3.1.2函数的表示法(2)
中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)
(3) f(a)与 f(-a)相等吗?有怎样的关系?
(4) 函数图象是轴对称图形还是中心对称图形?
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多! 1
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组
【探究学习三】 例 3 作出函数 y=|x|+1 的图像。
【知识拓展】作出下列函数的图像 1、y=-x
3
2、y= x 1
思考:函数图象的图像特征?
1 3、y= 2 x +1
【探究学习四】 例 4
作出下列函数 f(x)=
1, x 1,0 的图象。 2, x 0,1
(三)、总结提升
(四)、课后作业 思考:函数的图像特征? 1、y=-3x+4 3、y=|x|
作出下列函数图像 2、y=2x -5 4、y= x
2
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多!
2
3 2
(2)函数值 y 随 x 的增大有怎样的变化?
(3)f(a)与 f(-a)相等吗?有怎样的关系?
(4)函数图象是轴对称图形还是中心对称图形?
1 【探究学习二】 例 2 作函数 y= 2 的图象. x
1 (1) 函数 y= 2 的定义域、值域是什么? x
(2) 在第一象限中, 函数值 y 随 x 的增大有怎样的变化?在第二象限中呢?
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组
人教版高中数学新教材必修第一册课件:3.1.2 函数表示法
即:f (x) 3 x 7
讲
22
课
人
:
邢
启 强
23
典型例题
解 : 设f (x) kx b,则f ( f (x)) f (kx b) k(kx b) b
k(kx b) b 4x 1,
k 2 (k
4 1)b
1
k b
2
1 3
或
k b
2 1
f (x) 2x 1 或f (x) 2x 1
因为 AD=x 所以 x2= 2 a 2 A 2
E
B
所以 DC=2-x2
讲
课
人
:
邢
启 强
27
典型例题
例5.已知函数f(x)在[-1,2]上的图象如图 所示,求f(x)的解析式.
【分析】由图象特点先确定函数类型,再求解析式.
【解析】当-1≤x≤0时,设y=ax+b,
∵过点(-1,0)和(0,1),∴
(1)求f{f[f(-2)]} (2) 当f (x)=-7时,求x ;
解: (1) f{f[f(-2)]} = f{f[-1]} = f{1} =0
(2)若x<-1 , 2x+3 <1,与f (x)=-7相符,
由2x+3 =-7得x=-5 易知其他二段均不符合f (x)=-7 。
故 x=-5
讲
课
Hale Waihona Puke 人:(2)换元法:已知复合函数 f(g(x))的解析式, 可用换元法,此时要注意新元的取值范围;
(3)配凑法:由已知条件 f(g(x))=F(x),可将 F(x) 改写成关于 g(x)的表达式,然后以 x 替代 g(x),便 得 f(x)的解析式; (4)消去法:已知关于 f(x)与 f1x或 f(-x)的表达式, 可根据已知条件再构造出另外一个等式组成方程
教学设计4:3.1.2 函数的表示法
3.1.2 函数的表示法教学设计一、教学目标1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.了解简单的分段函数,并能简单应用.二、教学重难点1、教学重点会选择恰当的方法表示函数.2、教学难点函数的实际应用三、教学过程1、新课导入上一节我们已经学习过了函数的概念,那么函数的具体表示方法有哪些呢,在不同的情境中函数如何表示呢?带着这样的疑问来深入学习一下本节课的内容吧.2、探索新知我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.解析法,就是用数学表达式表示两个变量之间的对应关系.列表法,就是列出表格来表示两个变量之间的对应关系.图象法,就是用图象表示两个变量之间的对应关系.这三种方法是常用的函数表示法.下面我们通过例题来体会这三种方法的特点.例:某种笔记本的单价是5元,买({1,2,3,4,5})x x ∈个笔记本需要y 元,试用函数的三种表示法表示函数()y f x =.解:这个函数的定义域是数集{1,2,3,4,5}.用解析法可将函数()y f x =表示为5y x =,{1,2,3,4,5}x ∈.用列表法可将函数()y f x =表示为用图象法可将函数()y f x =表示为下图.思考:(1)比较函数的三种表示法,它们各自的特点是什么?(2)所有函数都能用解析法表示吗?列表法与图象法呢?请你举出实例加以说明.下面我们通过例题来认识分段函数:例:画出函数||y x =的图象.解:由绝对值的概念,我们有00x x y x x -<⎧=⎨⎩,,.所以,函数||y x =的图象如图所示.像例题中00x x y x x -<⎧=⎨⎩,,这样的函数称为分段函数,生活中,有很多可以用分段函数描述的实际问题.如出租车的计费、个人所得税纳税额等.通过对课本例题的学习进一步掌握函数的实际应用.3、课堂练习1.设函数()221121x x f x x x x ⎧-≤=⎨+->⎩,,,则()12f f ⎛⎫ ⎪ ⎪⎝⎭=( )A. 1516B.4C.3D. -3答案:A解析:依题意知()222224f =+-=,则()211115124416f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选 A. 2.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过310m 的,按t 元/3m 收费;用水量超过310m 的,超过部分按2t 元/3m 收费.某职工某月缴水费16t 元,则该职工这个月实际用水量为( )A.313mB.314mC.318mD.326m答案:A解析:该单位职工每月应缴水费y (元)与实际用水量()3m x 满足的关系式为01021010tx x y tx t x ≤≤⎧=⎨->⎩,,.由16y t =,可知10x >.令21016tx t t -=,解得13x =. 3.某人开车去某地旅行,先沿直线匀速前进了a km ,到达目的地后游玩了一段时间,又原路返回匀速行驶了()b km b a <,再折回匀速前进c km ,则此人距起点的距离s 与时间t 的关系示意图正确的是__________(填序号).答案:③解析:注意理解两坐标轴s ,t 的含义,这里s 是指距起点的距离,不是路程的累加,结合题意可知③符合.4、小结作业小结:本节课学习了函数的表示方法、分段函数以及函数的实际应用.作业:完成本节课课后习题.四、板书设计3.1.2 函数的表示法常用的函数表示法:解析法,就是用数学表达式表示两个变量之间的对应关系.列表法,就是列出表格来表示两个变量之间的对应关系.图象法,就是用图象表示两个变量之间的对应关系.。
3.1.2 函数的表示法 教学设计(2)
3.1.2 函数的表示法课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。
重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过函数的三种表示法:列表法、图像法、解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
3.1.2一函数的表示法二
则 b=________.
答案
1 2
解析 f 56=3×56-b=52-b,∴f 52-b=4,
52-b<1,
①
325-b-b=4,
无解;
52-b≥1,
②
225-b=4,
综上,b=12.
解得 b=12.
①前三年中,产量增长的速度越来越快;
②前三年中,产量增长的速度越来越慢;
③第三年后,这种产品停止生产; ④第三年后,年产量保持不变. 答案 ②③ 解析 由于纵坐标表示八年来前 t 年产品生产总量, ②③正确.
2x,x≥2,
若 f(x)=3,则 x 等
于( )
A.1
B.± 3
3 C.2
D. 3
4.已知函数 f(x)的图象是两条线段(如图所示,不含
端点),则 f13等于( )
2x,0≤x≤1, 8.函数 f(x)=2,1<x<2,
3,x≥2
的定义域是___.
