一次函数常见题型解析(一)
一次函数的题型及解题方法
一次函数的题型及解题方法
一次函数是数学中常见的一种函数,其形式为 y = kx + b,其中 k 和 b 是
常数,且k ≠ 0。
一次函数在日常生活和科学研究中有着广泛的应用。
一次函数常见的题型包括:
1. 一次函数的图像和性质:这类题目通常要求我们根据给定的k 和b 的值,画出函数的图像,并分析函数的增减性、与坐标轴的交点等性质。
2. 一次函数的解析式:这类题目通常给出一个一次函数的图像或一些点的坐标,要求我们求出函数的解析式。
3. 一次函数的应用题:这类题目通常涉及到生活中的实际问题,如路程、速度、时间等问题,要求我们根据题意建立一次函数模型,并求解。
解题方法:
1. 对于一次函数的图像和性质,我们可以先根据 k 和 b 的值计算出函数的
表达式,然后根据函数的表达式分析其图像和性质。
2. 对于求一次函数的解析式,我们可以使用待定系数法或两点式等方法求解。
3. 对于一次函数的应用题,我们需要仔细审题,理解题意,然后根据题意建立一次函数模型,最后求解模型得出答案。
下面是一个具体的例子:
题目:已知直线 y = kx + b 与 x 轴、y 轴的交点分别为 A(-3,0) 和 B(0,2),求该直线的解析式。
解题方法:
1. 首先,我们可以将点 A(-3,0) 和 B(0,2) 的坐标代入到直线方程 y = kx +
b 中,得到两个方程:
-3k + b = 0
b = 2
2. 解这个方程组,我们可以得到 k = 2/3 和 b = 2。
3. 因此,该直线的解析式为 y = 2x/3 + 2。
一次函数易错题压轴题题型归纳及方法
一次函数易错题压轴题题型归纳及方法一次函数易错题压轴题题型归纳及方法一、基础概念梳理1.1 一次函数的定义和性质一次函数是指函数 f(x) = ax + b,其中 a 不等于 0。
其图像为一条直线,斜率为 a,截距为 b。
在直角坐标系中,表现为直线过原点或不过原点。
一次函数的性质包括斜率和截距等。
1.2 一次函数的图像和特征一次函数的图像呈线性关系,表现为直线。
斜率决定了直线的斜率和方向,截距决定了直线和 y 轴的交点。
掌握一次函数的图像和特征是解题的关键。
二、易错题分析2.1 斜率与线性关系易错点:部分学生对斜率的计算和理解存在困难,无法准确求解斜率或理解斜率的意义。
解决方法:要重点训练学生如何计算斜率,以及斜率对线性关系的影响。
可以通过练习题和实例来加深理解。
2.2 截距的求解易错点:学生在求解截距时常常出错,或者无法正确理解截距的含义。
解决方法:通过大量的实例练习,加深学生对截距的理解和运用能力。
可以设计一些生活中的例子来帮助学生理解截距的含义。
2.3 点斜式方程易错点:学生在转化为一般式方程时,容易出错或混淆概念。
解决方法:通过举例和练习,让学生掌握点斜式方程和一般式方程之间的转化,加深对一次函数的理解和掌握能力。
三、高级拓展题3.1 一次函数的应用在生活中,一次函数的应用非常广泛,包括经济学、物理学和工程学等领域。
这些应用题往往涉及到实际问题的建模和解决,需要学生有较强的数学建模和解题能力。
3.2 特殊题型及解法除了基本的一次函数题,还有一些特殊的题型需要引起重视,包括两条直线的关系、两个一次函数的综合运用等。
这些题型需要学生拓展思维,掌握各种解题方法。
四、总结回顾在学习一次函数这一题型时,学生需要注重基本概念的理解和掌握,加强实例练习,培养解题思维,拓展应用能力。
重点关注易错点,并采取有效的方法加以解决,提高学生对一次函数的理解和应用能力。
个人观点及理解对于一次函数的学习和掌握,我认为重在理解和应用。
一次函数培优训练常见题型
一次函数培优训练常见题型.txt 一次函数培优训练常见题型一次函数是高中数学中的重要内容之一,掌握一次函数的常见题型是培优训练必备技能。
本文将介绍一些常见的一次函数题型及解题方法。
1. 直线方程表示法直线方程表示法是一次函数的常见表达方式。
其中,一次函数的一般形式为 y = kx + b,其中 k 和 b 是常数。
根据题目给出的条件,可通过直线方程表示法求解一次函数的解。
例题1已知一次函数的图像经过点 A(2, 4) 和 B(3, 6),求该一次函数的解析式。
解析:设该一次函数的解析式为 y = kx + b。
根据题目给出的条件,我们可以得到以下方程组:4 = 2k + b (1)6 = 3k + b (2)求解方程组得到 k = 2,b = 0。
因此,该一次函数的解析式为 y = 2x。
例题2已知一次函数经过点 A(2, 3) 和 B(4, 5),求该一次函数的解析式。
解析:同上例,设该一次函数的解析式为 y = kx + b。
根据题目给出的条件,我们可以得到以下方程组:3 = 2k + b (1)5 = 4k + b (2)求解方程组得到 k = 1,b = 1。
因此,该一次函数的解析式为 y = x + 1。
2. 直线的斜率与截距直线的斜率与截距也是求解一次函数的常用方法。
直线的斜率表示了直线的倾斜程度,截距表示了直线与坐标轴的交点。
例题3已知一次函数的斜率为3,截距为2,求该一次函数的解析式。
解析:一次函数的解析式为 y = kx + b,其中 k 表示斜率,b 表示截距。
根据题目给出的条件,我们可以得出以下式子:y = 3x + 2因此,该一次函数的解析式为 y = 3x + 2。
例题4已知一次函数经过点 A(2, 5),并且斜率为 2,求该一次函数的解析式。
解析:设该一次函数的解析式为 y = kx + b。
根据题目给出的条件,我们可以得到以下方程:5 = 2 * 2 + b求解方程得到 b = 1。
求一次函数解析式的常见题型
求一次函数解析式的常见题型以部分中考题为例,归类介绍几种常见题型如下:一、点斜型.例1 已知一次函数y=kx+3的图象经过点(6,-1),求这个函数的解析式.解:∵一次函数y=kx+3的图象经过点(6,-1),二、两点型.例2 某个一次函数的图象与x轴、y轴的交点坐标分别是(-1,0)和(0,2),则这个一次函数的解析式是______.解:设一次函数的解析式为y=kx+b.∵直线y=kx+b经过(-1,0)和(0,2)两点,故这个一次函数的解析式是y=2x+2.三、斜截型.例3 已知函数y=kx+b的图象平行于直线y=3x,并且在y式.3四、平移型.为______.解;设一次函数的解析式为y=kx+b,因为y=kx+b的图象五、定义型.例5 已知函数y=(m2-m)x2m2-m+3是一次函数,试求其解析式.解:根据一次函数的定义知六、应用型.例6 甲、乙两人分别从相距18公里的A、B两地同时相向而行,甲以4公里/时的平均速度步行,乙以每小时比甲快1公里的平均速度步行,相遇而止.求甲、乙两人相距的距离y(公里)和所用的时间x(小时)的函数关系式.解:y与x之间的函数关系式为y=-9x+18,(0≤x≤2).七、对称型.例7 已知点A′与点A(-2,3)关于y轴对称,直线y=kx-5经过点A′,求该直线的解析式.解:∵A′点与A(-2,3)点关于y轴对称,∴A′点的坐标为(2,3).又直线y =kx-5经过A′点,∴3=2k-5,∴k=4.故直线的解析式为y=4x-5.八、几何型.以AB为边在第一象限内作正三角形ABC.⊙O′为△ABC的外接圆,与x轴交于另一点E.(1)求C点坐标;(2)求过点C与AB中点D的一次函数的解析式;∴∠BAO=30°.又∵△ABC为等边三角形,∴AC=AB=2,∠BAC=60°,(2)过D作DF∥OB交OA于F.∵D是AB的中点,则DF=两点的一次函数解析式为y=kx+b,有九、方程型.例9 △ABC中,AB=AC,点A、C在x轴正半轴上、点B在y轴正半轴上.若此三角形腰长和腰上的高线的长分别是关于x的方程x2-(2m-1)x+m2-5=0的两个实数根,且△ABC的面积等于10,求经过B、C两点的直线的解析式.0可化为x2-9x+20=0.解之得x1=5,x2=4.注意题给条件,可知腰长大于腰上的高线长,则△ABC三个顶点为A(3,0)、B(0,4)、C(8,0).十、综合型.例10 已知抛物线y=(9-m2)x2-2(m-3)x+3m的使y随x的增大而减小.a,b满足方程组求这条直线的解析式.解:由抛物线y=(9-m2)x2-2(m-3)·x+3m的顶点析式为y1=-7x2+14x-12,顶点D1(1,-5)及y2=-27x2+即C1(2,1)、C2(-2,-1).直线经过C、D两点,由经过C2、D2的直线是y=-6x-13.附思考题:1.在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0)、B(0,2)、C(m,3),求这个一次函数解析式并求m的值.(y=-x+2,m=-1)2.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,解析式.(y=-2x+1)3.在平面直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图象分别与x轴、y轴和直线x=4交于点A、B、C,直线x=4与x轴交于点D,四边形OBCD(O 为坐标原点)的面积为10,若A4.已知一次函数y=kx+b过点(-2.5)且它的图象与y轴的解析式是______.(y=-4x-3)。
一次函数知识点总结与常见题型
三乐教育名师点拔中心 学生: 家长签名根本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,那么变量是________,常量是_______。
在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:以下函数〔1〕y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有〔 〕〔A 〕4个 〔B 〕3个 〔C 〕2个 〔D 〕1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:〔1〕关系式为整式时,函数定义域为全体实数;〔2〕关系式含有分式时,分式的分母不等于零;〔3〕关系式含有二次根式时,被开放方数大于等于零;〔4〕关系式中含有指数为零的式子时,底数不等于零; 〔5〕实际问题中,函数定义域还要和实际情况相符合,使之有意义。
例题:以下函数中,自变量x 的取值范围是x ≥2的是〔 〕A .yB .yC .yD .y函数y =x 的取值范围是___________.函数221+-=x y ,当11≤<-x 时,y 的取值范围是 〔 〕 A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
4444求一次函数解析式的常见题型
求一次函数解析式的常见题型一. 定义型例1. 已知函数y m xm =-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
二. 点斜型例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。
解:一次函数y kx =-3的图像过点(2,-1)∴-=-123k ,即k =1,故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求函数的解析式。
三. 两点型已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)有020=+=+⎧⎨⎩k b b ∴=-=⎧⎨⎩k b 22故这个一次函数的解析式为y x =-+22五. 斜截型例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为___________。
解析:两直线l 1:y k x b =+11;l 2:y k x b =+22。
当k k 12=,b b 12≠时,l l 12// 直线y kx b =+与直线y x =-2平行,∴=-k 2。
又 直线y kx b =+在y 轴上的截距为2,∴=b 2故直线的解析式为y x =-+22六. 平移型例6. 把直线y x =+21向下平移2个单位得到的图像解析式为___________。
(人教版初中数学)一次函数解析式常见题型分析
求一次函数解析式常见题型解析
1.定义型:例1. 已知函数是一次函数,求其解析式.
二. 点斜型:例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式.
三. 两点型:已知某个一次函数的图像与x轴、y轴
的交点坐标分别是(-2,0)、(0,4),则这个函数
的解析式为_____________.
四. 图像型:例4. 已知某个一次函数的图像如图所
示,则该函数的解析式为__________.
五. 斜截型:例5. 已知直线与直线
平行,且在y轴上的截距为2,则直线的解析式为___________.
六. 平移型:例6. 把直线向下平移2个单位得到的图像解析式为
___________.
七. 实际应用型:例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为
___________.
八. 面积型:例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________.
九. 开放型:例10. 一次函数的图像经过(-1,2)且函数y的值随x的增大而增大,请你写出一个符合上述条件的函数关系式 .。
求一次函数表达式的常见题型分类解析
求一次函数表达式的常见题型分类解析一:定义型例1:已知关于x的一次函数.(1)m为何值时,函数的图象经过原点?(2)m为何值时,函数的图象经过点(0,-2)?(3)m为何值时,函数的图象和直线y=-x平行?(4)m为何值时,y随x的增大而减小?【变式1】已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.二. 两点型例2.已知一次函数物图象经过A(-2,-3), B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(-a,a+2)在这个一次函数的图象上,求a的值。
【变式1】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.【变式2】.一次函数y=kx+b的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是一5≤y≤-2则这个函数的表达式为 .三. 平行型例3、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式。
【变式1】.一次函数与直线y=2x+1平行,且与直线y=-3x+6交于x轴,求一次函数表达式。
【变式2】.一次函数与直线y=2x+1平行,且它与x轴的交点关于y轴对称后在直线y=-3x+6上,求一次函数表达式。
【变式3】.一次函数与直线y=2x+1平行,且它与直线y=-3x+6的交点横坐标为3,求一次函数表达式。
四. 距离面积型例 4.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为 .【变式1】.一次函数y=kx+3的图象与坐标轴围成的面积为5,则k的值为 .【变式2】.一次函数y=2x+b的图象与坐标轴围成的面积为5,则b的值为 .五:平移和对称型例5:直线y=2x-2可由直线y=2x向下平移______个单位得到,也可向右平移______个单位得到.【变式1】. 在平面直角坐标系中,直线y=kx+b(k,b为常数,k≠0,b>0)可以看成是将直线y=kx沿y轴向上平行移动b个单位而得到的,那么将直线y=kx沿x轴向右平行移动m(m>0)个单位得到的直线方程是_________________________________.【变式2】已知直线y=2x+1,(1)求已知直线与x 轴y 轴交点的坐标;(2)若直线y=kx+b 与直线关于y 轴对称,求k 和b.(3)若直线y=kx+b 与直线关于y 轴对称,求k 和b.新题抢先看:甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km ,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O –A –B -C 所示,分别用1y ,2y 表示甲、乙在时间x (min )时的行程,请回答下列问题:⑴求1y ,2y 中BC 段的表达式(标明x 的范围),并在图中画出函数1y 的图象; ⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?。
一次函数常见题型归纳
一次函数重要知识:(一)数的概念:常见题型一:判断一个表达式是否为函数,判断一个图像是否为函数图像1、下列解析式中,不是函数关系式的是()A .y= x (x≥0)B .y=-x (x≥0)C . y=±x (x≥0) D. y= -x (x≤0)2、下列各曲线中不能表示y是x的函数的是…………………………()A.B.C.D.常见题型二:函数自变量的取值范围自变量x的取值范围是_______1、.函数y=x-22、下列函数中,自变量x的取值范围是x≥2的是()C.D.y=A.B.3.函数y =x-2+3-x 中自变量x的取值范围是()(A)x≥2 (B)x≤3 (C)2≤x≤3 (D)x≥3或x≤2常见题型三:函数在实际生活中的图像表达李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )(二)正比例函数的定义及性质:常见题型一:与正比例函数定义有关的字母题1、已知函数y=(m-1)x+m 2-1是正比例函数,则m =_____________.2. 若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12 B .m=12 C .m<12 D .m=-12 3、若函数2)1)2(--=k x k y (是正比例函数,则k=常见题型二:正比例函数性质的运用1、已知正比例函数y =(m -1)25m x -的图象在第二、四象限,则m 的值为_________,函数的解析式为__________2.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y=-0.4x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2(三)一次函数的定义:常见题型一:一次函数和正比例函数的联系与区别2、下列函数关系式中,哪些是一次函数,哪些又是正比例函数?(1)y=-x-4 (2)256y x =+ (3)8y x =- (4) y=-8x3、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数(四)一次函数的性质①平移:直线y =kx +b 可以看作由直线y =kx 平移_____个单位而得到,当b >0时,向_____平移,当b <0时,向_____平移。
苏科版八年级数学上册:一次函数常见题型归纳
一次函数常见题型归纳(一)、一次函数与正比例函数的定义:1、下列关系式中:y=﹣3x+1、y=、y=x 2+1、y=x ,y 是x 的一次函数的有( )A .1个B .2个C .3个D .4个2、当m_____________时,()21445m y m x x +=-+-是一次函数;3、当a =_______时,函数y =(a +2)23ax -是正比例函数.4、设函数①当m 时,它是一次函数;②当m 时,它是正比例函数。
5、下列说法中不正确的是( )A .一次函数不一定是正比例函数B .不是一次函数就一定不是正比例函数C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数6、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;(二)、用待定系数法求函数解析式:1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、已知一次函数的图像经过A (3,4)和点B (2,7),求函数的解析式。
3、若点(3,m)在函数y=-13x+2的图象上.则m 的值为 ( ). 2)3(||3++-=-m m y xmA.0 B.1 C.2 D.34、在一次函数y= -3x+2的图象上的点是()A.(1,-1)B.(﹣1,1)C.(2,﹣5)D.(0,2)(三)、一次函数图像特征:1、一次函数y= -2x+4的图象与x轴交点坐标是,与y轴交点坐标是图象与坐标轴所围成的三角形面积是 .2、一次函数y=(2m+6)x-(5-n),当m,n为何值时:(1)、y与x的增大而增大?(2)、图象经过二、三、四象限?(3)、图象与y轴的交点在x轴上方?(4)、图象过原点?3、一次函数 y=(9-3m)x+(2n-10)不经过第三象限,则m、n的范围是__________。
4、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_______象限。
求一次函数表达式的常见题型分类解析
求一次函数表达式的常见题型分类解析江苏 高俊元一次函数及其图像是初中数学的重要内容,是每年中考的重点必考内容。
其中求一次函数表达式就是一类常见题型。
现以近年来中考题为例介绍几种求一次函数表达式的常见题型,供同学们参考。
一. 定义型例1. 已知函数y=(m-3)382+-m x是一次函数,求其表达式。
解:由一次函数定义知⎩⎨⎧≠-=-o m m 3182∴⎩⎨⎧≠±=33m m∴m=-3,故一次函数的表达式为y=-3x+3评注:利用定义求一次函数y=kx+b 表达式时,要保证k ≠0。
二. 两点型例2.(2005宁波)已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1) 求这个一次函数的表达式;(2) 试判断点P(-1,1)是否在这个一次函数的图象上?解:设所求表达式为y=kx+b ,由题意得⎩⎨⎧=+-=+-332b k b k ,解得⎩⎨⎧==12b k∴所求表达式为y=2x+1.(2)因为当x=-1时,y=2×(-1)+1=-1,所以点P (-1,1)不该函数图象上。
评注:这种求函数表达式的方法称为待定系数法,是确定函数表达式的最常用方法. 例3.(2003济南)一次函数y =kx +b 的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是一5≤y≤-2则这个函数的表达式为 .解:设y 与x 的函数表达式y=kx+b 若k>0,则图象经过(-3,-5)、(6,-2)则⎩⎨⎧-=+-=+-2653b k b k 解得⎪⎩⎪⎨⎧-==431b k 若k <0,则图象经过(6,-5)、(-3,-2)则⎩⎨⎧-=+--=+2356b k b k ,解得⎪⎩⎪⎨⎧-=-=331b k故该函数的表达式式为y=31x-4或y=31-x-3.评注:解决本题的关键是根据一次函数的增减性分k>0、 k <0两种情况确定图象所经过的两点的坐标,再用待定系数法来解决。
八年级数学一次函数解析式的常见题型
一次函数解析式的常见题型一. 定义型例1. 已知函数是一次函数,求其解析式。
注意:利用定义求一次函数解析式时,要保证。
如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
五. 实际应用型例5. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。
注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
六. 面积型 例6. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。
【检测练习】一、选择1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、填空11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”) 17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、解答题21.根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y 的值是多少?(3)当y=12时,•x 的值是多少?23.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。
求一次函数解析式的常见题型
求一次函数解析式的常见题型
河北王建立
在近年来的中考试题中,经常出现一些求一次函数解析式的试题,现以部分中考题为例,归类介绍几种常见题型如下:
一、已知一点求函数的解析式
例1已知一次函数y=kx+3的图象经过点(6,-1),求这个函数的解析式.
解:∵一次函数y=kx+3的图象经过点(6,-1),
二、已知二点求函数的解析式
例2某个一次函数的图象与x轴、y轴的交点坐标分别是(-1,0)和(0,2),则这个一次函数的解析式是______.
解:设一次函数的解析式为y=kx+b.
∵直线y=kx+b经过(-1,0)和(0,2)两点,
故这个一次函数的解析式是y=2x+2.
三、已知一点及另一条平行的直线求函数的解析式
例3已知函数y=kx+b的图象平行于直线y=3x,并且图象经过点(0),求这个函数的解析式.
四、根据定义求函数的解析式
例4已知函数y=(m2-m)x2m2-m+3是一次函数,试求其解析式.
解:根据一次函数的定义知
五、根据实际意义求函数的解析式
例5 甲、乙两人分别从相距18公里的A、B两地同时相向而行,甲以4公里/时的平均速度步行,乙以每小时比甲快1公里的平均速度步行,相遇而止.求甲、乙两人相距的距离y(公里)和所用的时间x(小时)的函数关系式.
解:y与x之间的函数关系式为y=-9x+18,(0≤x≤2).。
求一次函数解析式的常见题型归类
求一次函数解析式的常见题型一、 定义型例1:已知函数5)2(32-+=-mx m y ,当m= 时,表示y 是x 的一次函数,此时函数解析式为 .【变式1】已知函数1)1(2+-=-m xm y ,当m 为何值时,y 是x 的一次函数?并写出函数的解析式.二、 性质型 例2:已知一次函数b kx y +=中,自变量x 的取值范围为62≤≤-x ,相应函数y 的取值范围为911≤≤-y ,求此时的函数解析式.【变式2】某一次函数的图像经过(-1,2),且函数y 的值随自变量x 的值增大而减小,请你写出一个符合上述条件的函数的解析式为 .三、 两点型例3:已知一次函数的图像经过点(-4,9)和点(6,3),求这个函数的解析式.【变式3-1】已知一次函数b kx y +=,当2=x 时y 的值为4,当2-=x 时y 的值为2-,求k 与b .【变式3-2】直线AB 与x 轴交于点A(1,0),与y 轴交于点B (0,-2).求直线AB 的解析式.四、 表格型例4:下表给出了y 与x 的一些对应值,你能得出y 与x 之间的函数解析式为 .五、 图像型例5:如图,直线l 对应的函数解析式为( )A 、12+-=x yB 、22+-=x yC 、221-=x y D 、22-=x y 【变式】莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y (件)与该商品定价x (元)是一次函数关系,如右图所示.求销售量y 与定价x 之间的函数解析式.六、 平移型例6:已知一个一次函数的图像平行于直线x y 2-=,并且经过点A )(4,3-,求这个一次函数的解析式.【变式1】将一次函数13-=x y 的图像沿y 轴向上平移3个单位后,得到的图像对应的函数解析式为 .【变式2】图中直线是由直线l 向上平移1个单位,向左平移2个单位得到的,则直线l 对应的一次函数关系式为 .七、 面积型例7:在平面直角坐标系中,点O 为原点,直线b kx y +=交x 轴于点A (-2,0),交y 轴于点B.若△AOB 的面积为8,试求出k 的值.yx。
求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
一次函数知识点总结和常见题型归类
一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量; 常量:在一个变化过程中只能取同一数值的量;例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______;在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数;判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数1y =πx 2y =2x -1 3y =错误! 4y =21-3x 5y =x 2-1中,是一次函数的有 A 4个 B 3个 C 2个 D 1个P116 1 P87 23、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域;4、确定函数定义域的方法:1关系式为整式时,函数定义域为全体实数;2关系式含有分式时,分式的分母不等于零;3关系式含有二次根式时,被开放方数大于等于零;4关系式中含有指数为零的式子时,底数不等于零; 5实际问题中,函数定义域还要和实际情况相符合,使之有意义; 例题:下列函数中,自变量x 的取值范围是x ≥2的是A .yB .yC .yD .y函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.例题:P117 56、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式;7、描点法画函数图形的一般步骤第一步:列表表中给出一些自变量的值及其对应的函数值;第二步:描点在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步:连线按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来;画3个图像 8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系; 9、正比例函数及性质一般地,形如y =kxk 是常数,k ≠0的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx k 不为零 ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y =kxk 是常数,k ≠0 (2) 必过点:0,0、1,k(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴例题:.正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. 若23y x b =+-是正比例函数,则b 的值是 B .23 C .23- D .32- .函数y =k -1x ,y 随x 增大而减小,则k 的范围是A .0<kB .1>kC .1≤kD .1<k东方超市鲜鸡蛋每个元,那么所付款y 元与买鲜鸡蛋个数x 个之间的函数关系式是_______________. 平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 10、一次函数及性质一般地,形如y =kx +bk ,b 是常数,k ≠0,那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b k 不为零 ① k 不为零 ②x 指数为1 ③ b 取任意实数 1解析式:y =kx +bk 、b 是常数,k ≠0 2必过点:0,b 和-kb,0 3走向:思考:若m <0,>0, 则一次函数的图象不经过A .第一象限B . 第二象限C .第三象限D .第四象限 题型:由k,b 判断图像,由图像判断k,b4增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.5倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. 6图像的平移: 上加下减,左加右减 例题:若关于x 的函数1(1)m y n x-=+是一次函数,则m = ,n ..函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 . 若直线a x y +-=和直线b x y +=的交点坐标为8,m ,则=+b a ____________.已知函数y =3x +1,当自变量增加m 时,相应的函数值增加 A.3m +1 B.3m C.m D.3m -1 11、一次函数y =kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y 轴的交点0,b ,与x 轴的交点kb-,0.即横坐标或纵坐标为0的点. 14、用待定系数法确定函数解析式的一般步骤: 1根据已知条件写出含有待定系数的函数关系式;2将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; 3解方程得出未知系数的值;4将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0a ,b 为常数,a ≠0的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值. 16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0a ,b 为常数,a ≠0的形式,所以解一元一次不等式可以看作:当一次函数值大小于0时,求自变量的取值范围. 17、一次函数与二元一次方程组1以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =bcx b a +-的图象相同. 2二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c x b a +-和y =2222b cx b a +-的图象交点.18、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点0,b ,与x 轴的交点kb-,0. 直线b ≠0与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯常见题型一、☆考察一次函数定义 1、若函数()213m y m x=-+是y 关于x 的一次函数,则m 的值为 ;解析式为 .2、要使y =m -2x n -1+n 是关于x 的一次函数,n ,m 应满足 , .二、☆考查图像性质1、已知一次函数y =m -2x +m -3的图像经过第一,第三,第四象限,则m 的取值范围是________.2、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .3、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的 图6,两直线1y kx b =+和4、如2y bx k =+在同一坐标系内图象的位置可能是为 时,直线2y x b =+与5.b直线34y x =-的交点在x 轴上. 6.要得到y =-32x -4的图像,可把直线y =-32x . A 向左平移4个单位B 向右平移4个单位 C 向上平移4个单位 D 向下平移4个单位7、已知一次函数y =-kx +5,如果点P 1x 1,y 1,P 2x 2,y 2都在函数的图像上,且当x 1<x 2时,有y 1<y 2成立,那么系数k 的取值范围是________.8、已知点-4,y 1,2,y 2都在直线y =- 错误!x +2上,则y 1 、y 2大小关系是Ay 1 >y 2 By 1 =y 2 Cy 1 <y 2 D 不能比较 三、☆交点问题1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是 .Ak <13 B 13<k <1 Ck >1 Dk >1或k <132、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有A . 0,0k b >> .0,0B k b >< .0,0C k b <>.0,0D k b <<5、如图所示,已知正比例函数xy 21-=和一次函数b x y +=,它们的图像都经过点Pa ,1,且一次函数图像与y 轴交于Q 点;1求a 、b 的值;2求△PQO 的面积; 四、☆面积问题1、若直线y =3x +6与坐标轴围成的三角形的面积为S ,则S 等于 . A .6 B .12 C .3 D .242、若一次函数y =2x +b 的图像与坐标轴围成的三角形的面积是9,则b =_______.3、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ∆的面积为A .4B .5C .6D .74、已知一次函数y =kx +b 的图像经过点-1,-5,且与正比例函数1y=x 2的图像相交于点2,a ,求1a 的值;2k 、b 的值;3这两个函数图像与x 轴所围成的三角形面积; 五、☆一次函数解析式的求法1 定义型 例1. 已知函数y m xm=-+-()3328是一次函数,求其解析式;2点斜型 例2. 已知一次函数y kx =-3的图像过点2,-1,求这个函数的解析式;3两点型 例3.已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是-2,0、0,4,则这个函数的解析式为_____________;4图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________;5斜截型 例 5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 ;6平移型 例6. 把直线y x =+21向下平移2个单位得到的图像解析式为 ;7 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q 升与流出时间t 分钟的函数关系式为 ;8面积型 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,则直线解析式为 ;9对称型 例9. 若直线l 与直线y x =-21关于y 轴对称,则直线l 的解析式为____________; 知识归纳: 若直线l 与直线y kx b =+关于1x 轴对称,则直线l 的解析式为y kx b =-- 2y 轴对称,则直线l 的解析式为y kx b =-+3直线y =x 对称,则直线l 的解析式为y k x b k =-1 4直线y x =-对称,则直线l 的解析式为y k x bk=+15原点对称,则直线l 的解析式为y kx b =-10开放型 例10.一次函数的图像经过-1,2且函数y 的值随x 的增大而增大,请你写出一个符合上述条件的函数关系式 .11比例型 例11..已知y 与x +2成正比例,且x =1时y =-6.求y 与x 之间的函数关系式 练习题:1. 已知直线y =3x -2, 当x =1时,y =2. 已知直线经过点A 2,3,B -1,-3,则直线解析式为________________3. 点-1,2在直线y =2x +4上吗 填在或不在4. 当m 时,函数y =m -232-m x+5是一次函数,此时函数解析式为 ;5. 已知直线y =3x +b 与两坐标轴所围成的三角形的面积为6,则函数的解析式为 .6. 已知变量y 和x 成正比例,且x =2时,y =-21,则y 和x 的函数关系式为 ; 7. 点2,5关于原点的对称点的坐标为 ;关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;8. 直线y =kx +2与x 轴交于点-1,0,则k = ;9. 直线y =2x -1与x 轴的交点坐标为 与y 轴的交点坐标 ; 10. 若直线y =kx +b 平行直线y =3x +4,且过点1,-2,则k = .11. 已知A -1,2, B 1,-1, C 5,1, D 2,4, E 2,2,其中在直线y =-x +6上的点有_________,在直线y =3x -4上的点有_______12. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费元,以后每超过1分钟加收1元,若此人第一次通话t 分钟3≤t ≤45,则IC 卡上所余的费用y 元与t 分之间的关系式是 . 13. 某商店出售一种瓜子,其售价y 元与瓜子质量x 千克之间的关系如下表质量x 千克 1 2 3 4 售价y 元++++由上表得y 与x 之间的关系式是 14. 已知:一次函数的图象与正比例函数Y =-32X 平行,且通过点0,4, 1求一次函数的解析式.2若点M -8,m 和Nn ,5在一次函数的图象上,求m ,n 的值15. 已知一次函数y =kx +b 的图象经过点-1, -5,且与正比例函数y = 错误!x 的图象相交于点2,a ,求1a 的值 2k ,b 的值3这两个函数图象与x 轴所围成的三角形面积.16. 有两条直线b ax y +=1,c cx y 52+=,学生甲解出它们的交点坐标为3,-2,学生乙因把c 抄错了而解出它们的交点坐标为)41,43(,求这两条直线解析式17. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于点P 3,-6 1求21,k k 的值;2如果一次函数92-=x k y 与x 轴交于点A ,求A 点坐标18. 某种拖拉机的油箱可储油40L ,加满油并开始工作后,•油箱中的余油量yL 与工作时间xh 之间为一次函数关系,如图所示.1求y 与x 的函数解析式. 2一箱油可供拖位机工作几小时 一、☆分段函数1、某自来水公司为鼓励居民节约用水,采取按月用水量收费办法,若某户居民应y交水费y 元与用水量x 吨的函数关系如图所示;1写出y 与x 的函数关系式;2若某户该月用水21吨,则应交水费多少元 2、果农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的菠萝全部降价卖完,卖出的菠萝的吨数x 和他收入的钱数y 万元的关系如图所示,结合图象回答下列问题:1降价前每千克菠萝的价格是多少元2若降价后每千克菠萝的价格是元,他这次卖菠萝的总收入是2万元,问他一共卖了多少吨菠萝 3、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度元计费.1设用电x 度时,应交电费y 元,当x ≤100和x >100时,分别写出y 关于x 的函数关系式.24、某校需要刻录一批电脑光盘,若电脑公司刻录,每张需要8元含空白光盘费;若学校自刻,除租用刻录机需120元外每张还需成本费4元含空白光盘费,问刻录这批电脑光盘,到电脑公司刻录费用少还是自刻费用少说明你的理由 二、☆一次函数应用1、甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,a <b ;乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t 分,离开点A 的路程为S 米,•那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t 分与离开点A 的路程S 米•之间的函数关系的是 2、如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为3、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s 千米与行驶时间t 小时的函数关系用图象表示为D 4、,,,吨原油罐没储油后将进油1624,直到将油罐内的油放完,12在同一坐标系中,画出这三个函数的图象.5、甲乙两个仓库要向A 、B 两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A 地需70吨水泥,B 地需110吨水泥,两库到A ,B 两地的路程和运费如下表表中运费栏“元/吨、千米”表示每吨水泥运送1千米所需人民币1.2当甲、乙两库各运往A 、B 两地多少吨水泥时,总运费最省最省的总运费是多少6、A 市、B 市和C 市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E 市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.1设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W元关于x台的函数关系式,并求W的最大值和最小值.2设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W元,并求W的最大值和最小值.7、某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上含3000千克的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元;1分别写出该公司两种购买方案的付款y元与所购买的水果质量x千克之间的函数关系式,并写出自变量x的取值范围;2依据购买量判断,选择哪种购买方案付款最少并说明理由;8、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:注:利润=售价-成本1该公司对这两种户型住房有哪几种建房方案2该公司如何建房获得利润最大3根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元a>0,且所建的两种住房可全部售出,该公司又将如何建房获得利润最大。
初二一次函数经典题型
初二一次函数经典题型初二数学教学中,一次函数是比较重要的知识点。
数学老师经常会出一些经典的一次函数题型来帮助学生巩固与提高。
下面我们就来看一下几个比较常见的一次函数题型及解题思路。
一、求解一次函数的解析式这是一次函数学习的基础,也是应用最为广泛的一类问题。
其步骤可以分为以下几步:1.已知一次函数的任意两个点,可以利用“两点式”求解。
例如:已知一次函数过点(2,3)和(4,5),求该函数的解析式。
解:首先根据两个点的坐标,利用直线斜率公式计算出k,即:k = (5-3)/(4-2)= 1然后再根据其中任意一个点以及直线斜率计算出b,即:b = 3 - 2 x 1 = 1因此,该函数的解析式为y = x + 1。
2.已知一次函数的截距和斜率,可以利用“点斜式”求解。
例如:已知一次函数的截距为3,斜率为2,求该函数的解析式。
解:根据截距和斜率的定义,可以得到该函数的解析式为y = 2x + 3。
二、求解一次函数的零点一次函数的零点是指函数与x轴的交点,通常用来求函数的解析式和解一元一次方程。
求一次函数的零点有以下两种方法:1.利用函数的解析式求解。
例如:已知一次函数的解析式为y = 2x - 4,求该函数的零点。
解:将y = 0代入该函数的解析式,得到2x - 4 = 0,解得x = 2。
因此,该函数的零点为(2, 0)。
2.利用函数的图像求解。
例如:已知一次函数的图像如下图所示,求该函数的零点。
解:由图可知,该函数的零点为(3, 0)。
三、求解一次函数的最大值和最小值一次函数的最值一般出现在定义域的两端,即极值点。
而一次函数的极值点只有两个,分别是左端点和右端点,因此求解一次函数的最大值和最小值只需要比较两个端点的函数值即可。
例如:已知一次函数y = 3 - x,在区间[0, 5]内求该函数的最大值和最小值。
解:由于该函数是单调递减的,因此函数在区间[0, 5]内的最大值出现在左端点x = 0处,最小值出现在右端点x = 5处。
[中考数学]求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数常见题型解析(一)
题型一、点的坐标
方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;
若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;
2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;
3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B
关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;
4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题
方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;
任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;
点(,)A A A x y
1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;
2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距
离是____________;
3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离
是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛
⎫⎛⎫-
⎪ ⎪⎝⎭⎝⎭
,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐
标为___________.
题型三、一次函数与正比例函数的识别
方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次
函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2
323y k x x =-++-是一次函数;
2、当m_____________时,()21
345m y m x
x +=-+-是一次函数; 3、当m_____________时,()21
445m y m x
x +=-+-是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法:
k(称为斜率)表示直线y=kx+b (k ≠0) 的倾斜程度;
b (称为截距)表示直线y=kx+b (k ≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。
当 时,两直线垂直。
当 时,两直线相交。
当 时,两直线交于y 轴上同一点。
☆特殊直线方程:
X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数1223
y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数
(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?。