) 称成功概率(表中 0 p 1 ).P 1 p p 8.几何分布:在独立重复中,某事件第一次生,所作的次数也是一个正整数的离散型随机量.“k”表示在第 k 次独立重复事件第一次生. 如果把k次事件 A 生A k、事件 A 不生A k,p( A k)p ,p( A k) q( q 1 p) ,那么P(k ) P( A1 A2 A3 L A k 1A k )P( A1 )P( A2 ) P( A3 ) L P( A k 1 )P(A k ) q k 1 p(k0,1,2, ⋯, q1p )于是得到随机量的概率分布如下:13k2⋯⋯`Ppqq 2 p q k 1 pp⋯⋯称 的随机 量服从几何分布,作 g( k, p)q k 1 p ,其中 k0,1,2, ⋯, q 1 p9.超几何分布: 一般地, 有 N 件 品, 其中有 M ( M ≤ N )件次品, 从中任取 n ( n≤ N )件 品,用 X 表示取出的 n 件 品中次品的件数,那么 P Xk(其中 k 非 整数). 如果一个随机 量的分布列由上式确定,那么称X 服从参数N , M , n 的超几何分布 .m12⋯C M 0 C N n 0MC M 1 C N n 1MC M 2 C N n 2MC M m C N n m MC N n C N nC N n ⋯C N n10. 求离散型随机变量分布列的步骤: 1 要确定随机 量 的可能取 有哪些 . 明确取每个 所表示的意 ; 2 分清概率 型, 算 取得每一个 的概率(取球、抽取品等 要注意是放回抽 是不放回抽 ; 3 列表 , 出分布列,并用分布列的性.11.几种常见的分布列的求法:1 取球、投骰子、抽取 品等 的概率分布,关是概率的 算 . 所用方法主要有化 法、数形 合法、 法等, 于取球、抽取 品等, 要注意是放回抽 是不放回抽.2 射 :若是一人 射 ,且限制在n次射 中 生k 次, 往往与二 分布 系起来;若是首次命中所需射 的次数, 它服从几何分布,若是多人射 ,一般利用相互独立事件同 生的概率 行 算.3 于有些 ,它的随机 量的 取与所 的关系不是很清楚,此 要仔 ,明确 中的含 ,恰当地 取随机 量,构造模型, 行求解.典例分析:考点一 由古典概型求离散型随机变量的分布列问题 1.( 2013天津)一个盒子里装有 7 卡片 , 其中有 色卡片 4 , 号分1,2,3,4 ;白色卡片 3 ,号分 2,3, 4 . 从盒子中任取 4 卡片 ( 假 取到任何一卡片的可能性相同 ). (Ⅰ ) 求取出的 4 卡片中 ,含有 号3 的卡片的概率 . ( Ⅱ ) 在取出的 4 卡片中 , 色卡片 号的最大X , 求随机 量 X 的分布列和数学期望 .`考点二由统计数据求离散型随机变量的分布列问题 2.2010()某食品厂了一条自包装流水的生情况,随机抽取流水上的40 件品作本称出它的重量(位:克),重量的分区490,495 ,495,500 ,⋯,510,515 ,由此得到本的率分布直方,如所示.1根据率分布直方,求重量超505 克的品数量.2 在上述抽取的40 件品中任取2 件, Y 重量超 505 克的品数量,求 Y 的分布列.3 从流水上任取 5 件品,求恰有 2 件品合格的重量超 505克的概率.考点二两点分布问题 3.一个盒子中装有5个白色玻璃球和6红色玻璃球,从中摸出两球. 当两球全为红色玻璃球时,记X 0 ;当两球不全为红色玻璃球时,记为X 1 .试求 X 的分布列.考点三超几何分布452问题 4.2012()已知箱中装有个白球和个黑球,且规定:取出一个白球的分,取出一个黑球的1分.现从该箱中任取( 无放回,且每球取到的机会均等) 3个球,记随机变量 X 为取出 3 球所得分数之和.1求 X 的分布列; 2 求 X 的数学期望 EX .走向高考:1.