北师大版必修一数学5.1简单的幂函数
高中数学 2.5《简单的幂函数》课件(1) 北师大版必修1
规律方法 幂函数的表达式 y=xα(α∈R)比较严格,它的系数是 1,底数是 x,α∈R 是常数;研究幂函数的性质常借助图像.
【训练 1】 画出幂函数 y= 的图像,并讨论其单调性. 解 幂函数 y= 的图像如图所示.
从图像看出,函数 y= 在[0,+∞)上是增函数.
证明 设 x1>x2≥0. 则 y1-y2= x1- x2= xx11- +x2x2. ∵x1>x2, ∴x1-x2>0,且 x1,x2 不同时为 0, ∴ x1+ x2>0, ∴y1-y2>0,即 y= 是[0,+∞)上的增函数.
题型二 函数奇偶性的判定 【例 2】 判断下列函数是否具有奇偶性: (1)f(x)= 1-x2+ x2-1;(2)f(x)=a(a∈R); (3)f(x)=3 2x+52-3 2x-52; (4)f(x)=x4+2x2;(5)f(x)= |x1-1|; (6)f(x)=12-x212+x21-x1>x0<,0.
【训练 3】 已知函数 f(x)的定义域是 x≠0 的一切实数,对定义 域内的任意 x1、x2 都有 f(x1·x2)=f(x1)+f(x2),且当 x>1 时 f(x) >0,f(2)=1. (1)求证:f(x)是偶函数; (2)求证:f(x)在(0,+∞)上是增函数; (3)试比较 f-52与 f74的大小.
2.奇偶函数的简单性质 (1)奇函数的图像关于原点对称;偶函数的图像关于 y 轴对称; 由对称性画图、解题非常方便; (2)奇函数在 x=0 处有定义时,必有 f(0)=0; (3)奇函数在关于原点对称的集合上单调性一致;偶函数在关于 原点对称的集合上单调性相反; (4)任意一个定义域关于原点对称的函数都能写成一个奇函数 与一个偶函数的和.
自学导引
1.幂函数的概念
北师大版数学必修一《简单的幂函数》教学课件
=3x2 及 y=2 均不符合幂函数的形式 y=xα, 故均不是 幂函数.
2.若奇函数f(x)在x=0处有意义,则f(0)是什么? 【提示】 由奇函数定义,f(-x)=-f(x),则f(-0)=-f(0),∴f(0)=0.
幂函数的概念
下列函数中是幂函数的是( ) ①y=-x2;②y=2x;③y=xπ;④y=(x-1)3; 1 1 ⑤y= 2;⑥y=x2+ . x x A.①③⑤ C.③⑤ B.①②⑤ D.只有⑤
yx ;
1 2
(2)观察上面的函数图象会发现以下特征: ①图象都过点(1,1). ②在第一象限内函数y=x,y=x2,y=x3, y
x
1 2
的图象自左向右看都是
上升的,也就是在[0,+∞)上都是增函数,且这几种函数的图象都过原点. ③函数y=x-1的图象在第一象限内自左向右看是下降的,即y=x-1在(0, +∞)上是减函数.
【思路点拨】 依据幂函数的定义进行判断.
【解析】 y=-x2 幂前系数是-1 而不是 1,故不是幂函数; y=2x 指数不是常量,不是幂函数;y=(x-1)3 的底数是 x-1 而不是 x,故不是 1 1 幂函数; y=x2+ 是两个幂函数和的形式, 也不是幂函数.y= 2=x-2 和 y=xπ 具有 x x 幂函数 y=xα 的形式,所以选
解决有关幂函数问题的关键是会定性分析
x
q p
中,p,q
为正、负、奇、偶等各种情况的大体图象,要从函数的奇偶性、单调性出 发对函数进行探讨,重点要研究在第一象限内的各种情况.注意:所有幂函 q q 数在第一象限内均有图象,且过点(1,1), >0,则为递增, <0,则为 p p 递减.
