奥数标数法练习 计数之标数法经典例题讲解
标数法: 用来解决计算最短路线问题的方法,在给出的图形中
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
7.
一只密蜂从 A 处出发, A 回到家里 B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而 不准逆行,共有多少种回家的方法?
1 A 2 3 4 5 6 7 8 9 B
8. 在图中,用水平或垂直的线段连接相邻的字母,当沿着这些线段行走时,正好拼出 “ APPLE ”的路线共有多少条?
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
有问题跟我联系哦!wutong@ 【数学加油站答案】
1.
A E1 1 C 1 F2 3 1 D
3G 6 B
H
I
2. 首先明确三天所走的路线有什么不同?每天的路线有无限制条件?若有, 是什么?搞清 楚这些问题后,仍然用标数法求解.第一天(无限制条件)共有 16 条;第二天(必须 经过公园)共有 8 条;第三天(必须不经过公园)共有 8 条. 3. 因为 B 在 A 的右下方,由标号法可知,从 A 到 B 的最短路径上,到达任何一点的走法 数都等于到它左侧点的走法数与到它上侧点的走法数之和. 有积水的街道不可能有路线 经过,可以认为积水点的走法数是 0.接下来,可以从左上角开始,按照加法原理,依 次向下向右填上到各点的走法数.如右上图,从 A 到 B 的最短路线有 22 条.
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
标数法: 用来解决计算最短路线问题的方法,在给出的图形中 的每一个结点标出到达该点的方法 数,最后利用相加的原则求出到达目 的地的方法数。
从 A 到 B 的最短路线有多少条?
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
5. 用“标数”求出:从学校到养老院共 126 条.必经过市中心的 60 条,所以可行的路有: 126 60 66 (条) .
小学奥数 几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)
1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
计数第06讲_标数法(学生版)A4
一.到达任何一点的走法等于到它左侧点走法数与到它下侧点走法数之和,根据加法原理,我们可以从A 点开始,向右向上逐步求出到达各点的走法数(即每个点所标数字应为该点左方数字与下方数字之和).二.标数法的核心思想是:每点的路线方法总数等于能够到达该点的所有方法数之和.这种思想本质上就是利用加法原理进行分类计数.重难点:特殊要求的标数法,注意不能通过的点或者路线.题模一:单步标数法例1.1.1下图中有一个从A 到B 的公路网络,一辆汽车从A 行驶到B,可以选择的最短路线计数第06讲_标数法A一共有________条?BA例1.1.2下图是一个街道的示意图,实线表示道路,从B到A,只能向右或向上或右斜上方沿着道路前进,则一共有_________种不同的走法.AB例1.1.3在图所示中,从“北”字开始,每次向下移动到一个相邻的字可以读出“北京奥运会”.那么一共有多少种不同的读法?北京京奥奥奥运运运运会会会会会题模二:特殊要求的标数例1.2.1在如图所示的街道示意图中,C处因施工不能通行,那么从A到B处的最短路线有________条.例 1.2.2有一只蚂蚁沿着下图中的方格线从A爬到B,每次只能向右爬一格或向上爬一格.图中画着黑点的地方必须通过,那么这只蚂蚁可以选择____________条不同的路线.例1.2.3如图,从A 出发经过十字路口D ,但不经过线段BC (不过点B 、C ),不同的最短路径有多少条?题模三:多步标数法例1.3.1如图所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?A .168B .178C .188D .198随练1.1如图,从A 点沿线段走到B 点,每次只能向上或向右走一步,共有多少种不同走法?DABCBA随练1.2在下图中,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?BA随练1.3如图,从A出发经过十字路口D,但不经过线段BC(不过点B、C),不同的最短路径有多少条?DBCA随练1.4如图,从A出发经过十字路口D,但不经过线段BC(不过点B、C),不同的最短路径有多少条?DB CA随练1.5如图所示,亚瑟王要沿路线从A地前往B地拿去圣剑Excalibur,但路中有许多恶魔使得部分道路无法通行,那么亚瑟王现在要取得圣剑的最短路线共有_________条.