( 2012 )设为随机变量,从棱长为 1的正方体的 12 条棱中任取两条,当两条棱相交时,0 ;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.1 求概率P(0) ;2 求的分布列,并求其数学期望E( ) .2.( 2013)设袋子中装有a个红球, b 个黄球,c个蓝球,且规定:取出一个红球得 1分,取出一个黄球 2 分,取出蓝球得 3 分.1 当a3, b 2, c 1时,从该袋子中任取(有放回,且每球取到的机会均等)2 个球,记随机变量为取出此 2 球所得分数之和,. 求分布列; 2 略3.( 2011)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别. 公司准备了两种不同的饮料共 8 杯,其颜色完全相同,并且其中 4 杯为 A 饮料,另外 4 杯为 B 饮料,公司要求此员工一一品尝后,从8 杯饮料中选出 4 杯 A 饮料.若 4 杯都选对,则月工资定为 3500元;若 4 杯选对 3 杯,则月工资定为 2800 元;否则月工资定为2100 元.令 X`1 求 B 的分布列;2 求此员工月工资的期望.4.( 2011)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和 5 件,测量产品中微量元素x, y 的含量(单位:毫克). 下表是乙厂的 5 件产品的测量数据:编号12345x169178166175180y7580777081`12已知甲厂生产的产品共 98 件,求乙厂生产的产品数量;当产品中的微量元素 x, y 满足 x ≥ 175 且 y ≥ 75时,该产品为优等品, 用上述样本数据估计乙厂生产的优等品的数量;3 从乙厂抽出的上述 5 件产品中,随即抽取 2 件,求抽取的 2 件产品中优等品数的分布列及其均值(即数学期望).5.( 2013)某商 场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有 3 个红球与 4 个白球的袋中任意摸出 3 个球,再从装有 1 个蓝球与 2 个白球的袋中任意摸出 1个球,根据摸出4 个球中红球与蓝球的个数,设一.二.三等奖如下:奖级 摸出红、蓝球个数获奖金额一等奖 3红1200元蓝二等奖 3 红 0 蓝 50 元 三等奖2 红 1蓝10 元其余情况无奖且每次摸奖最多只能获得一个奖级 .`1 求一次摸奖恰好摸到1个红球的概率;2 求摸奖者在一次摸奖中获奖金额X 的分布列与期望 E X.。
一轮复习配套讲义:第11篇 第4讲 离散型随机变量及其分布列.pdf
X0 1 2 3
P
1 12
5 12
5 12
1 12
1.求分布列的关键是正确求出随机变量的所有可能值及对应的概率,要注意避
学海无涯
免分类不全面或计算错误. 2.注意运用分布列的两个性质检验求得分布列的正误. 3.求概率分布的常见类型 (1)根据统计数表求离散型随机变量的分布列; (2)由古典概型求离散型随机变量的分布列; (3)由互斥事件的概率、相互独立事件同时发生的概率及 n 次独立重复试验有 k 次发生的概率求离散型随机变量的分布列.
当两条棱相交时,X=0;当两条棱平行时,X 的值为两条棱之间的距离;当两条 棱异面时,X=1.求随机变量 X 的分布列. 解 若两条棱相交,则交点必为正方体 8 个顶点中的 1 个,过任意 1 个顶点恰有 3 条棱,所以共有 8C23对相交棱, 因此 P(X=0)=8CC12232=141, 若两条棱平行,则它们的距离为 1 或 2,其中距离为 2的共有 6 对, 故 P(X= 2)=C6212=111, 于是 P(X=1)=1-P(X=0)-P(X= 2)=1-141-111=161, 所以随机变量 X 的分布列是
-2012,PM2.5 日均值在 35 微克/立方米以下空气质量为一级;在 35 微克/立方
米~75 微克/立方米之间空气质量为二级;在 75 微克/立方米以上空气质量为超
学海无涯
标.
