初中数学网格作图
中考数学网格作图题复习教案
《网格作图题》复习专题教学设计一、教材分析网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换。
这类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作。
本节课,知识点较多,但应该抓住关键点,分清变换类型,用变换的性质来解决实际问题,以训练为主。
2.考标要求:(1)应用平移、旋转、轴对称、中心对称等几种图形变换的性质解决数学问题。
(2)培养学生几何空间思维能力。
二、教学目标:(1).知识与技能:回忆所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识,理解掌握运用基础知识解决相关问题,提高解决问题的能力。
(2).数学思考:建立几何空间思维能力。
(3).过程与方法:学生自查遗忘的知识点,通过讨论、交流,教师答疑、解惑、指导,经历例题、习题的解答,提高技能,(4).情感态度:经历对所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识的复习,用所学知识解决相关问题,提高解决问题的能力。
三、教学重、难点:教学重点:对面积的计算。
教学难点:教学准备:多媒体课件、导学案、四、教学过程教学内容与教师活动学生活动设计意图一、知识梳理加强理解(1)中考题型(2)考点1.对称图形的计算和运用;2.平移图形的计算和运用;3.旋转图形的计算和运用;4.在网格中求面积;(3)准备知识1.对称作图的方法:轴对称(或中心对称)图形的作法:先找出原图形的各顶点,作出它们关于对称轴的对称点,然后根据原图连接各对称点。
2.平移作图的方法:(1)确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离,平移各个关键点,得到关键点的对应点;(4)按原图形依次连接各关键点的对应点,即的平移后的图形。
3.旋转作图的方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出原图的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角旋转,得到个关键点的对应点;(4)按按原图形依次连接各关键点的对应点,即的旋转后的图形。
中考数学专题《在网格线中作图》
(1)在图1中,画出线段AB的垂直平分线MN;
(2)在图2中,线段CD∥AB,画出线段CD的中点O.
M
利用轴对称
的性质作图
A
A
N B
利用梯形 四点共线作图
C O D B
知识点
01 利用常用技巧作图 02 利用性质作位置关系 03 利用性质作数量关系 04 按要求构造图形
典例精讲
利用性质作位置关系
知识点二
【例2】(2016·T17)如图,六个完全相同的小长方形拼成一个大长方形,AB
是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:
1仅用无刻度直尺,2保留必要的画图痕迹.
(1)在图1中画一个45º角,使点A或点B是这个角的顶点,AB为这个角的一边.
(2)在图2中画出线段AB的垂直平分线.
典例精讲
通过计算面积作图
知识点三
【例3】(2014·T17)已知梯形ABCD,请使用无刻度直尺画一个与梯形ABCD
面积相等的图形.
(1)在图1中,画以CD为边的三角形;
(2)在图2中,画以AB为边的平行四边形.
A
D
A
D
F
EB
C
如图1
如图1,△CDE即为所求;
B
E
C
如图2
如图2,□ABEF即为所求.
完成下列作图.
(1)在图1中,作线段AB∥MN; (2)在图2中,作线段CD⊥MN.
A M
M
CC C
A
NB
N
图1 B
D D D 图2
当堂训练
利用性质作位置关系
知识点二
2.如图,在正三角形网格内,A、B、P、Q均为网格格点,仅用无刻度的直尺
2023年中考数学《网格作图》真题及答案解析
2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。
中考数学题型训练网格作图
中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题) (第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1,△ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B 2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题) (第4题) 4.(07.安徽)△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和 .(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于.(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题) (第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图错误!与图错误!关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形\o\ac(○,2)向下平移4个单位,画出平移后的图形错误!,并判断图形错误!与图形错误!的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题) (第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题) (第12题)12.(07.青海)如图所示,图错误!和图错误!中的每个小正方形的边长都为1个单位长度.(1)将图错误!中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图错误!中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度,∠A2=度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。
2024年中考数学复习重难点题型训练—网格作图(含答案解析)
2024年中考数学复习重难点题型训练—网格作图(含答案解析)类型一平移1.如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.【答案】解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.2.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解析】(1)如解图①所示,△CDE即为所求.(2)如解图②所示,▱ABFG即为所求.3.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;(3)求△CC1C2的面积.【答案】(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积=12×3×6=9.【考点定位】:作图-位似变换;作图-平移变换.属基础题.【试题解析】解:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.;△CC1C2的面积=12×3×6=9.【命题意图】本题主要考查位似变换与平移变换,得出变换后的对应点的位置是解题的关键.【方法、技巧、规律】网格问题就是在网格中研究格点问题,这类问题现在在中考中比较常见,成为中考中的热点问题,具有很强的操作性,考查的类型问题有:点与有序数对的一一对应问题、平移问题、旋转问题、轴对称问题、勾股定理问题、分类思想的运用等. 4.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1.(1)写出△ABC的顶点坐标;(2)请在图中画出△A1B1C1.【答案】(1)A(1,0),B(0,-1),C(2,-2);(2)参见解析.【解析】(1)由观察得知:A(1,0),B(0,-1),C(2,-2);(2)将A,B,C三点坐标横坐标分别减3,纵坐标分别减2得A1(-2,-2),B1(-3,-3),C1(-1,-4).三点连线即可.如下图:5.作图题:(1)把△ABC向右平移5个方格;CBA(2)绕点B的对应点顺时针方向旋转90°CBA【答案】见解析【解析】(1)如图所示:(2)如图所示:6.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)P (a ,b )是△ABC 的AC 边上一点,△ABC 经平移后点P 的对称点P′(a+3,b+1),请画出平移后的△A 2B 2C 2.【答案】(1)作图见解析,A 1的坐标是(3,-4);(2)作图见解析.【解析】(1)如图所示:A 1的坐标是(3,-4);(2)△A 2B 2C 2是所求的三角形.类型二旋转7.(2021·湖北黄石·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【解析】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1),将△BOC 绕点O 逆时针旋转90度,得到△B 1OC 1,画出△B 1OC 1,并写出B 、C 两点的对应点B 1、C 1的坐标,【解析】解:如图,△B1OC1为所作,点B1,C1的坐标分别为(1,3),(-1,2).9.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.【答案】(1)E(3,3),F(3,﹣1);(2)答案不唯一,如:(﹣2,0).【解析】(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF在图中表示为:∵AO⊥AE,AO=AE,∴点E的坐标是(3,3),∵EF=OB=4,∴点F的坐标是(3,﹣1);(2)∵点F落在x轴的上方,∴EF<AO,又∵EF=OB,∴OB<AO,AO=3,∴OB<3,∴一个符合条件的点B的坐标是:答案不唯一,如:(﹣2,0).10.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(-3,-1).(1)试作出△ABC以C为旋转中心,沿逆时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.【解析】解:根据旋转中心为点C,旋转方向为逆时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(3,1).11.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解析】(1)O(0,0),90°.(2)如解图.(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形.∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC ,∴(a +b)2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,∴a 2+b 2=c 2.12.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.【解析】解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:13.如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.【答案】解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.14.如图,已知坐标平面内的三个点A(3,5),B(3,1),O(0,0),把△ABO向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出A,B,O三个对应点D、E、F的坐标;(2)画出将△AOB绕O点逆时针方向旋转90∘后得到的△A'OB';(3)求△DEF的面积.【解析】解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3).(2)如图,△A'OB'即为所求作.(3)△DEF的面积=12×4×3=6.15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解析】解:(1)如图所示;(2)如图所示.16.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【解析】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,-1).17.如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),△A1B1C1与△ABC关于原点O成中心对称,△A2B2C2是由△ABC绕着原点O顺时针旋转90°后得到的.(1)画出△A1B1C1,并写出点A的对称点A1的坐标;(2)画出△A2B2C2,并写出点A的对称点A2的坐标;(3)求出点B到达点B2的路径长度.【解析】解:(1)如图,△A1B1C1为所作,A1(1,-3);(2)如图,△A2B2C2为所作,A2(3,1);(3)∵OB=42+12=17,∴B到达点B2的路径长度.18.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .【答案】(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【解析】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.类型三对称19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【答案】(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.20.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.【答案】(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)9021.如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是________;点C 2的坐标是________;过C ,C 1,C 2三点的圆的圆弧的长是________(保留π).【答案】(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求.(3)(1,4)(1,-4)17π22.(2022年陕西中考)如图,ABC ∆的顶点坐标分别为(2,3)A -,(3,0)B -,(1,1)C --.将ABC ∆平移后得到△A B C ''',且点A 的对应点是(2,3)A ',点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是;(2)请在图中画出△A B C '''.【解答】解:(1)(2,3)--=。
第32课时 几何(网格、尺规)作图 课件 2025年中考数学一轮总复习
∴BF=④ ,∴BF=BA.
