实验4-5 RC一阶动态电路的响应

合集下载

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告实验报告:RC一阶电路的响应测试一、实验目的:1.掌握RC一阶电路的响应特性;2.了解RC一阶电路的时间常数对电路响应的影响;3.学会使用示波器观察电路的动态响应。

二、实验原理:由于充电或放电需要一定的时间,电路的响应是有延迟的。

根据电容充电时间常数τ的不同,可以将RC电路分为快速响应和慢速响应两种情况。

电容C的充电或放电方程为:i(t) = C * dV(t) / dt根据Ohm's Law,电路中的电流和电压之间的关系为:V(t) = VR(t) + VC(t) = i(t) * R + V0 * exp(-t/τ)其中,VR(t)是电阻R上的电压,VC(t)是电容C上的电压,V0是电路初始电压,τ=C*R是电路的时间常数。

当输入信号为直流电压时,电路将会处于稳态,电容将保持充电或放电状态,直到与电源电压相等。

当输入信号为瞬态电压时,电路将会发生响应,电容充放电的过程导致电压变化。

三、实验器材和仪器:1.RC电路板;2.直流电源;3.示波器;4.电阻和电容。

四、实验步骤:1.将示波器的地线和信号触发线接地。

2.按照实际电路中的元件数值,在RC电路板上连接电阻和电容。

3.将示波器的一个探头连接到电阻两端,另一个探头连接到电容的一端。

4.打开直流电源,设定合适的电压大小,使电路处于稳定状态。

5.调整示波器的触发模式和触发电平,保证波形稳定可观察。

6.增加或减小直流电压,观察电路响应,并记录波形。

7.改变电阻或电容的数值,重复步骤6,观察并记录不同响应特性。

8.关闭直流电源和示波器,取下电路连接。

五、实验数据及结果:实验中,我们首先建立了一个由1000Ω电阻和0.1μF电容串联组成的RC电路。

然后,我们分别给电路输入不同幅值和时间常数的矩形波信号,观察电路的响应。

1.输入直流电压的稳态响应:当输入直流电压时,电路处于稳态,电容已经充电到与电源电压相等的电压值。

实验四RC一阶电路的响应测试

实验四RC一阶电路的响应测试

实验四RC一阶电路的响应测试RC一阶电路的响应测试★实验一.实验目的1.测定RC一阶电路的零输入响应,零状态响应及完全响应2.学习电路时间常数的测量方法3.掌握有关微分电路和积分电路的概念二.原理说明1.动态网络的过渡过程是十分短暂的单次变化过程,对时间常数较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。

然而能用一般的双踪示波器观察过渡过程和测量有关的参数,必须使这种单次变化的过程重复出现,为次,我们利用信号发生器输出的方波来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号,只要选择方波的重复周期远大于电路的时间常数。

电路在这样的方波序列脉冲信号的激励下,它的影响和直流接通与断开的过渡过程是基本相同的。

2.RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数。

3.时间常数的测量方法:用示波器测得零输入响应的波形如图4-1(a)所示:根据一阶微分方程的求解得知U0 Ee t/Rc Ee t/当t= 时,U0 0.368E,此时所对应的时间就等于也可用零状态响应波形增长到0.368E所对应的时间测得,如图3-1(c)所示。

若将图4-2(a)中的R与C位置调换一下,即由C端作为响应输出,且当电路参数的选择满足=RC〉〉T/2条件时,如图4-2(b)所示即称为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比。

三.实验设备1.双踪示波器2.信号源(下组件)3.相应组件四.实验内容及步骤实验线路板的结构如图3-2所示,首先看懂线路板的走线,认清激励与响应端口所在的位置;认清R、C元件的布局及其标称值;各开关的通断位置等。

(1)选择动态电路板上的R、C元件,令R=10K ,C=3300pF组成如图4-1(b)所示的RC充放电电路,E为脉冲信号发生器输出VP P 2V,f=1KHz的方波电压信号,并通过示波器探头将激励源E和响应Uc的信号分别连至示波器的两个输入口Ya 和Yb,这时可在示波器的屏幕上观察到激励与响应的变化规律,来测时间常数,并用方格纸1:1的比例描绘波形。

一阶动态电路响应研究实验报告

一阶动态电路响应研究实验报告

一阶动态电路响应的研究实验目的:1.学习函数信号发生器和示波器的使用方法。

2.研究一阶动态电路的方波响应。

实验仪器设备清单:1.示波器 1台2.函数信号发生器 1台3.数字万用表 1块4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。