2.用描点法画出①y=x;②y=x2;③y=x3;④ ⑤y=x-1的图象并指出其特点. 【解析】 (1)图象如下图所示:
北师大版高中数学必修第一册《函数的奇偶性与简单的幂函数》说课稿
北师大版高中数学必修第一册《函数的奇偶性与简单的幂函数》说课稿一、教材内容概述《函数的奇偶性与简单的幂函数》是北师大版高中数学必修第一册的一章内容。
该章主要介绍了函数的奇偶性及简单的幂函数的相关概念和性质。
通过学习本章内容,学生能够理解函数奇偶和幂函数的特点,并能够应用所学知识解决实际问题。
二、教学目标1.了解函数的奇偶性的概念和判断方法;2.掌握简单的幂函数及其图象的性质;3.能够应用函数的奇偶性及简单的幂函数解决实际问题。
三、教学重点1.函数的奇偶性的概念和判断方法;2.简单的幂函数的图象和性质。
四、教学难点1.如何准确地判断函数的奇偶性;2.理解和应用幂函数的图象和性质。
五、教学内容及方法5.1 函数的奇偶性函数的奇偶性是指函数图象关于坐标原点的对称性。
奇函数关于坐标原点对称,即f(−x)=−f(x);偶函数关于坐标原点对称,即f(−x)=f(x)。
如果函数既不是奇函数也不是偶函数,则称其为一般函数。
教学方法:通过举例、图表和实际问题引出函数奇偶性的概念,引导学生进行讨论和总结,然后讲解函数奇偶性的判断方法,并进行练习。
5.2 简单的幂函数幂函数是指以变量的某个整数次幂为自变量的函数。
本章主要讲解一次幂函数和二次幂函数的性质。
1.一次幂函数:y=ax+b。
其中a为常数,a eq0。
一次幂函数的图象是一条直线,斜率为a,在坐标平面上表现为直线的斜率性质。
教学方法:通过具体的实例和图象,引导学生理解一次幂函数的特点并进行练习。
2.二次幂函数:y=ax2+b。
其中a和b为常数,a eq0。
二次幂函数的图象是一个开口向上或向下的抛物线,通过分析二次函数的系数a和b的正负关系,引出图象和性质的讨论。
教学方法:通过图象、实例和推导,引导学生掌握二次幂函数的图象和性质。
5.3 函数应用问题教学方法:通过实际问题的引入,结合函数的奇偶性和幂函数的性质,引导学生分析问题,建立方程并解决问题。
六、教学过程1.导入:引出函数的奇偶性的概念,并让学生观察、分析一些函数的图象,引导学生发现函数奇偶性的特点。
北师大版高中数学必修一第二章 函数第五节简单的幂函数之函数的奇偶性说课课件(共22张PPT)
教材分析 教学重点、难点
教法、学法
学情分析 教学目标
教学过程
教学反思
板书设计
教材分析
奇偶性是函数的一条重要性质,教材从学 生熟悉的函数入手,从特殊到一般,从具体到 抽象,注重信息技术的应用,比较系统地介绍 了函数的奇偶性。从知识结构看,它既是函数 概念的拓展和深化,又是后续研究指数函数、 对数函数、幂函数、三角函数的基础。因此, 本节课起着承上启下的重要作用
指导观察、形成概念
考察下列函数:
f (x) x2
思考1:观察这个函数的图象,并讨论有何特征?
思考2:对于上述函数,f(1)与f(-1),f(2)与f(-2)有什么
关系? 12
f(a)与f1(0 -a)f呢x =?x2
8
思考3:怎样定义偶函数? 6
思考4:函数 f (x) x2 , x [3, 2] 偶函数吗? 4
f(x)≠0
若f(-x)/f(x)=-1,则f(x)为奇函数;
若f(-x)/f(x)=1,则f(x)为偶函数。
完成“函数奇偶性”概念的第三 个层次。
讲练结合,巩固新知
例. 利用定义判断下列函数的奇偶性
f (x) x3 2x
练习:利用定义判断下列函数的奇偶性
(1)f (x) x 1 (2)f (x) x2 -1
f (x) x -2
(1)f (x) x3 , x [1,1]
(2)f (x) x3 , x [1,1) -4
(3)f (x) x3, x [2,1) [1,2]-6
-8
强化定义,深化内涵
对奇函数、偶函数定义的说明: (1)如果一个函数f(x)是奇函数或偶函数,那么
我们就说函数f(x) 具有奇偶性。 (2)函数具有奇偶性的前提是:定义域关于原点对称。 (3)若f(x)为奇函数, 则对于定义域中的任意x,
数学必修Ⅰ北师大版25简单的幂函数PPT课件
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
11
x2 6x 9 3
(2)g(x) 3x3 4x 2 3x 2
(3)h(x) x 3 1 1 x 3
(4)u(x) ( x )2
6
拓展性训练题
1x2,x0 1.已知 f(x)0,x0, ,试判断
2.已知函数f(x)=(m-1)x2+2mx+3是偶函
数 ,则f(x)在(-∞,0]上是( A )
A.增加的 C.先增后减
B .减少的 D.先减后增
3.已知函数y=f(x)是奇函数,在[a,b]上是
减少的,则它在[-b,-a]上是( B )
A.增加的 C.先增后减
B .减少的 D.先减后增
8
拓展性训练题
4.已知y=f(x)是定义在(-1,1)上的奇函数, 且在(-1,1)上是单调递减的,则不等
式f(1-x)+f(1-x2)<0的解集是( )C
A.(-1,1) B.(0,√2) C.(0,1) D.(1,√2)
9
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
简单的幂函数
1
y=x , y 1 ( y=x-1 ), y=x2
x
如果一个函数,底数是自变量x,
指数是常量,即
y x
这样的函数称为幂函数.