解:(1)如答案图所
示,BF即为所求作.(答案图)
∠BFC=∠D
CD
90°
6
考点三 尺规作图的综合运用例4 在学习了平行四边形的相关知识
后,小虹进行了拓展性研究.她发现,如
果作平行四边形一条对角线的垂直平分
线,那么这条垂直平分线在该四边形内
部的线段被这条对角线平分.其解决问题
的思路为通过证明对应线段所在两个三
角形全等即可得出结论.请根据她的思路完成以下作图和填空:
用直尺和圆规作平行四边形ABCD的对
求作.
(3)求△ABC的面积.
[答案] 解:(3)
S△ABC=4×3-
×1×3- ×4×1-
×2×3=5.5.
例2 (2024·安徽)如图,在由边长为1
个单位长度的小正方形组成的网格中建
立平面直角坐标系xOy,格点(网格线
的交点)A,B,C,D的坐标分别为
(7,8),(2,8),(10,4),
(5,4).
(1)以点D为旋转中心,将△ABC旋转
180°得到△A1B1C1,画出△A1B1C1;
[答案] 解:
(1)如图,
△A1B1C1即为所
求作.
(2)直接写出以B,C1,B1,C为顶点
的四边形的面积;
[答案] 解:(2)易知DB=DB1,DC=
DC1,∴四边形BC1B1C是平行四边形,∴ =2 =2× ×10×4
基本作图
图示
作法
经过一点作已知直线的垂线
过直线外一点作已知直线的垂线
①任意取一点K,使点K和点C在AB的两侧;②以点C为圆心,CK长为半径作弧,交AB于点D,E;③分别以点D,E为圆心,大于 DE的长为半径作弧,两弧相交于点F;④作直线CF,直线CF就是所求作的垂线
2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图
解:(1)如图①中,△ABC 即为所求(答案不唯一).
解:(2)如图②中,四边形 ABDE 即为所求.
5.(2021·长春)图①、图②、图③均是 4×4 的正方形网格,每个 小正方形的边长均为 1,每个小正方形的顶点称为格点,点 A, B,C 均为格点,只用无刻度的直尺,分别在给定的网格中找 一格点 M,按下列要求作图:
(1)在图①中,连结 MA,MB,使 MA=MB; (2)在图②中,连结 MA,MB,MC,使 MA=MB=MC; (3)在图③中,连结 MA,MC,使∠AMC=2∠ABC.
解:(1)(2)(3)如图.
6.(2021·绥化)如图,在网格中,每个小正方形的边长均为 1 个 单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系 的原点,矩形 OABC 的 4 个顶点均在格点上,连接对角线 OB.
八、解答题专练——网格作图
1.(2021·深圳)如图,在正方形网格中,每个小正方形的边长为 1 个单位. (1)过直线 m 作四边形 ABCD 的对称图形; (2)求四边形 ABCD 的面积.
解:(1)如图所示,四边形积=S△ABD+S△BCD
解:(1)如图①,四边形 ABCD 即为所求(答案不唯一).
解:(2)如图②,四边形 AEBF 即为所求.
3.(2021·丽水)如图,在 5×5 的方格纸中,线段 AB 的端点均在格 点上,请按要求画图.
(1)如图①,画出一条线段 AC,使 AC=AB,C 在格点上; (2)如图②,画出一条线段 EF,使 EF,AB 互相平分,E,F 均在格点上; (3)如图③,以 A,B 为顶点画出一个四边形,使其是中心对 称图形,且顶点均在格点上.