实验原理:1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。

积分电路和微分电路时RC一阶电路中典型的电路。

一个简单的RC串联电路,在方波序列脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路,其输出信号电压与输入电压信号成正比。

若在该电路中,由C两端的电压作为响应输出,则该电路为积分电路。

2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。

在零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。

线性动态电路的全响应为零输入响应和零状态响应之和。

实验电路图:实验内容:1.操作步骤、:(1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。

(2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示屏控制单位,使波形清晰,亮度适宜,位置居中。

(3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值在屏幕垂直方向上占6格。

(4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为0.2ms。

(5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。

(6).打开信号源开关,示波器CH1,CH2通道开关,观察示波器并记录其波形。

动态电路响应实验报告

动态电路响应实验报告

一、实验目的1. 了解动态电路的基本原理和特性;2. 掌握一阶动态电路的响应规律;3. 熟练使用示波器、信号发生器等实验仪器;4. 提高实验操作能力和数据处理能力。

二、实验原理动态电路是指电路中含有电容或电感元件的电路。

在动态电路中,电容和电感元件的电压与电流之间的关系可以用导数和积分来描述。

一阶动态电路的响应规律主要由时间常数决定,时间常数τ = RC或τ = L/R,其中R为电阻,C为电容,L为电感。

一阶动态电路的响应分为三种:零输入响应、零状态响应和完全响应。

零输入响应是指在没有外加激励的情况下,仅由电路的初始状态引起的响应;零状态响应是指在外加激励作用下,电路的初始状态为零时的响应;完全响应是零输入响应和零状态响应的和。

三、实验仪器与设备1. 示波器 1台;2. 信号发生器 1台;3. 函数信号发生器 1台;4. 电阻(R1K、R10K、R100K)各1个;5. 电容(C10uF、C100nF)各1个;6. 面包板 1个;7. 导线若干;8. 5V电源 1个。

四、实验内容与步骤1. 零输入响应实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)打开电源,使电容充电至5V;(3)断开电源,观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

2. 零状态响应实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)打开电源,使电容放电;(3)观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

3. 完全响应实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)打开电源,使电容充电至5V,然后断开电源;(3)观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

4. 方波激励实验(1)搭建RC电路,电阻R取100KΩ,电容C取10uF;(2)使用函数信号发生器输出频率为1kHz,峰峰值为5V的方波信号;(3)观察电容电压随时间的变化,并记录数据;(4)重复实验多次,确保数据的准确性。

一阶动态电路的全响应及三要素法

一阶动态电路的全响应及三要素法
释放出来消耗在电阻中,达到新稳态时,电感电流为 零,即
iL(∞)= 0
(3)求时间常数τ
R 20 (10 10) 10 k 20 10 10
L 10 3 10 7 s
R 10 103
根据三要素法,可写出电感电流的解析式为
iL(t)= 0 +(10×10-3–0)e107=t 10 e mA 107t
i
L
()
US R2
10 20
05A
1
L R2
2 20
0 1s
根据三要素公式得到
iL(t)= 0.5(1 - )e1A0t (0.1s≥t要素法,先求t = 0.1 s时刻的初始值。根 据前一段时间范围内电感电流的表达式可以求出在t = 0.1 s时刻前一瞬间的电感电流
2 10 20
0 0667 s
根据三要素公式得到:
t 01
iL (t) iL (0 1 ) e 2 0 316 e15(t01) A (t≥0.1 s)
电感电流iL(t)的波形曲 线如右图所示。在t=0时, 它从零开始,以时间常数 τ1=0.1 s确定的指数规律增 加到最大值0.316A后,就 以时间常数τ2=0.0667s确 定的指数规律衰减到零。
【例14-3】
下图(a)所示电路原处于稳定状态。t = 0时开关 闭合,求t ≥0的电容电压uC(t)和电流i(t)。
解:(1)计算初始值uC(0+)
开关闭合前,图(a)电路已经稳定,电容相当于 开路,电流源电流全部流入4Ω电阻中,此时电容电 压与电阻电压相同,可求得
uC(0+)= uC(0 -)= 4Ω×2 A = 8V
t ln iL (0 ) iL () 0 005 ln 0 75 1 5 0 002 s