(圆圈表示恶魔占据的地方)随练 1.6如图所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?作业1如图,有一个48 的棋盘,现将一枚棋子放在棋盘左下角格子A处,要求每一步只能向棋盘右上或右下走一步(如从C 走一步可走到D 或E ),那么将棋子从A 走到棋盘右上角B 处共有_______种不同的走法.作业2在下图中,从A 点沿线段走到B 点,每次只能向上或向右走一步,共有多少种不同走法?作业3一只兔子沿着方格的边从A 到B ,规定上只能往上或往右走,但是必须经过一座独木桥MN ,这只兔子有______________种不同的走法.ABABNM作业4一只甲虫沿着下图中的方格线从A 爬到B ,每次只能向右爬一格或向上爬一格.请问:(1)图中C 、D 两点必须都通过,那么这只甲虫可以选择多少条不同的路线?(2)图中C 、D 两点只通过其中的一个点,那么这只甲虫可以选择多少条不同的路线?图中C 、D 两点都不通过,那么这只甲虫可以选择多少条不同的路线?作业5如图,从A 处到B 的最短路线中,必通过十字路口C 和D 的,共有多少条?作业6一种蜂房编号如图所示,左上角有一只小蜜蜂,还不会飞,只会向相邻的蜂房爬行,且方向只能是向右、右上、右下方爬,它爬行到8号蜂房,共有____种路线.ABCDB AC D1 35 7 8642。
小奥四年级标数法
四年级计数问题:标数法难度:高难度如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有____种不同走法.解答:四年级计数问题:标数法难度:中难度如图为一幅街道图,从A出发经过十字路口B,但不经过C走到D的不同的最短路线有条.解答:计数习题标数法和加法原理的综合应用(★★★★)有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:考点说明:本题主要考察学生对于归纳递推思想的理解,具体来说就是列表标数法的使用,难度一般,只要发现了题目中的限制条件,写出符合条件的剩余棋子数,然后进行递推就可以了。
<评价> :计数问题在各大考试中所占的分量越来越重,计数的知识也学习的比较早,标号法是加乘原理中加法原理的内容,在四年级以前已经学习过,但是灵活应用学习过的知识才是学习最重要的意义,六年级上(第十一级)第10讲会将计数问题与应用题或者最值问题进行综合学习,学习后能力会有进一步的提高。
计数方法与技巧(标数法例题1)计数方法与技巧(标数法例题2)计数方法与技巧(标数法例题3)1. 如图所示,小明家在A地,小学在B地,电影院在C地。
1.小明从家里去学校,走最短的线路,有多少种走法?2.小明从家里去电影院,走最短线路,有多少种走法?如图,从一楼到二楼有12梯,小明一步只能上1梯或2梯,问小明从1楼上到2楼有多少种走法?一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行走路径的方向,就可运用标数法进行计算。
小学奥数计数之标数法经典例题讲解【三篇】
小学奥数计数之标数法经典例题讲解【三篇】
解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”
这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行
走路径的方向,就可使用标数法实行计算。
如图所示,小蜜蜂从A出发到B处共有89种不同的回家方法。
【第二篇】
例1.按图中箭头所指的方向行走,从A到I共有多少条不同的路线?
解答:
第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点
C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I
【第三篇】
分析:既然要走最短路线,自然是不能回头走,所以从A地到B地
的过程中只能向右或向下走.
我们首先来确认一件事,如下图
从A地到P点有m种走法,到Q点有n种走法,那么从A地到B地有多少种走法呢?
就是用加法原理,一共有m+n种走法.
这个问题明白了之后,我们就能够来解决这道例题了:
首先因为只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不能够走回头路).
