反演原理及公式介绍
组合数学第四章反演公式
k
ak
证明 取φn(x)=xn,ψn(x)=(x-1)n, 则由二项式定理
n
xn (x 1 1)n Cnk (x 1)k
k 0
n
( x 1)n Cnk (1)nk xk
k 0
(4.1.8)
第四章 反演公式
若设an与bn的指数生成函数为A(x)及B(x),则由乘法公式
( x n 1)[x]n1 (x 1)[x]n1
n[x]n1
第四章 反演公式
展开多项式φ(x)=[x+y]n,并注意到
k (0) n(n 1)(n k 1)[ y]nk
可得二项式公式:
n n
[ x
y ]n
k 0
k
[x]k [ y]nk
第四章 反演公式 1.
令y为一常数,考虑多项式φ(x)=(x+y)n,
Pn(x)=xn (P0(x)=1, Pn(0)=0, n≥1) 这时,伴随族Pn(x)的微分算子就是通常的微商:
D(x) d
dx
φ(0)=yn Dφ(0)=nyn-1 D2φ(0)=n·(n-1)yn-2 … Dkφ(0)=n(n-1) …(n-k+1)yn-k
定义2 若算子D把多项式φ(x)映成一个多项式Dφ(x),且满足
条件:
(1)
DPn
(
x)
nPn1(
x),
0,
若n≠0 若n=0
(2) D(λφ(x)+λφ′(x))=λDφ(x)+λDφ′(x),λ为常数。 则称D为伴随多项式族Pn(x)(n=0, 1, …)的微分算子。
第四章 反演公式
数论17——反演定理(二项式反演)
数论17——反演定理(⼆项式反演)终于讲到反演定理了,反演定理这种东西记⼀下公式就好了,反正我是证明不出来的~(~o ̄▽ ̄)~o⾸先,著名的反演公式我先简单的写⼀下o( ̄ヘ ̄*o)⽐如下⾯这个公式f(n) = g(1) + g(2) + g(3) + ... + g(n)如果你知道g(x),蓝后你就可以知道f(n)了如果我知道f(x),我想求g(n)怎么办这个时候,就有反演定理了反演定理可以轻松的把上⾯的公式变为g(n) = f(1) + f(2) + f(3) + ... + f(n)当然,我写的只是个形式,怎么可能这么简单。◕‿◕。其实每⼀项再乘⼀个未知的函数就对了,但是这个函数我们不知道(不⽤担⼼,数学家已经帮我们解决了,我们直接⽤就可以了)反演公式登场( >ω<)c和d是两个跟n和r有关的函数根据⽤法不同,c和d是不同的⼀般数学家会先随便弄c函数然后经过复杂的计算和证明,得到d函数然后公式就可以套⽤了正⽚开始⼆项式反演公式那个括号起来的就是组合数,我记得组合数那章我有说过⼆项式反演也就是记住这个公式就算结束了然后我们开始实战(/ω\)容斥那章讲过的全错排(装错信封问题)hdu 1465设g(i)表⽰正好有i封信装错信封那么全部的C(n, i)*g(i)加起来正好就是所有装信的情况,总共n!种情况n! = Σ C(n, i)*g(i) (i从0到n)那么f(n) = n!,所以f(x) = x!那么我们要求g(n)根据公式g(n) = Σ (-1)^(n-i) * C(n, i) * f(i) (i从0到n)那么就可以计算啦~\(≧▽≦)/~AC代码:#include<cstdio>typedef long long LL;int n, flag;LL fac[25];LL ans;void init(){fac[0] = 1;for(int i = 1; i <= 20; i ++) fac[i] = fac[i-1] * i;}int main(){init();while(~scanf("%d", &n)){ans = 0;flag = n & 1 ? -1 : 1;//起始符号for(int i = 0; i <= n; i ++){ans += flag * fac[n] / fac[n-i];flag = -flag;}printf("%I64d\n", ans);}}View Code是不是很好⽤但是不容易想到T_T这也没有办法再来⼀题吧还是容斥那⼀章讲过的题⽬的UVALive 7040题意:给n盆花涂⾊,从m种颜⾊中选取k种颜⾊涂,保证正好⽤上k种颜⾊,你必须⽤上这k种颜⾊去涂满n个相邻的花,并且要求相邻花的颜⾊不同,求⽅案数。
反演规则求反函数
反演规则求反函数反演规则求反函数反函数是数学中常见的概念,反函数是函数的反转,它是一种特殊的函数,可以将函数的输入和输出反转。
换句话说,反函数就是将函数的x和y坐标反转。
在数学中,我们可以使用反演规则来求反函数。
一、定义反函数反函数是一种特殊的函数,也称为反对称函数,它是把原函数f(x)的输入和输出反转的函数。