动态电路的实验报告

动态电路的实验报告

一、实验目的1. 理解动态电路的基本原理和特性。

2. 掌握动态电路的时域分析方法。

3. 学习使用示波器、信号发生器等实验仪器进行动态电路实验。

4. 通过实验验证动态电路理论,加深对电路原理的理解。

二、实验原理动态电路是指电路中含有电容或电感的电路。

动态电路的特点是电路中的电压、电流随时间变化,其响应具有延时特性。

本实验主要研究RC一阶动态电路的响应。

RC一阶动态电路的零输入响应和零状态响应分别由电路的初始状态和外加激励决定。

零输入响应是指在电路没有外加激励的情况下,由电路的初始状态引起的响应。

零状态响应是指在电路初始状态为零的情况下,由外加激励引起的响应。

三、实验仪器与设备1. 示波器:用于观察电压、电流随时间的变化。

2. 信号发生器:用于产生方波、正弦波等信号。

3. 电阻:用于构成RC电路。

4. 电容:用于构成RC电路。

5. 电源:提供实验所需的电压。

6. 导线:用于连接电路元件。

四、实验步骤1. 构建RC一阶动态电路,连接好实验仪器。

2. 设置信号发生器,输出方波信号,频率为1kHz,幅度为5V。

3. 使用示波器分别观察电容电压uc和电阻电压ur的波形。

4. 改变电路中的电阻R和电容C的值,观察电路响应的变化。

5. 记录实验数据,分析实验结果。

五、实验结果与分析1. 当电阻R和电容C的值确定后,电路的零输入响应和零状态响应分别如图1和图2所示。

图1 零输入响应图2 零状态响应从图中可以看出,零输入响应和零状态响应均呈指数规律变化。

在t=0时刻,电容电压uc和电阻电压ur均为0。

随着时间的推移,电容电压uc逐渐上升,电阻电压ur逐渐下降,最终趋于稳定。

2. 当改变电阻R和电容C的值时,电路的响应特性发生变化。

当电阻R增大或电容C减小时,电路的响应时间延长,即电路的过渡过程变慢;当电阻R减小或电容C增大时,电路的响应时间缩短,即电路的过渡过程变快。

3. 通过实验验证了动态电路理论,加深了对电路原理的理解。

实验五RC一阶电路的零输入响应和零状态响应ppt

实验五RC一阶电路的零输入响应和零状态响应ppt

-
t

零状态的一阶电路 一阶电路的响应曲线
电路的过渡过程是 输出信号 十分短暂的变化过程。 用一般示波器观察过渡 过程,必须使之重复出 现。为此,用方波来模 0 T/2 T t 拟阶跃激励信号,方波 的上升沿作为零状态响应的正阶跃激励信号; 方波下降沿作为零输入响应的负阶跃激励信号, 只要选择方波的重复周期远大于电路的时间常 数。 电路在这样的方波信号的激励下,是和直 流电路接通与断开的过渡过程是基本相同的。
改变电阻或电容参数时数值应拉大些二电容应用专用仪器测得其容量后再计算三要正确操作示波波器注意选取电压的测量功能四在不同电阻参数的电路中其时间常数要用示波器测量和理论计算五积分电路因为是积分信号输出其时间常数不用测量六各种特性图要分别用坐标纸绘制并作出比较七科学合理实用地制定一个综合数据表格rc充放电路积分电路微分电路10k33247410uf100uf100001uf1k10k100k
U
て》T/2
+ US -
R
C
UC
输入方波信号
0
1/2T
T
相位差
t
输 入
US (V) F R C U
输 出
测 计
1 2 3
U
0 U T/2 T
输入信号 U t 0 U T/2 T t
0 U
T/2
T
t 输出信号 0 U T/2 T t
相位差
0 U
T/2
T
t 0 U T/2 T t
0
T/2
T
t
0
RC一阶电路的零输入响应和零状态响应分别按指数规律 衰减和增长,其变化的快慢决定于电路的时间常数 。一阶网 络在没有输入信号作用时,由电路中动态元件的初始贮能所产 生的响应,就是零输入响应。

广工一阶动态电路响应的研究实验报告

广工一阶动态电路响应的研究实验报告

广工一阶动态电路响应的研究实验报告一阶动态响应实验报告一阶动态电路的响应测试实验报告1.实验摘要1、研究RC电路的零输入响应和零状态响应。

用示波器观察响应过程。

电路参数:R=100K、C=10uF、Vi=5V2.从响应波形图中测量时间常数和电容的充放电时间2.实验仪器5V电源,100KΩ电阻,10uF电容,示波器,导线若干2.实验原理(1)RC电路的零输入响应和零状态响应(i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。

t=0时,电容电压uc(0)称为电路的初始状态。

(ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。

(iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。

(iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法:用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632Um所对应的时间测得,即电容充电的时间t.(2)测量电容充放电时间的电路图如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A.4实验步骤和数据记录(i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。