9.若定义运算 a⊙b=ab,,aa<≥bb. , 则函数 f(x)=
第5页
2020 学年第一学期高一数学课时练习
班级
姓名
由图①中函数取值的情况,结合函数 φ(x)的定义, 可得函数 φ(x)的图象如图②. 令-x2+2=x 得 x=-2 或 x=1. 结合图②,得出 φ(x)的解析式为
湘教版必修第一册3.1.2表示函数的方法作业(2)
【精编】3.1.2表示函数的方法作业练习一.单项选择1.函数定义域是,则的定义域是( )A .B .C .D .2.下列四组函数中,表示同一函数的是( )A .与B .与C .与D .与3.函数y则该函数的定义域为( ) A . B . C .[D . 4.下列各组函数中,f (x )与g (x )相等的是( )A .,B .,C .D . ,5. 已知函数,则( )A .5B .4 C.3D .26.下列函数中与表示同一函数的是( )(2)y f x =-[0,4](1)y f x =+[3,1]-[2,2]-[1,3]-[1,5]()f x =()g x =()f x x =()2x g x x =()2lg f x x=()2lg g x x=()0f x x=()01g x x =()023x -,322,,1233⎛⎫⎛⎤-⋃ ⎪ ⎥⎝⎭⎝⎦3,12⎡⎤-⎢⎥⎣⎦323,],1232⎛⎤-⋃ ⎥⎝⎦3,12⎛⎤- ⎥⎝⎦31()f x x x -=21()(1)(1)g x x x x -=--()1f x x 21()(1)(1)g x x x -=-+()f x =()g x =1()||f x x -=1()g x =()32f x x =-()2f =y x =A .B .C .D .7.函数则( ) A .0B .-2C .2D .68.设函数,则,则( ) A .0 B . C . D .19.函数的定义域是( )A .B .C .D .10. 若集合,函数的定义域为B ,则( )A .B .C .D . 11.若函数的定义域是,则实数的取值范围是( )A .B .C .D .12.已知函数,则( ) A .4B .8C .16D .3213.已知函数满足,求的值为( )2x y x=3y=y =1y =()1,13,1x x f x x x +≤⎧=⎨-+>⎩()()4f f =31,1()2,1xx x f x x -<⎧=⎨≥⎩(())2f f a =a =13231()lg 1f x x x =+-(0,)+∞(0,1)(1,)⋃+∞(0,1)(1,)+∞{A x y ==∣()ln 2y x =-A B =1,22⎡⎤⎢⎥⎣⎦2,1,22⎡⎫⎪⎢⎣⎭[)2,+∞24()43x f x mx mx -=++R m 3(0,]43[0,]43[0,)43(0,)42,1()2,1xx x f x x ⎧≤-=⎨>-⎩((2))f f -=()f x 3()2(1)f x f x x +-=(3)fA .B .C .D .14. 已知函数是一次函数,且,则的解析式为( )A .B .C .D .15.下列各组函数表示相同函数的是( )A .B .,C ., D .,34-43-3553-()f x (1)43f x x -=+()f x ()41f x x =-()47f x x =+()41f x x =+()43f x x =+()f x =2()g x =()1f x =()2g x x =,0(),0x x f x x x ≥⎧=⎨-<⎩()g t t =()1f x x =+21()1x g x x -=-参考答案与试题解析1.【答案】A 【解析】函数定义域是,则,所以,解得, 所以函数的定义域为.故选:A 2.【答案】D 【解析】 对于A ,定义域都为,但同,故二者不是同一个函数,A 错误;对于B ,的定义域为,而的定义域为,二者定义域不同,所以二者不是同一个函数,故B 错误;对于C ,定义域为,定义域为,二者定义域不相同,所以二者不是同一个函数,故C 错误; 对于D ,两个函数的定义域为,且,所以二者是同一个函数,故D 正确.故选:D 3.【答案】A 【解析】,函数的定义域需满足,解得:, 所以函数的定义域是.故选:A 4.【答案】D(2)y f x =-[0,4]222x -≤-≤212x -≤+≤31x -≤≤(1)y f x =+[3,1]-(],0-∞()f x ==-()g x =()f x x =R 2()x g x x =(,0)(0,)-∞+∞2()lg f x x =(,0)(0,)-∞+∞()2lg g x x =(0,)+∞(,0)(0,)-∞+∞()()1f x g x ==()01232y x x -=-∴1023230x x x -⎧≥⎪+⎨⎪-≠⎩31223x x ⎧-<≤⎪⎪⎨⎪≠⎪⎩322,,1233⎛⎫⎛⎤-⋃ ⎪ ⎥⎝⎭⎝⎦【解析】对于A ,的定义域为(﹣∞,0)∪(0,+∞),的定义域为(﹣∞,1)∪(1,+∞),两函数的定义域不同,不是相等函数;对于B ,的定义域是R ,的定义域(﹣∞,﹣1)∪(﹣1,+∞),两个函数的定义域不同,不是相等函数;对于C ,定义域是R ,的定义域是R ,两函数的对应关系不同,不是相等函数;对于D ,的定义域为(﹣∞,0)∪(0,+∞),定义域为(﹣∞,0)∪(0,+∞),两函数的定义域相同,对应关系也相同,是相等函数. 故选:D . 5.【答案】B 【解析】 因为,所以,故选:B 6.【答案】B 【解析】 解:由题意知:的定义域为,值域为,对A ,的定义域为,所以A 错误; 对B ,,两函数的定义域和对应法则都相同,是相同的函数;对C ,的值域为,所以C 错误;对D ,,两函数值域不同,所D 错误.故选:B. 7.【答案】A 【解析】由, 则.故选:A8.【答案】C 【解析】312()f x x x x -==212()(1)(1)g x x x x x -=--=()1f x x 21()(1)(1)1g x x x x -=-+=-()||f x x ==()g x x ==1()||f x x -=11()||g x x -==()32f x x =-()23224f =⨯-=y x =R R 2x y x =()(),00,-∞⋃+∞3=y x=y =[)0+,∞1y =()1,13,1x x f x x x +≤⎧=⎨-+>⎩()()()41110f f f =-=-+=因为, 所以当时,单调递增,且; 当时,单调递增,且,因此函数在定义域内单调递增;由得,所以,解得.故选:C. 9.【答案】B 【解析】由题得且.所以函数的定义域为:故选:B10.【答案】C 【解析】由题得,, 所以. 故选:C.11.【答案】C 【解析】解:由的定义域是知:恒成立, 即无解, 若,则知方程无解;若,则,解得:,31,1()2,1xx x f x x -<⎧=⎨≥⎩1≥x ()2x f x =()(1)2f x f =≥1x <()31f x x =-()(1)2f x f <=()f x (())2f f a =()12f a =<()311f a a =-=23a =10,00x x x -≠⎧∴>⎨>⎩1x ≠(0,1)(1,)⋃+∞1{[,)2A x y ===+∞∣{}()20,2B x x =->=-∞A B =1,22⎡⎫⎪⎢⎣⎭()f x R 2430mx mx ++≠243=0mx mx ++0m =0m ≠2=16120m m ∆-<304m <<综上所述:. 故选:C.12.【答案】C 【解析】由已知,,所以故选:C13.【答案】B 【解析】 故选:B 14.【答案】B 【解析】设一次函数的解析式为,因为,可得,所以,解得,所以函数的解析式为. 故选:B 15.【答案】C 【解析】对于A 中,函数,函数的定义域为,所以定义域不同,所以不是相同的函数; 对于B 中,函数与对应法则不同,所以不是相同的函数;对于C 中,函数和的定义域都是,且对应法则相同,所以是相同的函数;对于D 中,函数的定义域为,函数的定义域为所以不是相同的函数.故选:C.3[0,)4m ∈2(2)(2)4f -=-=4((2))(4)216f f f -===()f x ax b(a 0)=+≠(1)43f x x -=+(1)(1)43f x a x b ax a b x -=-+=-+=+43a a b =⎧⎨-+=⎩4,7a b ==()47f x x =+()f x =R 2()g x =(0,)+∞()1f x =()2g x x =,0(),0x x f x x x ≥⎧=⎨-<⎩(),0,0t t g t t t t ≥⎧==⎨-<⎩R ()1f x x =+R 21()1x g x x -=-{}|1x x ≠。
3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册
教学课题:3.1.2 函数的表示法课型:新授课课时:2课时课标要求:1、在实际情境中,会根据不同的需要选择恰当的方法(如图象法,列表法、解析法)表示函数,理解函数图象的作用;2、通过具体实例,了解简单的分段函数,并能简单应用。
学习目标:1、在实际情境中,会根据不同的需要选择恰当的方法表示函数,理解函数图象和解析式之间相辅相成的关系;2、通过具体实例,了解简单的分段函数,并能简单应用;3、发展学生直观想象、逻辑推理核心素养。
重点:了解简单的分段函数,并能简单应用。
难点:在实际情境中,会根据不同的需要选择恰当的方法表示函数。
教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知、引入新课引入1:(师)你还记得初中我们学习过的函数的表示方法有哪些?(生)解析法、列表法和图像法引入2:(师)你能分辨下列函数是用什么方法表示的吗?(1)3.1.1的问题3:北京市2016年11月23日空气质量指数(AQI) I和时间t的关系;(生)图象法,就是用图象表示两个变量之间的对应关系.(2)3.1.1的问题4:恩格尔系数r与年份y的对应关系;年份y2006200720082009201020112012201320142015恩格尔系r(%)36.6936.8138.1735.6935.1533.5333.8729.8929.3528.57(生)列表法,就是列出表格表示两个变量之间的对应关系.(3)3.1.1的问题1:路程和时间的对应关系,s=350t,t{00.5}∈≤≤t t(生)解析法,就是用数学表达式表示两个变量之间的对应关系.设计意图:学生对初中学过的三种函数表示方法已经比较熟悉了,但是接触的例子有所欠缺,所以教师应引导学生回顾具体的例子,为学生深入研究这3种方法打下基础。