反函数的定义是:如果函数f(x)的输入是x,输出是y,那么反函数的输入是y,输出是x,即:f^{-1}(y)=x。
例如,函数f(x)=2x+1的反函数就是f^{-1}(y)=\frac{y-1}{2}。
二、反演规则反演规则是求反函数的一种方法。
它的基本原理是:对于函数f(x)的反函数,则f^{-1}(y)=x,将函数f(x)的x和y坐标反转,即可求出反函数,即:f^{-1}(y)=x=f(x)。
反演规则求反函数的具体步骤如下:1、将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x);2、移项,将y移至左边,即:f^{-1}(x)=y;3、将函数f^{-1}(x)中的x和y坐标反转,变为新的函数f^{-1}(y)=x;4、结论:此时反函数f^{-1}(y)的形式和原函数f(x)的形式一致,即反函数f^{-1}(y)=x=f(x)。
三、例题例1:求函数f(x)=2x+1的反函数。
解:根据反演规则,将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x),即y=2x+1;移项,将y移至左边,即:f^{-1}(x)=y,即f^{-1}(x)=2x+1;将函数f^{-1}(x)中的x和y坐标反转,变为新的函数f^{-1}(y)=x;结论:此时反函数f^{-1}(y)=x=f(x),即反函数f^{-1}(y)=2y+1。
例2:求函数f(x)=\frac{1}{x}的反函数。
解:根据反演规则,将函数f(x)的x和y坐标反转,变为新的函数y=f^{-1}(x),即y=\frac{1}{x};移项,将y移至左边,即:f^{-1}(x)=y,即f^{-1}(x)=\frac{1}{x};将函数f^{-1}(x)中的x和y坐标反转,变为新的函数f^{-1}(y)=x;结论:此时反函数f^{-1}(y)=x=f(x),即反函数f^{-1}(y)=\frac{1}{y}。
汉克尔变换的反演公式
汉克尔变换的反演公式汉克尔变换是一种在电磁学和地球物理学中广泛应用的积分变换方法,它的反演公式如下:如果F(x)是一个在区间[0,∞)上的函数,那么其汉克尔变换F^(h)(ω) 的反演公式为:F(x)=1/π∫_0^∞F^(h)(ω)* e^(-jωx) dω汉克尔变换的反演公式具有以下特点:1.线性性质:汉克尔变换具有线性性质,即对任意两个函数F(x) 和g(x),它们的汉克尔变换满足F^(h)(ω)=F^(h)(ω) + g^(h)(ω)。
2.卷积性质:汉克尔变换具有卷积性质,即如果F(x) 和g(x)都是汉克尔变换的输入函数,那么它们的卷积F(x)* g(x) 的汉克尔变换等于F^(h)(ω)* g^(h)(ω)。
3.频率域分析:汉克尔变换将时域信号转换到频率域,可以帮助我们分析信号的频率成分和周期性。
4.适用场景:汉克尔变换广泛应用于电磁学、地球物理学、信号处理、通信等领域,例如在地震勘探、重力勘探、电法勘探等地球物理勘探中,汉克尔变换可以用于分析地下结构的性质和位置。
5.研究价值:汉克尔变换在理论研究和实际应用中具有重要意义,对于揭示复杂系统的内在规律、提高信号处理和通信技术的性能具有重要作用。
汉克尔变换在地球物理学中具有广泛的应用,以下是一些典型案例:1.地震勘探:地震勘探是地球物理学中的一种重要方法,通过分析地震波的传播特性,可以揭示地下结构的性质和位置。
汉克尔变换可以用于地震数据的处理和解释,例如在频率域分析中,通过汉克尔变换可以将地震信号转换为频率域,帮助分析地下结构的周期性和频率成分。
2.重力勘探:重力勘探是利用地球重力场观测数据来推断地下结构的一种方法。
汉克尔变换可以用于重力数据的处理和反演,例如在重力异常数据处理中,通过汉克尔变换可以提取地下结构的信息,从而推断地壳厚度、地下岩层位置等。
3.电法勘探:电法勘探是利用地下电性差异来推断地下结构的一种方法。
汉克尔变换可以用于电法数据的处理和反演,例如在电法数据处理中,通过汉克尔变换可以分析地下结构的电性分布,从而推断地下岩层的位置和性质。
反演律 解析
反演律解析反演律,又称逆否律,是数学、逻辑学、计算机科学等领域中的一个重要定律。
它指出了一个命题与其逆否命题等价,即如果一个命题为真,那么它的逆否命题也为真;反之,如果一个命题为假,那么它的逆否命题也为假。
反演律在各个领域中都有着广泛的应用,下面我们将分别介绍反演律在这些领域中的作用。
一、反演律的定义及作用反演律是指一个命题P与其逆否命题"非Q则非P"等价。
它是一种基本的推理规律,可以帮助我们更好地理解和分析各种命题之间的关系。