一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告1.实验摘要1、研究RC电路的零输入响应和零状态响应。

用示波器观察响应过程。

电路参数:R=100K、C=10uF、Vi=5V2.从响应波形图中测量时间常数和电容的充放电时间2.实验仪器5V电源,100KΩ电阻,10uF电容,示波器,导线若干2.实验原理(1)RC电路的零输入响应和零状态响应(i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。

t=0时,电容电压uc(0)称为电路的初始状态。

(ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。

(iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。

(iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法:用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t.(2)测量电容充放电时间的电路图如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A.4实验步骤和数据记录(i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。

实验四 一阶电路响应研究

实验四   一阶电路响应研究

实验四一阶电路响应研究1.一. 实验目的通过实验, 掌握用简单的R-C一阶电路观测零输入响应、零状态响应和完全响应的实验方法。

2.学习电路时间常数的测量方法。

3.掌握有关微分电路和积分电路的的概念。

二. 实验仪器设备仿真软件平台(Multisim 10);硬件基础电路实验箱。

双踪示波器、直流稳压电源、万用表、直流电流表、电压表。

三. 实验原理一阶电路的零输入响应零状态响应和完全响应分别按指数规律衰减和增长, 其变化的快慢决定于电路的时间常数τ, 实验电路如图4-1所示。

四. 实验内容1..Multisi.平台上连接电路并进行瞬态分析观.R.低通和高通一阶电路响应,记录.形;根据所绘出的响应曲线求出时间常数.,与理论计算值进行比较.2.以下内容要求先进行仿真实验, 然后在实验室物理平台上按以下步骤完成实验。

3.连接一个能观测零输入响应、零状态响应和完全响应的电路图(参考图4-1)。

分别观测该电路的零输入响应、零状态响应和完全响应的动态曲线。

a.零输入响应先连接K2.K3, 使+5V直流电源对电容C 充电, 当充电完毕后, 断开K3 连接K4, 用示波器观测Uc(t)的变化。

b. 零状态响.先连接K4, 使电容两端的电压放电完毕, 然后断开K4 连接K3.K1, 用示波器观测15V直流电压向电容C的充电过程。

c. 完全响.五.先连接K4, 使电容两端电压通过R-C回路放电, 一直到零为止。

然后连接K3.K2, 使5V电源向电容充电, 待充电完毕后, 将短路帽连接K1, 使15V 电源向电容充电, 用示波器观测Uc(t)的完全响应。

六.3.用示波器观.R.低通一阶电路的响应.用信号发生器输出的方波来模拟阶跃激励信号, 即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的.复周期远大于电路的时间常.., 一般要求方波的周.T>10., 那么电路在这样的方.序列脉冲信号的激励下, 它的响应就和直流电接通与断开的过渡过程是基本相同的. 观.R.低通一阶电路的响应;改.R.(R=10.., C=0.01..), 输入方波信号...=3..f=1K..), 在示波器的屏幕上观察到激励与响应的变化规律, 请测算出时间..., 并用方格纸.1:.的比例描绘波形。

4.5 一阶RC电路的暂态过程分析

4.5 一阶RC电路的暂态过程分析

4.5 一阶RC 电路的暂态过程分析一、实验目的1.学习用示波器观察和分析RC 电路的响应。

2.了解一阶RC 电路时间常数对过渡过程的影响,掌握用示波器测量时间常数。

3.进一步了解一阶微分电路、积分电路和耦合电路的特性。

二、实验原理1.一阶RC 电路的全响应=零状态响应+零输入响应。

当一阶RC 电路的输入为方波信号时,一阶RC 电路的响应可视为零状态响应和零输入响应的多次重复过程。

在方波作用期间,电路的响应为零输入响应,即为电容的充电过程;在方波不作用期间,电路的响应为零输入响应,即为电容的放电过程。

方波如图4.5.1所示。

图4.5.1 方波电压波形 图4.5.4 测常数和积分电路接线2.微分电路如图4.5.2所示电路,将RC 串联电路的电阻电压作为输出U 0,且满足τ ‹‹ t w 的条件,则该电路就构成了微分电路。

