函数单调性总结及应用
浅谈函数单调性在高中数学中的学习与运用
浅谈函数单调性在高中数学中的学习与运用1. 引言1.1 介绍函数单调性的概念函数单调性是高中数学中一个非常重要的概念,它在分析函数性质、求解极值和解不等式等问题中具有重要作用。
所谓函数单调性,指的是函数的增减性质,也就是函数在定义域内是单调递增还是单调递减。
具体来说,如果对于定义域内的任意两个实数a和b,当a小于b时,有f(a)小于等于f(b),则称函数f(x)在区间上是单调递增的;如果对于定义域内的任意两个实数a和b,当a小于b时,有f(a)大于等于f(b),则称函数f(x)在区间上是单调递减的。
函数单调性的概念非常直观和易懂,通过观察函数的图像我们也可以很容易地判断函数的单调性。
在学习函数单调性的过程中,我们需要掌握函数单调性的定义与分类、判断函数的单调性的方法,以及函数单调性在求极值和解不等式中的应用。
函数单调性不仅可以帮助我们更好地理解函数的性质,还可以在解决数学问题时提供重要的线索。
深入学习函数单调性是我们在高中数学学习中不可或缺的一部分。
1.2 为什么函数单调性在高中数学中重要函数单调性是研究函数变化规律的基本性质之一。
通过分析函数的单调性,可以帮助我们更好地理解函数的增减性质,从而更深入地理解函数在数学中的应用。
在解决实际问题时,函数的单调性也是确定函数取值范围和变化趋势的重要依据。
函数单调性是高中数学中求解极值和解不等式的重要工具。
根据函数的单调性,我们可以快速判断函数的最大值和最小值,进而求解极值问题。
通过函数的单调性可以帮助我们求解各类不等式,从而更好地解决数学中的实际问题。
函数单调性也与函数的图像密切相关。
通过研究函数的单调性,我们可以更好地理解函数的图像特征,包括函数的上升和下降区间,极值点位置等,从而更好地描绘函数的图像。
函数单调性在高中数学中的学习与运用具有重要的意义,可以帮助我们更深入地理解函数的特性,解决实际问题,并为学习其他数学内容打下扎实的基础。
掌握函数单调性不仅可以提高数学学习的效果,也可以在以后的学习和工作中发挥重要的作用。
函数的单调知识点总结
函数的单调知识点总结一、函数的增减性1. 函数的单调性定义函数的单调性是指函数在其定义域上的增减性质。
如果对于任意的$x_1, x_2 \in D$, $x_1 <x_2$,有$f(x_1) \le f(x_2)$,则称函数$f(x)$在定义域上是单调不减的;如果对于任意的$x_1, x_2 \in D$, $x_1 < x_2$,有$f(x_1) \ge f(x_2)$,则称函数$f(x)$在定义域上是单调不增的。
2. 函数的单调性判定对于一个给定函数,要判定其在定义域上的增减性,可以通过对函数的导数进行分析来实现。
通常有以下几种方法:(1) 图像法:通过画出函数的图像,观察函数在定义域上的增减性。
(2) 导数法:计算函数的导数并分析其正负性来判定函数的单调性。
(3) 定义域划分法:对函数的定义域进行适当的划分,分别分析函数在各个子区间上的增减性。
3. 函数的单调性与最值函数的单调性可以帮助我们求解函数的最值。
如果一个函数在其定义域上是单调递增的,则其最小值为$f(x)$的最小值;如果一个函数在其定义域上是单调递减的,则其最大值为$f(x)$的最大值。
二、导数的应用1. 函数的导数导数是描述函数变化率的重要工具,它可以帮助我们研究函数的增减性。
对于可导函数$f(x)$,其导数$f'(x)$的正负性可以描述函数在某点附近的增减性。
具体来说:(1) 若$f'(x)>0$,则$f(x)$在$x$点附近是单调递增的;(2) 若$f'(x)<0$,则$f(x)$在$x$点附近是单调递减的。
2. 函数单调性与导数对于可导函数$f(x)$,如果$f'(x)>0$,则$f(x)$在其定义域上是单调递增的;如果$f'(x)<0$,则$f(x)$在其定义域上是单调递减的。
这是函数的单调性与导数之间的重要联系,也是求解函数的单调性的重要方法。
高一数学单调性知识点总结
高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。
单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。
在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。
一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。
具体来说,我们可以分为递增和递减两种情况进行讨论。
1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。
简单来说,递增函数的函数值随着自变量的增大而增大。
通过求导可以帮助我们判断函数的递增性。
如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。
2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。
递减函数的函数值随着自变量的增大而减小。
二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。
1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。
2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。
根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。
如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。
3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。
如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。
三、应用举例单调性是数学中的一个重要概念,有许多实际应用。