初中数学网格作图
13.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.14.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为(3,5),(4,3)A B --, C (1,1)-.(1)作出△ABC 向右平移5个单位的△111A B C ;(2)作出△ABC 关于x 轴对称的△222A B C ,并写出点2C 的坐标.15如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.16.(本题满分7分)在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.17、(本题满分10分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△AB2C2,并写出点C2的坐标;,2(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标。
2021年中考数学复习重点题型(2)——网格作图
重点题型(2)——网格作图杭州温州宁波绍兴嘉兴、舟山湖州台州金华丽水衢州2019年第20题第20题第20题第20题第19题8分8分8分8分6分2020年第20题第18题第19题8分8分6分点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.2.(温州一模)如图,点A,B,C是5×5的方格纸中的三个格点,按下列要求作出格点四边形(顶点在格点上).(1)在图1中画出一个以A,C为顶点的菱形(非正方形),使点B在该图形内部(不包括在边界上).(2)在图2中画出一个以A,C为顶点的平行四边形,使该图形的一边所在直线与AB夹角为45°.解:(1)如图1,即为以A,C为顶点的菱形;(2)如图2,即为以A,C为顶点的平行四边形.3.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).解:(1)由勾股定理得:CD=AB=CD′=5,BD=AC=BD′′=13,AD′=BC=AD′′=10;画出图形如图1所示;(2)如图2所示.4.如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F 均为格点),各画出一条即可.解:①如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EF平分BC;②EC=5,EF=5,FC=10,借助勾股定理确定F 点,则EF⊥AC;③借助圆规作AB的垂直平分线即可;5.(2020·吉林)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.。
中考复习坐标系网格作图.docx
中考数学专题复习一一坐标系网格作图(1)平移与轴对称1.如图,在平面直角坐标系xoy中,4( - 1,5) ,8( - 1,0) ,C( - 4,3).(1)求出MBC的面积;(2)在图中作出MBC关于y轴的对称图形△&8C;(3)写出点的坐标.BC在平面直角坐标系中的位置如图所示.(1)作出"BC关于y轴对称的并写出各顶点的坐标;(2)将AABC向右平移6个单位,作出平移后的△为马。
?,并写出△&&C2各顶点的坐标;(3)观察△4占<|和mBQ它们是否关于某直线对称?若是,请在图上画出这条对称轴.3.如图,在6 x 6的正方形网格中,每个小正方形的边长都是1.AABC的三个顶点都在格点(即小正方形的顶点)上.(1)画出线段4C平移后的线段位),其平移方向为射线AB的方向,平移的距离为线段AB的长;(2)求sin3BC 的值.4 (11南岗一模)如图,在平面直角坐标系中,巳知的顶点坐标分别是4(-1,2)、8( -3,l)、C(0,-l).(1)将△ABC向左平移2个单位,得到△ 4 B] G,画出△ 4 G ;(2)将(1)中的△ AAG沿着y轴翻折,得到△ A2B2C2,iB出左A2B2C2,^写出点q的坐标5. (09南岗一模)如图,已知ZUBC位于平面直角坐标系内,且三个顶点均在正方形的网格的顶点上.(1)将△曲C顶点4、B、C的横、纵坐标分别乘以-2,依次作为点A,、B[、C]的横、纵坐标,画出ZUiRCi ;(2)将△ X.B.C,向下平移2个单位,再向右平移2个单位,得到,画出,并写出务的对应点B,的坐标.中考数学专题复习一一坐标系网格作图(2)旋转作图1. (10道里一模)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形 称为“格点三角形”,图中的△ABC 是格点三角形,在建立平面直角坐标系后,点B 的坐标为(-1,-1).(1) 把△ABC 向左平移4个格后得到△ 10G (4、q 、G 分别与4、B 、C 对应),画出△ A.B.C,的图形并 写出点勺的坐标;(2) 把ZkABC 绕点C 按顺时针方向旋转90。
无刻度直尺网格作图的基本模型及应用
无刻度直尺网格作图的基本模型及应用《义务教育数学课程标准(2022年版)》对尺规作图的内容及要求有所加强,其地位又得到了一定提升。
尺规作图蕴含丰富的推理,是发展学生推理能力的良好载体,而“无刻度直尺网格作图”是尺规作图的基础。
本文将在9×9的网格下讨论三种基本模型和四种复合模型。
在网格作图中,我们把两条相交直线叫做格点的“母线”。
若两条母线都是网格线,则交点叫格点;若两条母线中只有一条网格线,则交点叫次格点;若两条母线都不是网格线,则交点叫一般点。
我们要过一个点作一条线的平行线或垂线,当点是格点时,我们很轻松的通过平移完成,当点不是格点时,我们通常通过平移“生成”点的母线来完成。
一、基本作图1、过点作平行线①如图1,过C点作CD平行且等于AB解答:C是格点,只需要找到C的对应点D,因A到B的平移方式是横左2纵下3,则A到B的平移方式也是横左2纵下3。
总结:若点是格点,直接通过平移到对应点,并且平移横纵不变(下文中平移方式不变就不再强调)。
②如图2,过E点作EF平行且等于AB解答:E是次格点,先找到母线AC的对应母线BD,再找到E的对应点F。
总结:若点是次格点,先通过平移非网格线的那条母线到对应母线,再找到对应点。
③如图3,过E点作EF平行且等于AB解答:E是一般点,先找到两条母线的对应母线,再找到E的对应点F。
总结:若点是一般点,先通过平移两条母线到对应母线,再找到对应点。
变式:如图4,过E点作AB的平行线交BC于点F解答:我们除了用平移的方法作平行线,还可以利用X、A型相似作平行。
因为E是AC的一个三等分点,可以先连接BC,再利用相似找BC对应的三等分点F。
2、过点作垂线①如图5,过C点作CD垂直且等于AB解答:C是格点,只需要找到C的对应点D,因A到B的平移方式是横左2纵下3,则C到D的平移方式是横左3纵上2。
总结:若点是格点,直接通过旋转得到对应点,并且旋转横纵交换。
②如图6,过E点作EF垂直且等于AB解答:E是次格点,先过A点作AB的垂线AC(横纵交换),再过次格点E点作AC的平行线EF。
第三章 网格作图(1)
第三章网格作图网格作图的特点:仅利用无刻度直尺,利用格点来作图,所以在网格中作图时一定要体现出过的格点.基本知识一、网格中作平行图1 图2图1中虚线线段均与线段AB平行,仔细观察,可发现线段AB长宽比为3∶1的矩形对角线,故想要作出与AB线段平行的线,必然也要使得作出的线段是长宽比为3∶1的矩形对角线,所以图1、图2均满足要求,即都与AB平行.二、网格中作垂直图1图1中虚线线段均与线段AB垂直,仔细观察,可发现线段AB长宽比为3∶1的矩形对角线,故想要作出与AB线段垂直的线,必然也要使得作出的线段是长宽比为3∶1的矩形对角线.【与平行的区别在于一个竖方向,一个横方向】三、网格中作垂直平分线在网格中垂直平分线的做法,利用垂直平分线性质逆定理,首先需要找到线段A、B两点距离相等的格点,图1中的C、D、E均满足到A、B距离相等,故连接CE(或者ED或者CD均可).此方法也适用于在网格中作线段中点,如图2图1 图2四、网格中等分线段以作三等分为例,在下列网格中,在线段AB上找一点P,使得BP=2AP.此类作图可利用相似的性质来解决,以下示范3种作法作法一 作法二 作法三五、网格中作相似三角形请分别在图1、2中作出一个△DEF ,使得△DEF 与△ABC 相似(图1和图2中的两个三角形不全等)图1 图2 【解析】在网格图中,三角形的任意一条边均可计算出来,所以常规来说只需计算出每条边,同比放大或缩小即可!