二、创设情境、提出问题x x∈个笔记本需要y元,试用列表法和图情境1某种笔记本的单价是5元,买({1,2,3,4,5})像法表示函数y=f(x).解析:用列表法可将y=f(x)表示为笔记本数x12345钱数y510152025用图象法发可将y=f(x)表示为追问1(师)你发现图象上这些点有什么特征?(生)这些点好像都经过一条直线。
新课标数学预习讲义---3.1.2 函数的表示法
3.1.2 函数的表示法【知识梳理】1.函数的三种表示方法:(1)解析法:用数学表达式表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. (2)图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. (3)列表法:列出表格来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.【考点分类精讲】考点1 列表法【考点1】已知函数)(x f ,)(x g 分别由下表给出:.不等式的解集是 .【举一反三】已知函数)(x f ,)(x g 分别由下表给出:的值相同的是 .考点2 解析法类型1:待定系数法【考题2】设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .【举一反三】已知)(x f 是二次函数,若1)()1(,0)0(++=+=x x f x f f ,求)(x f 表达式.类型2:配凑法【考题3】已知函数)(x f 满足:221)1(xx x x f +=+ )0(>x ,求()f x 的解析式.【举一反三】已知函数)(x f 满足:x x x f 2)1(+=-,求()f x 的解析式.类型3:换元法【考题4】已知函数)(x f 满足:x x x f 2)1(+=+,求()f x 的解析式.【举一反三】已知函数)(x f 满足:2211)11(xx x x f +-=+-,求)(x f 的解析式.类型4:构造方程组法【考题5】已知函数)(x f 满足:x xf x f =-)1(2)(,求)(x f 的解析式.【举一反三】设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 求)()(x g x f 和的解析式. 附:若)(x f 是奇函数,则)()(x f x f -=-;若)(x f 是偶函数,则)()(x f x f =-类型5:赋值法【考题6】已知1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .考点3 图像法【考题7】作出下列函数的图象 (1)()1f x x =+(2)|2||1|)(-++=x x x f(3)|32|2--=x x y(4)x xx y +=【举一反三】1.试画出函数221|1|)(x x x x f --=的图像,并根据图像写出函数的值域.2.当m 为何值时,方程24||5,x x m -+=(1)无解;(2)有两个实数解;(3)有三个实数解;(4)有四个实数解.考点4 分段函数【考题8】已知函数⎩⎨⎧<-≥=0,10,1)(x x x f ,解不等式(2)(2)5x x f x ++⋅+≤.【举一反三】1.设函数()221, 1,2, 1,x x f x x x x ⎧-≤⎪=⎨+->⎪⎩则()12f f ⎛⎫⎪ ⎪⎝⎭的值是 . 2.设函数()222200x x ,x ,f x x ,x .⎧++≤⎪=⎨->⎪⎩若()()2f f a =,则a = .3.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若 则实数a 的取值范围 . 4.作出函数8||2)(2--=x x x f 的图像,并将函数式写成分段函数的形式.【题型优化测训】1.设32)(+=x x f ,)()2(x f x g =+,则=)(x g ( ) A .12+xB .12-xC .32-xD .72+x2.设)(x f 是一次函数,且3)2(3)1(2=+f f ,1)0()1(2-=--f f ,则=)(x f ( ) A .9194+x B .9194-x C .936-x D .x 369-4.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .135.用min{a ,b }表示两个数中的较小值,要使=)(x f min{||x ,||t x +}的图像关于直线21-=x 对称,则t 的值为( ) A .2-B .2C .1-D .16.若定义运算a ⊙b =⎩⎨⎧<≥)(,)(,b a a b a b ,则函数f (x )=x ⊙(2-x )的值域为________.7.若关于x 的方程0322=---a x x 有四个实数根,则实数a 的取值范围是 . 8.若记号[]x 表示不超过x 的最大整数,则[]x y =的图像与直线1-=x y 的图像的交点个数是_________. 9.如果函数)(x f 满足ax xf x af =+)1()(,其中1±≠a ,求)(x f 的解析式.10.作出下列函数的图像. (1)|12|)(2--=x x x f(2)1||1)(-=x x f。
人教A版(2019)高中数学必修第一册 3 函数的表示法(二)导学案(无答案)
§3.1.2 函数的表示法(二)【探究学习】分段函数的表示例1画出函数y=|x|的图象定义:像y=|x|这样的,对于自变量x的不同的取值范围,有着不同的对应关系的函数通常称为_________ 【知识应用】变式1画出函数y=|x-2|的图象变式2画出函数y=|x2-1|的图象变式3画出函数y=|x-1|(x+1)的图象例2给定函数f(x)=x+1,g(x)=(x+1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},例如,当x=2时,M(2)=max{f(2),g(2)}=max{3,9}=9 请分别用图像法和解析法表示函数M(x) 练习1.给定函数f(x)=-x+1,g(x)=(x-1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},请分别用图像法和解析法表示函数m(x)例3设函数()22,1,122,2x xf x x xx x+≤-⎧⎪=-<<⎨⎪≥⎩,(1)求()32,2f f f⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)若f(x)=3,求x的值.练习2.已知f(x)=⎩⎪⎨⎪⎧x2,-1≤x≤1,1,x>1或x<-1.(1)画出f(x)的图象;(2)若f(x)≥14,求x的取值范围;(3)求f(x)的值域.例4.某市招手即停公共汽车的票价按下列规则制定(1)5km以内(含5km),票价2元;(2)5km以上,每增加5km,票价增加1元(不足5km 按5km算)如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,并画出图像.【小结】【作业】作业本3837-P。
3.1.2函数表示法(第二课时)教学设计
3.1.2函数的表示法(第2课时)(人教A版普通高中教科书数学必修第一册第三章)深圳市坪山高级中学钟南林一、教学目标1.明确函数的三种表示方法.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.3.通过具体实例,了解简单的分段函数,并能简单应用.二、教学重难点1.函数的三种表示方法,分段函数的概念.2.如何根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.三、教学过程1.复习导入1.1函数三种表示方法定义及优缺点1.2分段函数的定义及特点(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.【设计意图】在上节课的基础上进一步掌握比较函数三种不同表示方法的优缺点,为本节课在具体情境中选取何种函数的表示方法作铺垫,同时对分段函数的特点进一步深化,为在具体实例中应用分段函数做好准备。
2.探究典例例1 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表问题1:上表反映了几个函数关系?这些函数的自变量是什么?定义域是什么?【预设的答案】4个;测试序号;{1,2,3,4,5,6}【设计意图】让学生体会列表法不单单是表示一个函数,让学生体会列表法表示多个函数,进一步理解函数的定义.问题2:上述4个函数能用解析法表示吗?能用图象法表示吗?【预设的答案】用解析法并不能很好的表示出对应的解析式,可以类似例题4用图像法表示。
【设计意图】在问题1的基础上继续追问,让学生进一步深化函数三种表示方法的优缺点.问题3:若分析、比较每位同学的成绩变化情况,用哪种表示法为宜?【预设的答案】表格上并不能很好的看出每位同学的成绩变化情况,用图像法较好【设计意图】让学生体会用表格区分三位同学的成绩变化并不直观,引导学生用图像法分别表示出三个同学的成绩和班级平均分对应的函数图像,让学生体会在实际需要中选择恰当的方法表示函数是需要给予关注的.问题4:试根据图象对这三位同学在高一学年度的数学学习情况做一个分析?【预设的答案】王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;赵磊同学的数学成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩在稳步提升.【活动预设】让学生动手将每个同学的成绩与测试序号之间的函数关系分别用图像(均为6个离散的点)表示出来,学生分组讨论,能从图像上得出哪些结论,每组派代表进行发言,.【设计意图】让学生动手做出每位同学成绩对应的散点图,让学生进一步理解函数定义域与值域的对应关系,并体会如何能更好的表示出每位同学成绩变化情况。
教学设计3:3.1.2 函数的表示法