二、反演律在数学中的应用在数学中,反演律被用于证明许多重要的定理和公式。
例如,若a、b为实数,且a≠b,则有以下公式成立:(a+b)^2 = a^2 + 2ab + b^2我们可以通过反演律来证明这个公式。
首先,设P:a^2 + 2ab + b^2 = (a+b)^2 为真命题。
那么,其逆否命题为:"若a^2 + 2ab + b^2 ≠(a+b)^2,则a≠b"。
显然,这个逆否命题也是真命题。
因此,原命题P也是真命题,从而证明了上述公式成立。
三、反演律在逻辑推理中的应用在逻辑推理中,反演律被用于判断一个命题的真实性。
通过反演律,我们可以将一个复杂的命题转化为更容易判断的形式。
例如,若要判断命题P:所有学生都努力学习。
我们可以将其转化为逆否命题:"若存在一个学生不努力学习,则不是所有学生都努力学习"。
这样,我们就可以通过观察是否存在不努力学习的student 来判断原命题的真假。
四、反演律在自然语言处理中的应用在自然语言处理中,反演律被用于分析语句之间的关系。
例如,在翻译过程中,我们需要判断一个英文句子是否等价于一个中文句子。
通过将英文句子转化为逆否命题,然后再与中文句子进行比较,我们可以更加准确地判断它们之间的等价关系。
五、反演律在计算机科学中的应用在计算机科学中,反演律被用于设计高效算法。
例如,在搜索算法中,我们通常需要判断一个数据是否满足某个条件。
组合数学第四章反演公式
k 0
k 0
(4.1.6)
证明 记列向量
( x) {k ( x)}nk0, ( x) { k ( x)}nk0
第四章 反演公式
命题1 对于多项式的每个正规族Pn,恰存在一个微分算子。
证明 易证每个n次多项式φn(x)都可以唯一地表示为
n ( x) ak Pk ( x) anPn ( x) an P 1 n1( x) a0P0 ( x)
0k n
其中an, an-1, …, a0是常数。事实上,取an为φn(x)中xn的系数除以 Pn(x)中xn的系数所得的商,则φn-1(x)=φn(x)-anPn(x)至多是n-1次的, 再取an-1为φn-1(x)中xn-1的系数除以Pn-1(x)中xn-1的系数所得的商, 接着考虑
( x n 1)[x]n1 (x 1)[x]n1
n[x]n1
第四章 反演公式
展开多项式φ(x)=[x+y]n,并注意到
k (0) n(n 1)(n k 1)[ y]nk
可得二项式公式:
n n
[ x
y ]n
k 0
k
[x]k [ y]nk
Pn ( x) [x]n x( x 1)( x 2)( x n 1) (Pn(0), n≥1)
的Taylor公式。由
(x) (x) (x 1)
定义的(向后差分)算子 , 就是伴随多项式族Pn(x)=[x]n
的微分算子,因为
[x]n [x]n [x 1]n
第四章 反演公式
使用[x]n的Taylor公式展开φ(x)=[x+y]n, Δkφ(0)=n(n-1) …(n-k+1)[y]n-k
工程数学反演公式
工程数学反演公式
反演公式是一种数学技巧,用于求解满足某种关系的两个序列的元素。
具体来说,如果序列F(n)和f(n)之间满足关系Fi=α(i)f(i),那么我们可以通过反演公式求得f(i)=β(i)F(i)。
例如,莫比乌斯反演公式是一种常用的反演公式,它涉及到莫比乌斯函数。
这个函数有三种取值:
如果ai≥2且k mod 2=0,那么μ(x)=0。
如果k mod 2≠0,那么μ(x)=−1。
如果x=1,那么μ(x)=1。
如果F(n)=∑dnf(d),那么可以使用莫比乌斯反演公式来求解f(n)。
具体来说,令S(x)=∑ixxμ(i),其中x=p1a1p2a2...pkak,t=p1b1p2b2...pkbk,0≤bi≤ai。
对于任意一个含有大于2的指数的约数,我们可以不考虑,因为它对S(x)无影响。
于是就有S(x)=Ck0(−1)0+Ck1(−1)1+...+Ckk(−1)k。
根据二项式定理,可以得到S(x)=(1−1)k=0。
如果F(n)=∑dnf(d),则可以使用反演公式f(n)=∑dnμ(d)F(nd)来求解f(n)。
以上信息仅供参考,如需更多信息,建议查阅数学类书籍或咨询数学专业人士。
逻辑运算反演律公式
逻辑运算反演律公式是逻辑学中的一种基本公式,它描述了在逻辑运算中,当两个命题进行逻辑运算后,如果将结果再次进行逻辑运算,就可以得到原来的命题。
本文将详细介绍逻辑运算反演律公式,以及其在现实生活中的应用。
一、逻辑运算反演律公式的定义逻辑运算反演律公式是指,在逻辑运算中,当两个命题进行逻辑运算后,如果将结果再次进行逻辑运算,就可以得到原来的命题。