本题有个特殊角,即∠ABC =135°,所以先找到135°,该角两边同倍缩小或放大即可!(图1缩小为原来的12,即相似比为1∶2;图2似比为1例题讲解例题1、已知在下列边长为1的网格图中,用3种不同的方法作一个直角三角形,使得该直角三角形面积为8.作法一 作法二 作法三【解析】由题意可知,直角边乘积为16,若均为整数,则有1×16,2×8,4×4;若均为无理;也可以从比例去解决,下面分别以上三中思路各作一个三角形.例题2、如图,是由100个边长为1的小正方形组成的10×10正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.已知△ABC 中,AB ,AC BC =6.(1)请你在所给的网格中画出格点△A 1B 1C 1,使得△A 1B 1C 1与△ABC 相似(画出一个即可,不需证明);(2)试直接写出在所给的网格中与△ABC 相似且面积最大的格点三角形的个数,并画出其中的一个(不需证明).【解析】(1)先画个与△ABC 全等的三角形(如图1),再以∠B 为公共角,将∠B 的边缩小一半即可(如图1)图1 图2(2)因为ABCDNMS S ∆∆=相似比2,故只需使得相似比最大即可,我们找最长边AC格中最长边为对角线,MN=,由此ND DM AB BC =所以可计算出DNDM2中点D 即为关键点,连接DM 、DN 即可.例题3、如图,在每个小正方形的边长为1的网格中,点A 、B 、C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △P AB ∶S △PBC ∶S △PCA =1∶2∶3,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明).【解析】(1)AB(2)方法一:关注到S △P AB +S △PBC =S △PCA ,可得到S △PCA =12S △ABC .如图1,找到AB 中点D ,过点D 作AC 平行线,交BC 与点E ,所以点P 必然在线段DE 上.在网格中找到一点M ,使得点C 到MB 的距离与点A 到MB 的距离之比为1∶2.如图2,点Q 为AC 三等分点,连接BO ,与线段DE 交点即为点P .方法二:发现AC边上本身就存在点D、E使得AD:EC:DE=1∶2∶3,先作出如下图形,接着利用平行,将△ADB和△BEC面积转化.过点B作AC平行线,与l1交于点H,与l2交于点G,连接EG、DH,易证EG∥BC,DH ∥AB,所以EG与DH交点即为点P.2、请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P 向线段AB引平行线.解:如图所示,PQ即为所求.4、如图,方格图中每个小格的边长为1,仅用直尺过点C画线段CD,使CD∥AB,D是格点,过C作AB的垂线CH,垂足为H.连结BC、AD.(1)试猜想:线段BC与线段AD的关系为;(2)请计算:四边形ABCD的面积为;(3)若线段AB的长为m,则线段CH长度为.(用含m的代数式表示)解:(1)∵AD =BC ==BC ∥AD 且BC =AD .故答案为BC ∥AD 且BC =AD ;(2)S ▱ABCD =3×512-⨯1×212-⨯1×412-⨯1×212-⨯1×4=15﹣1﹣2﹣1﹣2=9.故答案为9;(3)∵AB =,S ▱ABCD =9m ,∴AB •CH =9,即CH=m 5=m .故m .图1 图2 图3 图47、图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角△MON ,使点N 在格点上,且∠MON =90°;(2)在图2中以格点为顶点画出一个正方形ABCD ,使正方形ABCD 面积等于(1)中等腰直角△MON 面积的4倍,并将正方形ABCD 分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD 面积没有剩余(画出一种即可).图1 图2 解:(1)如图1所示:∠MON =90°;图1 图2 图3(2)如图2、3所示.10、如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP =217,并保留作图痕迹.(备注:本题只是找点不是证明,所以只需连接一对角线就行)解:由勾股定理得,AB 224117=+=,所以,AP 2173=时AP ∶BP =2∶1.点P 如图所示.11、如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为 ;(3)判断点D (5,—2)与OM 的位置关系. (3)判断点D (5,﹣2)与⊙M 的位置关系.解:(1)如图1,点M 就是要找的圆心;(2)圆心M 的坐标为(2,0).故答案为(2,0);(3)圆的半径AM 2224=+=25.线段MD 22(52)213=-+=<25,所以点D 在⊙M 内.12、如图,在单位长度为1的正方形网格中,一段圆弧经过格点A 、B 、C . (1)画出该圆弧所在圆的圆心D 的位置(不用写作法,保留作图痕迹),并连接AD 、CD . (2)请在(1)的基础上,以点0为原点、水平方向所在直线为x 轴、竖直方向所在直线为y轴,建立平面直角坐标系,完成下列问题:①OD的半径为(结果保留根号);②若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是;③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.解:(1)根据题意画出相应的图形,如图所示:(2)①在Rt△AOD中,OA=4,OD=2,根据勾股定理得:AD==则⊙D的半径为②AC==CD=AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长==,圆锥的底面的半径=;③直线EC与⊙D的位置关系为相切,理由为:在Rt△CEF中,CF=2,EF=1,根据勾股定理得:CE==在△CDE中,CD=CE=DE=5,∵CE2+CD2=()2+(2=5+20=25,DE2=25,∴CE2+CD2=DE2,∴△CDE为直角三角形,即∠DCE=90°,则CE与圆D相一、构造直角例题1、网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A= .【解析】如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=BC=,AD =ABC 是等腰三角形,由面积相等可得,12BC •AD 12=AB •CE , 即CE 5==,sinA 35CE AC ===,故答案为35.【总结】由于格点三角形各边都可求,所以利用解直角三角形即可求出各个内角的三角函数值.二、角度转换例题2、如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .思路一:构造直角连接BE ,由四边形EDBC 为正方形可知,CD ⊥BE ,∴tan ∠APD =tan ∠BPF =BFPF,设小正,可得BF =1,CD =2,由△ACP ∽△BDP ,且相似比为3∶1可得PCDP=3, ∴PC CD =34,∴PC =33242⨯=,∴PF =PC —CF =12, ∴tan ∠BPF 1=212=.思路二∶角度转换连接BE ,可知BE ∥CD ,∴∠APD =∠BPF =∠ABE ,连接AE ,AE 和BE 均为正方形对角线,易得AE ⊥BE ,tan ∠ABE =2AEBE=.例题3、在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于【答案】3 【解析】转化思路一:到格点三角形内,再用例题1的方法(此方法构造情况较多,解法较暴力,在此不一一列举,以下给出三种转化法)转化思路二:思路一的情况下,存在转化出的格点三角形恰好为直角三角形,这类方法最巧妙,但需要学生有较强的观察能力!直角构造思路三:通过连接某些辅助线,构造出直角后直接在直角三角形内求解.2、如图,在4x 5的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则tan ∠ABC = ;sin ∠ACB = .