一次函数常见题型解析(一)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数常见题型解析(一)

题型一、点的坐标

方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;

若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;

若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;

2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;

3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B

关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;

4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。 题型二、关于点的距离的问题

方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;

任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;

点(,)A A A x y

1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;

2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距

离是____________;

3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离

是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛

⎫⎛⎫-

⎪ ⎪⎝⎭⎝⎭

,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐

标为___________.

题型三、一次函数与正比例函数的识别

方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次

函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2

323y k x x =-++-是一次函数;

2、当m_____________时,()21

345m y m x

x +=-+-是一次函数; 3、当m_____________时,()21

445m y m x

x +=-+-是一次函数;

4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法:

k(称为斜率)表示直线y=kx+b (k ≠0) 的倾斜程度;

b (称为截距)表示直线y=kx+b (k ≠0)与y 轴交点的 ,也表示直线在y 轴上的 。

☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。

当 时,两直线相交。 当 时,两直线交于y 轴上同一点。 ☆特殊直线方程:

X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。 2、对于函数1223

y x =-, y 的值随x 值的________而增大。

3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。

5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。

6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。

7、已知一次函数

(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?

相关文档
最新文档