1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。
这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。
函数单调性高三复习知识点
函数单调性高三复习知识点函数单调性是高中数学中的重要知识点之一,它在数学分析、代数学等学科中有着广泛的应用。
本文将就函数单调性的定义、性质、证明方法等方面进行高中复习知识点的总结。
一、函数单调性的定义与性质在数学中,函数单调性是指函数对于定义域内的任意两个不同的自变量取值,其函数值的变化关系。
具体而言,若函数在定义域D上满足对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) < f(x_2),则称该函数在D上为递增函数;若对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) > f(x_2),则称该函数在D 上为递减函数。
函数的单调性可以用图像直观地表示出来。
对于递增函数,其图像从左往右呈上升趋势;对于递减函数,其图像从左往右呈下降趋势。
而对于函数的单调性来说,如果一个函数既是递增函数又是递减函数,那么它在整个定义域上是无单调性的。
二、函数单调性的证明方法1. 利用导数的符号进行证明函数的单调性与函数的导数有着密切的关系。
对于给定的函数,如果在定义域内的某个区间上导数的取值恒为正值,则函数在该区间上为递增函数;如果导数的取值恒为负值,则函数在该区间上为递减函数。
证明函数单调性的关键是分析函数的导数符号。
可以通过导数的定义及相关的数学推理,找出导数在某个区间上的符号,从而得出函数在该区间上的单调性。
2. 利用函数的增减性进行证明对于函数f(x),若在定义域内的任意两个不同的自变量取值x_1和x_2,若有f(x_1) < f(x_2),则函数在x_1和x_2之间取任意值时均满足f(x_1) < f(x) < f(x_2),则称函数在x_1和x_2之间是递增的。
反之,如果有f(x_1) > f(x_2),则称函数在x_1和x_2之间是递减的。
基于这个性质,可以通过选择不同的x_1和x_2来判断函数的单调性。
如果对于所有的x_1 < x_2,都有f(x_1) < f(x_2),则函数为递增函数;如果对于所有的x_1 < x_2,都有f(x_1) > f(x_2),则函数为递减函数。
(完整版)函数的单调性知识点汇总及典型例题(高一必备),推荐文档
第二讲:函数的单调性一、定义:1.设函数的定义域为,如果对于定义域内的某个区间内的任意两)(x f y =I I D 个自变量的值,当时,都有那么就说在区间上21,x x 21x x <),()(21x f x f <)(x f D 是增函数.区间叫的单调增区间. D )(x f y =注意:增函数的等价式子:;0)()(0)]()()[(21212121>--⇔>--x x x f x f x f x f x x 难点突破:(1)所有函数都具有单调性吗?(2)函数单调性的定义中有三个核心①②③ 函数为21x x <)()(21x f x f <)(x f 增函数,那么①②③中任意两个作为条件,能不能推出第三个?2.设函数的定义域为,如果对于定义域内的某个区间内的任意两)(x f y =I I D 个自变量的值,当时,都有那么就说在区间上21,x x 21x x <),()(21x f x f >)(x f D 是减函数.区间叫的单调减区间.D )(x f y =注意:(1)减函数的等价式子:;0)()(0)]()()[(21212121<--⇔<--x x x f x f x f x f x x (2)若函数为增函数,且.)(x f )()(,2121x f x f x x <<则题型一:函数单调性的判断与证明例1.已知函数的定义域为,如果对于属于定义域内某个区间上的任意)(x f R I 两个不同的自变量都有则( )21,x x .0)()(2121>--x x x f x f A.在这个区间上为增函数 B.在这个区间上为减函数 )(x f )(x f C.在这个区间上的增减性不变 D.在这个区间上为常函数)(x f )(x f变式训练:定义在上的函数对任意都有,且R )(x f 120x x <<1)()(2121<--x x x f x f 函数的图象关于原点对称,若则不等式的解集为)(x f y =,2)2(=f 0)(>-x x f ___.例3.证明:函数在上是增函数.x x x f +=3)(R 变式训练:讨论的单调性.并作出当时函数的图象.)0()(>+=a xax x f 1=a 变式训练:已知并用上的单调性,在判断函数)1,0()()(,2)1(2xx f x g x x x f =-=+定义证明.题型二:函数的单调区间难点突破:(1)函数在某个区间上是单调函数,那么它在整个定义域上也是单调函数吗?(2)函数的单调减区间是上吗?xx f 1)(=),0()0,(+∞-∞ 例1.(图像法)求下列函数的单调区间(1). (2).|2||1|)(-++=x x x f 3||2)(2++-=x x x f (3).|54|)(2+--=x x x f 例2.(直接法)求函数的单调区间.xxx f +-=11)(例3.(复合函数)(2017全国二)函数 的单调递增区间2()ln(28)f x x x =--是( )A. B. C. D. )2,(--∞)1,(--∞),1(+∞),4(+∞变式训练:求下列函数的单调区间.(1) (2)312+-=x x y 652+-=x x y (3)22311x x y ---=题型三:抽象函数的单调性问题例1.设函数是实数集上的增函数,令.)(x f R )2()()(x f x f x F --=(1)证明:是上的增函数;)(x F R (2)若求证:.,0)()(21>+x F x F 221>+x x 例2定义在上的函数满足下面三个条件:),0(+∞)(x f ①对任意正数,都有;b a ,)()()(ab f b f a f =+②当时,;1>x 0)(<x f ③.1)2(-=f (1)求的值;)1(f (2)使用单调性的定义证明:函数在上是减函数;)(x f ),0(+∞(3)求满足的的取值集合.2)13(>+x f x 题型四:函数单调性的应用(1)利用函数的单调性比较大小在解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上.