20分钟2、学以致用定义域:t∈{0≤t≤24}(2)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.如3.1.1 问题4所说的恩格尔系数变化情况表:上表中r是y的函数,所以自变量y的定义域:y∈{2006,2007,2008,2009,2010,2011,2012,2013,2014,2015},可知,定义域也可以是离散型的.(3)解析法:用数学表达式表示两个变量之间的函数关系.如3.1.1问题1:某“复兴号”高速列车加速到350km/h后保持匀速运行半小时.这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为:S=350t.(对应法则)其中,定义域:t∈{0≤t≤0.5},值域S∈{0≤S≤175}.因为有定义域和对应法则就可以求出值域,所以,我们一般用解析法表示函数时只要写出对应法则和定义域.二、学以致用接下来我们通过三道例题来进一步掌握函数的三种表示法及其特点.例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).提问1:审题是理清思路的前提,也是成功解题的关键,所以仔细审题,题中有哪些关键点?如何准确又快速地把这道题数学化?讨论后回答:因为x∈{1,2,3,4,5},属于离散型,有限集,学生最直观的想法就是用列对应值表的方法表示函数y=f(x).(若x有1000个取值呢?)如下表所示:其中定义域:x∈{1,2,3,4,5}追问:通过列表的过程,我们发现,一方面,表格一目了然地把x和y的对应关系表示出来;另一方面,在得到表中第二行钱数y的值的时候,也是需要通过题意简单计算的.所以,我们思考一下,得到这个表格之后,我们如何进一步阐发这一道题呢?回答追问1:从表格两行的结构看,我们不妨以x为横轴,y为纵轴,建立直角坐标系,这样,上述表格中的每一列的(x,y)的值就可以表示为x−o−y坐标系中的点.如下图所示:这就是图象法表示函数y=f(x).(定义域:x∈{1,2,3,4,5})研究图象可知,和列表法相比,图象法虽然能直观反映x和y的对应关系,但是其横纵坐标不够精准,另一方面,图象法还能反映x和y的变化趋势,如图,反映了x越大,y越大,也就是买的笔记本越多,花的钱越多。
第三章-3.1.2 函数的表示法高中数学必修第一册人教A版
1, 为有理数,
分别定义如下:对任意的 ∈ ,函数 = ቊ
称为狄利克雷函数;记
0, 为无理数,
[]为不超过的最大整数,则称 = []为高斯函数.下列关于狄利克雷函数与高斯
函数的结论,错误的是( C
A.
=1
C. + − = 0
)
B. + 1 =
(1)写出函数的解析式;
【解析】由题设条件知,当 = 2时, = 100,当 = 14时, = 28,代入关系式得
2
2 + = 100,
= 1,
൞
解得ቊ
= 196.
14 + = 28,
14
所以 =
196
+ .
又 ≤ 20,且为正整数,所以函数的定义域是{|0 < ≤ 20, ∈ + }.
围,否则易出错),则 = − 1 2 ,所以
= −1
2
+ 2 − 1 = 2 − 1 ≥ 1 ,
所以函数 的解析式为 = 2 − 1 ≥ 1 .
方法2 (配凑法)
+ 1 = + 2 = + 2 + 1 − 1 = ( + 1)2 − 1.
= ( + ) = ( + ) + = 2 + + = 4 + 6,
= 2, = −2,
2 = 4,
于是有ቊ
解得ቊ
或ቊ
= −6,
=2
+ = 6,
所以 = 2 + 2或 = −2 − 6.
高中数学第三章函数的概念与性质3.1.2函数的表示法讲义新人教A版必修第一册
3.1.2 函数的表示法最新课程标准:(1)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用.(2)通过具体实例,了解简单的分段函数,并能简单应用.知识点一 函数的表示法状元随笔 1.解析法是表示函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了变量之间的数量关系.2.由列表法和图象法的概念可知:函数也可以说就是一张表或一张图,根据这张表或这张图,由自变量x 的值可查找到和它对应的唯一的函数值y.知识点二 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.状元随笔 1.分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.2.分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x≤0,x ,0<x≤3,其“段”是不等长的.[教材解难]教材P 68思考(1)三种表示方法的优缺点比较优点 缺点解析法一是简明、全面地概括了变量间的关系;二是可以通过用解析式求出任意一个自不够形象、直观,而且并不是所有的函数都可以用解析式表示=⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段).[基础自测]1.购买某种饮料x 听,所需钱数为y 元,若每听2元,用解析法将y 表示成x (x ∈{1,2,3,4})的函数为( )A .y =2xB .y =2x (x ∈R )C .y =2x (x ∈{1,2,3,…}) D.y =2x (x ∈{1,2,3,4}) 解析:题中已给出自变量的取值范围,x ∈{1,2,3,4},故选D. 答案:D2.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0 B.13C .1D .2解析:f (2)=2-1=1. 答案:C3.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4解析:方法一 令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2.∴f (x )=3x +2.方法二 ∵f (2x +1)=3(2x +1)+2.∴f(x)=3x+2.答案:A4.已知函数f(x),g(x)分别由下表给出.x 12 3f(x)21 1x 12 3g(x)32 1则f(g(1))的值为________.当g(f(x))=2时,x=________.解析:由于函数关系是用表格形式给出的,知g(1)=3,∴f(g(1))=f(3)=1.由于g(2)=2,∴f(x)=2,∴x=1.答案:1 1题型一函数的表示方法[经典例题]例 1 (1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )(2)已知函数f(x)按下表给出,满足f(f(x))>f(3)的x的值为________.x 12 3f(x)23 1【解析】(1)所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.【答案】(1)D由题意找到出发时间与离校距离的关系及变化规律【解析】(2)由表格可知f(3)=1,故f(f(x))>f(3)即为f(f(x))>1.∴f(x)=1或f(x)=2,∴x=3或1.【答案】(2)3或1观察表格,先求出f(1)、f(2)、f(3),进而求出f(f(x))的值,再与f(3)比较.方法归纳理解函数的表示法应关注三点(1)列表法、图象法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.跟踪训练1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.解析:(1)列表法:x/台12345678910y/元 3 000 6 0009 00012000150001800021000240002700030000(3)解析法:y=3 000x,x∈{1,2,3,…,10}.状元随笔本题中函数的定义域是不连续的,作图时应注意函数图象是一些点,而不是直线.另外,函数的解析式应注明定义域.题型二求函数的解析式[经典例题]例2 根据下列条件,求函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫1x =x 1-x 2,求f (x );(2)f (x )是二次函数,且f (2)=-3,f (-2)=-7,f (0)=-3,求f (x ).【解析】 (1)设t =1x ,则x =1t (t ≠0),代入f ⎝ ⎛⎭⎪⎫1x =x 1-x 2,得f (t )=1t 1-⎝ ⎛⎭⎪⎫1t 2=t t 2-1, 故f (x )=xx 2-1(x ≠0且x ≠±1).(2)设f (x )=ax 2+bx +c (a ≠0).因为f (2)=-3,f (-2)=-7,f (0)=-3. 所以⎩⎪⎨⎪⎧4a +2b +c =-3,4a -2b +c =-7,c =-3.解得⎩⎪⎨⎪⎧a =-12,b =1,c =-3.所以f (x )=-12x 2+x -3.(1)换元法:设1x=t ,注意新元的范围.(2)待定系数法:设二次函数的一般式f(x)=ax 2+bx +c.跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________; (2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________. 解析:(1)因为f (x 2+2)=x 4+4x 2=(x 2+2)2-4,令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2),所以f (x )=x 2-4(x ≥2). (2)因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:(1)f (x )=x 2-4(x ≥2) (2)2x -13或-2x +1(1)换元法 设x 2+2=t. (2)待定系数法 设f(x)=ax +b.题型三 求分段函数的函数值 [经典例题] 例3 (1)设f (x )=⎩⎪⎨⎪⎧|x -1|-2(|x |≤1),11+x 2(|x |>1),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A.12B.413 C .-95 D.2541(2)已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f (f (n +5)),n <10,则f (8)=________.【解析】 (1)∵f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+94=413,故选B.判断自变量的取值范围,代入相应的解析式求解. (2)因为8<10,所以代入f (n )=f (f (n +5))中, 即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3中,得f (13)=10, 故f (8)=f (10)=10-3=7. 【答案】 (1)B (2)7 方法归纳(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得. (2)像本题中含有多层“f ”的问题,要按照“由里到外”的顺序,层层处理. (3)已知函数值求相应的自变量值时,应在各段中分别求解.跟踪训练3 已知f (x )=⎩⎪⎨⎪⎧x +1 (x >0),π (x =0),0 (x <0),求f (-1),f (f (-1)),f (f (f (-1))).解析:∵-1<0,∴f (-1)=0,∴f (f (-1))=f (0)=π,∴f (f (f (-1)))=f (π)=π+1. 根据不同的取值代入不同的解析式.题型四 函数图象[教材P 68例6]例4 给定函数f (x )=x +1,g (x )=(x +1)2,x ∈R , (1)在同一直角坐标系中画出函数f (x ),g (x )的图象;(2)∀x ∈R ,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )}. 例如,当x =2时,M (2)=max{f (2),g (2)}=max{3,9}=9. 请分别用图象法和解析法表示函数M (x ).【解析】 (1)在同一直角坐标系中画出函数f (x ),g (x )的图象(图1).(2)由图1中函数取值的情况,结合函数M (x )的定义,可得函数M (x )的图象(图2). 由(x +1)2=x +1,得x (x +1)=0.解得x =-1,或x =0. 结合图2,得出函数M (x )的解析式为 M (x )=⎩⎪⎨⎪⎧(x +1)2,x ≤-1,x +1,-1<x ≤0,(x +1)2,x >0.状元随笔 1.先在同一坐标系中画出f(x)、g(x); 2.结合图象,图象在上方的为较大者; 3.写出M(x). 教材反思(1)画一次函数图象时,只需取两点,两点定直线.(2)画二次函数y =ax 2+bx +c 的图象时,先用配方法化成y =a (x -h )2+k 的形式⎝⎛⎭⎪⎫其中h =-b 2a ,k =4ac -b 24a ,确定抛物线的开口方向(a >0开口向上,a <0开口向下)、对称轴(x =h )和顶点坐标(h ,k ),在对称轴两侧分别取点,按列表、描点、连线的步骤画出抛物线.(3)求两个函数较大者,观察图象,图象在上方的为较大者.跟踪训练4 作出下列函数的图象: (1)y =-x +1,x ∈Z ; (2)y =2x 2-4x -3,0≤x <3; (3)y =|1-x |.解析:(1)函数y =-x +1,x ∈Z 的图象是直线y =-x +1上所有横坐标为整数的点,如图(a)所示.(2)由于0≤x <3,故函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的部分,如图(b).(3)因为y =|1-x |=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,故其图象是由两条射线组成的折线,如图(c).(2)先求对称轴及顶点,再注意x 的取值(部分图象).(3)关键是根据x 的取值去绝对值.解题思想方法 数形结合利用图象求分段函数的最值 例 求函数y =|x +1|+|x -1|的最小值. 【解析】 y =|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1.作出函数图象如图所示:由图象可知,x ∈[-1,1]时,y min =2.【反思与感悟】 (1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式. (3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错. 答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x 解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t,∴f (x )=1x +2. 答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a 等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1]. 答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f (2)-12f (-2)=4,f (-2)-12f (2)=-4,得⎩⎪⎨⎪⎧2f (2)-f (-2)=8,f (-2)-12f (2)=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /张 1 2 3 4 5y /元 20 40 60 80 100(2)(3)解析法:y =20x ,x ∈{1,2,3,4,5}.9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x );(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式.解析:(1)由题意,设函数为f (x )=ax +b (a ≠0),∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9, ∴a =1,b =3.∴所求函数解析式为f (x )=x +3.(2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.[尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数);(2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎨⎪⎧ …-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧ x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y =-x -2的图象,取(-∞,-2)上的一段,如图2所示.。
3.1.2函数的表示法教学设计(2)
3.1.2函数的表示法课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下.可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样姓理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2.在实际情境中,会根据不同的需要选择恰当的方法表示函数:3,通过具体实例,了解简单的分段函数.并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式:3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。
重点:函数的三种表示方法•分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数•什么才算“恰当”?分段函数的表示及其图象.教学方法:以学生为主体,采用诱思探究式教学•精讲多练。
教学工具:多媒体。
一,情景导入初中已经学过函数的三种表示法:列表法.图像法.解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言.教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的留象?要求:学生独立完成•以小组为单位•组内可商星,最终选出代表回答问题。
新教材3.1函数的概念及其表示 3.1.2分段函数(第二课时) 教案
3.1.2 分段函数(第二课时)【教学目标】1.知识与技能(1)掌握分段函数的定义(2)会求分段函数的解析式,会求分段函数的定义域和函数值(3)会运用分段函数的知识解决实际问题2.过程与方法(1)初步掌握解决分段函数问题的基本方法。
(2)通过教师引导,学生讨论,培养学生自学、分析和解决问题的能力。
3.情感、态度与价值观培养理解和掌握分类讨论的数学思想方法;培养学生养成探究式学习、自主式学习、合作式学习等优秀的学习品质。
【教学重点、难点】(1)重点:分段函数的概念;运用分段函数的知识解决实际问题(2)难点:建立实际问题的分段函数关系【教学方法】讲、议结合,通过实际例子引出分段函数的定义,创设情境,激发兴趣。
通过学生的主动参与,加深学生对分段函数的认识,同时寻找解决分段函数基本问题的基本方法。
【课时安排】 1课时【教学过程】一、复习函数的定义及表示方法1、函数的定义2、函数的三种表示方法:解析法、列表法、图像法二、基础知识分段函数:如果函数在定义域的不同的范围内,有着不同的对应关系,这样的函数为分段函数. 思考:分段函数对于自变量x 的不同取值对应关系不同,那么分段函数是一个函数还是几个函数?(注意:分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.)三、基础自测1.函数()f x = ) A.[1,1)(1,)-⋃+∞ B.(1,)+∞C.(1,)-+∞D.(1,1)(1,)-⋃+∞[解析]:由函数解析式得1010x x +≥⎧⎨-≠⎩,解得1x ≥-,且1x ≠. 故函数的定义域为[1,1)(1,)-⋃+∞,选A.2.若2(0)()(0)x x f x x x ⎧≥=⎨-<⎩,则[(2)]f f -=( ) A.2 B.3C.4D.5[解析]:∵20-<,∴(2)(2)2f -=--=,又20>,∴2[(2)](2)24f f f -===,选C.3.函数||y x =的图象是( )[解析]:因为,(0)||,(0)x x y x x x ≥⎧==⎨-<⎩,所以B 选项正确. 4.(2020▪江苏徐州高一期中测试)已知函数4(0)()4(0)x x f x x x +<⎧=⎨->⎩,则[(3)]f f -的值为 . [解析]:∵4(0)()4(0)x x f x x x +<⎧=⎨->⎩, ∴(3)1f -=,∴[(3)](1)3f f f -==-.【题型探究】题型一 分段函数的求值问题例1 已知函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩.(1)求(4),(3),[(2)]f f f f --;(2)若()10f a =,求a 的值.[分析]:分段函数的解析式⇒求函数值或已知函数值列方程求字母的值.[解析]:(1)(4)422f -=-+=-,(3)236,(2)220f f =⨯=-=-+=,2[(2)](0)00f f f -===;(2)当1a ≤-时,210a +=,可得8a =,不符合题意;当12a -<<时,210a =,可得a =当2a ≥时,210a =,可得5a =,符合题意;综上可知,5a =.[归纳提升]:求分段函数函数值的方法(1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现0[()]f f x 的形式时,应从内到外依次求值.【对点练习】①已知3(10)()[(5)](10)x x f x f f x x +>⎧=⎨+≤⎩,则(5)f 的值是( ) A.24 B.21C.18D.16[解析]: (5)[(10)],(10)[(15)](18)21,(5)(21)24f f f f f f f f f ======.故选A.题型二 分段函数的图象及应用例2 已知函数||()1(22)2x x f x x -=+-<≤. (1)用分段函数的形式表示函数()f x ;(2)画出函数()f x 的图象;(3)写出函数()f x 的值域.[分析]: 先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,再利用描点法作出函数图象.[解析]:(1)当02x ≤≤时,()112x x f x -=+=; 当20x -<<时,()112x x f x x --=+=-. 所以1(02)()1(20)x f x x x ≤≤⎧=⎨--<<⎩; (2)函数()f x 的图象如图所示:(3)由(2)知,()f x 在(2,2]-上的值域为[1,3).[归纳提升]:1.由分段函数的图象确定函数解析式的步骤(1)定类型:根据自变量在不同范围内图象的特点,先确定函数的类型.(2)设函数式:设出函数的解析式.(3)列方程(组):根据图象中的已知点,列出方程或方程组,求出该段内的解析式.(4)下结论:最后用“{”表示出各段的解析式,注意自变量的取值范围.2.作分段函数图象的注意点作分段函数的图象时,定义域分界点处的函数取值情况决定着图象在分界点处的断开或连接,特别注意端点处是实心点还是空心点.【对点练习】② 已知函数221(1)()2(1)x x f x x x x -+<⎧=⎨-≥⎩. (1)画出函数的图象;(2)若()1f x =,求x 的值.[解析]:(1)函数图象如图所示:(2)由()1f x =和函数图象综合判断可知,当(,1)x ∈-∞时,得()211f x x =-+=, 解得0x =; 当[1,)x ∈+∞时,得2()21f x x x =-=,解得12x =+或12x =-(舍去).综上可知x 的值为0或12+.题型三 分段函数的应用问题例3 如图,在边长为4的正方形ABCD 的边上有一点P ,沿折线BCDA 由点B (起点)向点A (终点)运动,设点P 运动的路程为x ,APB ∆的面积为y .(1)求y 关于x 的函数关系式()y f x =:(2)画出()y f x =的图象;(3)若APB ∆的面积不小于2,求x 的取值范围.[分析]:(1)点P 位置不同ABP ∆的形状一样吗?(2)注意该函数的定义域.[解析]:(1)2(04)8(48)2(12)(812)x x y x x x ≤≤⎧⎪=<≤⎨⎪-<≤⎩;(2)()y f x =的图象如图所示:(3)即()2f x ≥,当04x ≤≤时,22x ≥,∴1x ≥,当812x <≤时,2(12)2x -≥,∴11x ≤,∴x 的取值范围是111x ≤≤.[归纳提升]:利用分段函数求解实际应用题的策略(1)首要条件:把文字语言转换为数学语言.(2)解题关键:建立恰当的分段函数模型.(3)思想方法:解题过程中运用分类讨论的思想方法.【对点练习】③某市有,A B 两家羽毛球俱乐部,两家设备和服务都很好,但收费方式不同,A 俱乐部每块场地每小时收费6元;B 俱乐部按月计费,一个月中20小时以内(含20小时)每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.(1)设在A 俱乐部租一块场地开展活动x 小时的收费为()f x 元123()0x ≤≤,在B 俱乐部租一块场地开展活动x 小时的收费为()g x 元123()0x ≤≤,试求()f x 与()g x 的解析式;(2)问该企业选择哪家俱乐部比较合算,为什么?[解析]:(1)由题()6,[12,30]f x x x =∈,90,[12,20]()250,(20,30]x g x x x ∈⎧=⎨+∈⎩; (2)1220x ≤≤时,690x =,解得:15x =,即当1215x ≤<时,()()f x g x <,当15x =时,()()f x g x =,当1520x <≤时,()()f x g x >.当2030x <≤时,()()f x g x >,故当1215x ≤<时,选A 家俱乐部合算.当15x =时,两家俱乐部一样合算,当1530x <≤时,选B 家俱乐部合算.【误区警示】分段函数概念的理解错误例4 求函数21(0)()(0)x x f x x x ⎧-≥=⎨<⎩的定义域. [错解]:∵0x ≥时,2()1f x x =-,0x <时,()f x x =,∴当0x ≥时,()f x 的定义域为[0,)+∞,当0x <时,()f x 的定义域为(,0)-∞.[错因分析]:错解的原因是对分段函数概念不理解,认为分段函数21(0)()(0)x x f x x x ⎧-≥=⎨<⎩是两个函数.[正解]:函数()f x 的定义域为(,0)[0,)-∞⋃+∞,即(,)-∞+∞,∴函数()f x 的定义域为(,)-∞+∞.【学科素养】建模应用能力数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程. 主要包括:在实际情境中从数学的视角发现问题,提出问题,分析问题,构建模型,求解结论,验证结果并改进模型,最终解决实际问题.数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力.在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验.学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识.例5 某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数()h x ,其中21400,0400()280000,400x x x h x x ⎧-<≤⎪=⎨⎪>⎩,x 是新样式单车的月产量(单位:件),利润=总收益-总成本. (1)试将自行车厂的利润y 表示为月产量x 的函数;(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?[分析]总成本=固定成本+可变成本,本题中,固定成本为20000元,可变成本为100x 元.[解析]:(1)依题设,总成本为20000100x +, 则2130020000,0400,260000100,400,x x x x N y x x x N⎧-+-<≤∈⎪=⎨⎪->∈⎩且且;(2)当0400x <≤时,21(300)250002y x =--+, 则当300x =时,max 25000y =.当400x >时,60000100y x =-是减函数,则6000010040020000y <-⨯=.综上可知,当月产量300x =件时,自行车厂的利润最大,最大利润是为25000元.[归纳提升]:求分段函数的最值,应分别计算各段函数的最值,然后再比较它们的大小,确定最后的最值.。
中职数学3.1.2函数的表示方法
中职数学3.1.2函数的表示方法函数的定义和表示在数学中,函数是一种关系,根据某个规则,将一个集合的元素映射到另一个集合的元素上。
常见的函数表示方法有四种,即文字描述法、映射图法、函数表法和算式表示法。
1. 文字描述法文字描述法是最基本和直观的函数表示方法。
通过用自然语言描述函数的功能和性质来表示函数。
例如,对于函数“将集合X的元素加上2后得到集合Y的元素”,这是一个用文字描述的函数表示方法。
2. 映射图法映射图法是用一个箭头从输入集合指向输出集合的图形来表示函数。
其中,输入集合的元素位于箭头的起点,输出集合的元素位于箭头的终点。
映射图法直观地展现了函数的输入和输出关系。
例如,对于函数f,输入集合为{1, 2, 3},输出集合为{3, 4, 5},可以用映射图法表示为:1 --> 32 --> 43 --> 53. 函数表法函数表法通过表格的形式列出函数输入和对应的输出值。
可以使用一对有序数对,或者用两个并列的集合表示。
例如,对于函数g,可以用函数表法表示为:输入输出1324354. 算式表示法算式表示法是将函数用公式或算式描述的方法。
常见的算式表示方法有多种,如函数解析式、函数关系式、函数定义式等。
例如,对于函数h,可以用算式表示法表示为:h(x) =x^2。
函数的性质和特点函数作为数学中的重要概念,具有一些特殊的性质和特点。
1. 定义域和值域函数的定义域是指所有可能输入的集合,通常用符号D表示;值域是函数映射到的所有可能输出的集合,通常用符号R 表示。
函数的性质要求每个输入只对应一个输出,所以函数的定义域与值域具有一定的关系。
2. 单调性和奇偶性函数的单调性指的是在定义域内,函数的取值随输入的增加或减少而单调变化。
函数可以是递增的、递减的或者不变的。
奇偶性是指函数的对称性,如果对于任意x,有f(-x) = f(x),则函数为偶函数;如果对于任意x,有f(-x) = -f(x),则函数为奇函数。
高中数学第三章函数概念与性质3.1.2函数的表示法函数的表示法第一册数学教案
第1课时 函数的表示法考点学习目标核心素养函数的三种表示方法了解函数的三种表示法及各自的优缺点,会根据不同需要选择恰当方法表示函数数学抽象 求函数的解析式 掌握求函数解析式的常用方法 数学运算 函数图象的作法及应用会作函数的图象并从图象上获取有用信息直观想象 问题导学预习教材P67,并思考以下问题: 1.函数的表示方法有哪几种? 2.函数的表示方法有什么特点? 函数的表示法 ■名师点拨(1)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性. (2)图象法:图象既可以是连续的曲线,也可以是离散的点.(3)解析法:利用解析法表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域.判断正误(正确的打“√”,错误的打“×”) (1)任何一个函数都可以用解析法表示.( )(2)函数的图象一定是定义区间上一条连续不断的曲线. ( ) 答案:(1)× (2)×已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-xC .y =2xD .y =x2解析:选C.设y =k x ,由题意得1=k2,解得k =2,所以y =2x.已知函数f (x )由下表给出,则f (f (3))=________.x 1 2 3 4f(x)324 1 解析:由题设给出的表知f(3)=4,则f(f(3))=f(4)=1.答案:1函数f(x)的图象如图所示,则f(x)的定义域是________,值域是________.答案:[-1,0)∪(0,2] [-1,1)函数的三种表示方法某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.【解】(1)列表法:x/台12345678910y/元 3 000 6 0009 00012000150001800021000240002700030000(2)图象法:如图所示.(3)解析法:y=3 000x,x∈{1,2,3,…,10}.(1)函数三种表示方法的选择解析法、图象法和列表法分别从三个不同的角度刻画了自变量与函数值的对应关系.采用解析法的前提是变量间的对应关系明确,采用图象法的前提是函数的变化规律清晰,采用列表法的前提是定义域内自变量的个数较少.(2)应用函数三种表示方法应注意以下三点①解析法必须注明函数的定义域;②列表法必须能清楚表明自变量与函数值的对应关系;③图象法必须清楚函数图象是“点”还是“线”.1.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )解析:选D.由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.2.下表表示函数y=f(x),则f(x)>x的整数解的集合是________.x 0<x<55≤x<1010≤x<1515≤x<20 y=f(x)46810当5≤x<10时,f(x)>x的整数解为{5}.当10≤x<15时,f(x)>x的整数解为∅.当15≤x <20时,f (x )>x 的整数解为∅.综上所述,f (x )>x 的整数解的集合是{1,2,3,5}. 答案:{1,2,3,5}3.已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其函数对应关系如下表:x 1 2 3 f (x ) 2 3 1 x 1 2 3 g (x )321则方程g (f (x ))=x 的解集为________.解析:当x =1时,f (1)=2,g (f (1))=2,不符合题意; 当x =2时,f (2)=3,g (f (2))=1,不符合题意; 当x =3时,f (3)=1,g (f (3))=3,符合题意. 综上,方程g (f (x ))=x 的解集为{3}. 答案:{3} 求函数的解析式(1)已知f (x )是一次函数,且f (f (x ))=9x +4,求f (x )的解析式; (2)已知f (x +1)=x +2x ,求f (x );(3)已知2f ⎝ ⎛⎭⎪⎫1x+f (x )=x (x ≠0),求f (x ). 【解】 (1)设f (x )=kx +b (k ≠0),则f (f (x ))=k (kx +b )+b =k 2x +kb +b =9x +4.所以⎩⎪⎨⎪⎧k 2=9,kb +b =4.解得k =3,b =1,或k =-3,b =-2. 所以f (x )=3x +1或f (x )=-3x -2. (2)法一:(配凑法)因为f (x +1)=x +2x =(x +1)2-1(x +1≥1), 所以f (x )=x 2-1(x ≥1). 法二:(换元法)令x +1=t (t ≥1),则x =(t -1)2(t ≥1), 所以f (t )=(t -1)2+2(t -1)2=t 2-1(t ≥1). 所以f (x )=x 2-1(x ≥1).(3)f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,令x =1x,得f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.于是得到关于f (x )与f ⎝ ⎛⎭⎪⎫1x 的方程组⎩⎪⎨⎪⎧f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x. 解得f (x )=23x -x3(x ≠0).求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.(2)换元法(有时可用“配凑法”):已知函数f (g (x ))的解析式求f (x )的解析式可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f (g (x ))中求出f (t ),从而求出f (x ).(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).1.(2019·辽源检测)设函数f ⎝⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A .f (x )=1+x1-xB .f (x )=1+xx -1C .f (x )=1-x1+xD .f (x )=2x x +1解析:选C.令t =1-x1+x ,解得x =1-t1+t ,代入f ⎝⎛⎭⎪⎫1-x 1+x =x ,可得f (t )=1-t1+t,所以f (x )=1-x1+x.2.已知f (x )+2f (-x )=x 2+2x ,求f (x ). 解:因为f (x )+2f (-x )=x 2+2x ,① 所以将x 换成-x ,得f (-x )+2f (x )=x 2-2x .② ②×2-①得3f (x )=x 2-6x , 所以f (x )=13x 2-2x .函数图象的作法及应用作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2]. 【解】 (1)列表:x 0 12 1 32 2 y12345当x ∈[0,2]时,图象是直线的一部分,观察图象可知,其值域为[1,5]. (2)列表:x 2 3 4 5 … y1231225…当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分,观察图象可知其值域为(0,1].(3)列表:x -2 -1 0 1 2 y-138画图象,图象是抛物线y =x 2+2x 在-2≤x ≤2之间的部分.由图可得函数的值域是[-1,8].函数y =f (x )图象的画法(1)若y =f (x )是已学过的基本初等函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y =f (x )不是所学过的基本初等函数之一,则要按:①列表;②描点;③连线.三个基本步骤作出y =f (x )的图象.作出下列函数的图象:(1)y =x +2,|x |≤3; (2)y =x 2-2,x ∈Z 且|x |≤2.解:(1)因为|x |≤3,所以函数的图象为线段,而不是直线,如图(1); (2)因为x ∈Z 且|x |≤2,所以函数的图象是五个孤立的点,如图(2). 1.已知函数f (x )的图象如图所示,其中点A ,B 的坐标分别为(0,3),(3,0),则f (f (0))=( )A .2B .4C .0D .3解析:选C.结合题图可得f (0)=3, 则f (f (0))=f (3)=0.2.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .f (x )=3x +2 B .f (x )=3x +1 C .f (x )=3x -1D .f (x )=3x +4 解析:选A.法一:令2x +1=t ,则x =t -12.所以f (t )=6×t -12+5=3t +2,所以f (x )=3x +2.法二:因为f (2x +1)=3(2x +1)+2, 所以f (x )=3x +2.3.已知函数f (x )=x -m x,且此函数的图象过点(5,4),则实数m 的值为________. 解析:因为函数f (x )=x -m x的图象过点(5,4), 所以4=5-m5,解得m =5.答案:54.已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x ). 解:因为f (x )是二次函数,设f (x )=ax 2+bx +c (a ≠0), 由f (0)=1,得c =1.由f (x +1)-f (x )=2x , 得a (x +1)2+b (x +1)+1-ax 2-bx -1=2x .整理得2ax +(a +b )=2x ,由系数相等得⎩⎪⎨⎪⎧2a =2,a +b =0,所以⎩⎪⎨⎪⎧a =1,b =-1.所以f (x )=x 2-x +1.[A 基础达标]1.下表表示y 是x 的函数,则函数的值域是( )x 0<x <5 5≤x <10 10≤x <1515≤x ≤20y2345C .(0,20]D .N *解析:选B.由表格可知,y 的值为2,3,4,5.