【解析】找到与A 构成小正方形对角线的格点D 、E ,连接CD ,AE ,EB ,AC 与EB 交于点F .由网格特点和正方形的性质可知,∠BAE =90°,根据勾股定理得,AE =AB =,DB ,DC BE ===,则tan ∠ABC 3DCDB==,又BE ⊥AC ,易得△AEF ∽△BAF ,故13AE EF AF AB AF BF ===,∴19EF BF =,∴BF =910⨯sin ∠ACB=BF BC ===,故答案为3.3、如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则APPB的值= ,tan ∠APD 的值= .【解析】∵四边形BCED 是正方形,∴DB ∥AC ,∴△DBP ∽△CAP ,∴AP ACPB DB==3, 连接BE ,∵四边形BCED 是正方形,∴DF =CF 12=CD ,BF 12=BE ,CD =BE ,BE ⊥CD ,∴BF =CF ,根据题意得:AC ∥BD ,∴△ACP ∽△BDP ,∴DP :CP =BD :AC =1:3,∴DP :DF =1:2,∴DP =PF 12=CF 12=BF ,在Rt △PBF 中,tan ∠BPF BF PF ==2,∵∠APD =∠BPF ,∴tan ∠APD =2,故答案为3,2.5、如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .【解析】如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF =30°,∠BEF =60°,AE =,EB =2a ,∴∠AEC =90°,∵∠ACE =∠ACG =∠BCG =60°, ∴E 、C 、B 共线,在Rt △AEB 中,tan ∠ABC AE BE ===6、如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为 .【解析】如图,连接AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BO 12=BD ,CO 12=AC ,由勾股定理得,AC ==,BD ==BO 122==,CO 12=⨯2=tan ∠DBC CO BO ===3.故案为3.7、如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .图1 图2 图3 图4 (一)探索发现(1)如图1,当AB =2时,连接AD ,则∠ADO =90°,BO =2DO ,AD =BO 23=tan ∠AOD = .如图2,当AB =3时,画AH ⊥BD 交BD 的延长线于H ,则AH 32=BO = ,tan ∠AOD = .如图3,当AB =4时,tan ∠AOD = .(2)猜想:当AB =n (n >0)时,tan ∠AOD = .(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O,若tan ∠COE 1713=,求正方形ABCD 和正方形CEFG 的边长之比. 解∶(一)探索发现(1)如图1,当AB =2时,∵BO =2DO ,BO 23=∴OD =又∵∠ADO =90°,AD =tan ∠AOD 3ADOD===3,即tan ∠AOD =3. 如图2,设DCBE 为正方形,连接CE ,交BD 于F .∵四边形BCDE 是正方形, ∴DF =CF =BF 12=BD 12=CE ,BD ⊥CE .根据题意得∶AB ∥DC ,∴△AOB ∽△COD , ∴DO ∶BO =CD ∶AB .当AB =3时,DO ∶BO =1∶3,∴BO 4=.∵S △ABD 12=BD •AH 12=AB •ED ,∴BD •AH =AB •ED ,∴AH 2AB ED BD ⋅===,DO ∶BO =CD ∶AB =1∶3,∴DO ∶DF =1∶2,∴OF ∶DF =1∶2,即OF ∶CF =1∶2.在Rt △OCF 中,tan ∠COF CFOF==2,∵∠AOD =∠COF ,∴tan ∠AOD =2;如图3,当AB =4时,DO ∶BO =CD ∶AB =1∶4,∴DO ∶DF =1∶2.5=2∶5,∴OF ∶DF =3∶5,即OF ∶CF =3∶5.在Rt △OCF 中,tan ∠COF 53CF OF ==,∵∠AOD =∠COF ,∴tan ∠AOD 53=;故答案是32;53;(2)猜想∶当AB =n (n >0)时,tan ∠AOD 11n n +=-(结果用含n 的代数式表示). 证明∶过点A 作AH ⊥BH 于点H ,则AH =BH 2=n .∵AB ∥OD ,∴△AOB ∽△COD , ∴1OB AB nOD CD ==,∴OB 1n =+.∴OH =BH ﹣OB 2=n 1n -+.∴tan ∠AOD 11AHn HDn +===-;故答案是11n n +-; (二)解决问题(3)解:如图4,过点D作DH⊥CF于点H,则tan∠DOHDHHO=.∵∠DOH=∠COE,∴tan∠DOH1713=,又由(一)结论得:117113nn+=-,∴n152=,∴正方形ABCD和正方形CEFG的边长之比为152.图1 图2 图3 图4。
专题02 网格类作图题中考题型训练(解析版)
专题2 网格类作图题中考题型训练1.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.2.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【分析】(1)结合等腰三角形的性质,找出点C的位置,再连线即可.(2)结合菱形的性质,找出点D,E的位置,再连线即可.【解答】解:(1)如图所示:(答案不唯一).(2)如图所示:3.(2022•丽水)如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.4.(2022•衢州)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).5.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是 直角三角形 ;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.6.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;7.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.【分析】(1)连接AC,取AC的中点P,作射线BP即可;(2)利用数形结合的射线画出图形即可.【解答】解:(1)如图1中,射线BP即为所求;(2)如图2中,直线l或直线l′即为所求.8.(2023•锡山区校级模拟)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于 ;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:;(Ⅱ)如图,①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.9.(2023•鄞州区校级一模)如图,在6×6的方格纸中,每个小正方形的边长为1,点A,B均在格点上,在图1和图2中分别画出一个以点A,B为顶点且另两个顶点均在格点上的正方形,并分别求出其周长.【分析】分别根据“四条边相等且四个角相等的四边形是正方形”,“对角线互相垂直平分且相等的四边形是正方形“作图.【解答】解:如下图:正方形ABCD,正方形ACBD即为所求.10.(2023•衢州模拟)如图在7×7的方格中,有两个格点A、B.请用无刻度的直尺按要求画图.(1)在图1中画线段AB中点C;(2)在图2中在线段AB上找一点D,使AD:DB=1:2.【分析】(1)取格点E,F,连接EF交AB于点C,点C即为所求;(2)取格点J,K,连接JK交AB于点D,点D即为所求.【解答】解:(1)如图,点C即为所求;(2)如图,点D即为所求.理由:∵AJ∥BK,∴△ADJ∽△BDK,∴==.11.(2023•宁波模拟)作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为 .