①正向应用:②逆向应用:例1.在上单调递减,那么与的大小关系是__________.()x f ()+∞,0()12+-a a f ⎪⎭⎫⎝⎛43f 变式训练:已知函数且对任意的,有),1()1()(x f x f x f -=+满足)(1,2121x x x x ≠>设则的大小关系_________..0)()(2121>--x x x f x f ),3(),2(),21(f c f b f a ==-=c b a ,,(2)利用函数的单调性解不等式例2.设是定义在上的增函数,且成立,求的取值)(x f ]1,1[-)1()2(x f x f -<-x范围.变式训练.①设是定义在上的偶函数,当时,单调递减,)(x f ]3,3[-30≤≤x )(x f 若成立,求的取值范围.)()21(m f m f <-m ②(2015全国二)设函数成立的)12()(,11)1ln()(2->+-+=x f x f xx x f 则使得的取值范围是( )x A. B. C. D. )1,31(),1(31,(+∞-∞ )31,31(-),31()31,(+∞--∞ ③(2018全国一)设函数,则满足的x 的取值范围()201 0x x f x x -⎧=⎨>⎩,≤,()()12f x f x +<是( )A .B .C .D .(]1-∞-,()0+∞,()10-,()0-∞,(3)根据函数的单调性求参数的取值范围例1.如果函数在区间上是增函数,则实数的取1)1(42)(2+--=x a x x f ),3[+∞a 值范围是( )A.(1,2)B.(0,2)C.(0,1)D.[)+∞-,2变式训练:如果函数在区间上是减函数,求实数2)1(2)(2+--=x a x x f )4,[-∞的取值范围.a例2.若函数在上为增函数,则实数的取值范围⎩⎨⎧≤-+->-+-=0,)2(,0,1)12()(2x x b x x b x b x f R b 是__________.例3.若函数在区间上是减函数,求实数的取值范围.||a x y -=]4,(-∞a 第三节:函数的奇偶性一、知识梳理1.函数的奇偶性例1(2014全国二)偶函数的图象关于直线对称,,则)(x f y =2=x 3)3(=f ___________.=-)1(f 例2(2017全国二) 已知函数是定义在R 上的奇函数,当时,()f x (,0)x ∈-∞,则__________.32()2f x x x =+(2)f =例3(2012全国二)设函数的最大值为,最小值为,1sin )1()(22+++=x xx x f M m 奇偶性定 义图象特点备注奇函数★★设函数的定义域为,如果)(x f y =D 对内的任意一个,都有∈D ,且 D x x -,则这个函数叫做奇函数 ()()x f x f -=-关于原点中心对称函数是奇函)(x f 数且在处有0=x 定义,则0)0(=f 偶函数设函数的定义域为,如果对)(x f y =D 内的任意一个,都有,且D x D x ∈-,则这个函数叫做偶函数()()x f x f =-★关于轴对称y则+=______.M m 2.函数的图象(1)平移变换:“上加下减,左加右减”例4(2010全国二)设偶函数满足,则)(x f )0(42)(≥-=x x f x ( )=>-}0)2(|{x f x A. B.}42|{>-<x x x 或}40|{><x x x 或C. D.}22|{>-<x x x 或}42|{>-<x x x 或(2)对称变换①;)()(x f y x f y x -=−−−−→−=轴对称关于②;)()(x f y x f y y -=−−−−→−=轴对称关于③;)()(x f y x f y --=−−−−→−=关于原点对称④;)10(log )10(≠>=−−−−→−≠>==a a x y a a a y a x y x 且且对称关于⑤奇函数的图象关于坐标原点对称;偶函数的额图象关于轴对称.y (3)翻折变换★★①.|)(|)(x f y x f y x x =−−−−−−−−−−−→−=轴下方图象翻折上去轴上方图象,将保留例5(2010全国二)已知函数,若均不相等,且⎪⎩⎪⎨⎧+-≤<=621100|,lg |)(x x x x f c b a ,,则的取值范围是( )),()()(c f b f a f ==c b a ⋅⋅A. B. C D.)10,1()6,5()12,10()24,20(例6(2011全国二)已知函数的周期为2,当时,()y f x =[1,1]x ∈-2()f x x =那么函数的图象与函数的图象的交点共有( )()y f x =|lg |y x =A .10个 B .9个 C .8个D .1个★★★②.)||()()(x f y x f y y x f y y =−−−−−−−−−−−−−−−−−−−→−=轴左侧的图象)在轴对称的图象(去掉原于轴右边图象,并作其关保留例7(2011全国二)下列函数中,既是偶函数又在单调递增的函数是((0,)+∞)A.B .C .D .3y x =||1y x =+21y x =-+||2x y -=例8(2010大纲)直线与曲线有四个交点,则的取值范围1=y a x x y +-=||2a 是____________.(4)函数图象的几种对称关系★①满足图象关于直线为轴对称;R x x f ∈),()()()(x f y x a f x a f =⇔-=+a x =例9(2018全国二)已知是定义域为的奇函数,满足)(x f ),(+∞-∞,若=2,则( ))1()1(x f x f +=-)1(f =++++)50(...)3()2()1(f f f f A .﹣50 B .0 C .2 D .50②图象关于为轴对称;)()()(x f x b f x a f ⇔-=+2ba x +=③函数与函数的图象关于直线对称.)