故函数的值域为{2,3,4,5}. 2.已知f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=( ) A .0 B .8 C .2D .-2解析:选B.因为f (x )=x 2+bx +c , 且f (1)=0,f (3)=0,所以⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,即f (x )=x 2-4x +3, 所以f (-1)=1+4+3=8.3.已知函数f (x -1)=x 2-3,则f (2)的值为( ) A .-2 B .6 C .1D .0解析:选B.法一:令x -1=t ,则x =t +1, 所以f (t )=(t +1)2-3, 所以f (2)=(2+1)2-3=6.法二:f (x -1)=(x -1)2+2(x -1)-2, 所以f (x )=x 2+2x -2, 所以f (2)=22+2×2-2=6. 法三:令x -1=2,所以x =3,所以f (2)=32-3=6.4.已知f (x )是一次函数,且满足3f (x +1)=2x +17,则f (x )等于( ) A.23x +5 B.23x +1 C .2x -3D .2x +1解析:选A.因为f (x )是一次函数, 所以设f (x )=ax +b (a ≠0),由3f (x +1)=2x +17,得3[a (x +1)+b ]=2x +17, 整理得3ax +3(a +b )=2x +17,所以⎩⎪⎨⎪⎧3a =2,3(a +b )=17,所以⎩⎪⎨⎪⎧a =23,b =5,所以f (x )=23x +5,故选A.5.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水也不出水.则正确论断的个数是( ) A .0 B .1 C .2D .3解析:选B.由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,故③错.6.已知函数y =f (x )的对应关系如表所示,函数y =g (x ) 的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为________.解析:由函数g (x )则f (g (2))=f (1)=2. 答案:27.(2019·莆田检测)函数y =x 2+2x -3在区间[-3,0]上的值域为________. 解析:y =x 2+2x -3=(x +1)2-4,抛物线的开口向上,对称轴为直线x =-1, 因为x ∈[-3,0], 所以当x =-3时,y max =0, 当x =-1时,y min =-4. 函数的值域为[-4,0]. 答案:[-4,0]8.已知a ,b 为常数,若f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,则5a -b =________. 解析:由f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,得(ax +b )2+4(ax +b )+3=x2+10x +24,即a 2x 2+(2ab +4a )x +b 2+4b +3=x 2+10x +24,由系数相等得⎩⎪⎨⎪⎧a 2=1,2ab +4a =10,b 2+4b +3=24,解得a =-1,b =-7或a =1,b =3,则5a -b =2.答案:29.已知函数p =f (m )的图象如图所示.求: (1)函数p =f (m )的定义域; (2)函数p =f (m )的值域;(3)p 取何值时,有唯一的m 值与之对应.解:(1)观察函数p =f (m )的图象,可以看出图象上所有点的横坐标的取值范围是-3≤m ≤0或1≤m ≤4,由题图知定义域为[-3,0]∪[1,4].(2)由题图知值域为[-2,2].(3)由题图知:p ∈(0,2]时,只有唯一的m 值与之对应.10.已知函数f (x )=g (x )+h (x ),g (x )关于x 2成正比,h (x )关于x 成反比,且g (1)=2, h (1)=-3.求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1∈R ,且k 1≠0),h (x )=k 2x(k 2∈R ,且k 2≠0), 由于g (1)=2,h (1)=-3, 所以k 1=2,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0,+∞). (2)由(1),得f (4)=2×42-34=612.[B 能力提升]11.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2(x ≠-1),则f (x )的解析式为( )A .f (x )=x1+x 2(x ≠-1)B .f (x )=-2x1+x 2(x ≠-1)C .f (x )=2x1+x2(x ≠-1) D .f (x )=-x1+x2(x ≠-1)解析:选C.设1-x 1+x =t ,则x =1-t 1+t (t ≠-1),所以f (t )=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=4t 2+2t 2=2t1+t2,即f (x )=2x1+x2(x ≠-1).故选C. 12.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为( )A .1B .-1C .1或-1D .1或-2解析:选B.因为g (x )=14(x 2+3),所以g (f (x ))=14[(2x +a )2+3]=14(4x 2+4ax +a 2+3)=x 2-x +1,求得a =-1.故选B.13.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小; (2)求函数f (x )的值域.解:f (x )=-(x -1)2+4的图象如图所示: (1)f (0)=3,f (1)=4,f (3)=0, 所以f (1)>f (0)>f (3).(2)由图象可知二次函数f (x )的最大值为f (1)=4,则函数f (x )的值域为(-∞,4].[C 拓展探究]14.设二次函数f (x )满足f (x -2)=f (-x -2),且f (x )的图象与y 轴交点的纵坐标为1,被x 轴截得的线段长为22,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0). 由f (x -2)=f (-x -2)得4a -b =0;①又因为|x 1-x 2|=b 2-4ac |a |=22, 所以b 2-4ac =8a 2;②又由已知得c =1.③ 由①②③解得b =2,a =12,c =1, 所以f (x )=12x 2+2x +1.。
3.1.2 函数的表示法
过6吨而不超过7吨时,超过部分的水费加收400%.如果某人本
季度实际用水量为x(x≤7)吨,那么本季度他应缴多少水费?
解:用y(单位:元)表示本季度应缴水费.
当0<x≤5时,y1=1.3x.
当5<x≤6时,应把x分成两部分:5与(x-5)分别计算,第一部分收
(4)分段函数是由几个函数组合而成的.( × )
合作探究·释疑解惑
探究一 函数的表示方法
【例1】 某商店新进了10部手机,每部售价3 000元,试分别用
列表法、图象法、解析法表示售出部数x与销售额y之间的函
数关系.
解:(1)列表法:如下表.
2
3
4
5
6
7
8
9
10
x/台 1
y/元 3 000 6 000 9 000 12000 15000 18000 21000 24000 27000 30000
规 范 解 答
随 堂 练 习
自主预习·新知导学
一、函数的表示方法
1.给出下列三个对应关系:
①x,y∈R,y=4x-1;
②
存期 x 个月
利率 y
3
0.011
6
0.013
12
0.015
24
0.021
36
0.027 5
③它们分别是用什么形式表达两个变量x,y之间的对应关系
的?它们是否都是函数关系?
提示:分别用解析法、列表法、图象法表示对应关系,它们都
a=2.
答案:2
.
||-
5.已知函数 f(x)=1+
(-2<x≤2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.解方程组法求函数解析式 例3
变式训练1
方法总结
已知抽象函数中含有 f x, f 1
或 f x, f x 的形式的式子, x求 f x 的解析式,可以用解方程组的 方法求函数的解析式
解: f a 3a2 5a 2
f a 3 3a2 13a 14
求函数解析式的一般方法
1.待定系数法求函数解析式 例1 已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17求f(x)的解析 式.
解:设f(x)=ax+b(a≠0), 则3f(x+1)-2f(x-1)
=3ax+3a+3b-2ax+2a-2b
3.1.2函数的表示法(2)
宁乡市第九高级中学
授课教师:邓准
回顾导入
回想函数常用的表示方法有哪几种?
解量之 间的对应关系
列出表格来表示两个变量之间的对应关系
用数学表达式表示两个变量之间的对应关系
小试牛刀
已知函数 f x 3x25x 2,求 f a, f a 3
(3)解方程或方程组,得到待定系数的值
(4)确定所设函数解析式
2.换元法求函数解析式 例2 已知f(2x-1)=x2+x+1,求f(x).
变式训练1
方法总结
已知函数f(g(x))的解析式,求f(x)的解析式可用换元法(或“配凑 法”),换元法更具有一般性,在使用时一定要注意新元的取值 范围.然后代入f(g(x))中求出f(t),从而求出f(x).
课堂小结
求函数解析式的一般方法?
1.待定系数法求函数解析式 2.换元法求函数解析式 3.解方程组法求函数解析式
谢谢
=ax+b+5a=2x+17 ∴a=2,b=7,∴f(x)=2x+7
变式训练1 已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.
方法总结 若已知函数类型,常用待定系数法求解,由题设条件求出待定 系数.
待定系数法求解析式步骤如下: (1)设所求函数的解析式 (2)根据已知条件,列出方程或方程组