我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.。
奥数标数法练习 计数之标数法经典例题讲解
奥数标数法练习计数之标数法经典例题讲解【第一篇】一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?如图所示,小蜜蜂从A出发到B处共有89种不同的回家方法。
【第二篇】例1.按图中箭头所指的方向行走,从A到I共有多少条不同的路线?解答:第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I【第三篇】分析:既然要走最短路线,自然是不能回头走,所以从A地到B地的过程中只能向右或向下走.我们首先来确认一件事,如下图从A地到P点有m种走法,到Q点有n种走法,那么从A地到B地有多少种走法呢?就是用加法原理,一共有m+n种走法.这个问题明白了之后,我们就能够来解决这道例题了:首先因为只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不能够走回头路).我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.【第四篇】有一个5位数,每个数字都是1,2,3,4,5中的一个,并且相临两位数之差是1.那么这样的5位数到底有多少个呢?(数字能够重复)这是一道数论的题目,但是我们也能够使用标数法来解答,并且非常直观.到第一站能够有5种选择,每种选择有一种走法,那么下一站,走1号门就只有一种走法(就是第一站走的2号门),走2号门就有2种走法(第一站走1号或3号门)走3号门也是2种走法(第一站走2号门或4号门)走4号门2种走法(第一站走3号门或者5号门)走5号门只有一种走法(第一站走的是4号门)我们发现在这个站经过某个门有多少种走法,正好等于他左上和右上的两个数字和.于是我们能够将数字标全.这道题的答案就是42种,虽然很多同学会用枚举法也能做出42种,但是一旦这道题给的不是5位数,而是7位数,9位数的话,枚举法就显得无力了.这种时候标数法是个不错的选择.能够用到标数法的问题有很多,大家掌握这种方法之后能够解决很多平时看起来很麻烦的题目。
标数法——精选推荐
标数法1、有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:2、如图是某街区的道路图,C点正在修路不能通过,那么从A点到B点的最短路线有多少条?解答:使用标数法,C点不通用0表示,答案为110种。
插板法1、若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】题目要求A和B两个人必须隔开。
首先将C、D、E三个人排列,有种排法;若排成DCE,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺D︺C︺E︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。
2、在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】直接解答较为麻烦,可利用插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有种方法,由乘法原理得:所有不同的添加方法为=504种。
3、一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电,可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种?【解析】若直接解答须分类讨论,情况较复杂。
故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有种方法(请您想想为什么不是),因此所有不同的关灯方法有种。
捆绑法1、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法.2、6个球放进5个盒子,每个盒子至少放一个球,有多少种不同的方法?其实,由抽屉原理可知,必然有两个球在一起。
计数篇(小学奥数计数必会题)
计数篇1.枚举与容斥计数枚举法:适用于数小,题目简单,就可以按照一定的顺序一一列举出来,如果数目较大,也可以用适当的标准,把问题分类,在每一类中进行枚举,枚举≠傻举,具有一定的特性。
要想在枚举中做到不重不漏需要满足四个规则:1.有序;2.分类;3.寻找规律;4.利用对称性;例1:政政有10块糖,如果每天至少吃3块,那么共有多少种不同的吃法吃完这10块糖?政政有10块糖,想分成三堆(不考虑顺序,且糖没有区别),每堆至少两块,有几种分法?(加加老师说:不要自己加限制条件,没有说多少天吃完。
)种种种天吃完种天吃完种天吃完4442 532 433 622.293513 334 343 433 35 37 46 55 64 73 21 10 1.1++++++++=+++++++++++++有1、2、3、4四张数字卡片,要求1不排在千位上,数2不排在百位上,数3不排在十位上,数4不排在个位上,那么用这四张卡片组成满足要求的四位数共有多少个?(全错位排序、递推公式、欧拉公式)93334321431241234 3431341231423 2413234121432=++⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧开头开头开头树形图(枚举树):枚举树状图是借助树状结构的分层特征来罗列所有的可能的一种方法,适用于层级结构鲜明的题型。
利用枚举树进行枚举的一般步骤和技巧1.明确条件:分析枚举对象满足的限制条件。
2.确定范围:根据限制条件缩小枚举的范围3.确定次序:一般按照由小到大、由少到多的原则,采用合适的分类保证枚举的完整,以求不重不漏。
4.逐一枚举:借助枚举树的分层特性,按照次序逐次画图枚举,最终求出问题的解。
甲乙两人进行乒乓球比赛,规定谁先胜三场,第一场甲胜。
问到决出最后胜负为止,共有几种不同的情形?其中甲胜的情形有几种?由树状图可得,比赛结果情况共10种,其中甲胜的情况有6种。
下图中6个点,9条线段。
一只蚂蚁从A点出发,要沿着图示的线段爬到C点,行进中,同一个点或者线段只能经过一次。
小学奥数计数问题:计数习题标数法和加法原理的综合应用
小学奥数计数问题:计数习题标数法和加法原理的综合应用(★★★★)有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.