从某自然保护区 2013 年全年每天的 PM2.5 监测数据中随机地抽取 10 天的数据 作为样本,监测值频数如下表所示:
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量 X 可能取的不同值为 x1,x2,…,xi,…,xn,X 取每一个值 xi(i=1,2,…,n)的概率 P(X=xi)=pi,则表
高三理数一轮讲义:11.7-离散型随机变量及其分布列
第7节离散型随机变量及其分布列最新考纲 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.知识梳理1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i =1,2,…,n)的概率P(X=x i)=p i,则表X x1x2…x i…x nP p1p2…p i…p n称为离散型随机变量X的概率分布列.(2)离散型随机变量的分布列的性质:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.3.常见离散型随机变量的分布列(1)两点分布:若随机变量X服从两点分布,其分布列为,X 0 1P 1-p p其中p=P(X=1)称为成功概率.(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N1.判断下列结论正误(在括号内打“√”或“×”)(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.()(2)对于某个试验,离散型随机变量的取值可能有明确的意义,也可能不具有实际意义.()(3)如果随机变量X的分布列由下表给出,X 2 5P 0.30.7则它服从两点分布.()(4)一个盒中装有4个黑球、3个白球,从中任取一球,若是白球则取出来,若是黑球则放回盒中,直到把白球全部取出来,设取到黑球的次数为X,则X服从超几何分布.()2.(选修2-3P49练习2改编)抛掷一枚质地均匀的硬币2次,则正面向上次数X的所有可能取值是________.3.(选修2-3P77A1改编)已知离散型随机变量X的分布列为则常数q=________.4.(2018·菏泽联考)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为()A.1220 B.2755 C.27220 D.21555.(2019·郑州二模)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)=________.6.(2019·南宁二模改编)设随机变量X的概率分布列为X 123 4P 13m1416则P(|X-3|=1)=________. X 01 2 P 0.51-2q q2考点一 离散型随机变量分布列的性质【例1】 设随机变量X 的分布列为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求a 的值; (2)求P ⎝ ⎛⎭⎪⎫x ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710.规律方法 分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.(2)随机变量X 所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.【训练1】 随机变量X 的分布列如下:X -1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 考点二 超几何分布的应用典例迁移【例2】 (经典母题)(2017·山东卷改编)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.【迁移探究1】用X表示接受乙种心理暗示的男志愿者人数,求X的分布列.【迁移探究2】用X表示接受乙种心理暗示的女志愿者人数与男志愿者人数之差,求X的分布列.规律方法 1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.【训练2】(2018·天津卷节选)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列;②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.考点三求离散型随机变量的分布列【例3】(2019·豫南九校联考改编)为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X,求X的分布列.规律方法求随机变量分布列的主要步骤:(1)明确随机变量的取值,并确定随机变量服从何种概率分布;(2)求每一个随机变量取值的概率;(3)列成表格.对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步乘法计数原理求随机变量对应的概率.【训练3】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.[思维升华]1.对于随机变量X的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[易错防范]掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X 的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.(3)超几何分布是一种常见的离散型随机变量的概率分布模型,要会根据问题特征去判断随机变量是否服从超几何分布,然后利用相关公式进行计算.基础巩固题组(建议用时:40分钟)一、选择题1.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是()A.至少取到1个白球B.至多取到1个白球C.取到白球的个数D.取到的球的个数2.某射手射击所得环数X的分布列为则此射手“射击一次命中环数大于7”的概率为()A.0.28B.0.88C.0.79D.0.513.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A.ξ=4B.ξ=5C.ξ=6D.ξ≤54.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是()A.435 B.635 C.1235 D.363435.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P(ξ≤1)等于()A.15 B.25 C.35 D.45二、填空题6.若离散型随机变量X的分布列为则常数c的值为________.7.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤6)=________.8.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.三、解答题9.某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.6种坐法.(1)求n的值;(2)求随机变量X的概率分布列.能力提升题组(建议用时:20分钟)11.若P(ξ≤x2)=1-β,P(ξ≥x1)=1-α,其中x1<x2,则P(x1≤ξ≤x2)等于()A.(1-α)(1-β)B.1-(α+β)C.1-α(1-β)D.1-β(1-α)12.一只袋内装有m个白球,n-m个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X个白球,下列概率等于(n-m)A2mA3n的是()A.P(X=3)B.P(X≥2)C.P(X≤3)D.P(X=2)13.口袋中有5只球,编号为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的分布列为________.14.(2019·长沙模拟)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查结果进行整理后制成下表:(1)若从年龄在[15,25)和[25,35)这两组的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;(2)在(1)的条件下,令选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列.。
高考数学一轮复习 离散型随机变量及其分布列(理)课件
值的概率相同,则P(X>8)=________.P(6<X≤14)=
________.
解析:P(X>8)= 2,(6X≤14)2.
3
3
答案:
求一随机变量的分布列,可按下面的步骤: (1)明确随机变量的取值范围; (2)求出每一个随机变量在某一范围内取值的概率; (3)列成表格.
【注意】 (1)解决该类问题的关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后求出X取每一个值的概 率. (2)列出分布列后,要注意应用分布列的性质检验所求的分布 列或概率是否正确.
(2009·重庆高考)某单位为绿化环境,移栽了甲、乙两种大树
各2株.设甲、乙两种大树移栽的成活率分别为
,
且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数X的分布列与期望.
[解] 设Ak表示甲种大树成活k株,k=0,1,2, Bl表示乙种大树成活l株,l=0,1,2, 则Ak,Bl独立,由独立重复试验中事件发生的概率公式有
又P(X1)
P(X3)
P(X=2) P(X=4)
P(X5)
故X的分布列为:
X1
2
3
4
5
P
从而E(X)=1×
2.(2009·安徽高考)某地有A、B、C、D四人先后感染了甲型 H1N1流感,其中只有A到过疫区.B肯定是受A感染 的.对于C,因为难以断定他是受A还是受B感染的,于 是假定他受A和受B感染的概率都是 .同样也假定D受 A、B 和C感染的概率都是 .在这种假定之下,B、C、 D中直接受A感染的人数X就是一个随机变量.写出X的分 布列(不要 求写出计算过程),并求X的均值(即数学期望).
离散型随机变量及其分布列课件-2025届高三数学一轮复习
,所以
= =+=
又 = − , = + ,
根据分布列的性质,
得 ≤ − ≤
,
≤ +≤
,所以−
≤≤
.
.
离散型随机变量分布列的性质的应用
(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保
= = × ×
= = × ×
ቤተ መጻሕፍቲ ባይዱ
,
= ,
+ ×
+ ×
+ ×
.
= = × × =
× =
× =
× =
,
,
��
,
随机变量的分布列为
−
0
1
3
4
6
① ≥ = , , ⋯ , ;
1
② + + ⋯ + =④___.
2.两点分布
如果随机变量的分布列为:
0
1
(新高考题型版)高三高考数学一轮复习11.7 离散型随机变量的分布列及数字特征课件(92张)
n
(xi-E(X))2pi
= 13 ________i_=_1__________________为随机变量 X 的方差,有时也记为
Var(X),并称 DX为随机变量 X 的标准差,记为 σ(x).
(3)离散型随机变量方差的性质 ①设 a,b 为常数,则 D(aX+b)= 14 _____a_2_D_(_X_)______.
答案
解析 由离散型随机变量分布列的性质,得23+322+323+…+329+m=1, 得 m=1-23+322+323+…+329=1-2×1311--13319=139=319.故选 C.
解析
离散型随机变量分布列性质的应用
(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值 均为非负数.
(1)求 m 与 n 的值; (2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校 本选修学分 1 分,对进入“棋类”社的同学增加校本选修学分 2 分,对进 入“国学”社的同学增加校本选修学分 3 分.求该新同学在社团方面获得 校本选修课学分分数的分布列.
解 (1)依题意,得 13mn=214, 1-1-m1-131-n=34, m>n,
2.已知随机变量 X 的分布列为 P(X=k)=21k,k=1,2,…,则 P(2<X≤4)
=( )
A.136
B.14
C.116
D.156
解析 P(2<X≤4)=P(X=3)+P(X=4)=213+214=136.故选 A.
解析 答案
3.设某项试验的成功率是失败率的 2 倍,用随机变量 ξ 描述一次试验
解析
6.(2020·浙江高考)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7节离散型随机变量及其分布列最新考纲 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.知识梳理1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i =1,2,…,n)的概率P(X=x i)=p i,则表X x1x2…x i…x nP p1p2…p i…p n称为离散型随机变量X的概率分布列.(2)离散型随机变量的分布列的性质:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.3.常见离散型随机变量的分布列(1)两点分布:若随机变量X服从两点分布,其分布列为,X 0 1P 1-p p其中p=P(X=1)称为成功概率.(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N1.判断下列结论正误(在括号内打“√”或“×”)(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.()(2)对于某个试验,离散型随机变量的取值可能有明确的意义,也可能不具有实际意义.()(3)如果随机变量X的分布列由下表给出,X 2 5P 0.30.7则它服从两点分布.()(4)一个盒中装有4个黑球、3个白球,从中任取一球,若是白球则取出来,若是黑球则放回盒中,直到把白球全部取出来,设取到黑球的次数为X,则X服从超几何分布.()2.(选修2-3P49练习2改编)抛掷一枚质地均匀的硬币2次,则正面向上次数X的所有可能取值是________.3.(选修2-3P77A1改编)已知离散型随机变量X的分布列为则常数q=________.4.(2018·菏泽联考)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为()A.1220 B.2755 C.27220 D.21555.(2019·郑州二模)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)=________.6.(2019·南宁二模改编)设随机变量X的概率分布列为X 123 4P 13m1416则P(|X-3|=1)=________. X 01 2 P 0.51-2q q2考点一 离散型随机变量分布列的性质【例1】 设随机变量X 的分布列为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求a 的值; (2)求P ⎝ ⎛⎭⎪⎫x ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710.规律方法 分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.(2)随机变量X 所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.【训练1】 随机变量X 的分布列如下:X -1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 考点二 超几何分布的应用典例迁移【例2】 (经典母题)(2017·山东卷改编)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.【迁移探究1】用X表示接受乙种心理暗示的男志愿者人数,求X的分布列.【迁移探究2】用X表示接受乙种心理暗示的女志愿者人数与男志愿者人数之差,求X的分布列.规律方法 1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.【训练2】(2018·天津卷节选)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列;②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.考点三求离散型随机变量的分布列【例3】(2019·豫南九校联考改编)为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X,求X的分布列.规律方法求随机变量分布列的主要步骤:(1)明确随机变量的取值,并确定随机变量服从何种概率分布;(2)求每一个随机变量取值的概率;(3)列成表格.对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步乘法计数原理求随机变量对应的概率.【训练3】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.[思维升华]1.对于随机变量X的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[易错防范]掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X 的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.(3)超几何分布是一种常见的离散型随机变量的概率分布模型,要会根据问题特征去判断随机变量是否服从超几何分布,然后利用相关公式进行计算.基础巩固题组(建议用时:40分钟)一、选择题1.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是()A.至少取到1个白球B.至多取到1个白球C.取到白球的个数D.取到的球的个数2.某射手射击所得环数X的分布列为则此射手“射击一次命中环数大于7”的概率为()A.0.28B.0.88C.0.79D.0.513.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A.ξ=4B.ξ=5C.ξ=6D.ξ≤54.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是()A.435 B.635 C.1235 D.363435.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P(ξ≤1)等于()A.15 B.25 C.35 D.45二、填空题6.若离散型随机变量X的分布列为则常数c的值为________.7.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤6)=________.8.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.三、解答题9.某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.6种坐法.(1)求n的值;(2)求随机变量X的概率分布列.能力提升题组(建议用时:20分钟)11.若P(ξ≤x2)=1-β,P(ξ≥x1)=1-α,其中x1<x2,则P(x1≤ξ≤x2)等于()A.(1-α)(1-β)B.1-(α+β)C.1-α(1-β)D.1-β(1-α)12.一只袋内装有m个白球,n-m个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X个白球,下列概率等于(n-m)A2mA3n的是()A.P(X=3)B.P(X≥2)C.P(X≤3)D.P(X=2)13.口袋中有5只球,编号为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的分布列为________.14.(2019·长沙模拟)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查结果进行整理后制成下表:(1)若从年龄在[15,25)和[25,35)这两组的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;(2)在(1)的条件下,令选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列.。