北师大版 5 简单的幂函数学导学案
课题5 简单的幂函数自主备课一、学习目标1、了解简单幂函数的概念; 会利用定义证明简单幂函数的奇偶性2、了解利用奇偶性画函数图像和研究函数的方法。
3、 学习重点:幂函数的概念和奇偶函数的概念4、 学习难点:简单的幂函数的图像性质。
函数奇偶性的判断。
二、教学过程幂函数的概念:1、形如 的函数叫幂函数,它的形式非常严格. ①前面的系数是1;②底数自变量x ; ③指数是常数a;④只有一项例如:11232,,,,y x y x y x y x y x -=====常见的幂函数: 2、在坐标系中画函数图象:y=x 、y =x 2、y =x 3、y =x 21、y =x 1-幂函数的图像和性质与幂指数α有关,①当α>0时,过0(0,0),(1,1)且在[0,+∞)上为增函数, ②当α<0时,过(1,1),且在(0,+∞)上为减函数.奇偶函数的概念一般地,函数()f x 图像关于原点对称的函数叫奇函数。
如f(x)=x 3 函数()f x 图像关于y 轴对称的函数叫偶函数。
如f(x)=x 2 当函数()f x 是奇函数或者是偶函数时,称函数()f x 具有判断函数奇偶性方法图像法_____________________________________________________________________________________________________ 定义法(1)定义域是否关于原点对称;(2)对定义域中任意x,①当有f(-x)=f(x)时,称f(x)是奇函数;②当有f(-x)=-f(x)时,称f(x)是偶函数。
问题:1、二次函数都是偶函数吗?2、一次函数都是奇函数吗?例题讲解例题1、画出函数3=的图像,并讨论单调性。
f x x()x ... -2 -1 1-0 12 1 2 ...2f x...()54=+例2、判断=-2和的奇偶性f x xg x x()()22例3、已知f(x)的定义域为R的奇函数,当时x>0时,f(x)=x-2x (1)求函数f(x)在R上的解析式(2)画f(x)的图像221()0()=1,(2)23,02()=0023,0()0()=-+22(1)()(2)()()f x R x f x x f x x f x x x x f x R x f x x x f x f x f x >+-+>⎧⎪=⎨⎪-<⎩>+当堂练习题、函数是定义在的奇函数,当时,求。
北师大版高中数学必修1:简单的幂函数_课件1
3.函数 y=(x2-2x) -12 的定义域为
()
A.{x|x≠0,或 x≠2}
B.(-∞,0)∪(2,+∞)
C.(-∞,0]∪[2,+∞) D.(0,2)
解析:x应满足x2-2x>0,解得x>2或x<0. 答案:B
4.关于 x 的函数 y=(x-1)α(其中 α 的取值可以是 1,2,3, -1,12)的图像恒过定点________. 解析:因为幂函数y=xα的图像恒过定点(1,1),所 以函数y=(x-1)α恒过定点(2,1). 答案:(2,1)
1
③y=x 5 +x4;④y=xn;⑤y=(x-6)3;⑥y=8x2;⑦y=x2+x;
⑧y=1.
A.①②③⑧
B.①④
C.③④⑤⑥
D.②④⑦
[思路点拨] 解答本题可先考虑幂函数的定义,紧紧抓
住其形式特点再一一判断.
[精解详析] 由幂函数的定义:形如 y=xα(α∈R)的 函数才是幂函数,则 y=x13=x-3,y=xn 是幂函数.
(1)f(x)=x23+x 3; (2)f(x)=|x+1|+|x-1|; (3)f(x)=2xx2++12x. 解:(1)f(x)的定义域是 R, 又 f(-x)=-3x-2+x 3=-x23+x 3=-f(x), ∴f(x)是奇函数;
(2)f(x)的定义域是 R, 又 f(-x)=|-x+1|+|-x-1| =|x-1|+|x+1|=f(x), ∴f(x)是偶函数; (3)函数 f(x)的定义域是(-∞,-1)∪(-1,+∞), 不关于原点对称, ∴f(x)是非奇非偶函数.
我们学习过几种基本初等函数如正比例函数y=x,反 比例函数y=x-1,二次函数y=x2.看下面两个例子:
(1)如果正方体的棱长为x,正方体的体积为y; (2)如果正方形场地面积为x,其边长为y. 问题1:在第一个例子中,y关于x的函数关系式怎样? 提示:y=x3.
高中数学 简单的幂函数 北师大版必修1精品PPT课件
特点:①底数是自变量 x ②指数是常量 ③ x 的
系数是1。
练习:1.下列函数中,是幂函数的有_③___④__⑤
① y = 2x2 ② y = x2 +x
③ y = x-4 ⑤y = x3
1 ④ y = x2
画出函数 f (x) = x3的图象 问题1 f (x) = x3的
第二步:法一、求出f (-x) ,若f(-)= x- f(x)则该 函数是奇函数;若 f(-)x=f(x),则该函数是偶函
数;否则函数是非奇非偶函数。 法二、对于容易画图象的函数也可利用
图象进行判断。
: 想一想 已知函数f(x)是偶函数,在(-,0]上
的图象如图,你能试作出[0,)内的图象吗?
y
0
图象关于原点 对称。
x … -2 -1 0 1 2 …
f ( x) … -8 -1 0
18…
定义1:像这样 图象关于原点
y •
对称的函数叫 做奇函数。
•o• •
?探索 f (-x) 与f (x) 的关系
f(- x )= (- x)3= - xx3= - f(x)
• 定义2:如果对于函数f ( x) 的定义域内任意一个x,
练习
判断下列函数的奇偶性; (1) f (x)=x+x3+x5; (2) f (x)=x2+1; (3) f (x)=x+1; (4) f (x)=x2,x∈[-1, 3]; (5) f (x)=0.
既是奇函数又是偶函数的函数是函 数值为0的常值函数. 前提是定义域关于 原点对称.