【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:
考点说明:本题主要考察学生对于归纳递推思想的理解,具体来说就是列表标数法的使用,难度一般,只要发现了题目中的限制条件,写出符合条件的剩余棋子数,然后进行递推就可以了。
:计数问题在各大考试中所占的分量越来越重,计数的知识也学习的比较早,标号法是加乘原理中加法原理的内容,在四年级以前已经学习过,但是灵活应用学习过的知识才是学习最重要的意义,六年级上(第十一级)第10讲会将计数问题与应用题或者最值问题进行综合学习,学习后能力会有进一步的提高。
小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案9计数问题(一)
年级六年级学科奥数版本通用版课程标题计数问题(一)在数学竞赛试题中,经常出现一些几何计数问题,所谓几何计数是指计算满足一定条件的图形的个数。
它的内容比较新颖有趣,为了准确计数,必须要有一套计数的方法,否则越数头绪越杂乱,很难得出准确的结果。
图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧。
实际上,图形计数问题,通常采用一种简单原始的计数方法——枚举法。
具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、无一遗漏,然后计算其总和。
正确地解答较复杂的图形计数问题,有助于培养同学们思维的有序性和良好的学习习惯。
几种一般图形的计数方法:数线段A B C D E F基本线段:AB、BC、CD、DE、EF,共5条。
线段的总数:除了5条基本线段外,由2条基本线段组成的线段有4条,由3条基本线段组成的线段有3条,由4条基本线段组成的线段有2条,由5条基本线段组成的线段有1条。
所以共有5+4+3+2+1=15(条)。
(1)数角基本角:∠AOB、∠BOC、∠COD、∠DOE,共4个。
角的总数:4+3+2+1=10(个)。
(3)数三角形BC边上有多少条线段,图中就有多少个三角形。
因此可将数三角形问题转化为数线段问题。
顶点A处有多少个角,图中就有多少个三角形,因此也可将数三角形问题转化为数角问题。
三角形的总数:4+3+2+1=10(个)。
例1数一数下图中共有多少条线段?共有多少个三角形?分析与解:①要数有多少条线段,先看线段AB、AD、AE、AF、AC上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段。
所以图中共有线段:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)。
②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成的基本小三角形有4个。
所以在△AGH中共有三角形4+3+2+1=10(个)。
小学五六年级奥数学竞赛第6讲计数方法之标数法、递推法
【例3】(★★★★) 在下图中,左下角有1枚棋子,每次可以向上,向右,或沿对角 线的方向向右上走任意多步,但不能不走。那么走到右上角一共 有多少种方法?
【例4】(★★★★★) 中10片莲叶如右图排列.青蛙在莲叶间跳跃,每次只能从一 , 池塘中 片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶 上起跳,连跳4步,那么它有 种不同的跳法.
【例6】(★★★) 如下图,一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂 房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?
A
B
【例7】(★★★) 一个楼梯共有12级台阶,规定每步可以迈1级台阶或2级台阶,最 多可以迈3级台阶,从地面到最阶 一共可以有多少种 不同的走法?
重点例题:例3、例4、例5、例7、例8
2
【例8】(★★★) 在平面上画8个圆,最多可以把平面分成_______部分。
本讲总结 ①标数法与递推法都是加法原理 ②按最后一步进行分类,做加法 ③标数时要注意限制条件 ④ 平 ④分平面问题要确定交点个数 要确 点个
【例9】(★★★★) 一个长方形把平面分成两部分,那么 个长方形把平面分成两部分 那么10个长方形最多把平面分成 _______部分.
计数方法之标数法、递推法
【例1】(★★) 如图所示 科学家“爱因斯坦”的英文名拼写为“ 如图所示,科学家 爱因斯坦 的英文名拼写为 Einstein Einstein”,按 按 图中箭头所示方向有______种不同的方法拼出英文单词 “Einstein”。
【例2】(★★) 如图,为一幅街道图,从A出发经过十字路口B,但 不经过C走到D的不同的最短路线有多少条?
○
1
【例5】(★★★★★) 游乐园门票1元1张,每人限购1张.现有10个小朋友排队购买,其 中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票, 售票员没有零钱。10个小朋友排队,不同的排队方法总共有10! =3628800种,问其中有 种 问其中有______种排队方法,售票员总能找的开 种排队方法 售票员总能找的开 零钱。
小学奥数专题精讲计数
目录第 1 讲枚举法和加乘原理 (2)第 2 讲排列组合 (12)第 3 讲计数综合提高 (22)第一讲枚举法和加乘原理知识总结归纳一.枚举法:(1)顺序:按照一定的规律和顺序去分析问题的数学思想。
(2)分类:把一个复杂问题拆分成几个简单问题的思想。
(3)树形图:记录分类和顺序思考过程的工具。
(4)“有顺序”和“无顺序”问题:例如把10个相同的小球分成3堆和把10个相同的小球分给甲、乙、丙三个人,这是两个不同的问题。
二.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.三.加法原理的关键:(1)分类的思想;(2)分类的原则:不重复不遗漏四.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.五.乘法原理的关键:(1)分步的思想(2)分步的原则:前不影响后。
前面采取什么样的步骤,不会影响到后面的方法数。
每层的分叉数必须一样多。
(3)对于染色问题、排数字问题、排队问题等较复杂的乘法原理问题,在分步的时候要优先考虑选择情况少的步骤,必须让前面步骤的结果不影响后面步骤选择的方法数。
六.标数法:(1)标数法是加法原理和乘法原理的综合应用(2)主要用于解决路径问题和某些图形计数问题。
枚举法例题111个相同的小球分成第1堆、第2堆、第3堆,有多少种不同的分法?例题211个相同的小球分成3堆,有多少种不同的分法?例题3商店里有12种不同的签字笔,价格分别是1,2,3,4,5,,11,12元.琪琪准备买3支不同价格的签字笔,并且希望恰好花掉15元.请问:小悦一共有多少种不同的买法?例题4小梦买了一些大福娃和小福娃,一共不到10个,且两种福娃的个数不一样多.请问:两种福娃的个数可能有多少种不同的情况?例题5一个三位数,百位比十位小,十位比个位小,个位不大于5,那么这样的三位数一共有几个?例题6甲、乙、丙三个人传球.第一次传球是由甲开始,将球传给乙或丙,……,经过4次传球后,球正好回到甲手中.那么一共有多少种不同的传球方式?加乘原理例题7(1)大雄一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机.经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班.任意选择其中一个班次,有多少种选择方法?(2)大雄一家人外出旅游,需要先做火车,再乘汽车,最后坐飞机.经过网上查询,途中的火车有4班,汽车有3班,飞机有2班.每种交通工具任意选择其中一个班次,有多少种选择方法?例题8(1)每个数位可以是1~4中的一个数字(可以重复),这样的三位数有多少个?(2)每个数位可以是0~4中的一个数字(可以重复),这样的三位数有多少个?(3)每个数位可以是0~4中的一个数字(可以重复),这样的三位偶数有多少个?例题9(1)用1、2、3、4、5可以组成多少个没有重复数字的三位数?(2)用0、1、2、3、4可以组成多少个没有重复数字的三位数?(3)用0、1、2、3、4可以组成多少个没有重复数字的三位奇数?例题10“IMO”是“国际数学奥林匹克”的缩写,要求把这三个字母涂上不同的颜色,且每个字母只能涂一种颜色.现有五种不同颜色的笔,按要求能有多少种不同的涂色方法?如果要求相邻字母不能同色,有多少种方法?综合提高例题11商店里有三类笔,铅笔、钢笔和圆珠笔.铅笔有4种颜色,钢笔有3种颜色,圆珠笔有2种颜色.(1)要买任意一支笔,有多少种买法?(2)要从三类笔中各买一支,有多少种买法?(3)要买两支不同类的笔,有多少种买法?例题12如右图所示,要用红、黄、蓝三色给这个图形的5个区域进行染色,每个区域染一种颜色,那么共有多少种不同的染色方法?如果相邻区域不得同色,那么共有多少种不同的染色方法?例题13某省的地图如图,共有A、B、C、D、E、F、G七个区县,用5种颜色给地图染色,要求相邻区县的颜色不能相同,共有多少种不同的染色方法?例题14 下图是一个阶梯形方格表,在方格中放入五枚相同的棋子,使得每行、每列中都只有一枚棋子,这样的放法共有多少种?例题15 (1)如图,在一个4行4列的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,每行也至多有1枚棋子,那么一共有多少种不同的放法? (2)同上图,在这个4行4列的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,每行不作限制,那么一共有多少种不同的放法?(3)同上图,在这个4行4列的方格表内放入4枚互不相同的棋子,要求每列至多有1枚棋子,每行也至多有1枚棋子,那么一共有多少种不同的放法?(4)同上图,在这个4行4列的方格表内放入4枚互不相同的棋子,要求每列至多有1枚棋子,每行不作限制,那么一共有多少种不同的放法?标数法例题16 按右图中箭头所示的方向行走,从A 点走到B 点有多少条不同的路线?例题17 如右图,从A 地沿网格线走到B 地,规定只能朝右或朝上走.(1)如果每次只能走一步共有多少种不同的走法?(2)如果每次只能走一步且不能通过黑点,共有多少种不同的走法? (3)如果每次可以走一步或两步(不能转弯),共有多少种不同的走法?思维飞跃例题18 如图,在一个34 的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放入4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放B BA BABA法?例题19如图,一只蚂蚁从A点出发,沿着八面体的棱行进,要求恰好经过每个顶点各一次,一共有多少种不同的走法?E作业1. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限,可能的吃法一共有多少种?2. 用0、1、2、3、4、5可以组成_______个没有重复数字的四位数.3. 把1分、2分、5分、1角的硬币各一枚排成一排,其中1分硬币不在两边,共有_______种排硬币的方法.4. 如图,把A、B、C、D、E这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.那么共有________种不同的染色方法.ABCDE5. 在右图的道路上按照箭头所示的方向行进,从甲地到乙地共有_______条不同的路线.6. 在5×5的方格纸中放入两枚相同的棋子,要求这两枚棋子既不同行也不同列,不考虑旋转,一共有_______种放法.7. 如图,用红、蓝两种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色.请问:(1)如果每个小圆圈可以随意染色,一共有多少种不同的染法?(2)如果要求关于中间那条竖线左右对称,一共有多少种不同的染法?8. 王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工.要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?第二讲 排列组合知识总结归纳一. 排列的概念:从n 个不同元素中取出m 个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记作m n A .排列数的计算公式如下:二. 组合的概念:从n 个不同的元素中取出m 个元素的所有组合的个数,叫做从n 个不同的元素中取出m 个元素的组合数,记作m n C .组合数的计算公式如下:[(1)(1)][(1)1]m m m n n m C A A n n n m m m =÷=⨯-⨯⨯-+÷⨯-⨯⨯…………例如:333553543(321)10C A A =÷=⨯⨯÷⨯⨯=三. 组合重要公式:n m m nm -=C C四. 排列、组合以及和乘法原理的联系:1. 排列是乘法原理的延续,是乘法原理在特殊情况下的应用。
小学奥数:计数之对应法.专项练习及答案解析
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式. 模块一、图形中的对应关系【例1】在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色⨯长方形68296小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为÷=个.96248【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例 3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C =个三角形. 【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.【考点】计数之图形中的对应关系 【难度】4星 【题型】解答C D BA【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个. 【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1.可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=L 14243个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB 424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。
小学奥数 计数之对应法 精选练习例题 含答案解析(附知识点拨及考点)
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.模块一、图形中的对应关系【例 1】 在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法? 【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点, 第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个? 【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯长方形68296⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3 856C=个三角形.【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数. 【考点】计数之图形中的对应关系 【难度】4星 【题型】解答CD【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答 【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱? 【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法. 【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答 【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。
小奥四年级标数法教学内容