(x a f y +=)(x b f y -=2ab x -= 如:和的图象,关于直线为轴对称.)(x f y =)1(x f y -=21=x 例10(2015全国二)已知函数则),的图像过点(4,1-2)(3x ax x f -==________.a 二、真题演练1.(2014全国一)设函数的定义域为,且是奇函数,是)(),(x g x f R )(x f )(x g 偶函数,则下列结论中正确的是( )A. 是偶函数B. 是奇函数)()(x g x f )(|)(|x g x f C. 是奇函数 D. 是奇函数|)(|)(x g x f |)()(|x g x f 2.(2015全国一)已知函数,且,则⎩⎨⎧>+-≤-=-1),1(log 1,22)(21x x x x f x 3)(-=a f =( ))6(a f -A.- B.- C.- D.-745434143.(2015全国一)设函数的图像关于直线对称,且)(x f y =x y -=,则( )1)4()2(=-+-f f =a A.-1 B.1 C.2 D.44.(2017全国一)函数的部分图像大致为( )xxy cos 12sin -=5.(2017全国一)已知函数,则( ))2ln(ln )(x x x f -+=A. B.)单调递增在(2,0)(x f )单调递减在(2,0)(x f C. D.对称的图像关于直线1)(==x x f y )对称的图像关于点(0,1)(x f y =6.(2017全国三)函数的部分图像大致为( )2sin 1xy x x=++A .B .C .D .二、课后作业1.若奇函数在上是增函数且最大值为5,那么在上是( ))(x f []7,3)(x f []3,7--A.增函数且最小值是 B.增函数且最大值是5-5-C.减函数且最大值是 D.减函数且最小值是5-5-2.若是偶函数,则在上( )32)1()(2++-=mx x m x f )(x f ()1,4--A.是增函数 B.是减函数 C.不具有单调性 D.单调性由的值确定m 3.已知函数若为奇函数,则________.()1,21x f x a =-+()f x a =4.函数是定义在上的奇函数,且,求函数的21xb ax x f ++=)()1,1(-5221=)(f )(x f 解析式___________.第四节:函数的零点一、知识梳理★零点:方程的解;函数图象与轴交点的横坐标.0)(=x f )(x f x 函数的零点是函数与函数图象交点的横坐标.)()()(x g x f x F -=)(x f )(x g 零点存在定理:函数在定义域上连续,若,则在)(x f []b a ,0)()(<⋅b f a f )(x f 定义域上一定存在零点.[]b a ,例(2011全国二)在下列区间中,函数的零点所在的区间为()43x f x e x =+-( )A . B . C . D .1(,0)4-1(0,)411(,4213(,242、真题演练1.(2017全国三)已知函数有唯一零点,则=( 211()2()x x f x x x a e e --+=-++a)A .B .C .D .112-13122.(2018全国一)已知函数,,若存在⎩⎨⎧>≤=0,ln 0,)(x x x e x f x a x x f x g ++=)()()(x g 两个零点,则的取值范围是__________.a 三、课后作业1.关于的方程的根所在大致区间为( )x 015=--x x A. B. C. D.)1,0()2,1()4,3()5,4(2.已知,若)为常数(其中)(R x c b cx bx x x f ∈-++=,,735,)(102=-f 则=________.)(2f。
考点04 函数单调性的5种判断方法及3个应用方向(解析版)
专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。
函数的基本性质单调性的应用
函数的基本性质单调性的应用函数的单调性是函数在定义域上的性质,描述了函数图像随着自变量的增减而变化的规律。
应用函数的单调性可以帮助我们分析函数的性质,解决各类数学问题。
下面将对函数的基本性质单调性的应用进行分类总结。
一、判断函数的增减性:1.定义法:根据函数定义,若对于任意x1、x2∈定义域,当x1<x2时,有f(x1)<f(x2),则函数f(x)在该定义域上严格递增。
若f(x1)>f(x2),则函数f(x)在该定义域上是严格递减。
2.导数法:对于可导函数f(x),若在定义域上f'(x)≥0,则函数f(x)在该定义域上是递增的;若f'(x)≤0,则函数f(x)在该定义域上是递减的。
3.不等式法:对于不等式f(x1)≤f(x2),如果我们能够证明当x1<x2时,则不等式成立,那么函数f(x)在该定义域上是递增的;如果我们能够证明当x1<x2时,则不等式反向成立,那么函数f(x)在该定义域上是递减的。
二、判断函数的最大值和最小值:1.极值点:对于可导函数f(x),当f'(x)=0时,x就是函数f(x)的一个极值点。
若在x点的左侧f'(x)>0,右侧f'(x)<0,则x是函数f(x)的一个局部最大值点;若在x点的左侧f'(x)<0,右侧f'(x)>0,则x是函数f(x)的一个局部最小值点。
2.二阶导数:对于二次可导函数f(x),当f''(x)>0时,函数f(x)在该点上是凹的,存在一个局部极小值;当f''(x)<0时,函数f(x)在该点上是凸的,存在一个局部极大值。
通过判断二阶导数的正负,可以得出函数的凹凸性及极值点。
三、求解方程和不等式:1.方程求解:对于严格递增(递减)函数f(x),f(x)=k(k为常数)的方程只有一个解。
2.不等式求解:对于不等式f(x)≤0,f(x)≥0,若函数f(x)在定义域上递减,则不等式解集由定义域内满足f(x)≤0(≥0)的x组成。
函数单调性的七种应用
函数单调性的七种应用
一、内容提要如果函数f()对于区间(a,b)内任意两个值1和2,当1
如果对于区间(a,b)内任意两个值1和2,当1f(2),那么f()叫做在区间(a,b)内是单调减少的,区间(a,b)叫做函数f()的单调减少区间。