(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形,且邻边不垂直.②在图2中,画平行四边形ABCD,使∠A=45°,且面积为6.【分析】(1)根据勾股定理即可得到答案;(2)①根据正方形的性质得到MP和NQ互相平分,MP⊥NQ,则四边形MNPQ是菱形,再用勾股定理和菱形面积等于对角线乘积的一半,即可验证满足题意;②利用网格的特点构造一条边长为3,此边上的高为2,∠BAD=45°的平行四边形即可.【解答】JIE:(1)∵长方形的长为3,宽为2,∴对角线的长为=,故答案为:;(2)①如图,四边形MNPQ即为所求的菱形,由网格知,MP和NQ互相平分,∴四边形MNPQ是平行四边形,∵MP⊥NQ,∴四边形MNPQ是菱形,∵,NQ==,∴菱形MNPQ的面积是MP×NQ=×4×=4,故菱形MNPQ满足题意;②如图2,平行四边形ABCD满足题意,由图可知,AB ∥CD ,AB =CD =3,∴四边形ABCD 是平行四边形,则平行四边形ABCD 的面积=AB •DH =3×2=6,∵∠BAD =45°,∴平行四边形ABCD 满足题意.12.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC 的顶点A 、B 、C 都在格点上.请按要求完成下列问题:(1)S △ABC = 4 ;sin ∠ABC = ;(2)请仅用无刻度的直尺在线段AB 上求作一点P ,使S △ACP =S △ABC .(不要求写作法,但保留作图痕迹,写出结论)【分析】(1)由正方形面积减去三个直角三角形面积可求S △ABC ,过A 作AD ⊥BC 于D ,用面积法可求AD 的长,在Rt △ABD 中可得sin ∠ABC ;(2)取格点E ,F ,连接EF 交AB 于P ,由AE =BF 可知AP =BP ,从而AP =AB ,即可得S △ACP=S △ABC ,故P 是满足条件的点.【解答】解:(1)由图可得:S △ABC =3×3﹣×1×3﹣×3×1﹣×2×2=4,过A 作AD ⊥BC 于D ,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故答案为:4,;(2)如图:点P即为所求点.13.(2023•武汉模拟)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【分析】(1)根据90°的圆周角所对的弦是直径;(2)根据网格线的特征或平行线,再根据平行弦所夹的弧相等,再根据等腰梯形的性质作图.【解答】解:如下图:(1)点D,O即为所求;(2)线段MN,点G即为所求.14.(2023•乌鲁木齐一模)请仅用无刻度的直尺在网格中完成下列作图,保留作图痕迹,不写作法.(1)图①是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.在图①中,画出△ABC 中AB边上的中线CM;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)作出AB的中点M,连接CM即可;(2)连接AC,BD交于点O,延长BA交CD的延长线于点S,作直线SO即可.【解答】解:(1)如图1中,线段CM即为所求.(2)如图2中,直线n即为所求.15.(2023•靖江市校级模拟)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ 交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.16.(2023•九台区模拟)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹).(1)在图①中作△ABC的中线BD.(2)在图②中作△ABC的高BE.(3)在图③中作△ABC的角平分线BF.【分析】(1)利用网格特征作出AC的中点D,连接BD即可;(2)取格点T,连接BT交AC于点E,线段BE即为所求;(3)取格点W,连接BW交AC于点F,线段BF即为所求.【解答】解:(1)如图①中,线段BD即为所求;(2)如图②中,线段BE即为所求;(3)如图③中,线段BF即为所求.17.(2023•迁安市模拟)如图是由边长为1的小正方形组成的网格,△ABC的顶点均在格点上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图(1)中画△ABC的高CH;(2)在图(1)的线段AC上画一点D,使得S△ABD :S△CBD=2:3;(3)在图(2)中C点的右侧画一点F,使∠FCA=∠BCA且CF=2.【分析】(1)取格点P,连接CP交AB于点H,线段CH即为所求作.(2)取格点M,N,连接MN交AC于点D,点D即为所求作.(3)取格线的中点R,连接CR,取格点K,格线的中点J,连接KJ交CR于点F,线段CF即为所求作.【解答】解:(1)如图1中,线段CH即为所求作.(2)如图2中,点D即为所求作.(3)如图2中,线段CF即为所求作.18.(2022•碧江区校级一模)操作理解,解答问题.(1)如图1:已知△ABC,AB=AC,直线CD∥AB;①完成作图:以点A为圆心,AB长为半径画弧,交直线CD于点P,连接PB.②试判断①中∠ABP与∠BAC的数量关系,并证明你的结论.(2)如图2:已知△ABC是格点三角形,点C在直线n上,且n∥AB;在直线n上画出点P,连接PB,使得∠PBA=∠CAB.(不用尺规作图)【分析】(1)①根据要求作出图形即可;②结论:∠APB=∠BAC.利用平行线的性质,圆周角定理证明即可.【解答】解:(1)①图形如图所示:②结论:∠APB=∠BAC.理由:∵CP∥AB,∴∠ABP=∠BPC,∵AB=AC=AP,∴∠BPC=∠BAC,∴∠ABP=∠BAC.(2)如图2中,∠APB=∠CAB.19.(2022•丽水模拟)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AC为底边的等腰△ABC,使点B落在格点上.(2)在图2中画出一个以AC为对角线且面积为6的格点矩形ABCD(顶点均在格点上).【分析】(1)根据等腰直角三角形的判定与性质,结合网格特点作图即可得;(2)根据矩形的判定与性质,结合网格特点作图即可得.【解答】解:(1)如图所示,等腰△ABC即为所求;(2)如图所示,矩形ABCD即为所求.20.(2022•婺城区校级模拟)如图,在4×4的方格中,点A,B,C为格点,利用无刻度的直尺画出满足以下条件的图形(保留必要的辅助线).(1)在图1中画△ABC的中线BE.(2)在图2中标注△ABC的外心O并画出其外接圆的切线CP.【分析】(1)根据中线的定义作图;(2)根据三角形的外心的定义和切线的判定定理作图.【解答】解:(1)如图所示,BE即为所求的△ABC的中线;(2)如图所示,点O即为所求的△ABC的外心,PC即为所求的外接圆的切线.21.(2022•海陵区校级三模)如图(1)(2),在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上,以AB为直径的半圆的圆心为O,请用无刻度的直尺,在如图(1)图(2)所示的网格中,在半圆O上画出点P,连接AP,使AP平分∠CAB.【分析】如图(1)中,取格点T,连接OT交⊙O于点P,连接AP,点P即为所求.如图(2)中取BC 的中点J,连接OJ,延长OJ交⊙O于点P,连接AP,点P即为所求.【解答】解:如图(1)(2)中,点P即为所求.22.(2022•吉安模拟)如图,在正方形网格中,△ABC的顶点在格点(网格线的交点)上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中作△ABC的重心.(2)在图2中作∠AGB=∠ACB,且G是格点.【分析】(1)根据重心是三角形的中线的交点,画出图形即可;(2)利用圆周角定理,画出图形即可.【解答】解:(1)如图1,点D即为所求作的的;(2)如图2,∠AG1B,∠AG2B,∠AG3B,∠AG4B即为所求作.23.(2022•绿园区校级模拟)如图①,②,③中每个小正方形的边长均为1.△ABC的顶点A,B均落在小正方形的顶点上,点C在小正方形的边上,以AC为直径的半圆的圆心为O.请用无刻度的直尺按要求画图.(1)如图①,在半圆上确定点D,使OD∥AB.(2)如图②,在线段AB的延长线上确定点E,使AE=AC.(3)如图③,在线段AC上确定点F,使AF=AB.【分析】(1)取B长度中点D,连接OD即可;(2)延长OD交⊙O于点J,连接CJ,延长CJ交AB的延长线于点E,点E即为所求;(3)在图②的基础上,连接AJ交BC于点K,连接EK,延长EK交AC于点F,点F即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点E 即为所求;(3)如图③中,点F 即为所求.24.(2022•南关区校级模拟)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC 上画一点D ,使S △ABD =S △ACD .(2)在图②中,在BC 上画一点E ,使S △ABE :S △ACE =2:3.(3)在图③中,在ABC 内画一点F ,使S △ACF :S △ABF :S △BCF =2:3:3.【分析】(1)取BC 的中点D 即可;(2)取格点M ,N ,连接MN 交BC 于点E ,点E 即为所求;(3)利用数形结合的思想,判断出点F 到AC 的距离为1,到AB 的距离为,取格点P ,Q ,连接PQ 交直线m 于点F ,点F 即为所求.【解答】解:(1)在图①中,点D 即为所求;(2)在图②中,点E 即为所求;(3)在图③中,点F 即为所求.25.(2022•长春模拟)图①、图②分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的格点上,请在图①、图②中各取一点(点C必须在小正方形的格点上),使以A、B、C为顶点的三角形分别满足下列要求.(1)在图①中画一个△ABC,使∠ACB=90°,面积为5;(2)在图②中画一个△ABC,使BA=BC,∠ABC为钝角,并求△ABC的周长.【分析】(1)根据要求作出图形即可;(2)利用数形结合的思想作出图形,利用勾股定理求出AC,可得结论.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABC即为所求.∵AB=BC=5,AC==4,∴△ABC的周长为10+4.26.(2022•二道区校级二模)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB、EF、MN的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图.(1)在图①中,画∠ADB=45°;(2)在图②中,画∠APB=45°,且点P在线段EF上;(3)在图③中,画∠AQB=45°,且点Q在线段MN上.【分析】(1)构造等腰直角三角形,可得结论;(2)构造等腰直角三角形,可得结论;(3)取格点R,T,连接RT交MN于点Q,连接QB,QA,点Q即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点P即为所求;(3)如图③中,点Q即为所求.27.(2022•香坊区校级三模)如图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8,并直接写出tan A的值.【分析】(1)根据等腰直角三角形的定义画出图形即可;(2)利用数形结合的思想作出图形即可.【解答】解:(1)如图1中,△ABC即为所求;(2)如图2中,△ADC即为所求,tan A==2.28.(2022•瑞安市校级三模)如图是由边长为1的小正六边形构成的网格图,网格上的点称为格点.已知格点线段AB,利用网格图,仅用无刻度的直尺来完成下面几何作图.(1)请在图①中作一个格点等腰三角形△ABC;(2)请在图②在线段AB上求作点P,使得AP:BP=3:4.(要求:不写作法但保留作图痕迹)【分析】(1)画出如图中所示的线段AC,再连接BC即可;(2)如图②,作△ADP∽△BCP即可得出结论.【解答】解:(1)如图所示,△ABC即为所求作的等腰三角形:(2)如图②,点P即为所求作;29.(2022•江夏区模拟)用无刻度直尺作图:(1)如图1,在AB上作点E,使∠ACE=45°;(2)如图1,点F为AC与网格的交点,在AB上作点D,使∠ADF=∠ACB;(3)如图2,在AB上作点N,使=.(4)如图2,在AB上作点M,使∠ACM=∠ABC.【分析】(1)取格点Q,连接CQ交AB于点E,点E即为所求;(2)取AQ是中点P,连接FP交AB于点D,点D即为所求;(3)利用网格特征作出点N即可;(4)把∠ABC考查45°+∠CBK,∠ACE=45°,∠ECF=∠CBK,可得结论.【解答】解:(1)如图1中,点E即为所求;(2)如图1中,点D即为所求;(3)如图2中,点N即为所求;(4)如图2中,点M即为所求.30.(2022•阿城区模拟)如图,在每个小正方形的边长均为1的方格纸中,线段AB和线段DE,点A、B、D、E均在小正方形的顶点上.(1)在方格纸中画出以AB为底边的等腰三角形ABC,使△ABC的面积为10,点C在小正方形的顶点上,直接写出tan∠ABC的值;(2)在方格纸中画出钝角三角形DEF,使∠DEF=45°,点F在小正方形的顶点上.【分析】(1)利用数形结合的思想画出图形即可;(2)根据要求作出图形即可.【解答】解:(1)如图,△ABC即为所求,tan∠ABC=2;(2)如图,△DEF即为所求.31.(2022•长春模拟)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,所画图形的顶点均在格点上.(1)在图①中,画等腰三角形ABC,使其面积为3.(2)在图②中,画等腰直角三角形ABD,使其面积为5.(3)在图③中,画平行四边形ABEF,使其面积为9.【分析】(1)根据等腰三角形的定义,利用数形结合的思想解决问题即可;(2)作一个腰为的等腰直角三角形即可;(3)根据平行四边形的判定,利用数形结合的思想解决问题.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABD即为所求;(3)如图③中,平行四边形ABEF即为所求.32.(2022•朝阳区校级模拟)如图在8×8的网格中,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,用无刻度的直尺在网格中完成下列画图,保留必要的作图痕迹,不要求说明理由.(1)如图1,过点A作线段AF,使AF∥DC,且AF=DC.(2)如图2,在四边形ABCD边上求作一点E,使点E与四边形ABCD某一顶点连线,能把该四边形分成的两部分恰好拼成一个无缝隙、不重叠的三角形.(画一个即可)(3)如图3,在边AB上求作一点G,使∠AGD=∠BGC.【分析】(1)根据要求作出图形即可;(2)取CD的中点E,连接AE即可;(3)取格点T,连接CT交AB于点G,连接DG,点G即为所求.【解答】解:(1)如图,线段AF即为所求;(2)如图,点E即为所求(答案不唯一);(3)如图,点G即为所求.。
浙教版九年级数学《格点图中的作图与计算问题》
则满足条件的格点N有___3__个;
4
y
A
D
F·N1
B
OC
·N2
·EN3 x
例题解析
例2.【问题呈现】如图,在边长为1的正方形网格中, 连结格点A、N和M、C,AN与MC相交于点P,求tan∠CPN的值.
方法一:
A
C
P
M
N
E
例题解析
方法一:
A
C
EN//CM
P
∠CPN=∠ANE
M
N
在Rt△AEN中,tan∠ANE=2
网格中的作图与计算问题
问题引出
例1.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求仅 用不含刻度的直尺画出线段EF(E,F均为格点),各画出一条即可.
问题引出
【知识储备1】仅用不含刻度的直尺作线段中点、中垂线、 角平分线、等分线段等,往往需要通过格点图中的全等或 相似,或利用正方形网格的对称性和45°特殊角,又或利 用特殊平行四边形的相关性质.
问题解决
【问题解决】如图,在边长为1的正方形网格中,AN与CM相交于 点P,求tan∠CPN的值.
方法一:
E
AE//CM
∠CPN=∠EAN
在Rt△EAN中,tan∠EAN=1
tan∠CPN=1
问题解决
方法二:
E
CE//AN ∠CPN=∠ECM
在Rt△ECM中,tan∠ECM=1
tan∠CPN=1
tan∠CPN=2
E 【知识储备2】求一个锐角的三角函数值,我们往往需要找出 (或构造出)一个直角三角形.当发现问题中这个角不在直角 三角形中,我们常常利用网格画平行线等方法来解决.