学习并没有结束,希望继续努力
x
: 想一想 已知函数f(x)是奇函数,在(-,0]上
的图象如图,你能试作出 [0,)内的图象。
高中数学 第二章 函数 2.5 简单的幂函数学案(含解析)北师大版必修1-北师大版高一必修1数学学案
§5简单的幂函数知识点一幂函数性质与图像[填一填]1.幂函数如果一个函数,底数是自变量x,指数是常数α,即y=xα,这样的函数称为幂函数.2.幂函数性质与图像所有的幂函数在(0,+∞)上有定义,并且图像都过点(1,1),如果α>0,则幂函数的图像还过(0,0),并在区间[0,+∞)上递增;如果α<0,则幂函数在区间(0,+∞)上递减,在第一象限内,当x从右边趋向于原点时,图像与y轴无限接近;当x趋向于+∞时,图像与x轴无限接近.[答一答]1.幂函数y=xα的图像在第一象限内有何特征?提示:幂函数y=xα的图像在第一象限内具有如下特征:直线x=1,y=1,y=x将直角坐标平面在第一象限的直线x=1的右侧分为三个区域(Ⅰ)、(Ⅱ)、(Ⅲ)如图:则α∈(1,+∞)⇔y=xα的图像经过区域(Ⅰ) ,如y=x2;α∈(0,1)⇔y=xα的图像经过区域(Ⅱ),如y=x;α∈(-∞,0)⇔y=xα的图像经过区域(Ⅲ),如y=1x.并且在直线x=1的右侧,从x轴起,幂函数y=xα的指数α由小到大递增,即“指大图高”、“指小图低”,在直线x=1的左侧,图像从下到上,相应的指数由大变小.知识点二奇函数与偶函数[填一填]3.奇函数与偶函数(1)一般地,图像关于原点对称的函数叫作奇函数.在奇函数f(x)中,f(x)与f(-x)绝对值相等,符号相反,即f(-x)=-f(x);反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数.(2)一般地,图像关于y轴对称的函数叫作偶函数.在偶函数f(x)中,f(x)与f(-x)的值相等,即f(-x)=f(x);反之,满足f(-x)=f(x)的函数y=f(x)一定是偶函数.(3)当函数f(x)是奇函数或偶函数时,称函数f(x)具有奇偶性.[答一答]2.(1)若奇函数y=f(x)在x=0处有定义,则f(0)的值是否唯一确定?提示:若奇函数y=f(x)在x=0处有定义,由f(0)=-f(0)可知,f(0)=0,故f(0)的值是唯一确定的,即一定有f(0)=0.(2)偶函数在关于原点对称的区间上的单调性相反,最值相反吗?奇函数在关于原点对称的区间上的单调性相同,最值相同吗?提示:偶函数在关于原点对称的区间上的单调性相反,最值相同;奇函数在关于原点对称的区间上的单调性相同,最值不同.1.幂函数图像的分布特点和规律幂函数在第一象限内的图像,在经过点(1,1)且平行于y轴的直线的右侧,按幂指数由小到大的关系幂函数的图像从下到上的分布.2.幂函数y=xα(α∈R)的图像和性质(1)当α>0时,图像过点(1,1),(0,0)且在第一象限随x的增大而上升,函数在区间[0,+∞)上是单调增函数.(2)当α<0时,幂函数y=xα图像的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x轴,向上无限接近y轴.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.3.奇、偶函数图像对称性的缘由若函数f(x)是奇函数,对函数f(x)图像上任一点M(x,f(x)),则点M关于原点的对称点为M′(-x,-f(x)).又f(-x)=-f(x),则有M′(-x,f(-x)),所以点M′也在函数f(x)的图像上,所以奇函数的图像关于原点对称.同理可证偶函数的图像关于y轴对称.4.奇、偶函数图像的几点说明(1)一个函数为偶函数,其图像一定关于y轴对称,但是却不一定与y轴相交.(2)既是奇函数又是偶函数的函数图像在x轴上.如y=0,x∈[-1,1]既是奇函数又是偶函数.(3)从图像上看:函数的奇偶性体现的是对称性,单调性体现的是升降性.(4)根据以上奇、偶函数图像对称性的特点可以解决已知奇、偶函数在某区间的部分图像,画出其关于原点或y轴对称的另一部分的图像问题.类型一幂函数的概念【例1】已知函数y=(m2-m-5)x m+1是幂函数,求m的值,并写出函数解析式.【思路探究】幂函数的解析式形如y=xα(α∈R),幂值前面的系数为1,底数为x,α∈R为常数.【解】∵y=(m2-m-5)x m+1为幂函数,∴y可以写成y=xα(α为常数)的形式,∴m2-m-5=1,解得m=3或m=-2.当m=3时,m+1=4,此时y=x4;当m=-2时,m+1=-1,此时y=x-1.规律方法判断一个函数是否为幂函数,依据是该函数是否为y=xα(α为常数)的形式.幂函数的解析式为一个幂的形式,且满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反过来,若一个函数为幂函数,则该函数也必具有上述形式,这是我们解决某些问题的一个隐含条件.(1)以下四个函数:y =x 0;y =x -2;y =(x +1)2;y =2·x 13 中,是幂函数的有( B ) A .1个 B .2个 C .3个D .4个解析:形如y =x α(α为常数)的函数为幂函数,所以只有y =x 0,y =x -2为幂函数. (2)f (x )=(m 2-m -1)x m 2-2m -1是幂函数,则实数m =2或-1.