具体公式如下:(A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)其中,符号“∧”表示逻辑与运算,符号“∨”表示逻辑或运算。
二、逻辑运算反演律公式的应用逻辑运算反演律公式在现实生活中有着广泛的应用。
以下是几个实例:1. 电视购物在电视购物中,商家常常会使用逻辑运算反演律公式来进行促销。
例如,商家可能会说:“如果您购买了我们的产品,您就可以获得免费的礼品;如果您不购买我们的产品,您就会错过这个机会。
”这就是利用逻辑运算反演律公式,将“购买产品”和“获得礼品”进行逻辑运算,得到“不购买产品”和“错过机会”的结论,从而促使消费者购买产品。
2. 谈判在谈判中,双方常常会使用逻辑运算反演律公式来进行策略制定。
例如,一方可能会说:“如果你不同意我的要求,我们就只能继续互相攻击;如果你同意我的要求,我们就可以和平共处。
”这就是利用逻辑运算反演律公式,将“同意要求”和“和平共处”进行逻辑运算,得到“不同意要求”和“互相攻击”的结论,从而促使对方同意要求。
3. 科学研究在科学研究中,逻辑运算反演律公式也有着广泛的应用。
例如,在研究变量之间的关系时,研究者常常会使用逻辑运算反演律公式来推导出变量之间的关系。
例如,研究者可能会说:“如果A和B之间存在关系,那么A的变化会引起B的变化;如果A的变化不会引起B的变化,那么A和B之间就不存在关系。
”这就是利用逻辑运算反演律公式,将“存在关系”和“变化引起”进行逻辑运算,得到“不存在关系”和“变化不引起”的结论,从而推导出变量之间的关系。
反演律的两个公式
反演律的两个公式反演律可是逻辑代数中的重要概念哦,它有两个非常关键的公式。
那咱就来好好聊聊这两个公式到底是咋回事。
咱先来说说反演律的第一个公式,用字母表示就是:\(\overline{AB} = \bar{A} + \bar{B}\) 。
这个公式就像是一个神奇的魔法咒语,能把原本的逻辑关系来个大反转。
举个例子哈,比如说咱们有个电路,里面有两个开关 A 和 B ,只有当 A 和 B 都闭合的时候,电路才能通电。
那如果现在不想让电路通电,咋办呢?按照这个反演律公式,就相当于 A 开关断开或者 B 开关断开,只要有一个断开,电路就不通电啦。
再来说说第二个公式:\(\overline{A + B} = \bar{A}\bar{B}\) 。
这个公式同样有着神奇的魔力。
就像咱平时出门带东西,要么带雨伞,要么带帽子。
如果现在不想带这两样东西,按照这个公式,那就是既不带雨伞也不带帽子。
这两个公式在数字电路设计、逻辑推理等好多方面都有着超级重要的应用。
比如说在设计一个计算机的控制系统时,咱们就得用反演律来简化逻辑表达式,让电路更简单、更可靠。
我记得之前有个学生,在刚开始学反演律的时候,那叫一个迷糊。
做练习题的时候总是出错,把公式弄混。
我就给他举了个生活中的例子,比如说去超市买东西,要么买苹果要么买香蕉,如果不想买这两样,那不就是既不买苹果也不买香蕉嘛。
这么一说,他好像一下子就开窍了,后来再做相关的题目,准确率高了不少。
在实际运用中,这两个公式就像是我们解决逻辑问题的得力工具。
只要熟练掌握,就能在逻辑的世界里游刃有余。
总之,反演律的这两个公式虽然看起来有点复杂,但只要多结合实际例子去理解、去练习,就能发现它们的妙处,让我们在逻辑的海洋里畅快遨游!。
反演原理及公式介绍
反演原理及公式介绍反演原理是数学中的一种重要方法,广泛应用于物理学、工程学、金融数学、计算机科学等领域。
它主要是通过将问题的解嵌套在另外一个问题的解中,从而通过求解后者来得到前者的解。
反演原理最早由法国数学家阿贝尔于1826年引入,后来经过多位数学家的发展和推广,逐渐形成了相对成熟的理论体系。
在物理学中,反演原理常被用于求解各种物理系统中的未知量,如电磁场分布、物理介质的性质等。
反演原理的应用中,最重要的是识别出一对具有对偶关系的微分方程。
一般来说,这对微分方程的形式会有所差异,它们在一方面描述了问题中未知量的演化规律,另一方面则描述了待求解未知量的变换规律。
通过将这两个方程进行适当的组合,就能够得到一个只与待求解未知量有关的微分方程,从而简化了问题的求解过程。
反演原理的核心思想是通过将问题转化为一个新的问题,从而实现问题的求解。
而这个新的问题往往具有较为简单的形式,这样就可以通过已有的数学技巧来求解。
在实际应用中,反演原理可以大大简化问题的求解过程,提高了问题的可解性。
在具体的数学表述中,反演原理可以用如下的公式来表示:设一般微分方程为F(x,y,y',y'',...)=0其对应的反演微分方程为G(x,u,u',u'',...)=0其中,y是未知函数,u是待求解函数。
反演微分方程是通过对y施加变换得到的。
具体的变换过程依赖于具体问题的性质以及反演原理的选择。
反演微分方程通常具有更简单的形式,并且可以通过已有的数学方法来求解。
将反演微分方程的解转化回原方程的解,就可以得到问题的真实解。
反演原理还有一个重要的应用是在数值方法中。
由于一些问题难以直接求解,可以通过反演原理将其转化为一个可以求解的问题,然后再通过数值方法对其进行求解。
总而言之,反演原理是一种重要的数学方法,可以将复杂的问题转化为简单的问题,从而方便求解。
它的应用广泛,不仅是物理学和数学,还包括其他科学领域和工程实践中。
bostick反演
一, 博斯蒂克反演的基本原理基本原理由图2-4所示,水平层状介质大地电磁表面阻抗的递推公式是[][][][]nn nn nn nn h k 21n h k 2nnh k 21n h k 2n nn n n e1Z e1k e1Z e 1k k Z -+--+--++++-=σσσ (3-1)这里,n n i k ρωμ=;为电导率σ;h 为电性层厚度;Zn+1为第n+1层的表面阻抗。
引出上式的目的是为了能推导出下列两种极限情况下,视电阻率曲线的低频渐近线表达式设有一两层介质模型,其第一层电阻率为一有限值,第二层电阻率趋于无穷大。
此时其视电阻率曲线和低频渐近线由图示出,渐近线表达式为20s 1ωμ=ρω 如果第一层电阻率不变,第二层电阻率为零时,其视电阻率曲线和低频渐近线由图示出,渐近线表达式为2hωμρω=在两式中:s 为总纵电导;H 为电性层埋藏深度;ω为圆频率,等于f π2;μ为磁导率,等于7104-⨯π亨利/米。
在第一种情况下,渐近线只与图所决定的s值有关。
第二种情况下。
渐近线仅仅取决于电性层的埋藏深度而与第一层的电阻率无关。
从下图中可以看到,如果将图与图重叠在一起我们发现两条曲线首支(高频段)基本重合,尾支渐近线(低频段)相交一点,在对应于低频S和H渐近线交点的较高频率一侧,两种断面的视电阻率值近似于相同,几乎不受下部介质电阻率巨大变化的影响。
两支渐近线交点的视电阻值与同一频率处上述两条测深曲线上的视电阻率值相差很小,后两者只在交点附近构成一个很小的区间。
可以设想,当下部介质电阻率为上述两种极限情况之间的任何值时,上述结论显然也同样成立。
这样,两支渐近线交点处的视电阻率值就相当准确地给出下部空间电阻率为任意值时该频率上的视电阻率值,即当下半空间的电阻率在两个极限值之间变化时,对应渐近线交点频率处上网视电阻率值只在上述交点上下一个很小的区间内变化,因此,可以交点上的视电阻率值来逼近,反之亦然。
反演原理及公式介绍
第一章反演理论第一节基本概念一.反演和正演1.反演反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。
在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。
有反演,还有正演。
要正确理解反演问题,还要知道正演的概念。
2.正演正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。
在地震勘探中,正演的一个重要应用就是制作合成地震记录。
3.例子考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz正演:给定a和b,求不同深度z的对应温度T(z)反演:已经在不同点z测得T(z),求a和b。
二.反演问题描述和公式表达的几个重要问题1.应用哪种参数化方式——离散的还是连续的?2.地球物理数据的性质是什么?观测中的误差是什么?3.问题能不能作为数学问题提出,如果能够,它是不是适定的?4.对问题有无物理约束?5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解?6.问题是线性的还是非线性的?7.问题是欠定的、超定的、还是适定的?8.什么是问题的最好解法?9.解的置信界限是什么?能否用其它方法来评价?第二节反演的数学基础一.解超定线性反问题1.简单线性回归可利用最小平方法确定参数a 、b 使误差的平方和最小。
⎪⎪⎩⎪⎪⎨⎧∑-∑∑∑-∑=-=∑∑-=22)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为:bx a y+=ˆ (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。
此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。
反演原理及公式介绍
第一章反演理论第一节基本概念一.反演和正演1.反演反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。
在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。
有反演,还有正演。
要正确理解反演问题,还要知道正演的概念。
2.正演正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。
在地震勘探中,正演的一个重要应用就是制作合成地震记录。
3.例子考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz正演:给定a和b,求不同深度z的对应温度T(z)反演:已经在不同点z测得T(z),求a和b。
二.反演问题描述和公式表达的几个重要问题1.应用哪种参数化方式——离散的还是连续的?2.地球物理数据的性质是什么?观测中的误差是什么?3.问题能不能作为数学问题提出,如果能够,它是不是适定的?4.对问题有无物理约束?5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解?6.问题是线性的还是非线性的?7.问题是欠定的、超定的、还是适定的?8.什么是问题的最好解法?9.解的置信界限是什么?能否用其它方法来评价?第二节反演的数学基础一.解超定线性反问题1.简单线性回归可利用最小平方法确定参数a 、b 使误差的平方和最小。
⎪⎪⎩⎪⎪⎨⎧∑-∑∑∑-∑=-=∑∑-=22)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为:bx a y+=ˆ (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。
此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。
反演律的两个表达式
反演律的两个表达式
反演律:(AB)=A+B;(A+B)=A+B+;(注意在使用反演定理时,不属于单个变量上的反号应保留不变,要注意对偶式和反演式的差别)。
1、A+AB=A两乘积项相加,其一项以另一项为因子,该项可以删去;
2、A+AB=A+B两乘积项相加,一项取反后是另一项的因子,该因子可以消去;
3、AB+AB=A两乘积项相加,若他们分别包含B和B+两个因子而其他因子相同,则两项定能合并,且可将B,B+消去;
4、A(A+B)=A变量A和包含变量A的和相乘时,结果为A,即可将和消掉;
5、AB+AC+BC=AB+AC;若两乘积项中分别包含A,A+两个因子,而且这两个乘积项的其余因子组成第三个乘积项时,则第三个乘积项是多余的,可以消去,进一步推广:AB+A+C+BCD=AB+AC;
6、A(AB)=AB当A和一个乘积项的非相乘,并且A为乘积项的因子时,则A这个因子可以消去。
反演方法综述
④从概率密度函数中随机抽取一个值,计算反射系数并与子波进行褶积得到合成地震记录;
若这个值能使合成地震记录与实际地震记录的匹配程度增加则接受此值,若不增加则以一定的概率接收此值,接受的概率分布由波兹曼函数决定。若拒绝则返回上一步;
降低模拟退火的温度;
2、关键环节:
(1)分析储层地球物理特征
测井资料,尤其是声波和密度测井资料,是初始模型建立的基础和地质解释的基本依据,但是一般情况下声波测井都会受到井口环境例如井壁垮塌、泥浆浸泡等的影响而产生误差,同一井口的不同层段,不同井口的同一层段的误差都不尽相同。因此,用于制作初始波阻抗模型的测井资料必须经过环境校正。声波资料是唯一与地震发生联系的资料,储层与围岩的声波特征不同是进行测井约束反演的先决条件。但是由于储层的固有结构和钻井过程中的工程因素,造成目的层段和围岩声波测井上无明显差异。这就要求在仔细分析测井资料的基础上,对声波测井进行合理的校正,这就是储层地球物理特征重构。
2、技术关键和基本流程
地质统计学反演过程中的关键问题是如何使下一个模拟值(从pdf中抽取值)比前一个模拟值更快地达到规定的与地震数据的匹配程度,以避免陷入局部极小或由于大量的迭代次数而耗费机时。目前多采用模拟退火算法解决这个问题。
(1)模拟退火算法的原理:模拟退火(simulated annealing)算法是一类被称为蒙特卡罗法的随机张弛法,它允许目标函数在增加的方向上作随机的变化,因此能跳出局部极小值,找到全局或逼近全局的最优解。在退火过程中系统的能量服从波尔兹曼概率分布,系统依概率
通过最大似然反演导出波阻抗Zi反演公式为Zi=Zi-1*[(Ri+1)/Ri].
具体的计算方法是稀疏脉冲序列每次建立的反射系数为一个脉冲,然后在地震资料中提取子波与初始反射系数进行褶积,得到一个初始合成地震记录,并用此合成地震记录与实际地震纪录作对比得到他们之间的残差,利用这个残差的大小来修改反射序列中脉冲的个数再次进行褶积运算,得到新的合成地震记录,再与实际地震资料对比,就这样循环迭代,直到残差达到最小,最后得到一个与实际地震资料达到最佳逼近的合成地震记录,获得宽频带的反射系数。
拉格朗日反演公式
拉格朗日反演公式拉格朗日反演公式是一种用于计算组合数的重要工具,它在数学分析和组合数学的研究中起着至关重要的作用。
拉格朗日反演公式通过将组合数转化为幂级数的方式,使我们能够通过求解幂级数的系数来计算组合数。
本文将介绍拉格朗日反演公式的由来、基本形式和应用,并给出详细的证明过程。
首先,我们来介绍拉格朗日反演公式的基本形式。
对于两个函数$f(n)$和$g(n)$,我们定义它们的乘积形式$F(n)=f*g(n)$为:$$F(n)=\sum_{d,n} f(d)g\left(\frac{n}{d}\right)$$其中$d,n$表示$d$是$n$的因子。
如果我们已知$g(n)$,我们希望通过计算$F(n)$来求解$f(n)$。
拉格朗日反演公式的基本形式可以表示为:$$f(n)=\sum_{d,n} \mu(d)F\left(\frac{n}{d}\right)$$其中$\mu(n)$是莫比乌斯函数,它在数论中具有重要的应用,定义如下:$$\mu(n)=\begin{cases} 1 & \text{如果$n$是一个平方数且含有奇数个质因子}\\ -1 &\text{如果$n$是一个平方数且含有偶数个质因子}\\ 0 &\text{如果$n$有一个大于1的平方因子}\end{cases}$$换句话说,拉格朗日反演公式给出了通过计算$F(n)$来求解$f(n)$的方法,只需要将$F(n)$展开成为幂级数的形式,并将相应的系数与$\mu(n)$相乘即可。
假设我们希望计算经过$k$个点的$n$次多项式函数的系数,那么我们可以定义函数$g(n)$为:$$g(n)=[n=k]$$其中$[n=k]$是指示函数,当$n=k$时为1,否则为0。
我们知道,经过$k$个点的$n$次多项式函数的系数为$\binom{n}{k}$。
我们可以通过计算$g(n)$来求解$f(n)$。
根据拉格朗日反演公式,我们有:$$f(n)=\sum_{d,n} \mu(d)g\left(\frac{n}{d}\right)$$我们希望将$g(n)$展开成幂级数的形式,将系数与$\mu(n)$相乘,即可求解$f(n)$。
反演原理及公式介绍
反演原理及公式介绍反演原理是一种数学方法,用来将一个复杂问题转化为更简单的问题,通过解决简单问题来得到原问题的解。
它在数学、物理、工程等领域中广泛应用,并具有重要的理论和实际意义。
反演原理的基本思想是通过利用变换的逆变换来解决问题。
它是一种从目标空间到解空间的映射方法,通过反演这种映射关系,可以从解空间推导出目标空间的信息。
反演原理的关键在于建立目标空间和解空间之间的映射关系,以及确定逆变换的具体形式。
反演原理可以分为两类:线性反演和非线性反演。
线性反演是指目标空间和解空间之间的映射关系是线性的,可以用线性变换来表示。
非线性反演是指映射关系是非线性的,需要用非线性变换来表示。
在数学中,反演原理有许多具体的公式和方法。
其中一个著名的例子是拉普拉斯变换与反演变换之间的关系。
拉普拉斯变换是一种重要的积分变换,它将函数从时域变换到复频域。
而反演变换则将函数从复频域反演回时域。
拉普拉斯变换与反演变换之间的关系可以用以下公式表示:F(s) = ∫f(t)e^(-st)dtf(t) = 1/(2πi) * ∫F(s)e^(st)ds其中,f(t)是时域函数,F(s)是复频域函数,s是复变量。
这个公式表达了拉普拉斯变换与反演变换之间的一一对应关系,可以通过拉普拉斯变换得到函数的复频域表示,然后通过反演变换将其恢复到时域表示。
这个公式在信号处理、控制系统、电路分析等领域中有广泛的应用。
除了拉普拉斯变换,反演原理还有其他一些重要的公式和方法。
例如,傅里叶变换与反演变换之间的关系、哈尔变换与反演变换之间的关系等。
这些公式和方法可以用来解决各种数学问题,并在实际应用中发挥重要作用。
总之,反演原理是一种重要的数学方法,通过建立目标空间和解空间之间的映射关系,可以将复杂问题转化为简单问题,并通过解决简单问题来得到原问题的解。
通过具体的公式和方法,可以实现目标空间与解空间之间的映射和反演。
反演原理在数学、物理、工程等领域中有广泛应用,并对解决实际问题具有重要的理论意义和实际价值。
csdn反演规则
csdn反演规则
反演规则(也称为摩根定律的逆定律或反演律)是一个基本的逻辑规则,主要
用于转换逻辑表达式。
这个规则可以概括为以下四点:
1. 反演律:A AND B 的结果等于 A 并且非 B 的结果等于非 A 并且 B 的结果。
2. 吸收律:A AND (A OR B) 的结果等于 A。
3. 分配律:A AND (B OR C) 的结果等于 (A AND B) OR (A AND C)。
4. 重写律:A AND B 的结果等于 B AND A;A OR B 的结果等于 B OR A。
此外,对于使用反演规则求反函数,可以遵循以下步骤:
1. 原变量变反变量,反变量变原变量。
2. 1变成0,0变成1。
3. 与变或,或变与;同或变异或,异或变同或。
如需了解更多关于反演规则的信息,建议咨询数学专业人士或者查阅相关数学资料。
拉普拉斯变换的反演公式
拉普拉斯变换的反演公式
拉普拉斯变换的反演公式是:
$$f(t) = \frac{1}{2\pi i}\lim_{T\rightarrow
\infty}\int_{\gamma-iT}^{\gamma+iT} F(s) e^{st} ds$$ 其中 $F(s)$ 是 $f(t)$ 的拉普拉斯变换,$\gamma$ 是实轴上的
一个足够大的实数。
此公式表示了将函数 $F(s)$ 变换回原函数 $f(t)$ 的方法,它
是拉普拉斯变换的核心之一。
进一步的拓展包括:
1. 周期函数的拉普拉斯变换。
在这种情况下,反演公式中的
$T$ 应该是函数周期的长度。
2. 非常数系数常微分方程的解法。
使用拉普拉斯变换后,微分方
程转变为一个代数方程,可以通过求解该代数方程得到原函数 $f(t)$。
3. 与傅里叶变换的关系。
拉普拉斯变换实际上是傅里叶变换的一个拓展,可以在一些情况下使用傅里叶变换来替代拉普拉斯变换,例如当函数是因果函数(即在 $t<0$ 时等于 $0$)时。
4. 实际应用中的数值计算。
拉普拉斯变换和反演公式都可以用来进行数值计算。
由于计算区域需要取到无穷远,因此需要合适的数值方法来进行计算。
常见的方法包括复平面积分方法和数值逆拉普拉斯变换方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章反演理论
第一节基本概念
一.反演和正演
1.反演
反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。
在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。
有反演,还有正演。
要正确理解反演问题,还要知道正演的概念。
2.正演
正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。
在地震勘探中,正演的一个重要应用就是制作合成地震记录。
3.例子
考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz
正演:给定a和b,求不同深度z的对应温度T(z)
反演:已经在不同点z测得T(z),求a和b。
二.反演问题描述和公式表达的几个重要问题
1.应用哪种参数化方式——离散的还是连续的?
2.地球物理数据的性质是什么?观测中的误差是什么?
3.问题能不能作为数学问题提出,如果能够,它是不是适定的?
4.对问题有无物理约束?
5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解?
6.问题是线性的还是非线性的?
7.问题是欠定的、超定的、还是适定的?
8.什么是问题的最好解法?
9.解的置信界限是什么?能否用其它方法来评价?
第二节反演的数学基础
一.解超定线性反问题
1.简单线性回归
可利用最小平方法确定参数a、b使误差的平方和最小。
⎪⎪⎩
⎪⎪⎨⎧∑-∑∑∑-∑=-=∑∑-=22)()(x x n y x xy
n b x b y n x b y a (1-2-1) 拟合公式为:
bx a y
+=ˆ (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。
此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。
2.非约束最小平方法反演——广义矩阵方法
由前面讨论可知,参数估计的最小平方方法用矩阵公式表示,所得到的算法等价于一个或多个模型参数的一个或多个数据集反演,步骤为:
问题定义→矩阵公式→最小平方解
线性问题采用广义矩阵形式
d=Gm (1-2-3)
对于精确的数据模型,参数m 为
m=G -1d (1-2-4)
但是由于试验误差,实际数据将不能精确拟合获得,故采用最小平方法求解。
解的矩阵表示式为
d G G G m
T T 1][ˆ-= (1-2-5) 上式具体计算时可用奇异值分解方法 G=U ∧V
T 最后,得
m
ˆ=(G T G )-1G T d=V ∧-1U T d (1-2-6) 二. 约束线性最小平方反演
为了得到最合适的解,通常可在方程d=Gm 中加先验信息,进行约束反演。
约束方程为
Dm=h (1-2-7)
D 一般为只有对角线有值的矩阵,我们希望朝着j h 偏置j m 使得ϕ最小。
ϕ=(d-Gm ()T d-Gm )+β2(Dm-h ()T
Dm-h ) (1-2-8)
如果D 是单位矩阵,可以得到约束解 c m ˆ=(G T G+β2I )1-(G T
d+β2h ) (1-2-9) 式中,β称为Lagrange 乘子。
三.解非线性反演问题
1.思路
在实际工作中许多问题都是非线性的,而非线性问题求解通常比较复杂,这样就产生这样一个问题,给定一些非线性问题,而它们又不服从简单的线性变换,那么能否用通用的方法使我们可以用一些线性反演的方法来估算未知模型参数,并最终求得问题的解决呢?答案是肯定的。
2.初始模型和线性化
对于非线性问题
d i =f i (m 1,m 2,…m p )=f i (m ), i=1,2,…n (1-2-10)
设m 0为初始模型,则其响应为
)(00m f d
= (1-2-11) 现假定f (m )在m 0附近是线性的,从而关于m 0的模型响应的微小摄动可以用Taylor 级
数展开为
或简记为
实际情况要考虑噪声
d=f (m )+e (1-2-12)
令y=d-f (m 0),m x m f A j ij δ=∂∂=,/,则有
e=d-)(m f =y-Ax (1-2-13)
e=y-Ax
这样,非线性问题转化成线性问题,我们可以用线性的方法求出问题的解。
四、无约束非线性反演
1.问题的公式化
目标函数:。