在其中一区间单调增加或单调减少的函数叫做这个区间的单调函数,
这个区间叫做这个函数的单调区间。
二、函数单调性的应用
函数的单调性既属于数学的基础知识,也是解决数学问题的重要工具。
许多数学问题,比如,确定参变量的范围、证明不等式、求解三角方程、高
次方程、超越方程、求解高难度的不等式,以及确定函数的周期,都要用到
函数的单调性。
上面我所提到的这些问题看上去用初等方法解决起来都较
为困难。
但是,如果采用函数的单调性来求解的话,那将变得很简单、可行。
三、例题分析
例1:f()=,其中a是实数,n是任意给定的自然数且n≥2,如果f()当
∈(-∞,1]时有意义,求a的取值范围。
解:要使f()有意义必须且只须1+2+3…(n-1)+na>0恒成立,从而a>
①,令①右端为式g(),则g()在(-∞,1]上单调递增。
从而有
g()≤g(1),∈(-∞,1]而g(1)=
∴g()≤≤(∵n≥2)
由式①可得a>
例2:设00时,有f()在(0,1)上是增函数。
则f()0
解:改写原不等式为
()3+>3+5
令f()=3+5,则原不等式即为
f()>f()⑥
∵f()是实数集R上的单调增函数
∴不等式⑥等价于不等式>
解之得原不等式的解为-1。
函数单调知识点归纳总结
函数单调知识点归纳总结一、函数单调性的定义1. 单调递增函数对于定义域内的任意x1和x2,若x1<x2恒成立,则有f(x1)<=f(x2)成立,则称函数f(x)是在该定义域上是单调递增函数。
2. 单调递减函数对于定义域内的任意x1和x2,若x1<x2恒成立,则有f(x1)>=f(x2)成立,则称函数f(x)是在该定义域上是单调递减函数。
二、函数单调性的性质1. 如果函数f(x)在定义域内具有一阶导数且导数恒大于0,则函数f(x)是在该定义域上是单调递增函数;如果函数f(x)在定义域内具有一阶导数且导数恒小于0,则函数f(x)是在该定义域上是单调递减函数。
2. 函数的单调性与导数的关系:若函数f(x)在定义域上的一阶导数大于0,则函数f(x)在该定义域上是单调递增函数;若函数f(x)在定义域上的一阶导数小于0,则函数f(x)在该定义域上是单调递减函数。
3. 在具有一阶导数的情况下,如果函数f(x)在定义域上导数恒大于0,则函数f(x)的单调递增区间为(-∞,+\infty);如果函数f(x)在定义域上导数恒小于0,则函数f(x)的单调递减区间为(-\infty,+\infty)。
4. 对于具有n阶导数的函数f(x),通过求解导数的符号变化,可以得到函数f(x)在定义域上的单调性和拐点位置。
三、求解函数的单调区间1. 使用导数符号变化法求解函数的单调区间:首先求出函数f(x)的一阶导数,并求出导数的零点,然后将定义域分成几个子区间,然后再求解导数对应的区间上的符号,得到函数的单调性。
2. 使用导数的恒定性求解函数的单调区间:根据导数的恒定性可以快速求出函数的单调区间,比如函数的导数在某个区间上恒大于0,则函数在该区间为单调递增函数。
四、与单调性相关的知识1. 函数的最值。
在函数的单调性的基础上,可以求解函数的最值,对于单调递增函数来说,函数在定义域上的最小值为f(x1);对于单调递减函数来说,函数在定义域上的最大值为f(x2)。
函数单调性方法和各种题型
函数单调性奇偶性方法和各种题型总结一、单调性总结:(一)判断函数单调性的基本方法Ⅰ、定义法:定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。
例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性Ⅲ、图像法:说明:⑴单调区间是定义域的子集⑵定义x1、x2的任意性⑶代数:自变量与函数值同大或同小→单调增函数自变量与函数相对→单调减函数例3:y=|x2+2x-3|练习:(二)函数单调性的应用Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论:(1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。
(2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。
例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题:1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在[a,b]上的最小值是 ( )2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是( )3、()有函数13+--=x x y存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4-44-0044、](()()的值域为时,函数当1435,02+-=∈x x x f x()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、⎢⎣⎡⎪⎭⎫⎝⎛⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛ 5、求函数y=-x-6+ 的值域x -1Ⅱ、利用函数单调性求单调区间1、()________..62是的单调区间函数-+=x x x f2、()的递增区间是函数245x x y --=](][][)[∞+∞∞、、、、、、、、11-2-2--2--D C B A3、函数的增区间是( )。
单调性知识点
单调性知识点单调性是数学中一个非常重要的概念,广泛应用于各个领域。
在本文中,我将会详细介绍单调性的定义、性质、应用以及解题技巧。
一、定义在数学中,单调性是指函数的增减规律。
具体而言,如果对于任意的x1和x2(x1<x2),有f(x1)<=f(x2),则称函数f(x)在区间[a,b]上单调不降;如果对于任意的x1和x2(x1<x2),有f(x1)>=f(x2),则称函数f(x)在区间[a,b]上单调不增。
如果在区间[a,b]上既有单调不降又有单调不增,则称函数f(x)在该区间上单调不变。