小奥四年级标数法四年级计数问题:标数法难度:高难度如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有____种不同走法.解答:四年级计数问题:标数法难度:中难度如图为一幅街道图,从A出发经过十字路口B,但不经过C走到D的不同的最短路线有条.解答:计数习题标数法和加法原理的综合应用(★★★★)有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:考点说明:本题主要考察学生对于归纳递推思想的理解,具体来说就是列表标数法的使用,难度一般,只要发现了题目中的限制条件,写出符合条件的剩余棋子数,然后进行递推就可以了。
<评价> :计数问题在各大考试中所占的分量越来越重,计数的知识也学习的比较早,标号法是加乘原理中加法原理的内容,在四年级以前已经学习过,但是灵活应用学习过的知识才是学习最重要的意义,六年级上(第十一级)第10讲会将计数问题与应用题或者最值问题进行综合学习,学习后能力会有进一步的提高。
计数方法与技巧(标数法例题1)计数方法与技巧(标数法例题2)计数方法与技巧(标数法例题3)1. 如图所示,小明家在A地,小学在B地,电影院在C地。
1.小明从家里去学校,走最短的线路,有多少种走法?2.小明从家里去电影院,走最短线路,有多少种走法?如图,从一楼到二楼有12梯,小明一步只能上1梯或2梯,问小明从1楼上到2楼有多少种走法?一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
小学计数知识学习习题:标数法(含答案)
小学计数知识学习:标数法习题一小学计数知识学习:标数法习题二1. 如图所示,小明家在A地,小学在B地,电影院在C地。
1.小明从家里去学校,走最短的线路,有多少种走法?2.小明从家里去电影院,走最短线路,有多少种走法?小学计数知识学习:标数法习题三如图,从一楼到二楼有12梯,小明一步只能上1梯或2梯,问小明从1楼上到2楼有多少种走法?小学计数知识学习:标数法习题四一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行走路径的方向,就可运用标数法进行计算。
如图所示,小蜜蜂从A出发到B处共有89种不同的回家方法。
小学计数知识学习:标数法习题五例1.按图中箭头所指的方向行走,从A到I共有多少条不同的路线?解答:第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I小学计数知识学习:标数法习题六分析:既然要走最短路线,自然是不能回头走,所以从A地到B地的过程中只能向右或向下走. 我们首先来确认一件事,如下图从A地到P点有m种走法,到Q点有n种走法,那么从A地到B地有多少种走法呢?就是用加法原理,一共有m+n种走法.这个问题明白了之后,我们就可以来解决这道例题了:首先由于只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不可以走回头路).我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.小学计数知识学习:标数法习题七有一个5位数,每个数字都是1,2,3,4,5中的一个,并且相临两位数之差是1.那么这样的5位数到底有多少个呢?(数字可以重复)这是一道数论的题目,但是我们也可以使用标数法来解答,并且非常直观.到第一站可以有5种选择,每种选择有一种走法, 那么下一站,走1号门就只有一种走法(就是第一站走的2号门),走2号门就有2种走法(第一站走1号或3号门)走3号门也是2种走法(第一站走2号门或4号门)走4号门2种走法(第一站走3号门或者5号门)走5号门只有一种走法(第一站走的是4号门)我们发现在这一站经过某个门有多少种走法,正好等于他左上和右上的两个数字和.于是我们可以将数字标全.这道题的答案就是42种,虽然很多同学会用枚举法也能做出42种,但是一旦这道题给的不是5位数,而是7位数,9位数的话,枚举法就显得无力了.这种时候标数法是个不错的选择.可以用到标数法的问题有很多,大家掌握这种方法之后可以解决很多平时看起来很麻烦的题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数标数法练习计数之标数法经典例题讲解
解答:
第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I
【第三篇】
分析:既然要走最短路线,自然是不能回头走,所以从A地到B地的过程中只能向右或向下走.
我们首先来确认一件事,如下图
从A地到P点有m种走法,到Q点有n种走法,那么从A地到B 地有多少种走法呢?
就是用加法原理,一共有m+n种走法.
这个问题明白了之后,我们就可以来解决这道例题了:
首先由于只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不可以走回头路).
我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.
【第四篇】
有一个5位数,每个数字都是1,2,3,4,5中的一个,并且相临两位数之差是1.那么这样的5位数到底有多少个呢?(数字可以重复) 这是一道数论的题目,但是我们也可以使用标数法来解答,并且非常直观.
到第一站可以有5种选择,每种选择有一种走法,
那么下一站,
走1号门就只有一种走法(就是第一站走的2号门),
走2号门就有2种走法(第一站走1号或3号门)
走3号门也是2种走法(第一站走2号门或4号门)
走4号门2种走法(第一站走3号门或者5号门)
走5号门只有一种走法(第一站走的是4号门)
我们发现在这一站经过某个门有多少种走法,正好等于他左上和右上的两个数字和.于是我们可以将数字标全.
这道题的答案就是42种,
虽然很多同学会用枚举法也能做出42种,但是一旦这道题给的不是5位数,而是7位数,9位数的话,枚举法就显得无力了.这种时候标数法是个不错的选择.
可以用到标数法的问题有很多,大家掌握这种方法之后可以解决很多平时看起来很麻烦的题目。