解析:f (x )=(m 2-m -1)x m 2-2m -1是幂函数,所以m 2-m -1=1,解得m =-1或2. 类型二 幂函数的性质【例2】 幂函数y =x α中α的取值集合C 是{-1,0,12,1,2,3}的子集,当幂函数的值域与定义域相同时,集合C 为( )A .{-1,0,12}B .{12,1,2}C .{-1,12,1,3}D .{12,1,2,3}【思路探究】 根据常见的幂函数的图像与性质进行逐一判断.【解析】 根据幂函数y =x -1,y =x 0,y =x 12,y =x ,y =x 2,y =x 3的图像和解析式可知,当α=-1,12,1,3时,相应幂函数的值域与定义域相同.【答案】 C规律方法 1.画幂函数的图像时,可先画出其在第一象限内的图像,再由定义域、单调性、奇偶性得出在其他象限内的图像.2.幂函数图像的特征:(1)在第一象限内,直线x =1的右侧,y =x α的图像由上到下,指数α由大变小;在第一象限内,直线x =1的左侧,y =x α的图像由上到下,指数α由小变大.(2)当α>0时,幂函数的图像都经过(0,0)和(1,1)点,在第一象限内,当0<α≤1时,曲线上凸;当α≥1时,曲线下凸;当α<0时,幂函数的图像都经过(1,1)点,在第一象限内,曲线下凸.如图,图中曲线是幂函数y =x α在第一象限的大致图像.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( B )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:解法1:在第一象限内,在直线x =1的右侧,y =x α的图像由上到下,指数α由大变小,故选B.解法2:赋值法.令x =4,则4-2=116,4-12=12,412=2,42=16,易知选B.类型三 幂函数性质的应用【思路探究】 注意分情况讨论要做到不重不漏.先根据条件确定m 的值,再利用幂函数的增减性求实数a 的取值范围.【解】 因为函数在(0,+∞)上递减, 所以m 2-2m -3<0,解得-1<m <3. 又因为m ∈N +,所以m =1或2,由函数图像关于y 轴对称知,m 2-2m -3为偶数,所以m =1.把m =1代入不等式得(a +1)- 13<(3-2a )- 13.因为y =x - 13在(-∞,0)和(0,+∞)上均递减,所以有a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.即a 的取值范围是(-∞,-1)∪(23,32).规律方法 作直线x =m (m >1),它与若干个幂函数的图像相交,交点从上到下的排列顺序正是幂指数的降序排列,故可利用其比较指数α的大小.(1)已知(0.71.3)m <(1.30.7)m ,则m 的取值范围是m >0.解析:根据幂函数y =x 1.3的图像,当0<x <1时,0<y <1,所以0<0.71.3<1,又根据幂函数y =x 0.7的图像,当x >1时y >1,所以1.30.7>1,于是有0.71.3<1.30.7,又(0.71.3)m <(1.30.7)m ,所以m >0. (2)已知幂函数y =f (x )的图像过点(2,22),试求出此函数的解析式,并作出图像,判断奇偶性、单调性.解:设幂函数解析式为y =x α,将点(2,22)的坐标代入,得2α=22,解得α=-12,所以函数的解析式y =x - 12.定义域为(0,+∞),它不关于原点对称,所以,y =f (x )是非奇非偶函数.当x >0时,f (x )是单调减函数,函数的图像如图.下面用定义证明y =x - 12 =1x 在(0,+∞)上为减函数:设x 1,x 2∈(0,+∞),且x 1<x 2,则Δx =x 2-x 1>0, Δy =y 2-y 1=1x 2-1x 1=x 1-x 2x 1x 2=(x 1-x 2)x 1x 2(x 1+x 2)=-Δxx 1x 2(x 1+x 2)<0,所以y =x - 12 =1x 在(0,+∞)上为减函数.类型四 函数奇偶性的判断 【例4】 判断下列函数的奇偶性. (1)f (x )=x 4+3x 2; (2)f (x )=x -1x ;(3)f (x )=0,x ∈(-1,1]; (4)f (x )=-2x +1.【思路探究】 先确定函数的定义域是否关于原点对称,再看f (-x )与f (x )之间的关系. 【解】 (1)函数f (x )的定义域为R ,关于原点对称. ∵f (-x )=(-x )4+3(-x )2=x 4+3x 2=f (x ), ∴函数f (x )为偶函数.(2)函数f (x )的定义域为{x |x ≠0},关于原点对称. ∵f (-x )=-x -1-x =-⎝⎛⎭⎫x -1x =-f (x ), ∴函数f (x )为奇函数.(3)函数f (x )的定义域为(-1,1],不关于原点对称,故函数f (x )既不是奇函数也不是偶函数. (4)函数f (x )的定义域为R ,关于原点对称. ∵f (-x )=-2(-x )+1=2x +1≠±f (x ), ∴函数f (x )既不是奇函数也不是偶函数. 