反之,则称函数f(x)在区间[a,b]上不单调。
二、性质1.单调性是一个区间上的性质,不具有函数整体上的性质。
2.如果函数f(x)在区间[a,b]上单调不降,则f(x)在该区间上的最小值为f(a),最大值为f(b);如果函数f(x)在区间[a,b]上单调不增,则f(x)在该区间上的最小值为f(b),最大值为f(a)。
3.如果函数f(x)在区间[a,b]上单调不降,则其反函数f^-1(x)在区间[f(a),f(b)]上单调不降;如果函数f(x)在区间[a,b]上单调不增,则其反函数f^-1(x)在区间[f(b),f(a)]上单调不降。
三、应用1.单调性可用于求函数的最值。
由于单调不降函数在区间上的最小值为f(a),最大值为f(b),单调不增函数反之,因此我们可由单调性确定一个函数的最值。
2.单调性可用于函数图像的预测。
由于函数单调不降或单调不增的特性,我们可以根据已知点预测函数图像的整体增减趋势,从而更好地理解该函数。
3.单调性可用于求解不等式。
对于单调不降函数,我们可以根据函数的单调性求得不等式解集的范围,从而更好地解决不等式问题。
四、解题技巧1.建立函数模型。
对于一些具体的问题,我们需要先根据已知条件建立出函数模型。
2.求得函数的导数。
利用导数可求得函数的单调性及最值。
3.求解不等式。
根据函数的单调性及已知条件,求得不等式解集的范围。
函数单调性及其应用
函数单调性及其应用
函数单调性是指函数在某个定义域内的取值随着自变量的增加或减少而单调递增或递减的特性。
如果函数在该定义域内只有单调递增或单调递减的情况,则称该函数具有单调性。
应用方面,函数单调性可以用于优化问题的求解、最大值和最小值问题的解决以及一些相关定理的证明。
常见的应用包括:
1. 优化问题的求解。
如果在某个定义域上,函数单调递增,则可以通过增大自变量的取值达到最大化函数值的目的;如果函数单调递减,则可以通过减小自变量的取值达到最大化函数值的目的。
2. 最大值和最小值问题的解决。
如果函数具有单调性,则可以通过确定其定义域上的边界值来确定函数的极值点。
3. 相关定理的证明。
函数单调性对于一些相关定理的证明具有十分重要的作用,例如拉格朗日中值定理和柯西-施瓦茨不等式等。
综上所述,函数单调性在数学领域中具有广泛的应用和重要的意义。
函数的单调性及其应用
函数的单调性及其应用
函数的单调性是指函数在定义域内的取值增减情况。
具体地说,设函数$f(x)$在区间$I$内有定义,如果对于$I$内任意的$x_1$和
$x_2$,只要$x_1<x_2$,就有$f(x_1)<f(x_2)$,则称$f(x)$在区间$I$内单调递增;如果对于$I$内任意的$x_1$和$x_2$,只要
$x_1<x_2$,就有$f(x_1)>f(x_2)$,则称$f(x)$在区间$I$内单调递减。
应用方面,函数的单调性可以帮助我们判断函数的图像和性质,如:
1. 判断函数的最值及其取值范围:单调递增的函数在定义域内
最小值是在端点处取得,最大值是在定义域最大值处取得;单调递
减的函数则恰好相反。
2. 判断函数零点:若函数为单调递增,则只有一个零点;若函
数为单调递减,则只有一个零点。
3. 判断函数的奇偶性:若函数为奇函数,则当$x<0$时单调递减,$x>0$时单调递增;若函数为偶函数,则在整个定义域内都单调
递增或单调递减。
4. 判断函数解析式的符号:已知某函数在某区间单调递增或单
调递减,则我们可以根据函数图像的位置,得到函数解析式的符号。
函数单调性总结及应用
yxo 函数的基本性质 单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③1212()(()())0x x f x f x -->或12120()()x x f x f x ->-等价于单增;1212()(()())0x x f x f x --<或12120()()x x f x f x -<-等价于单减;(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数. (3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.x 1x 2y=f(X)xy f(x )1f(x )2oy=f(X)yxox x 2f(x )f(x )211课后练习【感受理解】 1.函数2y x=-的单调递_____区间是______________________. 2.函数221y x x =+-的单调递增区间为_______________________.3.已知()(21)f x k x b =++在R 上是增函数,则k 的取值范围是______________. 4.下列说法中,正确命题的个数是______________. ①函数2y x =在R 上为增函数; ②函数1y x=-在定义域内为增函数; ③若()f x 为R 上的增函数且12()()f x f x >,则12x x >; ④函数1y x=的单调减区间为(,0)(0,)-∞⋃+∞. 【思考应用】5.函数()1f x x =+的增区间为 . 6.函数1()1f x x =+的单调减区间为 . 7.函数14)(2+-=mx x x f 在]2,(--∞上递减,在),2[+∞-上递增,则实数m = . 二、解答题: 8.证明函数1()1g x x=-在()1,+∞是减函数.9.求证函数1()f x x x=-在()0,+∞是单调增函数.10.若二次函数2()(1)5f x x a x =--+在区间1(,1)2上是增函数,求a 的取值范围【能力提高】 12.讨论函数1()f x x x=+的单调性.函数的单调性(2)课后训练【感受理解】1.已知函数)y f x =(在R 上是增函数,且f (m 2)>f (-m ),则m 的取值范围是: __________.2.函数()f x =的单调减区间 .3.函数1()1xf x x-=+的单调递减区间 . 4.函数y _____________.【思考应用】5. 若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范为 .6. 