此时,输出电压U 0近似地与输入电压U i 呈微分关系。

dt du RC U i O 图4.5.2 微分电路和耦合电路接线 图4.5.3 微分电路波形微分电路的输出波形为正负相同的尖脉冲。

其输入、输出电压波形的对应关系如图4.5.3所示。

在数字电路中,经常用微分来将矩形脉冲波形变换成尖脉冲作为触发信号。

3.积分电路积分电路与微分电路的区别是:积分电路取RC 串联电路的电容电压作为输出U 0,如图4.5.4所不电路,且时间常数满τ ››t w 。

此时只要取τ=RC ››t w ,则输出电压U 0近似地与输入电压U i 成积分关系,即⎰≈t i O d u RC U 1积分电路的输出波形为锯齿波。

当电路处于稳态时,其波形对应关系如图3.5.5所示。

注意:U i 的幅度值很小,实验中观察该波形时要调小示波器Y 轴档位。

图4.5.5 积分电路波形 图4.5.6 耦合电路波形4.耦合电路RC 微分电路只有在满足时间常数τ=RC ‹‹ t w 的条件下,才能在输出端获得尖脉冲。

如果时间常数τ=RC ››t w ,则输出波形已不再是尖脉冲,而是非常接近输出电压U i 的波形,这就是RC 耦合电路,而不再是微分电路。

rc一阶电路的动态过程研究实验报告

rc一阶电路的动态过程研究实验报告

rc一阶电路的动态过程研究实验报告
实验原理:RC一阶电路由电阻R和电容C组成,当电路受到外部信号刺激时,电容器内的电荷会发生变化,电压也会随之变化。

在电路刚开始受到刺激时,电容器内的电压会迅速上升,但随着时间的推移,电容器内的电压将会越来越接近于稳定值。

这种电路的动态过程可以用RC电路的响应特性来描述。

实验步骤:
1. 将电阻R和电容C按照电路图连接,连接方法为并联式连接。

2. 将信号发生器输出方波信号,并调节幅度和频率。

3. 将示波器的探头接入电路中,调节示波器的时间基准和输入放大倍数。

4. 记录电路的动态响应过程,包括电压的上升和下降过程,以及电压稳定后的波形。

5. 改变电阻和电容的数值,重复实验步骤4,比较不同参数对电路响应的影响。

实验结果:实验结果表明,RC一阶电路的动态响应过程与电阻和电容的数值有关。

当电容值较小时,电路响应较快,电容值较大时,电路响应较慢。

当电阻值较小时,电路的稳态响应较小,电阻值较大时,电路的稳态响应较大。

此外,频率和幅度的变化也会影响电路的响应特性。

在实验中,我们观察到电路响应的波形是指数衰减的,这是由RC电路的特性所决定的。

结论:通过实验研究,我们深入了解了RC一阶电路的动态响应
过程特性及其参数对电路响应的影响。

这对于工程应用和电路设计具有重要意义。

一阶RC电路的阶跃响应

一阶RC电路的阶跃响应

基础知识
01
一阶RC电路
阶跃响应
02
03
时间常数
由一个电阻R和一个电容C串联组 成的电路。
当电路的输入从一个电压值突然 跳变到另一个电压值时,电路的 输出随时间变化的特性。
决定RC电路动态响应快慢的参数 ,等于RC的乘积。
02
CATALOGUE
一阶RC电路的原理
电容和电阻的基本原理
电容
电容是一种存储电荷的电子元件,其基本单位是法拉。电容的基本原理是电荷在电场中会受到电场力 的作用,从而在电容的两极板上积聚电荷。电容的充电和放电过程就是电荷在电容两极板之间移动的 过程。
集成RC电路
将多个一阶RC电路集成在一块芯片上,实现小型 化、集成化的信号处理功能。
参数优化
通过优化一阶RC电路的元件参数,可以进一步提 高电路的性能。
一阶RC电路和其他电路的比较和分析
与RL电路的比较
一阶RC电路和RL电路在阶跃响应上有显著差异,RC电路的响应 速度更快。
与二阶RLC电路的比较
二阶RLC电路具有更复杂的动态特性,可以用于实现更高级的信号 处理功能。
02
欠阻尼响应:系统对阶跃输入的响应速度较慢,输出在一段时间内会 持续振荡。
03
过阻尼响应:系统对阶跃输入的响应速度较快,输出在一段时间内会 迅速达到稳态值,不会发生振荡。
04
临界阻尼响应:系统对阶跃输入的响应速度最快,输出在极短时间内 达到稳态值,且不会发生振荡。
阶跃响应的特点
阶跃响应具有非线性 特性,其输出与输入 之间通常不是线性关 系。
一阶RC电路的阶跃 响应
目录
• 引言 • 一阶RC电路的原理 • 阶跃响应的概念 • 一阶RC电路的阶跃响应分析 • 实验和模拟 • 应用和扩展

RC一阶电路的响应测试实验内容

RC一阶电路的响应测试实验内容

实验五RC—阶电路的响应测试一、实验目的1.测定RC-阶电路的零输入响应、零状态响应及全响应。

2.掌握有关微分电路和积分电路的概念。

3.学会时间常数T的测定方法。

4.进一步学会用示波器观测波形。

二、原理说明图5」所示的矩形脉冲电压波5可以看成是按照一定规律定时接通和关断的直流电压源U。

若将此电压5加在RC串联电路上(见图5.2),则会产生一系列的电容连续充电和放电的动态过程,在5的上升沿为电容的充电过程,而在5 的下降沿为电容的放电过程。

它们与矩形脉冲电压5的脉冲宽度匕及RC串联电路的时间常数T有十分密切的关系。

当5不变时,适当选取不同的参数,改变时间常数T,会使电路特性发生质的变化。

图5.1矩形脉冲电压波形图5.2 RC串联电路图1 • RC 一阶电路的零状态响应所有储RC喚+ u - U °的电路%(t) = U 卢响应。

电路的微分方程为:RC dt +%-U叫其解为(• 忒八一丿,式中,T=RC为该电路的时间常数。

2.RC-阶电路的零输入响应电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。

电路达到'* ciu c- •'器经R放I V各响应为零输入响应。

电路的微分方程为:RC盂十%"其解为%(t)= U m e \RC —阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图5.3 所示),其变化的快慢决定于电路的时间常数T。

3.时间常数T的测定方法方法一:在已知电路参数的条件下,时间常数可以直接由公式计出,T=RC。

方法二:对充电曲线(零状态响应),电容的端电压达到最大值的1二(约0.632)倍时所需要的时间即是时间常数T。

如图5.3 (a)所示,用示波器观测响应波形, 取上升曲线中波形幅值的0.632倍处所对应的时间轴的刻度,计算出电路的时间常数:丫 =扫描时间X 0P其中,扫描时间是示波器上x轴扫描速度开关“t/div”的大小。

RC一阶电路的响应测试实验内容精修订

RC一阶电路的响应测试实验内容精修订

R C一阶电路的响应测试实验内容集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#实验五 RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及全响应。

2. 掌握有关微分电路和积分电路的概念。

3. 学会时间常数τ的测定方法。

4. 进一步学会用示波器观测波形。

二、原理说明图所示的矩形脉冲电压波u i可以看成是按照一定规律定时接通和关断的直流电压源U。

若将此电压u i加在RC串联电路上(见图),则会产生一系列的电容连续充电和放电的动态过程,在u i的上升沿为电容的充电过程,而在u i的下降沿为电容的放电过程。

它们与矩形脉冲电压u i的脉冲宽度t w及RC串联电路的时间常数τ有十分密切的关系。

当t w不变时,适当选取不同的参数,改变时间常数τ,会使电路特性发生质的变化。

图矩形脉冲电压波形图 RC串联电路图1. RC一阶电路的零状态响应所有储能元件初始值为0的电路对于激励的响应称为零状态响应。

电路的微分方程+u C=U m,其解为u C(t)=U m(1−e−tτ) (t≥0),式中,τ=RC为该电路的为:RC du Cdt时间常数。

2. RC一阶电路的零输入响应电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。

电路达到稳态后,电容器经R放电,此时的电路响应为零输入响应。

电路的微分方程为:RC du C+u C=0,其解为u C(t)=U m e−tτ。

dtRC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图所示),其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法方法一:在已知电路参数的条件下,时间常数可以直接由公式计算得出,τ=RC。

方法二:对充电曲线(零状态响应),电容的端电压达到最大值的1−1e(约)倍时所需要的时间即是时间常数τ。

如图(a)所示,用示波器观测响应波形,取上升曲线中波形幅值的倍处所对应的时间轴的刻度,计算出电路的时间常数:τ=扫描时间×OP其中,扫描时间是示波器上X轴扫描速度开关“t/div”的大小。

电路仿真实验报告——RC一阶电路的响应测试

电路仿真实验报告——RC一阶电路的响应测试

RC 一阶电路的响应测试一.实验目的1.测定RC一阶电路的零输入相应,零状态响应及完全响应2.学习电路时间常数的测定方法3.掌握有关微分电路和积分电路的概念4.进一步学会用示波器测绘图形二.原理说明动态网络的过渡过程是身份短暂的单次变化过程,对时间常数较大的电路,可以用扫描长的余辉示波器观察光点的移动轨迹。

然而能用一般的双踪示波器观察过渡过程和测有段数据的,必须使用这种单次变化的过程重复出现。

为此,我们利用信号发生器来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶阶跃信号;方波的下降沿作为零输入响应的负阶阶跃信号。

RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢取决于电路的时间常数。

微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输出信号的周期有着一定得要求。

一个简单的RC串联电路,在方波序列脉冲的重复激励下,且由R端作为响应作为输入。

三.实验仪器函数信号发生器*1;双踪示波器*1.四.实验内容及步骤1.按照实验内容在仿真软件上建立好如下电路图:2.设置信号发生器的参数为U=3V,f=1KHz,点击运行,示波器显示如下:3.将示波器接在电阻两端,观察示波器如下:4.令R=10KΏ,C=3300PF,重复上述步骤,示波器显示如下:5.令C=3300PF,R=30KΏ,重复上述测量,示波器显示如下:五.实验总结1,仿真实验与真实实验的差别。

仿真实验是利用计算机编制程序来模拟实验进程的行为。

要进行仿真实验需要大量的参数,还要一个符合真实情况运行的程序。

仿真实验的参数都是通过前人大量的实验得到的。

仿真实验的目的就是节省原料,同时仿真实验的结果和真实实验的结果对照,可以检验各种从实验中归纳出来的定理定律是否正确。

同时实验室做实验的时候存在实验环境的限制,大多数时候的出来的数据与理论存在一定的偏差,因此会对实验结论的得出有一定的影响,在直观性上远不及仿真实验。

一阶动态电路响应实验报告 -回复

一阶动态电路响应实验报告 -回复

一阶动态电路响应实验报告-回复本个实验通过测试电路中的电压变化来研究一阶动态电路响应的特性。

在试验中,我们使用了一个RC 电路作为模型来研究电路中的电压变化,通过测量过渡过程中的电压变化和时间,进一步确定电路的时间常数和响应特性。

通过实验数据的分析,我们得出了电路的时间常数和阶跃响应曲线。

【关键词】一阶动态电路、响应特性、时间常数、阶跃响应曲线【实验目的】1. 了解一阶动态电路的基本原理和特性。

2. 掌握一阶动态电路的测试方法。

3. 通过实验验证一阶动态电路的时间常数和响应特性。

【实验原理】1. 一阶动态电路的基本原理一阶动态电路是一种简单的电路,它包含一个电阻和一个电容器。

电容器可以存储电能,电阻可让电容器内的电压平稳地释放。

该电路的特性是,当电路上有电压变化时,电容器内储存的电能会在一段时间内逐渐释放,直到电容器内的电荷完全消耗。

2. 一阶动态电路的响应特性一阶动态电路的响应特性可以通过两个参数来描述:时间常数和阶跃响应曲线。

时间常数是指电路中电容器放电至原电压的63.2% 所需的时间。

阶跃响应曲线则是电路输入突变信号时输出电压随时间的变化曲线。

【实验器材】示波器1 台、函数信号发生器1 台、电源1 台、电阻箱1 台、电容器1 台、万用表1 台【实验步骤】1. 按图1 连接RC 电路。

2. 将示波器和函数信号发生器分别接入电路。

3. 在函数信号发生器上设置一个方波信号,其幅度为5V,频率为1kHz。

4. 打开电源并调整函数信号发生器的幅度和频率,使得输入信号的幅度和频率符合实验要求。

5. 用示波器观察电路的输入和输出波形,并记录数据。

6. 分析数据,并绘制阶跃响应曲线。

7. 根据数据计算电路的时间常数,并与实验值进行比较。

【实验数据】时间(ms) 电压(V)0 0.000.2 0.400.4 1.000.6 2.800.8 3.801.0 4.00【数据分析】通过实验测量结果,我们可以得到该电路的阶跃响应曲线(如图2 所示)。

RC一阶电路动态特性频率响应研究精

RC一阶电路动态特性频率响应研究精

9 RC 一阶电路(动态特性频率响应)一个电阻和一个电容串联起来的RC电路看起来是很简单的电路。

实际上其中的现象已经相当复杂,这些现象涉及到的概念和分析方法,是电子电路中随处要用到的,务必仔细领悟。

9.1零输入响应1.电容上电压的过渡过程先从数学上最简单的情形来看RC电路的特性。

在图9.1中,描述了问题的物理模型。

假定RC电路接在一个电压值为 V的直流电源上很长的时间了,电容上的电压已与电源相等(关于充电的过程在后面讲解),在某时刻to突然将电阻左端 S接地,此后电容上的电压会怎么变化呢?应该是进入了图中表示的放电状态。

理论分析时,将时刻t 0取作时间的零点。

数学上要解一个满足初值条件的微分方程。

图9.1亂电路的零输入响应(电容落地)dv C i = C 看放电的电路图,设电容上的电压为v C,则电路中电流dt依据KVL定律,建立电路方程:dv CV c +R^ —— = 0dt初值条件是v C(0)= V像上面电路方程这样右边等于零的微分方程称为V c (t)= Ke st设其解是一个指数函数:K和S是待定常数。

代入齐次方程得约去相同部分得Ke st + RCKSe St1+RCS=0=0于是齐次方程通解1S =-——RCt v C(t)= Ke-RC还有一个待定常数最后得到: K要由初值条件来定:tv C (t )= Ve RC=Ve-t' Tv C(0)= Ke 0 = K = V齐次方程。

RC理论分析取作时间0点在上式中,引入记号T= RC,这是一个由电路元件参数决定的参数,称为时间常数。

它有什么物理意义呢?在时间t = T处,vc g uVe FJ Ve-1 = 0.368 V时间常数泥电容上电压下降到初始值的1/e= 36.8%经历的时间。

当t = 4 T时,V c(4d= 0.0183V,已经很小,一般认为电路进入稳态。

数学上描述上述物理过程可用分段描述的方式,如图9.1中表示的由V到0的“阶跃波”的输入信号,取开始突变的时间作为时间的0点,可以描述为:v s(t)= V(对t <0);v s(t)=0(对t >0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4-5 RC 一阶动态电路的响应
班级: 6班 姓名: 韩特 学号:1121000198
实验班次 实验台编号 个人数据
表4-5-1 表4-5-2 表4-5-3 表4-5-4 f(Hz) R(Ω) f(Hz) R(Ω) f(Hz) R(Ω) f(Hz) R(Ω) 6
22
2k
5k
1k
10k
10k
51
10k
10k
一、 实验目的
1. 测定一阶RC 动态电路的零输入响应、零状态响应及全响应;
2. 学习动态电路时间常数的测量方法;
3. 掌握微分电路、积分电路的基本概念; 二、 理论计算公式
1. 时间常数 RC =τ
2. 积分电路 ⎰⎰==t
0t 0011dt u RC
dt i C u s c t C 3. 微分电路
dt
du RC
dt du RC Ri u s
c c R ===
4. 电容充电
)
1(τt
s c e U u --=
5. 电容放电 τ
t
s c e
U u -
=
三、 实验电路
XSC1
A B
Ext Trig
+
+
_
_
+_
XFG1
R12kΩ
C13.3nF
C210nF
J2
Key = Space
图4-5-1 积分电路(充放电过程)的仿真实验电路
图4-5-2 积分电路(充放电过程)的实测实验电路
XSC1
A B
Ext Trig
+
+
_
_
+_
XFG1
J1
Key = Space
R11.0kΩ
C1100nF C2
10nF
图4-5-3 微分电路(耦合电路)的仿真实验电路
图4-5-4 微分电路(耦合电路)的实测实验电路
四、实验数据表
表4-5-1 不同参数时的RC电路充、放电过程
个人数据R=5kΩ,C=3300pF R=5kΩ,C=0.01μF
计算值τ(μs)τ= RC =5kΩ*3300pF=16.504μs τ= RC=5kΩ*0.01μF =50μs 仿真值τ(μs)15.055μS 53.731μS
实测值τ(μs)27.00μS 250μS
仿真波形
实测波形
实测示波器档位和时间常数X轴:250 μS/Div X轴: v 250 μS/Di 1周期格数:8 1周期格数:8
波形周期: 1 波形周期: 1
Y轴: 1 V/Div Y轴: 1 V/Div
峰值格数: 2 峰值格数: 2
波形幅值: 4 波形幅值: 4
电压升至峰值的63%处的格数; 2.5 电压升至峰值的63%处的格数: 2.5
时间常数τ实测值:30μS 时间常数τ实测值:300μS
个人数据R=10kΩ,C=0.1μF R=10kΩ,C=0.2μF 仿真波形
实测波形
表4-5-3 RC微分电路的波形
个人数据R=51Ω,C=0.1μF R=51Ω,C=0.01μF 仿真波形
实测波形
个人数据R=10kΩ,C=0.1μF R=10kΩ,C=1μF 仿真波形
实测波形
五、实验结论
电压源幅值为U S的方波信号。

1.时间常数
⑴电容电压u C的零输入响应(放电)
⑵电容电压u C的零状态响应(充电)
2.积分电路
3.微分电路
4.耦合电路。

相关文档
最新文档