规律方法 1.用定义判断函数奇偶性的步骤是:2.在客观题中,多个函数有公共定义域时也可以利用如下性质判断函数的奇偶性: (1)偶函数的和、差、积、商(分母不为零)仍为偶函数; (2)奇函数的和、差仍为奇函数;(3)两个奇函数的积为偶函数,两个奇函数的商(分母不为零)也为偶函数; (4)一个奇函数与一个偶函数的积为奇函数.判断下列函数的奇偶性: (1)f (x )=x 3+1x 3;(2)f (x )=x - 53; (3)f (x )=x 4+1x 2+1;(4)f (x )=2-x +x -2.解:(1)函数f (x )=x 3+1x 3的定义域是(-∞,0)∪(0,+∞),关于原点对称.又∵f (-x )=-x 3+1-x 3=-⎝⎛⎭⎫x 3+1x 3=-f (x ), ∴函数f (x )=x 3+1x3是奇函数.(2)函数f (x )=x - 53的定义域是(-∞,0)∪(0,+∞),关于原点对称. 又∵f (-x )=(-x ) - 53=13(-x )5=-13x 5=-x - 53=-f (x ),∴函数f (x )=x - 53是奇函数.(3)函数f (x )=x 4+1x 2+1的定义域是R ,关于原点对称.又∵f (-x )=(-x )4+1(-x )2+1=x 4+1x 2+1=f (x ),∴函数f (x )=x 4+1x 2+1是偶函数.(4)函数f (x )=2-x +x -2的定义域为{2},不关于原点对称,∴该函数既不是奇函数也不是偶函数.类型五 利用函数奇偶性求函数的解析式【例5】 若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求当x ≥0时,函数f (x )的解析式.【思路探究】 解决本题的关键是利用奇函数的关系式f (-x )=-f (x )将x <0时f (x )的解析式转化到x >0上.同时要注意f (0)=0.【解】 ∵f (x )是奇函数,∴当x >0时,f (x )=-f (-x )=-{(-x )[1-(-x )]}=x (1+x ), 当x =0时,f (0)=-f (0),即f (0)=0.∴当x ≥0时,f (x )=x (1+x ).规律方法 1.解答本题时,很容易遗漏x =0的情况,在区间转化时要细心.2.利用函数的奇偶性求解函数的解析式,主要利用函数奇偶性的定义.求解一般分以下三个步骤:(1)设所求函数解析式中所给的区间上任一个x ,即求哪个区间上的解析式,就设x 在哪个区间上.(2)把所求区间内的变量转化到已知区间内.(3)利用函数奇偶性的定义f (x )=-f (-x )或f (x )=f (-x )求解所求区间内的解析式.(1)已知f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =13,b =0.解析:因为f (x )=ax 2+bx +3a +b 是偶函数,且定义域为[a -1,2a ],所以a -1+2a =0,a =13,所以f (-x )=f (x )恒成立.所以-bx =bx ,所以b =0. (2)函数f (x )为R 上的奇函数,且当x <0时,f (x )=x (x -1),则当x >0时,f (x )=-x (x +1).解析:当x >0时,-x <0,所以f (-x )=-x (-x -1)=x (x +1), 又因为f (x )为R 上的奇函数,所以f (-x )=-f (x ),所以-f (x )=x (x +1), 所以f (x )=-x (x +1).——易错误区—— 函数奇偶性判断中的误区【例6】 以下说法中:(1)函数f (x )=5x 2,x ∈(-3,3]是偶函数.(2)f (x )=x 3+1x 是奇函数.(3)函数f (x )=|x -2|是偶函数.(4)函数f (x )=0,x ∈[-2,2]既是奇函数,又是偶函数.正确的有( )A .(1)(2)B .(1)(4)C .(2)(4)D .(3)(4)【错解】 选B 或选D【正解】 C 对于(1),函数f (x )=5x 2,x ∈(-3,3]的定义域不关于原点对称①,故该函数是非奇非偶函数,故(1)错误.对于(2),函数f(x)=x3+1的定义域为(-∞,0)∪(0,+∞),且能满足f(-x)=-f(x),x所以是奇函数,故(2)正确.对于(3),函数f(x)=|x-2|是由f(x)=|x|的图像向右平移了两个单位得到的②,图像不关于y轴对称,所以(3)错误.对于(4),函数f(x)=0,x∈[-2,2]图像既关于原点对称又关于y轴对称,所以(4)正确,因此正确的只有(2)(4).【错因分析】 1.忽视了①处函数的定义域x∈(-3,3]不关于原点对称,出现只是根据f(-x)=f(x)而判定为偶函数的错误;2.忽视了②处函数f(x)=|x-2|的图像不关于y轴对称,出现只看到绝对值,就认为是偶函数的错误.【防范措施】 1.定义域优先的原则由奇偶函数的定义,“对于函数定义域内任意一个x,都有f(-x)=-f(x)或f(-x)=f(x)”可知,具有奇偶性的函数的定义域必是关于原点对称.如本例中(1)函数f(x)=5x2,x∈(-3,3]的定义域不关于原点对称,所以不具有奇偶性.2.注意图像的变换一些常用的图像平移、变换要牢记,如本例中函数f(x)=|x-2|,就是要根据y=|x|的图像特征来平移得到,因为函数y=|x|的图像关于y轴对称,而向右平移2个单位后图像就不再关于y轴对称,故可得结论.函数f(x)=|x-2|-|x+1|是(C)A.偶函数B.奇函数C.非奇非偶函数D.既奇又偶函数解析:f(x)=|x-2|-|x+1|当x≥2时,f(x)=x-2-x-1=-3,当x≤-1时,f(x)=2-x+x+1=3,当-1<x<2时,f(x)=2-x-x-1=1-2x.画出图像如图.由图知f(x)为非奇非偶函数.一、选择题1.下列所给函数中,是幂函数的是(C)A.y=-x3B.y=3xC.y=x 12D.y=x2-1解析:幂函数的形式为y=xα,只有C符合.2.幂函数y=xα(α∈R)的图像一定不经过(A)A.第四象限B.第三象限C.第二象限D.第一象限解析:∵α∈R,x>0,∴y=xα>0,∴图像不可能经过第四象限,故选A.3.已知函数f(x)是奇函数,且当x≥0时,f(x)=x2+2x,则当x<0时,f(x)=(D) A.x2+2x B.x2-2xC.-x2-2x D.-x2+2x解析:令x<0,则-x>0,∴f(-x)=(-x)2+2(-x)=x2-2x,又∵f(x)为奇函数,∴f(x)=-f(-x)=-(x2-2x)=-x2+2x.二、填空题4.已知幂函数f (x )的图像经过点(2,2),则f (4)=2. 解析:设f (x )=x α,∴α=12,∴f (4)=4 12 =2.5.已知函数f (x )=a (x +1)-2|x |+1的图像关于原点对称,则实数a =2.解析:由题意可知f (x )为奇函数,且奇函数f (x )=a (x +1)-2|x |+1在x =0处有意义,∴f (0)=0,∴a -21=0,∴a =2. 三、解答题6.已知f (x )=(m 2-2m -2)x m -1是幂函数,且在(0,+∞)上单调递增.(1)求m 的值;(2)求函数g (x )=f (x )-2ax +1在区间[2,3]上的最小值h (a ). 解:(1)∵f (x )=(m 2-2m -2)x m -1是幂函数, ∴m 2-2m -2=1,解得m =3或m =-1;又f (x )在(0,+∞)上单调递增,∴m -1>0,∴m 的值为3.(2)函数g (x )=f (x )-2ax +1=x 2-2ax +1=(x -a )2+1-a 2,当a <2时,g (x )在区间[2,3]上单调递增,最小值为h (a )=g (2)=5-4a ;当2≤a ≤3时,g (x )在区间[2,3]上先减后增,最小值为h (a )=g (a )=1-a 2; 当a >3时,g (x )在区间[2,3]上单调递减,最小值为h (a )=g (3)=10-6a .。
(完整word)高中数学北师大版目录.doc
高中数学北师大版目录北师大版《数学 (必修 1)》§ 5 平行关系全书目录:§ 6 垂直关系第一章集合§ 7 简单几何体的面积和体积§ 1 集合的含义与表示§ 8 面积公式和体积公式的简单应用§ 2 集合的基本关系阅读材料蜜蜂是对的§ 3 集合的基本运算课题学习正方体截面的形状阅读材料康托与集合论第二章解析几何初步第二章函数§ 1 直线与直线的方程§ 1 生活中的变量关系§ 2 圆与圆的方程§ 2 对函数的进一步认识§ 3 空间直角坐标系§ 3 函数的单调性阅读材料笛卡儿与解析几何§ 4 二次函数性质的再研究探究活动 1 打包问题§ 5 简单的幂函数探究活动 2 追及问题阅读材料函数概念的发展课题学习个人所得税的计算必修 3全书目录第三章指数函数和对数函数第一章统计§ 1 正整数指数函数§ 1 统计活动:随机选取数字§ 2 指数概念的扩充§ 2 从普查到抽样§ 3 指数函数§ 3 抽样方法§ 4 对数§ 4 统计图表§ 5 对数函数§ 5 数据的数字特征§ 6 指数函数、幂函数、对数函数增长§ 6 用样本估计总体的比较§ 7 统计活动:结婚年龄的变化阅读材料历史上数学计算方面的三大§ 8 相关性发明§ 9 最小二乘法阅读材料统计小史第四章函数应用课题学习调查通俗歌曲的流行趋势§ 1 函数与方程§ 2 实际问题的函数建模第二章算法初步阅读材料函数与中学数学§ 1 算法的基本思想探究活动同种商品不同型号的价格问§ 2 算法的基本结构及设计题§ 3 排序问题§ 4 几种基本语句必修 2 课题学习确定线段 n 等分点的算法全书目录:第一章立体几何初步第三章概率§ 1 简单几何体§ 1 随机事件的概率§ 2 三视图§ 2 古典概型§ 3 直观图§ 3 模拟方法――概率的应用§ 4 空间图形的基本关系与公理探究活动用模拟方法估计圆周率∏的值 1.2 数列的函数特性§ 2 等差数列必修 4 全书目录: 2.1 等差数列2.2 等差数列的前n项和第一章三角函数§ 3 等比数列§ 1 周期现象与周期函数 3.1 等比数列§ 2 角的概念的推广 3.2 等比数列的前n项和§ 3 弧度制§ 4 书雷在日常经济生活中的应§ 4 正弦函数用§ 5 余弦函数本章小节建议§ 6 正切函数复习题一§ 7 函数的图像课题学习教育储蓄§ 8 同角三角函数的基本关系阅读材料数学与音乐第二章解三角形课题学习利用现代信息技术探究的图§ 1 正弦定理与余弦定理像 1.1 正弦定理1.2 余弦定理第二章平面向量§ 2 三角形中的几何计算§ 1 从位移、速度、力到向量§ 3 解三角形的实际应用举例§ 2 从位移的合成到向量的加法本章小结建议§ 3 从速度的倍数到数乘向量复习题二§ 4 平面向量的坐标§ 5 从力做的功到向量的数量积第三章不等式§ 6 平面向量数量积的坐标表示§ 1 不等关系§ 7 向量应用举例 1.1 不等关系阅读材料向量与中学数学 1.2 比较大小§ 2 一元二次不等式第三章三角恒等变形 2.1 一元二次不等式的解法§ 1 两角和与差的三角函数 2.2 一元二次不等式的应用§ 2 二倍角的正弦、余弦和正切§ 3 基本不等式§ 3 半角的三角函数 3.1 基本不等式§ 4 三角函数的和差化积与积化和差 3.2 基本不等式与最大(小)§ 5 三角函数的简单应用值课题学习摩天轮中的数学问题§ 4 简单线性规划探究活动升旗中的数学问题 4.1 二元一次不等式(组)与平面区域4.2 简单线性规划必修 5 4.3 简单线性规划的应用全书共三章:数列、解三角形、不等式。
北师大版数学必修1 简单的幂函数 课件
问题2:观察y=x2的图像,说出它 有哪些特征? 图像回放
对任意的x,f(-x)=f(x) 图像关于y轴对称的函数 叫作偶函数
示范:判断f(x)=-2x5和f(x)=x4+2 的奇偶性
方法小结
基本训练题
讨论下列函数的奇偶性:
(1) f ( x )
4 x2
xHale Waihona Puke 6x 9 3(2)g (x) 3x3 4x 2 3x 2
(3)h(x) x 3 1 1 x 3
(4)u (x) ( x )2
拓展性训练题
1x2,x0 1.已知 f(x)0,x0, ,试判断这个函偶数性 .的
x2 1,x0.
拓展性训练题
2.已知函数f(x)=(m-1)x2+2mx+3是偶函
数 ,则f(x)在(-∞,0]上是( A )
谢谢观赏
You made my day!
我们,还在路上……
A.增加的 C.先增后减
B .减少的 D.先减后增
3.已知函数y=f(x)是奇函数,在[a,b]上是
减少的,则它在[-b,-a]上是( B )
A.增加的 C.先增后减
B .减少的 D.先减后增
拓展性训练题
4.已知y=f(x)是定义在(-1,1)上的奇函数, 且在(-1,1)上是单调递减的,则不等
式f(1-x)+f(1-x2)<0的解集是( )C
简单的幂函数
广东仲元中学
y=x , y 1 ( y=x-1 ), y=x2
x
如果一个函数,底数是自变量x,
指数是常量,即
y x
这样的函数称为幂函数.
幂函数 的图像
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安边中学 高一 年级 1学期 数学 学科导学稿 执笔人: 邹英 总第 课时
备课组长签字: 包级领导签字: 学生: 上课时间: 2013.9
集体备课 个人空间
一、课题:2.5简单的幂函数
二、学习目标
1、理解幂函数的概念,会利用定义证明简单函数的奇偶性;
2、了解利用奇偶性画函数图像和研究函数的方法;
3、类比研究一般函数的方法,研究幂函数的图像和性质;
4、进一步渗透数形结合与类比的思想方法,体会幂函数的变化;
三、教学过程
【温故知新】
在初中我们已经熟悉这3种函数的解析式:
21),)(1(,x y x y x
y x y ====- 问题1、请指出这3个函数解析式的异同点。
【导学释疑】
幂函数的概念:如果一个函数,底数是 ,指数是 。
问题1、判断下列函数是否为幂函数.
(1)4()f x x = ; (2)3()(2)f x x =-; (3)31y x x -=-;
(4)5y x -= ; (5)2y x -=- ; (6)3
2y x -=。
【巩固提升】
例1画出函数3()f x x =的图像,讨论其单调性。
解:先列出x ,y 的对应值表
再用描点法画出图像。
练习、利用同样的方法画出函数2)(x x f =的图像,讨论其单调性。
x
y
问题2、观察3()f x x =的图像,图像关于______对称;观察2()f x x =的图像,图像关于_______对称。
函数的奇偶性:
(1)奇函数:
(2)偶函数:
例2、判断函数
5()2f x x =-、4()2g x x =+及2()23
h x x x =++的奇偶性。
注:函数具有奇偶性的前提是:定义域关于__________对称。
【检测反馈】
1、函数y=f(x)是奇函数,在[a,b]上是减少的,则它在[-b,-a]上是( )
A.增加的 B .减少的 C.先增后减 D.先减后增
2、判断下列函数的奇偶性
35(1)()f x x x =+ (]2(2)(),3,3f x x x =∈-
2(3)()33f x x =-
3、见教材P 50页动手实践。
4、已知
2
1
21()(22)23m f x m m x n -=+-+-是幂函数,求m,n 的值 【学生小结】
反
思
栏。