函数)(x f 在),0(+∞上是减函数,那么)1(2+-a a f 与)43(f 的大小关系是 .7. 设)(x f 为定义在R 上的减函数,且0)(>x f ,则下列函数: ①)(23x f y -=;② )(11x f y +=;③ )(2x f y =;④ )(2x f y += 其中为R 上的增函数的序号是 . 8. 函数xx x f 2)(+=在]1,0(上有最 值 . 9.函数1||22+-=x x y 的单调增区间为 . 10. 定义在R 上的偶函数满足:对任意的,有.则A) B) C) D) 11.求证:函数()f x x =在R 上是单调减函数.【能力提高】12.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ).A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)13.()y f x =是定义在(0,)+∞上增函数,解不等式()[8(2)]f x f x >-.()f x 1212,[0,)()x x x x ∈+∞≠2121()()0f x f x x x -<-(3)(2)(1)f f f <-<(1)(2)(3)f f f <-<(2)(1)(3)f f f -<<(3)(1)(2)f f f <<-。
《函数的单调性》知识点及典型例题总结
函数的单调性要点一、函数单调性的定义(1)增函数与减函数增函数减函数定义一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于区间D 内的任意两个值x 1,x 2当x1<x2时,都有 f(x 1)<f(x 2) ,那么就说函数f(x)在区间I 上是单调增函数当x 1<x 2时,都有f(x 1)>f(x 2) ,那么就说函数f(x)在区间I 上是单调减函数 图 象 描 述自左向右看图象是_上升的__自左向右看图象是__下降的___(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则称函数f (x )在这一区间具有单调性,区间D 叫做y =f (x )的单调区间.要点二、与函数单调性有关的几个常见结论(1)函数y=af (x )与函数y=f (x )的单调性的关系:(2)若函数y=f (x )的值恒为正或恒为负时,函数y =1f (x )和函数y=f (x )的单调性 。
(3)若函数y=f (x )≥0,则函数y=√f (x )与y =f 2(x )的单调性与y=f (x ) (4)函数y=f (x )+g (x )与f (x )和g (x )的单调性的关系: (5)复合函数的单调性:(6)奇函数在关于原点对称的区间上单调性 ;偶函数在关于原点对称的区间上单调性 。
要点三、函数单调性的代数特征(1)若函数满足对任意,x 1≠x 2有()()()()()1212121200f x f x x x f x f x x x --->⇔>⎡⎤⎣⎦- 在[a,b ]上是增函数; (2)若函数满足对任意,x 1≠x 2有()()()()()1212121200f x f x x x f x f x x x ---<⇔<⎡⎤⎣⎦-在[a,b ]上是减函数。
()f x D x x ∈21,()f x ()f x D x x ∈21,()f x要点四、函数单调性的判断(1)定义法:①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方、分母有理化等);④判断的正负符号;⑤根据函数单调性的定义下结论。
函数的单调性和奇偶性的综合应用
精品资料欢迎下载函数的单调性和奇偶性的综合应用知识要点:对称有点对称和轴对称:O点对称:对称中心O轴对称:数的图像关奇函于原点成点对称,偶函数的图像关于y 轴成轴对称图形。
1、函数的单调性:应用:若y f ( x) 是增函数, f ( x1 )应用:若y f ( x) 是减函数, f ( x1 )f (x2 )x1x2 f (x2 )x1x2相关练习:若 y f (x) 是R上的减函数,则 f (1) f ( a2 2 a 2 )2、熟悉常见的函数的单调性:y kx b 、y k、 y ax2bx cb在 (x相关练习:若 f ( x) ax ,g ( x),0) 上都是减函数,则 f (x)ax 2bx 在 (0,) 上是函x数(增、减)3、函数的奇偶性:定义域关于原点对称, f (x) f (x) f (x) 是偶函数定义域关于原点对称, f (x) f ( x) f ( x) 是奇函数(当然,对于一般的函数,都没有恰好f ( x) f ( x) ,所以大部分函数都不具有奇偶性)相关练习:( 1)已知函数f ( x)ax2bx4a1是定义在 [a 1,2a] 上的奇函数,且 f (1) 5 ,求 a 、bb(2) 若f ( x)(K2) x2( K1)x 3 是偶函数,则 f ( x) 的递减区间是。
(3) 若函数 f ( x) 是定义在R 上的奇函数,则 f (0)。
(4)函数 y f (x) 的奇偶性如下:画出函数在另一半区间的大致图像奇函数偶函数奇函数奇函数y y y yo x o x o x o x精品资料欢迎下载例题分析:4、单调性和奇偶性的综合应用【类型 1转换区间】相关练习:( 1)根据函数的图像说明,若偶函数y f ( x) 在 (,0) 上是减函数,则 f ( x) 在 (0,) 上是函数(增、减)(2)已知 f ( x) 为奇函数,当x0时, f ( x)(1x) x ,则当x0 时, f (x)=(3)R 上的偶函数在(0,) 上是减函数, f (3) f ( a2a 1 )4(4) 设f (x)为定义在((,) 上的偶函数,且 f (x) 在 [0,) 为增函数,则 f (2) 、 f () 、f (3) 的大小顺序是()A. f () f (3) f (2)B. f () f (2) f (3)C. f () f (3) f (2)D. f () f (2) f (3)(5)如果奇函数 f (x) 在区间 [3,7] 上的最小值是5,那么 f ( x) 在区间 [ 7, 3]上 ()A.