例题解析
人教版中考数学一轮复习课件第7章 第26讲 视图、展开图、网格作图
考点1 三视图 1.下列几何体中,其俯视图一定是圆的有( B )
A.1个 C.3个
B.2个 D.4个
2.如图是某几何体的三视图,该几何体是( A ) A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
3. 一 个 由 圆 柱 和 长 方 体 组 成 的 几 何 体 如 图 水 平 放 置 , 它 的 俯 视 图 是 (C )
4.如图是由一些相同的小正方体组合成的几何体的三视图,则小正方 体的个数是( B )
A.4
B.5
C.6
D.7
考点2 几何体的展开图 5.(2019深圳)下列图形是正方体展开图的是( B )
6.如图为正方体的展开图,那么在原正方体中与“你”字所在面相对 的面上的字为( B ) A.前 B.程 C.似 D.锦
答图
10.如图,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做
格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.
(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,
并且使所作的位似图形与△OAB的相似比等于
1 2
;
(2)将△OAB以点O为旋转中心,逆时针旋转90°,得到△OA1B1,
第七章 图形的变换 第26讲 | 视图、展开图、网格作图
1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影. (1)平行投影:由平行光线形成的投影.物体与投影面平行时的投影全 等.如太阳光. (2)正投影:投影线垂直于投影面产生的投影. (3)中心投影:由同一点(点光源)发出的光线形成的投影.物体与投影面平 行时投影放大(位似变换).如灯泡.
几何体 主视图 左视图 俯视图
2.(1)如图,是一个底面为等边三角形的正三棱柱,它的主视图是( A )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的
边
长
为
1
个
单
位
.
(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.
14.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为(3,5),(4,3)A B --, C (1,1)-.
(1)作出△ABC 向右平移5个单位的△111A B C ;
(2)作出△ABC 关于x 轴对称的△222A B C ,并写出点2C 的坐标. 15如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC 向右平移3个单位长度,画出平移后的△A 1B 1C 1. (2)将△ABC 绕点O 旋转180°,画出旋转后的△A 2B 2C 2. (3)画出一条直线将△AC 1A 2的面积分成相等的两部分.
16.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).
(1)试说明如何平移线段AC ,使其与线段ED 重合;
图
(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;
(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.
17、(本题满分10分)
如图,在平面直角坐标系中,△ ABC 的三个顶点的坐标分别为A (0,1),B (-1,1),
C (-1,3)。
(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;
(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐
标;,
(3)将△A 2B 2C 2平移得到△ A 3B 3C 3,使点A 2的对应点是A 3,点B 2的对应点是B 3
,点C 2的对应点是C 3(4,-1),在坐标系中画出△ A 3B 3C 3,并写出点A 3,B 3的坐
标。
18如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:
(1)画线段AD ∥BC 且使AD =BC ,连接CD ;
(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ; (3)△ACD 为 三角形,四边形ABCD 的面积为 ; (4)若E 为BC 中点,则tan ∠CAE 的值是 .
19.如图.图中的小方格都是边长为1的正方形.△ADC 的顶点坐标为A (0,2-)、B (3.1-)、C(2,1). (1)请在图中画出△ABC 关于y 轴对称的图形△
A
B
C E 第21题图
第19题图 O
A B C
D x y
AB ’C ’;
(2)写出点B ’和C ’的坐标。
20(本小题8
分)如图,下列网格中,每个小方格的边长都是1.
(1)分别作出四边形ABCD 关于x 轴、y 轴、原点的对称图形; (2)求
出四边形ABCD 的面积. 21、在平面直角坐标系中,△ABC 的位置如图所示,请解答下列问题:
(1)将△ABC 向下平移3个单位长度,得到△A 1B 1C 1,
画出平移后的△A 1B 1C 1;
(2)将△ABC 绕点O 顺时针方向旋转180°,得到△A 2B 2C 2,画出旋转后的△A 2B 2C 2,并写出A 2点的坐标.
22(本小题8分)如图,下列网格中,每个小方格的边长都是1.
⑴分别作出四边形ABCD 关于x 轴、y 轴、原点的对称图形; ⑵求出四边形ABCD 的面积.
23.如图,点O A B 、、的坐标分别为
(00)(30)(32)-,、,、,,将OAB △绕点O 按逆时针
方向旋转90°得到OA B ''△.
(1)画出旋转后的OA B ''△,并求点B '的坐标;
(2)求在旋转过程中,点A 所经过的路径
»AA '的长度.(结果保留π)
24.如图6,正方形网格中,△ABC 为格点三角形(顶点都是格点),将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.
(1)在正方形网格中,作出11AB C △;(不要求写作法)
(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π)
25.(本题满分7分)
如图,已知ABC △的三个顶点的坐标分别为(23)A -,、
(60)B -,、(10)C -,.
(1)请直接写出点A 关于y 轴对称的点的坐标;
(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图
形,直接写出点B 的对应点的坐标;
(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.
ABC 先向右平移四个单位得到△A 1B 1C 1,再
D A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2。
O ′A ′B ′.
P 对应点的B
C
A 图7
28(8分)△ABC 在方格中的位置如图所示。
(1)请在方格纸上建立平面直角坐标系,使得A 、B 两点的坐标分别为A(2,一1)、B(1,一4)。
并求出C 点的坐标;
(2)作出△ABC 关于横轴对称的△111A B C ,再作出△ABC 以坐标原点为旋转中心、旋转180°后的△222A B C ,并写出1C 、2C 两点的坐标.
29.如图,点O A B 、、的坐标分别为(00)(30)(32)-,、,、,,将OAB △绕点O 按逆时针方向旋转90°得到OA B ''△.
(1)画出旋转后的OA B ''△,并求点B '的坐标;
(2)求在旋转过程中,点A 所经过的路径»AA '的长度.(结果保留π)
30如图,在平面直角坐标系中,
(1,1)-. (1)若将
ABC △向右平移3后的111A B C △;
(2)画出111A B C △绕原点旋转180°(3)A B C '''△与ABC △是中心对称图形,请写出对称中心的坐标:___________;
(4)顺次连结12C C C C '、、、,所得到的图形是轴对称图形吗?
31如图,已知ABC △. (1)请直接写出点A 关于y (2)将ABC △绕坐标原点O 逆时针旋转的坐标;
(3)请直接写出:以A B C 、、
B
第22题
32.(本小题6分)如图9所示,每个小方格都是边
长为1的正方形,以O 点为坐标原点建 立平面直角坐标系.
(1)画出四边形OABC 关于y 轴对称的四边形
OA 1B 1C 1,并写出点B 1的坐标是 .
(2)画出四边形绕点顺时针方向旋转
90°后得到的四边形OA 2B 2C 2,并求出点C 旋转到点C 2经过的路径的长度.
O x
y A
C B。