最小值是 5B. 最小值是-5C. 最大值是-5D. 最大值是 5(6)如果偶函数 f (x) 在 [3,7] 上是增函数,且最小值是-5那么 f (x) 在 [ 7,3]上是( )A.增函数且最小值为-5B. 增函数且最大值为-5C.减函数且最小值为-5D. 减函数且最大值为-5(7)已知函数 f ( x) 是定义在R 上的偶函数,且在(, 0)上 f (x) 是单调增函数,那么当x10 , x20 且x1x20 时,有()A. f (x1) f ( x2 )B. f ( x1 ) f (x2 )C. f ( x1) f ( x2 )D. 不确定(8)如果 f ( x) 是奇函数,而且在开区间( ,0) 上是增函数,又 f (2)0 ,那么 x f ( x) 0的解是()A. 2 x 0 或 0 x2B. 2 x 0 或 x 2C. x 2 或 0 x 2D. x 3 或 x 3(9)已知函数f ( x)为偶函数,xR ,当 x0 时,f ( x)单调递增,对于x1,x2,有| x1|| x2|,则()A. f ( x1)f ( x2)B.f ( x1) f ( x2)C.f ( x1)f ( x2 ) D. | f ( x1 ) | | f ( x2 ) |精品资料 欢迎下载5、单调性和奇偶性的综合应用【类型 2利用单调性解不等式】(1 相关练习: (1)已知y f ( x)是( 3,3)上的减函数,解不等式f (x 3) f (2 x)1 ,)2(0, 2 (2) 定义在( 1,1)上的奇函数f ( x)是减函数,且满足条件 f (1 a) f (1 2a) 0),求 a的取值范围。
高中数学函数的单调性知识点总结
高中数学函数的单调性知识点总结
一、函数的单调性
1、什么是单调性
用单调性来描述一个函数的变化,就是说函数沿着正方向或者反方向
的变化是有规律的,而不是曲折转变,也就是说,函数的变化都是连续的,这就是单调性。
2、单调性的三种情况
(1)上升函数:如果在区间[a,b]内使得f(x)单调递增,就可以说f(x)为上升函数,可以简写为f(x)为单调增函数。
(2)下降函数:如果在区间[a,b]内使得f(x)单调递减,就可以说f(x)为下降函数,可以简写为f(x)为单调减函数。
(3)常函数:函数f(x)在区间[a,b]上恒等于常数c,则称函数为常函数,常函数是不存在单调性的。
3、判断函数的单调性
依照函数的单调性情况,可以通过图形方法和导数法来判断函数的单
调性:
(1)图形判断法,即根据函数图像大致的凸凹情况来判断函数的单调性。
(2)导数法,即当函数在其中一区间内正、负、零导数情况来判断函
数的单调性。
二、函数的可导性
1、什么是可导性
可导性是指在其中一区间上,函数的导数存在且唯一,可以说是函数的一种性质,在数学教学中也常常称为连续性或者连续性。
可导代数函数的定义:在其中一区间上,若存在一个函数f(x)的导数f’(x),并且所有的在该区间上的导数经过等价的变换得到f’(x),就称f(x)在该区间上为可导函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的
性质
定义
图象
判定方法
函数的
单调性
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
9.求证函数 在 是单调增函数.
10.若二次函数 在区间 上是增函数,求 的取值范围
【能力提高】
12.讨论函数 的单调性.
函数的单调性(2)
课后训练
【感受理解】
1.已知函数 在R上是增函数,且f(m2)>f(-m),则m的取值范围是: __________.
2.函数 的单调减区间.
3.函数 的单调递减区间.
(1)对于任意的 ,都有 ;(2)存在 ,使得 .那么,我们称 是函数 的最小值,记作 .
课后练习
【感受理解】
1.函数 的单调递_____区间是______________________.
2.函数 的单调递增区间为_______________________.
3.已知 在R上是增函数,则 的取值范围是______________.
象上升为增)
(4)利用复合函数
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象下降为减)
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
4.函数 的值域为_____________.
【思考应用】
5.若函数 在 上是增函数,则实数 的取值范为.
6.函数 在 上是减函数,那么 与 的大小关系是.
7.设 为定义在R上的减函数,且 ,则下列函数:
① ;② ;③ ;④
其中为R上的增函数的序号是.
8.函数 在 上有最值.
9.函数 的单调增区间为.
10.定义在R上的偶函数 满足:对任意的 ,有 .则
A) B) C) D)
11.求证:函数 在 上是单调减函数.
【能力提高】
12.函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),则实数m的取值范围是
( ).
A.(-∞,Leabharlann 3)B.(0,+∞)C.(3,+∞)D.(-∞,-3)∪(3,+∞)
13. 是定义在 上增函数,解不等式 .
4.下列说法中,正确命题的个数是______________.
①函数 在R上为增函数;
②函数 在定义域内为增函数;
③若 为 上的增函数且 ,则 ;
④函数 的单调减区间为 .
【思考应用】
5.函数 的增区间为.
6.函数 的单调减区间为.
7.函数 在 上递减,在 上递增,则实数 =.
二、解答题:
8.证明函数 在 是减函数.
③ 或 等价于单增;
或 等价于单减;
(2)打“√”函数 的图象与性质
分别在 、 上为增函数,分别在 、 上为减函数.
(3)最大(小)值定义
①一般地,设函数 的定义域为 ,如果存在实数 满足:
(1)对于任意的 ,都有 ;
(2)存在 ,使得 .那么,我们称 是函数 的最大值,记作 .
②一般地,设函数 的定义域为 ,如果存在实数 满足: