湖南省长沙市宁乡县2019-2020学年八年级上学期期中数学试卷 (有解析)
2019-2020学年八年级上学期期中考试数学试卷(附解答)
![2019-2020学年八年级上学期期中考试数学试卷(附解答)](https://img.taocdn.com/s3/m/b91ad9590722192e4536f689.png)
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C 【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。
长沙市2019-2020学年八年级上学期数学期中考试试卷(I)卷
![长沙市2019-2020学年八年级上学期数学期中考试试卷(I)卷](https://img.taocdn.com/s3/m/85115c50844769eae109ed1a.png)
长沙市2019-2020学年八年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·上饶期末) 如果|x+y﹣1|和2(2x+y﹣3)2互为相反数,那么x,y的值为()A .B .C .D .2. (2分) (2016七上·苍南期中) 8的立方根是()A . 4B . 2C . ±2D . ﹣23. (2分) (2017九上·钦州期末) 使二次根式有意义的a的取值范围是()A . a≥﹣2B . a≥2C . a≤2D . a≤﹣24. (2分)如图,小方格的面积是1,图中以格点为端点且长度为5的线段有()A . 5条B . 4条C . 3条D . 2条5. (2分)根据下列表述,能确定位置的是()A . 某电影院2排B . 南京市大桥南路C . 北偏东30°D . 东经118°,北纬40°6. (2分) (2018七下·花都期末) 若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为()A . (2,1)B . (3,3)C . (2,3)D . (3,2)7. (2分) (2019七上·萝北期末) 某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A . 22+x=2×26B . 22+x=2(26﹣x)C . 2(22+x)=26﹣xD . 22=2(26﹣x)8. (2分)(2017·港南模拟) 如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE= ﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF .正确的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分) (2019八上·恩施期中) 点A(2,4)关于x轴的对称点B的坐标是()A . (-2,4)B . (2,-4)C . (-2,-4)D . (4,2)10. (2分) (2018九上·建瓯期末) 二次函数y=a(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A . 第一、二、三象限B . 第一、二、四象限C . 第二、三、四象限D . 第一、三、四象限二、填空题 (共9题;共9分)11. (1分) 16的平方根是________ ,9的立方根是________ .12. (1分)计算:=________ .13. (1分)已知菱形ABCD的面积为24cm2 ,若对角线AC=6cm,则这个菱形的边长为________cm.14. (1分) (2019八下·乌兰浩特期中) 已知与成正比例,当时,,则与之间的函数关系为________.15. (1分)把中根号外面的因式移到根号内的结果是________.16. (1分) (2016七下·济宁期中) 若实数m,n满足(m﹣1)2+ =0,则(m+n)5=________.17. (1分) (2017八下·仁寿期中) 如图,已知直线与直线相交于点(2,-2),由图象可得不等式的解集是________。
【整合】2019-2020学年八年级上学期期中测试数学试题 部分附答案共3份
![【整合】2019-2020学年八年级上学期期中测试数学试题 部分附答案共3份](https://img.taocdn.com/s3/m/c0fcd79bfab069dc502201f6.png)
2020-2021学年湖南省长沙市天心区长郡教育集团八年级(上)期中数学试卷(附答案)一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣95.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣510.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣2512.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④二、填空题(共6小题).13.(3分)等腰三角形的一个角是110°,则它的底角是.14.(3分)计算:3a2b•(﹣2ab3)2=.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为.17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是,,;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,这点的坐标为.23.(9分)已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.24.(9分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,CE=DB.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEB+∠FEC的度数;(3)当∠EDF=60°时,求∠A的度数.25.(10分)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.26.(10分)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.参考答案一、选择题(共12小题).1.(3分)在平面直角坐标系中,点M(1,﹣2)在第()象限.A.一B.二C.三D.四解:∵1>0,﹣2<0,∴点M(1,﹣2)在第四象限.故选:D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.3.(3分)下面的调查方式中,你认为合适的是()A.调查市场上酸奶的质量情况,采用抽样调查方式B.了解长沙市居民日平均用水量,采用全面调查方式C.乘坐飞机前的安检,采用抽样调查方式D.某LED灯厂要检测一批灯管的使用寿命,采用全面调查方式解:A.调查市场上酸奶的质量情况,适合采用抽样调查方式,故本选项符合题意;B.了解长沙市居民日平均用水量,适合采用抽样调查方式,故本选项不符合题意;C.乘坐飞机前的安检,适合采用全面调查方式,故本选项不符合题意;D.某LED灯厂要检测一批灯管的使用寿命,适合采用抽样调查方式,故本选项不符合题意;故选:A.4.(3分)下列运算正确的是()A.(m﹣n)(﹣m﹣n)=﹣m2﹣n2B.(﹣1+mn)(1+mn)=﹣1﹣m2n2C.(﹣m+n)(m﹣n)=m2﹣n2D.(2m﹣3)(2m+3)=4m2﹣9解:A.(m﹣n)(﹣m﹣n)=﹣(m+n)(m﹣n)=﹣(m2﹣n2)=n2﹣m2,故本选项不合题意;B.(﹣1+mn)(1+mn)=(mn)2﹣12=m2n2﹣1,故本选项不合题意;C.(﹣m+n)(m﹣n)=﹣(m﹣n)(m﹣n)=﹣(m﹣n)2=﹣m2+2mn﹣n2,故本选项不合题意;D.(2m﹣3)(2m+3)=4m2﹣9,故本选项符合题意.故选:D.5.(3分)将点A(﹣2,3)通过以下哪种方式的平移,得到点A'(﹣5,7)()A.沿x轴向右平移3个单位长度,再沿y轴向上平移4个单位长度B.沿x轴向左平移3个单位长度,再沿y轴向下平移4个单位长度C.沿x轴向左平移4个单位长度,再沿y轴向上平移3个单位长度D.沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度解:∵点A(﹣2,3),A'(﹣5,7),∴点A沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度得到点A′,故选:D.6.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.3a2÷a2=3a解:A.a2•a3=a5,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.(2a)2=4a2,故本选项符合题意;D.3a2÷a2=3,故本选项不合题意.故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得300粒内夹谷30粒,则这批米内夹谷约为()A.30石B.150石C.300石D.50石解:根据题意得:1500×=150(石),答:这批米内夹谷约为150石;故选:B.9.(3分)若(x+3)(x﹣5)=x2﹣mx﹣15,则m的值为()A.2B.﹣2C.5D.﹣5解:∵(x+3)(x﹣5)=x2﹣2x﹣15,∴﹣m=﹣2,则m=2.故选:A.10.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm解:∵DE是AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为16,∴AB+BD+AD=AB+BD+DC=AB+BC=16,∴△ABC的周长=AB+BC+AC=16+10=26(cm),故选:A.11.(3分)已知x+y=﹣5,xy=3,则x2+y2=()A.19B.﹣19C.25D.﹣25解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19,故选:A.12.(3分)如图,△ABC、△ADE、△DFG均为等边三角形,C、E、F三点共线,且E是CF的中点,下列结论:①△ADG≌△EDF;②△AEC为等腰三角形;③DF=AD+GE;④∠BAG=∠BCE;⑤∠GEB=60°,其中正确的个数为()A.②④⑤B.①③⑤C.①④⑤D.①③④解:∵△ADE、△DFG,△ABC为等边三角形,∴DA=DE,DG=DG,∠ADE=∠FGD=∠AED=∠ACB=∠DAE=∠BAC=60°,∴∠ADG=∠EDF,∠DAB=∠CAE,∴△ADG≌△EDF(SAS),故①正确∴∠DEF=∠DAG,∵∠DEF+∠AED=∠EAC+∠ACE=∠EAC+∠ABC﹣∠BCF,∴∠EAC﹣∠DEF=∠BCF,∵∠BAG=∠DAB﹣∠DAG=∠CAE﹣∠DEF,∴∠BAG=∠BCF,故④正确,∵DF+EG=DG+GE≥DE,∴DF+GE≠AD,故③错误.设AG交CF于点O,DG交CF于K.∵△ADG≌△EDF,∴∠OGK=∠FKD,EF=AG,∵∠GKO=∠FKD,∴∠GOK=∠FDK=60°,∴∠AOC=∠GOK=∠ABC=60°,∴∠BAG=∠BCE,∵EF=CE,∴AG=CE,∵AB=CB,∴△BAG≌△BCE(SAS),∴BG=BE,∠ABG=∠CBE,∴∠EBC=∠ABC=60°,∴△EBG是等边三角形,∴∠EGB=60°,故⑤正确,无法判断AC=EC或AE=EC或AE=EC,故△ACE不一定是等腰三角形,故②错误,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)等腰三角形的一个角是110°,则它的底角是35°.解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.14.(3分)计算:3a2b•(﹣2ab3)2=12a4b7.解:3a2b•(﹣2ab3)2=3a2b•4a2b6=12a4b7.故答案为:12a4b7.15.(3分)如果点P(a﹣1,a+2)在x轴上,则a的值为﹣2.解:∵点P(a﹣1,a+2)在x轴上,∴a+2=0,解得a=﹣2,故答案为:﹣2.16.(3分)如图,△ABC中,AB=6,AC=7,BD、CD分别平分∠ABC、∠ACB,过点D作直线平行于BC,交AB、AC于E、F,则△AEF的周长为13.解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=6,AC=7,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=6+7=13.故答案为:13..17.(3分)定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=3.解:根据题意得(x+2)2+(x+2)(2﹣x)=20,∴x2+4x+4+4﹣x2=20,∴4x+8=20,4x=12,解得x=3,故答案为:3.18.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,,则△A1B1A2的面积是,△A n B n A n+1的面积是22n﹣2.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,∴OA1=A1B1=A1A2=2,∴等边三角形边上的高为,∴△A1B1A2的面积是:2×=;∵△A2B2A3、△A3B3A4是等边三角形,同理可得:OA2=A2B2=A2A3=4,∴高为2,∴△A2B2A3的面积是:4×2=4;∵OA3=A3B3=A3A4=23=8,∴高为4,∴△A3B3A4的面积是:8×4=16=24;…△A n B n A n+1的面积是:22n﹣2;故答案为:,22n﹣2.三、解答题(第19、20题各6分,第21、22题各8分,第23,24题各9分,第25、26题各10分)19.(6分)计算:(1)x(4x2﹣x)+x3÷x;(2)(x﹣y)(x+3y)﹣x(x+2y).解:(1)x(4x2﹣x)+x3÷x=4x3﹣x2+x2=4x3;(2)(x﹣y)(x+3y)﹣x(x+2y)=x2+3xy﹣xy﹣3y2﹣x2﹣2xy=﹣3y2.20.(6分)先化简,再求值:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2,其中.解:(2+3x)(2﹣3x)+5x(x﹣1)+(2x﹣1)2=4﹣9x2+5x2﹣5x+4x2﹣4x+1=﹣9x+5,当时,原式=﹣9×(﹣)+5=3+5=8.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.22.(8分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C (1,﹣3).(1)画出△ABC关于y轴对称的△A1B1C1,且点A的对应点为A1,点B的对应点为B1,点C的对应点为C1;(2)在(1)的条件下,A1,B1,C1的坐标分别是(﹣3,3),(3,﹣3),(﹣1,﹣3);(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标,这点的坐标为(3,﹣1).解:(1)如图所示,△A1B1C1即为所求;(2)A1,B1,C1的坐标分别是(﹣3,3),(3,﹣3),(﹣1,﹣3).故答案为:(﹣3,3),(3,﹣3),(﹣1,﹣3).(3)如图,△ABC≌△BAC',且点C'在第四象限.∴C'(3,﹣1).故答案为:(3,﹣1).23.(9分)已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.解:(1)如图,△ABC即为所求.(2)S△ABC=3×4﹣×2×4﹣×1×2﹣×2×3=4.(3)设P(0,m),由题意,•|m﹣1|•2=4,解得,m=5或﹣3,∴P(0,5)或(0,﹣3).24.(9分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,CE=DB.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEB+∠FEC的度数;(3)当∠EDF=60°时,求∠A的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,,∴△DBE≌△CEF(SAS),∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠BDE=∠CEF,∠DEB=∠EFC,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣50°)=65°,∴∠BDE+∠CEF=115°,∴∠DEB+∠FEC=115°,∴∠DEB+∠FEC=115°,(3)∵∠EDF=60°,DE=EF,∴△DEF是等边三角形,∴∠DEF=60°,∵△DBE≌△CEF,∴∠BDE=∠CEF,∠DEB=∠EFC,∵∠DEF+∠FEC=∠B+∠BDE,∴∠B=∠DEF=60°,∴∠C=60°,∴∠A=180°﹣∠B﹣∠C=60°.25.(10分)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.【解答】(1)证明:如图1中,∵GD∥AB,∴∠B=∠EFG,在△ABE和△GFE中,,∴△ABE≌△GFE(AAS).(2)解:如图1中,∵AB=AC,∴∠B=∠ACB,∵DF∥AB,∴∠DFC=∠B,∴∠DFC=∠DCF,∴DC=DF=1,∵DG=3,∴FG=DG﹣DF=2,∵△ABE≌△GFE,∴AB=GF=2.(3)解:如图2中,∵AB=AC=2,∴∠B=∠C=45°,∴∠BAC=90°,∵AB∥FD,∴∠FDC=∠BAC=90°,即FD⊥AC∵AC=AB=2,CD=1,∴DA=DC,∴FA=FC,∴∠C=∠FAC=45°,∴∠AFC=90°,∴DF=DA=DC=1,∴AF=,∵DH⊥CF,∴FH=CH,∴点F与点C关于直线PD对称,∴当点P与D重合时,△PAF的周长最小,最小值=△ADF的周长=2+.26.(10分)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.解:(1)∵(a﹣6)2+|a﹣b|=0,又∵(a﹣6)2,≥0,|a﹣b|≥0,∴a=6,b=6∴点A(6,6).(2)如图1中,∵△AOB是等边三角形,点A(6,6)∴AO=BO=AB=12,∠AOB=∠ABO=60°=∠A,∵∠OCP=60°=∠AOB,∴∠AOB=∠QOB+∠AOQ=∠QOB+∠PBO=∠POC,∴∠AOQ=∠PBO,且AO=BO,∠A=∠AOB,∴△AOQ≌△OBP(ASA),∴OP=AQ,∴12﹣2t=3t∴t=2.4∴当t=2.4时,∠OCP=60°.(3)如图2中,过点D作DF⊥AO,DE⊥AB,连接AD,∵△ABO是等边三角形,D是OB中点,点A(6,6)∴OD=BD=6,∠AOB=∠ABO=60°,AD=6,又∵∠DFO=∠DEB=90°,∴△ODF≌△BDE(AAS)∴OF=BE,DF=DE,∵AO=AB,∴AO﹣OF=AB﹣BE∴AF=AE,∵DF=DE,PD=DQ,∴Rt△DFP≌Rt△DEQ(HL)∴PF=EQ,∵OD=3,∠AOD=60°,∠DFO=90°,∴∠ODF=30°∴OF=3,DF=OF=3∴AF=AO﹣OF==AE,BE=OF=,∵AP+AQ=AP+AE+EQ=AP+PF+AE=AF+AE=2AF,∴2t+3t=18∴t=3.6,∴当t=,3.6时,D,P,Q三点是能构成使∠PDQ=120°的等腰三角形,∵Rt△DFP≌Rt△DEQ,∴S△DFP=S△DEQ,∴S四边形APDQ=S四边形AFDQ=S△AOB﹣2S△OFD=×12×6﹣2××3×3=27.期中综合检测题(附答案)一.选择题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形3.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或234.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°5.如图:D、E是△ABC的边AC、BC上的点,△ADB≌△EDB≌△EDC,下列结论:①AD=ED;②BC=2AB;③∠1=∠2=∠3;④∠4=∠5=∠6;⑤∠A=90°;⑥DE⊥BC.其中正确的有()个.A.6 B.5 C.4 D.26.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.97.如图,△ABC中,AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE和△ACD,且∠EDC =40°,则∠ABC的度数为()A.75°B.80°C.70°D.85°8.如图,Rt△ACB≌Rt△DFE,∠ACB=∠DFE=90°,D点在AB边的中点处,DE⊥AB,交BC边于点M,DF 交BC边于点N,若∠B=∠E=30°,AC=3,则MN的长为()A.1 B.2 C.3 D.49.如图,在 Rt△ABC中,∠C=90°,AC=3,BC=4,AB的垂直平分线交BC于点D,连接AD,则△ACD 的周长是()A.7 B.8 C.9 D.1010.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°11.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A .AB =2BD B .AD ⊥BC C .AD 平分∠BAC D .∠B =∠C12.将一副三角板按如图所示方式叠放在一起,若AB =8,则阴影部分的面积是( )A .8B .10C .12D .14二.填空题13.若点A (3,m )关于x 轴的对称点P 的坐标是(n ,4),则m +n 的值是 .14.如图,已知AB =DE ,∠B =∠E ,添加下列哪个条件可以利用SAS 判断△ABC ≌△DEC .正确的是: . ①∠A =∠D ; ②BC =EC ; ③AC =DC ; ④∠BCE =∠ACD .15.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同 的涂法.16.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是 .17.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是.18.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为.19.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB 的距离为.20.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=.三.解答题21.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.22.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.23.如图1,CA=CB,CD=CE,∠ACB=∠DCE=α(1)求证:BE=AD;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.24.(1)已知:如图RT△ABC中,∠ACB=90°,ED垂直平分AC交AB与D,求证:DA=DB=DC.(2)利用上面小题的结论,继续研究:如图,点P是△FHG的边HG上的一个动点,PM⊥FH于M,PN⊥FG于N,FP与MN交于点K.当P运动到某处时,MN与FP正好互相垂直,请问此时FP平分∠HFG吗?请说明理由.25.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E 两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.2.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.3.解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.4.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.5.解:△ADB≌△EDB,∴∠1=∠2,∠4=∠5,∠A=∠BED,AB=BE,AD=ED,∵△EDB≌△EDC,∴BE=CE,∠2=∠3,∠5=∠6,∠BED+∠CED=180°,∴AD=ED;BC=2AB;∠1=∠2=∠3;∠4=∠5=∠6;∠A=90°;DE⊥BC.故选:A.6.解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选:C.7.解:∵AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE和△ACD,∴∠ABC=∠ACB,AE=AD,∠AEB=∠ADC=60°,∠3=∠4=60°,∵∠EDC=40°∴∠1=∠2=40°,∴∠1+∠2+∠3+∠4+2∠ABC=360°,∴2∠ABC=360°﹣40°﹣40°﹣60°﹣60°=160°,∴∠ABC的度数为80°.故选:B.8. C.9.解:∵AB的垂直平分线交BC于点D,∴AD=BD,∵BC=4,AC=3,∴CD+AD=CD+BD=BC=4,∴△ACD的周长为:4+3=7.故选:A.10.解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.11.解:∵△ABC中,AB=AC,D是BC中点,∴AD⊥BC(故B正确)AD平分∠BAC(故C正确)∠B=∠C(故D正确)无法得到AB=2BD,(故A不正确).故选:A.12.解:∵AB=8,∠B=30°,∠ACB=90°∴AC=4∵∠ACB=∠B=90°∴CF ∥BD ∴∠AFC =∠D ∵∠D =45° ∴∠AFC =45°∴△AFC 为等腰直角三角形 ∴CF =AC =4∴△AFC 的面积为:4×4÷2=8故选:A . 二.填空题13.解:∵点A (3,m )关于x 轴的对称点P 的坐标是(n ,4), ∴m =﹣4,n =3, ∴m +n =﹣4+3=﹣1. 故答案为:﹣1.14.解:∵AB =DE ,∠B =∠E ,∴添加①∠A =∠D ,利用ASA 得出△ABC ≌△DEC ; ∴添加②BC =EC ,利用SAS 得出△ABC ≌△DEC ;∴添加④∠BCE =∠ACD ,得出∠ACB =∠DCE ,利用AAS 得出△ABC ≌△DEC ; 故答案为:②.15.解:如图所示:当将1,2,3涂成黑色可以构成一个轴对称图形, 故有种不同3的涂法. 故答案为:3.16.解:∵在△CBA 1中,∠B =30°,A 1B =CB , ∴∠BA 1C ==75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=∠BA 1C =×75°;同理可得∠EA 3A 2=()2×75°,∠FA 4A 3=()3×75°, ∴第n 个三角形中以A n 为顶点的内角度数是() n ﹣1×75°.故答案为:() n ﹣1×75°.17.解:如图,∵∠BAC =60°,∠1=20°, ∴∠CAD =40°, 又∵∠C =60°,∴∠2=∠C +∠CAD =60°+40°=100°, 故答案为:100°.18.解:∵△ABC 三边长分别为3,5,7,△DEF 三边长分别为3,3x ﹣2,2x ﹣1,这两个三角形全等, ∴3+5+7=3+3x ﹣2+2x ﹣1, 解得:x =3. 故答案为:3.19.解:∵BC =10cm ,BD :DC =3:2, ∴DC =4cm ,∵AD 是△ABC 的角平分线,∠ACB =90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm . 故答案为4cm .20.解:作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,连接P 1O 、P 2O , ∵PP 1关于OA 对称,∴∠P 1OP =2∠MOP ,OP 1=OP ,P 1M =PM ,∠OP 1M =∠OPM =50° 同理,∠P 2OP =2∠NOP ,OP =OP 2,∴∠P 1OP 2=∠P 1OP +∠P 2OP =2(∠MOP +∠NOP )=2∠AOB ,OP 1=OP 2=OP , ∴△P 1OP 2是等腰三角形. ∴∠OP 2N =∠OP 1M =50°,∴∠P 1OP 2=180°﹣2×50°=80°, ∴∠AOB =40°, 故答案为:40°.三.解答题21.解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.22.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.23.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形24.解:(1)∵ED垂直平分AC,∴AD=CD,∴∠A=∠ACD,∵∠ACB=90°,∴∠A+∠B=∠ACD+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴DA=DB=DC;(2)如图,作线段MF的垂直平分线交FP于点O,∵PM⊥FH,PN⊥FG,∴△MPF和△NPF都是直角三角形;作线段MF的垂直平分线交FP于点O,由(1)中所证可知OF=OP=OM;作线段FN的垂直平分线也必与FP交于点O;∴OM=OP=OF=ON,又∵MN⊥FP,∴∠OKM=∠OKN=90°,∵OK=OK;∴Rt△OKM≌Rt△OKN;∴MK=NK;∴△FKM≌△FKN;∴∠MFK=∠NFK,即FP平分∠HFG.25.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.孝德中学上期八年级数学试卷(无答案)一、选择题(每题4分,共48分)1.以下列各组线段为边,能组成三角形的是()A.1 cm ,2cm ,4cm B.4 cm ,6 cm ,8 cmC.5 cm, 6 cm,12 cm D.2 cm,3 cm, 5 cm2.下列图案是轴对称图形的有()A.1个B.2个C.3个D.4个3.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.4.一个多边形的内角和为720°,那么这个多边形的对角线共有( ).A.6条B.7条C.8条D.9条5.如图1所示,强强书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA6.知ABC≌DEF,若∠A=38°,∠F=65°,则∠B等于()A.38°;B.65°;C.77°;D.73°7.如图2,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋8.如图3,如果BE⊥CD,BE=DE,BC=DA,那么∠CFD ()A.大于90°;B.等于90°; C .小于90°;D.不能确定.9.如下图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AB∥DE10.如图4,在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是()A.8:15; B .21:02; C .15:20; D .9:21:05.11.如图5,在直角坐标系中,O为坐标原点,已知A(-2,3),在坐标轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有 ( )A.6个;B. 5个;C. 4个;D. 3个12.如图6,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则()A. AF=2BFB.AF=BFC.AF>BFD.AF<BF二、填空题(每题4分,共24分)13.已知点A(a,-2)与点B(-1,b)关于X轴对称,则a+b= .14.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有________个15.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S △ABC=4cm2,则S阴影等于________.16.一个多边形的内角和为1800°,那么这个多边形的外角和是_______.17.一灯塔P在小岛A的北偏西30°,从小岛A沿正北方向前进20海里后到达小岛B,此时测得灯塔P在小岛B北偏西60°方向,则P与小岛B相距________.18.等腰△ABC中, AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC =度.三、解答题(19、20题各9分,21~26题各10分)19.如图,B,E,C,F四点在一条直线上,AB=DF,AC=DE,BE=FC,问:ΔABC与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。
2019-2020学年湘教版八年级数学上册期中测试卷(含答案)
![2019-2020学年湘教版八年级数学上册期中测试卷(含答案)](https://img.taocdn.com/s3/m/e558b4af8762caaedd33d4ff.png)
2019-2020学年八年级数学上册期中测试题一.单选题(共10题;共30分)1.若分式方程+1=m有增根,则这个增根的值为()A. 1B. 3C. -3D. 3或-32.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程( )A. B. 150-x=25% C. x=150×25% D. 25%x=1503.若分式的值为0,则x的值是()A. x=3B. x=0C. x=-3D. x=-44.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用()A. 两点之间线段最短B. 三角形的稳定性C. 垂线段最短D. 两直线平行,内错角相等5.下列命题正确的是()A. 垂直于半径的直线一定是圆的切线B. 正三角形绕其中心旋转180°后能与原图形重合是必然事件C. 有一组对边平行,一组对角相等的四边形是平行四边形D. 四个角都是直角的四边形是正方形6.如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A. PA+PC=BCB. PA=PBC. DE⊥ABD. PA=PC7.如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A. AC=DFB. AB=DEC. ∠A=∠DD. BC=EF8.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A. 1cmB. 2cmC. 3cmD. 4cm9.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A. 3cmB. 4cmC. 6cmD. 9cm10.下列分式中是最简分式的是()A. B. C. D.二.填空题(共8题;共26分)11.若m+n=1,mn=2,则的值为________ .12.关于x的方程=无解,则m的值是________ .13.若关于x的方程=2的解为正数,则m的取值范围是________ .14.如图所示,∠C=∠D=90°,可使用“HL”判定Rt△ABC与Rt△ABD全等,则应添加一个条件是________15.系数化成整数且结果化为最简分式:=________.16.分式,当x=________时分式的值为零.17.如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB=________°,∠DEF=________°.18.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F=________度,DE=________cm.三.解答题(共4题;共24分)19.若0<x<1,且求的值.20.如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE的度数;(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).21.如图,试求∠A+∠B+∠C+∠D+∠E的度数.22.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.四.综合题(共2题;共20分)23.如图,线段AC∥x轴,点B在第四象限,AO平分∠BAC,AB交x轴于G,连OB,OC.(1)判断△AOG的形状,并证明;(2)如图1,若BO=CO且OG平分∠BOC,求证:OA⊥OB;(3)如图2,在(2)的条件下,点M为AO上的一点,且∠ACM=45°,若点B(1,﹣2),求M的坐标.24.在△ABC中,∠C>∠B,AE平分∠BAC.(1)如图(1),AD⊥BC于D,若∠C=75°,∠B=35°,求∠EAD;(2)如图(1),AD⊥BC于D,猜想∠EAD与∠B,∠C有什么数量关系?请说明你的理由;(3)如图(2),F为AE上一点,FD⊥BC于D,这时∠EFD与∠B、∠C又有什么数量关系?________;(不用证明)(4)如图(3),F为AE的延长线上的一点,FD⊥BC于D,这时∠AFD与∠B、∠C又有什么数量关系?________.(不用证明)答案解析一.单选题1.【答案】C【考点】分式方程的增根【解析】【分析】根据分式方程的增根的定义得出x+3=0,求出即可.【解答】∵分式方程+1=m有增根,∴x+3=0,∴x=-3,即-3是分式方程的增根,故选C.【点评】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x+3=0是解此题的关键,题目比较典型,难度不大2.【答案】A【考点】由实际问题抽象出分式方程【解析】【分析】利润率=利润÷成本=(售价-成本)÷成本.等量关系为:(售价-成本)÷成本=25%.【解答】利润为:150-x,利润率为:(150-x)÷x.所列方程为:=25%.故选A.【点评】本题主要考查的知识点是利润率,利润率是利润占成本的比例.3.【答案】A【考点】分式的值为零的条件【解析】【分析】根据分式的值为零的条件可以求出x的值.【解答】由分式的值为零的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4.综上,得x=3,分式的值为0.故选:A.【点评】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.【答案】B【考点】三角形的稳定性【解析】【解答】如图所示:常用木条EF固定矩形木框ABCD,使其不变形,这是利用三角形的稳定性.故选:B【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.5.【答案】C【考点】命题与定理【解析】【解答】解:A、过半径的外端点且垂直于半径的直线一定是圆的切线,所以A选项错误;B、正三角形绕其中心旋转180°后能与原图形重合是不可能事件,所以B选项错误;C、有一组对边平行,一组对角相等的四边形是平行四边形,所以C选项正确;D、四个角都是直角的四边形是矩形,所以D选项错误.故选C.【分析】根据切线的判定定理对A进行判断;根据不可能事件的定义和正三角形的性质对B进行判断;根据平行四边形的判定方法对C进行判断;根据矩形的判定方法对D进行判断.6.【答案】D【考点】作图—基本作图【解析】【解答】解:由作图可得:DE是AB的垂直平分线,∵DE是AB的垂直平分线,∴AP=BP,DE⊥AB,∴AP+CP=BP+CP=BC,故A、B、C选项结论正确;∵P在AB的垂直平分线上,∴AP和PC不一定相等,故D选项结论不一定正确,故选:D.【分析】根据作图过程可得DE是AB的垂直平分线,根据线段垂直平分线的定义和性质可得AP=BP,DE ⊥AB,利用等量代换可证得PA+PC=BC.但是AP和PC不一定相等.7.【答案】B【考点】全等三角形的判定【解析】【解答】解:AB=DE,理由是:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,根据全等三角形的判定定理逐个判断即可.8.【答案】D【考点】角平分线的性质【解析】【解答】解:∵AC⊥BC,AE为∠BAC的平分线,DE⊥AB,∴CE=DE,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AD=AC,∵AB=7cm,AC=3cm,∴BD=AB﹣AD=AB﹣AC=7﹣3=4cm.故选:D.【分析】根据角平分线上的点到角的两边的距离相等可得CE=DE,再利用“HL”证明Rt△ACE和Rt△ADE全等,根据全等三角形对应边相等可得AD=AC,然后利用BD=AB﹣AD代入数据进行计算即可得解.9.【答案】C【考点】线段垂直平分线的性质,含30度角的直角三角形【解析】【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.10.【答案】A【考点】最简分式【解析】【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、= ;D、;故选A.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.二.填空题11.【答案】12【考点】分式的加减法【解析】【解答】解:∵m+n=1,mn=2,∴原式=m+nmn=12.故答案为:12【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.12.【答案】1或0【考点】分式方程的解【解析】【解答】解:去分母得mx=3,∵x=3时,最简公分母x﹣3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3m=3,解得m=1,当m=0时,整式方程无解∴m的值为1或0时,方程无解.故答案为:1或0.【分析】先把分式方程化为整式方程得到mx=3,由于关于x的分式方程mxx-3=3x-3无解,当x=3时,最简公分母x﹣3=0,将x=3代入方程mx=3,解得m=1,当m=0时,方程也无解.13.【答案】m<6且m≠0【考点】分式方程的解【解析】【解答】解:∵关于x的方程2x-2+x+m2-x=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣m3 ,根据题意得:2﹣m3>0且2﹣m3≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m的不等式,从而求得m 的范围.14.【答案】AC=AD【考点】直角三角形全等的判定【解析】【解答】解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.【分析】此题是一道开放型的题目,答案不唯一,还可以是BC=BD.15.【答案】【考点】分式的基本性质,最简分式【解析】【解答】解:系数化成整数:= .故答案是:.【分析】根据分式的基本性质解答.16.【答案】-3【考点】分式的值为零的条件【解析】【解答】解:由分子x2﹣9=0解得:x=±3.而x=3时,分母x﹣3=3﹣3=0,分式没有意义;x=﹣3时,分母x﹣3=﹣3﹣3=﹣6≠0,所以x=﹣3.故答案为﹣3.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.17.【答案】60;35【考点】全等三角形的性质【解析】【解答】解:如图,∵∠ACB=105°,∠B=50°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣50°﹣105°=25°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=25°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=10°,∴∠EAB=25°+10°+25°=60°,即∠EAB=60°.∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣50°=70°,∴∠DEF=∠AED﹣∠AEB=105°﹣70°=35°.故答案是:60;35.【分析】由△ACB的内角和定理求得∠CAB=25°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=25°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠EDF的度数.18.【答案】52;13【考点】全等三角形的性质【解析】【解答】解:∵∠B=60°,∠A=68°,∴∠ACB=180°﹣68°﹣60°=52°,∵△ABC≌△DEF,∴∠F=∠ACB=52°,DE=AB=13cm.故答案为:52,13.【分析】根据三角形内角和定理可得∠ACB=180°﹣68°﹣60°=52°,再根据全等三角形的性质可得∠F=∠ACB=52°,DE=AB=13cm.三.解答题19.【答案】解:∵x+1x=6,∴(x﹣1x)2=(x+1x)2﹣4=36﹣4=32,∴x﹣1x=±42,又∵0<x<1,∴x﹣1x=﹣42.故答案为﹣42.【考点】分式的值【解析】【分析】首先由x+1x=6,x•1x=1,运用完全平方公式得出(x﹣1x)2=(x+1x)2﹣4,再结合已知条件0<x<1,即可求出x﹣1x的值.20.【答案】解:(1)∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°﹣∠A)÷2,∠BCE=(180°﹣∠B)÷2,∵∠A+∠B=90°,∴∠ACD+∠BCE=180°﹣(∠A+∠B)÷2=180°﹣45°=135°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=135°﹣90°=45°;(2)∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°﹣∠CAD)÷2,∠BCE=(180°﹣∠CBE)÷2,∵∠CAD+∠CBE=180°﹣∠CAB+180°﹣∠ABC=360°﹣(180°﹣∠ACB)=180°+40°=220°,∴∠ACD+∠BCE=(180°﹣∠CAD)÷2+(180°﹣∠CBE)÷2=180°﹣(∠CAD+∠CBE)÷2=180°﹣220°÷2=70°,∴∠DCE=∠ACD+∠BCE+∠ACB=70°+40°=110°.故答案为110°;(3)分四种情况进行讨论:①点D、E在边AB上,∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°﹣∠A)÷2,∠BCE=(180°﹣∠B)÷2,∵∠A+∠B=180°﹣n°,∴∠ACD+∠BCE=180°﹣(∠A+∠B)÷2=180°﹣90°+n°=90°+n°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=90°+n°﹣n°=90°﹣n°;②点D在BA延长线上,点E在AB延长线上,∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°﹣∠CAD)÷2,∠BCE=(180°﹣∠CBE)÷2,∵∠CAD+∠CBE=180°﹣∠CAB+180°﹣∠ABC=360°﹣(180°﹣∠ACB)=180°+n°,∴∠ACD+∠BCE=(180°﹣∠CAD)÷2+(180°﹣∠CBE)÷2=180°﹣(∠CAD+∠CBE)÷2=180°﹣90°﹣n°=90°﹣n°,∴∠DCE=∠ACD+∠BCE+∠ACB=90°﹣n°+n°=90°+n°;③如图1,点D在边AB上,点E在AB延长线上,∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°﹣∠CAD)÷2,∠BCE=(180°﹣∠CBE)÷2,∵∠CBE=∠CAD+∠ACB=∠CAD+n°,∴∠CAD﹣∠CBE=﹣n°,∴∠DCE=∠DCB+∠BCE=∠ACB﹣∠ACD+∠BCE=n°﹣(180°﹣∠CAD)÷2+(180°﹣∠CBE)÷2=n°+(∠CAD ﹣∠CBE)÷2=n°﹣n°=n°;④如图2,点D在BA延长线上,点E在边AB上,∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°﹣∠CAD)÷2,∠BCE=(180°﹣∠CBE)÷2,∵∠CAD=∠CBE+∠ACB=∠CBE+n°,∴∠CBE﹣∠CAD=﹣n°,∴∠DCE=∠DCA+∠ACE=∠ACD+∠ACB﹣∠BCE=n°+(180°﹣∠CAD)÷2﹣(180°﹣∠CBE)÷2=n°+(∠CBE ﹣∠CAD)÷2=n°﹣n°=n°.【考点】等腰三角形的性质【解析】【分析】(1)由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BCE=∠BEC,再利用三角形内角和定理得出∠ACD=(180°﹣∠A)÷2,∠BCE=(180°﹣∠B)÷2,而∠A+∠B=90°,那么求出∠ACD+∠BCE=135°,则∠DCE=∠ACD+∠BCE﹣∠ACB=90°;(2)由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BCE=∠BEC,再利用三角形内角和定理得出∠ACD=(180°﹣∠CAD)÷2,∠BCE=(180°﹣∠CBE)÷2,而∠CAD+∠CBE=220°,那么求出∠ACD+∠BCE=70°,则∠DCE=∠ACD+∠BCE+∠ACB=110°;(3)分四种情况进行讨论:①点D、E在边AB上,同(1)可求出∠DCE=90°﹣n°;②点D在BA延长线上,点E在AB延长线上,同(2)可求出∠DCE=90°+n°;③点D在边AB上,点E在AB延长线上,求出∠DCE=n°;④点D在BA延长线上,点E在边AB上,求出∠DCE=n°.21.【答案】解:连结BC,∵∠E+∠D+∠EFD=∠1+∠2+∠BFC=180°,又∵∠EFD=∠BFC,∴∠E+∠D=∠1+∠2,∴∠A+∠B+∠C+∠D+∠E=∠A+∠ABD+∠ACE+∠1+∠2=∠ABC+∠A+∠ACB=180゜.【考点】三角形内角和定理【解析】【分析】连BC,根据三角形的内角和定理即可证得∠E+∠D=∠1+∠2,然后根据三角形的内角和定理即可求解.22.【答案】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,AD=BCDE=BF,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【考点】全等三角形的判定与性质【解析】【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.四.综合题23.【答案】(1)解:∵AO平分∠BAC,∴∠CAO=∠BAO,∵线段AC∥x轴,∴∠CAO=∠AOG,∴∠BAO=∠AOG,∴GO=GA,∴△AOG是等腰三角形(2)解:如图1,连接BC,∵BO=CO且OG平分∠BOC,∴BF=CF,∵线段AC∥x轴,∴AG=BG,由(1)得OG=AG,∴OG= AB,∴△AOB是直角三角形,∴OA⊥OB,(3)解:如图2,连接BC,由(2)有,BF=CF,BC⊥OG,∵点B(1,﹣2),∴BF=2,OF=1,在Rt△BFG中,BF=2,BG=FG+1,根据勾股定理得,(FG+1)2=FG2+4,∴FG= ,∵AC∥OG,AG=BG,∴AC=2FG=3,由(2)有,BF=CF,BC⊥OG,∵点B(1,﹣2),∴C(1,2),A(4,2),∴直线OA解析式为y= x①,延长CM交x轴于E,∵∠ACM=45°,∴∠CEO=45°,∴FE=FC=2,∴E(3,0),∵C(1,2),∴直线AE解析式为y=﹣x+3②,联立①②解得x=2,y=1,∴M(2,1).【考点】角平分线的性质,等腰三角形的性质【解析】【分析】(1)由角平分线得出∠CAO=∠BAO,由平行线得出∠CAO=∠AOG,即∠BAO=∠AOG,即可;(2)先判断出点F是BC中点,再用中位线得出AG=BG,从而判断出△AOB是直角三角形,即可;(3)先求出OG,从而求出AC,得出点A,C坐标,最后求出直线OA,CM的解析式,即可求出它们的交点坐标.24.【答案】(1)解:∵∠C=75°,∠B=35°,∴∠BAC=180°﹣∠C﹣∠B=70°,∵AE平分∠BAC,∴∠EAC= ∠BAC=35°,又∵AD⊥BC,∴∠DAC=90°﹣∠C=15°,则∠EAD=∠EAC﹣∠DAC=20°;(2)解:∵AE平分∠BAC,∴∠BAE= ∠BAC,∵∠BAC=180°﹣∠B﹣∠C,∴∠EAC= (180°﹣∠B﹣∠C)=90°﹣∠B﹣∠C,∴∠EAD=∠EAC﹣∠DAC=90°﹣∠B﹣∠C﹣(90°﹣∠C)= (∠C﹣∠B);(3)∠EFD= (∠C﹣∠B)(4)∠AFD= (∠C﹣∠B)【考点】三角形内角和定理,三角形的外角性质【解析】【解答】(3)如图②,过A作AG⊥BC于G,由(2)知,∠EAG= (∠C﹣∠B),∵AG⊥BC,∴∠AGC=90°,∵FD⊥BC,∴∠FDG=90°,∴∠AGC=∠FDG,∴FD∥AG,∴∠EFD=∠EAG,∴∠EFD= (∠C﹣∠B),故答案为:∠EFD= (∠C﹣∠B);⑷如图③,过A作AG⊥BC于G,由(1)知,∠EAG= (∠C﹣∠B),∵AG⊥BC,∠AGB=90°,∵FD⊥BC,∴∠FDC=90°,∴∠AGC=∠FDC,∴FD∥AG,∴∠AFD=∠EAG,∴∠AFD= (∠C﹣∠B),故答案为:∠AFD= (∠C﹣∠B).【分析】(1)由内角和定理得∠BAC=70°,由角平分线性质得∠EAC=35°,再根据直角三角形的性质可得∠DAC=15°,从而由∠EAD=∠EAC﹣∠DAC可得答案;(2)由AE平分∠BAC得∠BAE= ∠BAC,由∠BAC=180°﹣∠B﹣∠C得∠EAC= (180°﹣∠B﹣∠C)=90°﹣∠B﹣∠C,根据∠EAD=∠EAC﹣∠DAC可得答案;(3)AG⊥BC于G,则FD∥AG可得∠EFD=∠EAG,由(2)知∠EAG= (∠C﹣∠B),即可得答案;(4)作AG⊥BC于G,与(3)同理.。
最新2019-2020年度湘教版八年级上学期期中考试数学模拟试题及答案解析-精编试题
![最新2019-2020年度湘教版八年级上学期期中考试数学模拟试题及答案解析-精编试题](https://img.taocdn.com/s3/m/240db08b5ef7ba0d4b733b07.png)
湘教版最新八年级数学上学期期中测试时量:120分钟 总分:120分 一、选择题:(每题3分,共30分)1.下列语句是命题的是 ( ) A 、三角形的内角和等于180° B 、不许大声讲话C 、一个锐角与一个钝角互补吗?D 、今天真热啊!2.下列式子中是分式的是 ( ) A 、3x - B 、3aπ- C 、35y + D 、223x y3.若分式13y y -+的值是,则y的值是( )A 、-3B 、0C 、1D 、1或-34.某三角形的两边长分别是3和4,则下列长度的线段能作为其第三边的是 ( )A 、1B 、5C 、7D 、95.下列分子中,是最简分式的是 ( )A 、x y x y +--B 、22a b a b ++C 、293a a -+D 、212x x x +--6.一个等腰三角形的两个内角和为100°,则它的顶角度数为 ( )A 、50°B 、80°C 、50°或80°D 、20°或80°7.已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是( )A 、只有乙B 、只有丙C 、甲和乙D 、乙和丙8.下列运算正确的是 ( ) A 、2-3=-6B 、(-2)3=-6C 、(32)-2=94 D 、2-3=819.已知一粒米的质量是0.000021千克,这个数用科学记数法表示为 ( )A 、21×10-4B 、2.1×10-6C 、2.1×10-5D 、2.1×10-410.若34x =,97y =,则23x y -= ( )A 、449B 、47C 、34 D、716二、填空题:(每题3分,共24分) 11.当x=__________时,分式||326x x -+无意义。
12.计算:2322x y xy ÷=_________________。
2019-2020年八年级数学上学期期中统考试题 湘教版
![2019-2020年八年级数学上学期期中统考试题 湘教版](https://img.taocdn.com/s3/m/605b8b81aef8941ea76e05d0.png)
2019-2020年八年级数学上学期期中统考试题湘教版满分: 100 分一、选择题(每小题3分,共39分,将唯一正确答案的代号的字母填在下面的方格内)1.如图,轴对称图形有()A. 3个 B. 4个 C. 5个 D. 6个2.点M(1,2)关于x轴对称的点的坐标为( )A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)3.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线4.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形5.已知点M(a,2),B(3,b)关于y轴对称,则(a+b)xx的值()A.﹣3 B.﹣1 C. 1 D. 36.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A. 2cm B. 4cm C. 6cm D. 8cm7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSS B. SAS C. AAS D. ASA8.若正n边形的每个内角都是120°,则n的值是()A. 3 B. 4 C. 6 D. 89.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或710.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是( ) A.75°或15°B.75°C.15°D.75°或30°11.若等腰三角形的周长为26cm,一边为11cm,则腰长为( )A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对12.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC 于E,则∠ADE的大小是( )A.45°B.54°C.40°D.50°13.如图,已知 MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B. AM=CN C. AB=CD D.AM∥CN第7题图第12题图第13题图二、填空题(每小题3分,共24分,答案直接填在题中的横线上)14.如图所示,观察规律并填空:__________.15. 如图,点D、E分别边AB、AC的中点,将△ADE沿着DE对折,点A落在BC边的点F上,若∠B=50°,则∠BDF=________.第15题图16.已知△ABC的一个外角为50°,则△ABC一定是__________ 三角形.17.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件____ ______,依据是________ __.18.要使五边形木架(用5根木条钉成)不变形,至少要再钉__________根木条.19.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.第17题图第18题图第19题图第21题图20.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为2x﹣1,3x﹣2,3,若这两个三角形全等,则x=__________.21.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(共16分)22.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.(4分)23.(6分) 如图已知△ABC,(1)分别画出于△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2分)(2)求△ABC的面积.(4分)24.(6分)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.四,证明题(每题7分,共21分)25.如图,四边形ABCD中,∠B=90°,AB ∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.26.(7分)、如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF .证明:(1)CF=EB.(2)AB=AF+2EB27、(7分)如图4,在△ABC中,∠1=∠2,∠3=∠4,∠A=60°,求证:C D+BE=B C.都匀市xx~xx学年度第一学期半期考试八年级数学学科答题卡满分: 100 分一、选择题(每小题3分,共39分,将唯一正确答案的代号的字母填在下面的方格内)二、填空题(每小题3分,共24分,答案直接填在题中的横线上)14. 15. 16. 17. 18. 19.20. 21.三、解答题(共16分)22.(4分)23.(6分)24.(6分)四、证明题(每题7分,共21分)25.(7分)26.(7分)27.(7分)都匀市xx~xx学年度第一学期半期考试八年级数学学科参考答案一、选择题1. B2.C3.B4.D5.C6.B7.D8.C9.D 10.A11.C 12.C 13.B二、填空题14. 15. 80° 16.钝角 17. BC=DF , SAS.(答案不唯一)18. 2根. 19. 360°20. X=3 21. 120三、解答题(共16分)22 .解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,(2分)解得n=10.故这个多边形的边数是10.(2分)23. (1)根据关于x、y轴对称的点的坐标特点画出△A1B1C1和△A2B2C2即可;(2分)(2)解:S△ABC=4×3﹣(2×2+2×3+1×4)=12-7=5 (4分)24. 解:(1)已知AB=AC,DE是AB的垂直平分线(3分)∴∠ABE=∠A=40°.又因为∠A=40°∴∠ABC=∠ACB=70°,∴∠EBC=∠ABC﹣∠ABE=30°.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC(3分)AB=15cm,∴BC=11cm.根据垂直平分线的性质可得BE+CE=AC,∴△BCE周长=BE+CE+BC=26cm.25. 解:(1)∵AB∥CD,(4分)∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,(3分)∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.26. 证明: ∵AD平分∠BAC,∠C=90, DE⊥AB∴CD=ED∵在RT△CDF和RT△EDB中,BD=DF,CD=ED∴RT△CDF≌RT△EDB(HL)又∵在RT△ADE和RT△ADC中,AD= AD ,CD=ED∴RT△ADE≌RT△ADC(HL)∴AC=AE∴AB=AE+EB=AF+CF+EB 即AB=AF+2EB(4分)27 证明:在BC上截取BF=BE,连接IF.∵BI=BI,∠1=∠2,BF=BE,∴△BFI≌△BEI,∴∠5=∠6.∵∠1=∠2.∠3=∠4,∠A=60°,∴∠BIC=120°,∴∠5=60°.∴∠7=∠5=60°,∠6=∠5=60°,∠8=120°-60°=60°,∴∠7=∠8.∵∠3=∠4,CI=CI,∠7=∠8,∴△IDC≌△IFC,∴CD=CF.∴CD+BE=CF+BF,即CD+BE=BC.。
2019-2020学年八年级上学期期中考试数学试卷附参考答案
![2019-2020学年八年级上学期期中考试数学试卷附参考答案](https://img.taocdn.com/s3/m/c5e715f1cc22bcd126ff0c8e.png)
2019-2020学年八年级上学期期中考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠32.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 3.下列式子变形,正确的是()A.=B.=﹣C.=D.=4.下列分式中,是最简分式的是()A.B.C.D.5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣56.计算:()﹣3的结果是()A.﹣B.C.D.﹣7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分13.若分式的值为0,则x的值是.14.分式,,的最简公分母是.15.若3x=10,3y=5,则3x﹣y=.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于.18.已知ab=1,m=+,则﹣m2018的值等于.三、解答题:本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤19.先约分,再求值:,其中x=﹣2,y=﹣.20.计算:(1)•(2)÷(3)()2(4)()321.计算(1)()3•()2•()2(2)()4•()3÷()522.计算:(1)+﹣(2)﹣﹣23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?参考答案与试题解析一.选择题(共12小题)1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠3【分析】直接利用分式有意义的条件得出x的值,进而得出答案.【解答】解:∵分式的值不存在,∴2x+4=0,解得:x=﹣2,则x的取值是:﹣2.2.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【解答】解:∵分式的值等于0,∴|x|﹣3=0,2x﹣6≠0,解得:x=﹣3,故选:C.3.下列式子变形,正确的是()A.=B.=﹣C.=D.=【分析】根据分式的基本性质解答.【解答】解:A、原式=,故本选项错误;B、原式=﹣,故本选项正确;C、原式=,故本选项错误;D、原式=,故本选项错误;故选:B.4.下列分式中,是最简分式的是()A.B.C.D.【分析】根据最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.【解答】解:A.=,不符合题意;B.=,不符合题意;C.=,不符合题意;D.是最简分式,符合题意;5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣5【分析】根据科学记数法的形式选择即可.【解答】解:0.00002018=2.018×10﹣5,故选:A.6.计算:()﹣3的结果是()A.﹣B.C.D.﹣【分析】先根据负整数指数幂的定义进行变形,再求出即可.【解答】解:()﹣3=()3=,故选:B.7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°【分析】根据三角形内角和定理求出∠ACB的度数,再根据CD是△ABC的角平分线,即可求出∠ACD的度数;再根据三角形内角和外角的关系即可求出∠BDC的度数.【解答】解:∵∠A=30°,∠B=66°,∴∠ACB=180°﹣30°﹣66°=84°,∵CD是△ABC的角平分线,∴∠ACD=∠ACB=×84°=42°.∴∠BDC=∠A+∠ACD=30°+42°=72°.故选:D.9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④【分析】根据命题是判断性语句,可得答案.【解答】解:①你叫什么名字,没有作出判断,不是命题;②负数的绝对值等于它的相反数,正确,是命题;③相等的角是对顶角,正确,是命题;④明天下雨吗?是疑问句,不是命题,故选:B.10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF【分析】根据题意画出图形,再由全等三角形的判定定理对各选项进行逐一判断即可.【解答】解:如图所示,A、AB=DE,AC=DF,∠A=∠D,符合SAS定理,∴△ABC≌△DEF,故本选项正确;B、∠A=∠D,∠B=∠E,AB=DE,符合ASA定理,∴△ABC≌△DEF,故本选项正确;C、∵AC=DF,BC=EF,∠B=∠E,不符合全等三角形的判定定理,故本选项错误;D、∵AB=DE,AC=DF,BC=EF,符合SSS定理,∴△ABC≌△EFD,故本选项正确.故选:C.11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°【分析】根据三角形的外角的性质可知:∠BEC=∠B+∠EDB,想办法求出∠B,∠EDB即可解决问题;【解答】解:∵AE平分∠CAB,∠CAB=60°,∴∠EAD=∠CAB=30°,∵CD垂直平分线段AB,∴EA=EB,∠EDB=90°,∴∠B=∠EAD=30°,∴∠BEC=∠EDB+∠B=90°+30°=120°,故选:A.12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个【分析】由△ABC≌△BAD(AAS),推出AD=BC,AC=BD,故①②正确,再证明CO=OD,可得∠CDA=∠DCB,故③正确,由∠CDO=∠OAB,可得CD∥AB,故④正确;【解答】解:∵OA=OB,∴∠DAB=∠CBA,∵∠ACB=∠BDA=90°,AB=BA,∴△ABC≌△BAD(AAS),∴AD=BC,AC=BD,故①②正确,∵BC=AD,BO=AO,∴CO=OD,∴∠CDA=∠DCB,故③正确,∵∠COD=∠AOB,∴∠CDO=∠OAB,∴CD∥AB,故④正确,故选:D.二.填空题(共6小题)13.若分式的值为0,则x的值是0 .【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴x=0.将x=0代入x+1=1≠0.当x=0时,分式分式的值为0.故答案为:0.14.分式,,的最简公分母是12a2b2c.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是12,a的最高次幂是2,b的最高次幂是2,c的最高次幂是1,所以三分式的最简公分母是12a2b2c.故答案为:12a2b2c.15.若3x=10,3y=5,则3x﹣y= 2 .【分析】先根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵3x=10,3y=5,∴3x﹣y=3x÷3y=10÷5=2,故答案为:2.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于50°.【分析】根据等腰三角形的性质得到∠CAB=∠B=70°,根据三角形的内角和得到∠C =180°﹣∠CAB﹣∠B=40°,根据线段垂直平分线的性质得到CF=AF,EF⊥AC,于是得到结论.【解答】解:∵AC=BC,∠B=70°,∴∠CAB=∠B=70°,∴∠C=180°﹣∠CAB﹣∠B=40°,∵EF是AC边的垂直平分线,∴CF=AF,EF⊥AC,∴∠EAF=∠C=40°,∴∠AFE=90°﹣40°=50°,故答案为:50°.18.已知ab=1,m=+,则﹣m2018的值等于﹣1 .【分析】先利用异分母分式的加减法法则,计算m的值,再求出﹣m2018的值.【解答】解:m=+==∵ab=1,∴m==1∴﹣m2018=﹣12018=﹣1故答案为:﹣1三.解答题(共8小题)19.先约分,再求值:,其中x=﹣2,y=﹣.【分析】先把分子分母因式分解,再约分得到原式=,然后把x、y的值代入计算即可.【解答】解:原式==,当x=﹣2,y=﹣时,原式==.20.计算:(1)•(2)÷(3)()2(4)()3【分析】(1)先分解因式,再根据分式的乘法法则求出即可;(2)先把除法变成乘法,再根据分式的乘法法则求出即可;(3)根据分式的乘方法则求出即可;(4)根据分式的乘方法则求出即可.【解答】解:(1)•=•=﹣2x(x+1)=﹣2x2﹣2x;(2)原式=•=;(3)()2=;(4)()3=﹣=﹣.21.计算(1)()3•()2•()2(2)()4•()3÷()5【分析】(1)先算乘方,再算乘法即可;(2)先算乘方,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=••=;(2)原式=••=﹣.22.计算:(1)+﹣(2)﹣﹣【分析】(1)直接通分进而利用分时加减运算法则计算得出答案;(2)直接通分进而利用分时加减运算法则计算得出答案.【解答】解:(1)+﹣=+﹣=;(2)﹣﹣=﹣﹣==﹣.23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.【分析】(1)由全等三角形的判定定理SSS证得△ABD≌△CDB,则该全等三角形的对应角相等,即∠ABD=∠CDB,故AB∥CD;(2)欲证明BE=DF,只需推知△ABE≌△CDF即可.【解答】证明:(1)在△ABD与△CDB中,,∴△ABD≌△CDB(SSS),∴∠ABD=∠CDB,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BAE=∠DCF,又AB=CD,AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE 和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?【分析】(1)首先设甲种污水处理器每小时处理污水x吨,则设乙种污水处理器每小时处理污水(x+20)吨,根据题意可得等量关系:甲种污水处理器处理25吨的污水=乙种污水处理器处理35吨的污水所用时间,根据等量关系,列出方程,再解即可.(2)根据题意列出计算式解答即可.【解答】解:(1)设甲种污水处理器每小时处理污水x吨,由题意得,,解之得,x=50,经检验,x=50是原方程的解,所以x=50,x+20=70,答,甲种污水处理器每小时处理污水50吨,乙种污水处理器每小时处理污水70吨.(2)30×4×50×30+30×4×70×50=180000+420000=600000(元),答:该厂每个月(以30天计)需要污水处理费600000元.。
2019-2020学年八年级上学期期中测试数学试卷(解析版)
![2019-2020学年八年级上学期期中测试数学试卷(解析版)](https://img.taocdn.com/s3/m/a0765fd681c758f5f61f67da.png)
2019-2020学年八年级上学期期中测试数学试卷一、选择题:(每小题4分,共60分)1.(4分)的值等于()A.3B.﹣3C.±3D.2.(4分)在﹣,﹣1.414,﹣5,3.212112111,2+,,,中,无理数的个数是()A.1个B.2个C.3个D.4个3.(4分)下列说法中:①+1在3和4之间;②二次根式中x的取值范围是x≥1;③的平方根是3;④﹣=﹣5;⑤=﹣3.正确的有()A.1个B.2个C.3个D.4个4.(4分)下列各式计算正确的是()A.+=B.2+=2C.3﹣=2D.=﹣5.(4分)若+|b+2|=0,则点M(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.(4分)在平面直角坐标系中,点A关于x轴的对称点是点B,点B关于y轴的对称点是点C,若点C的坐标是(﹣2,3),则点A的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)8.(4分)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.29.(4分)下列关于一次函数y=﹣2x+4的说法错误的是()A.y随x的增大而减小B.直线不经过第三象限C.向下平移三个单位得直线y=﹣2x+1D.与x轴交点坐标为(0,4)10.(4分)已知直线y=﹣0.5x+b与直线y=x相交于(2,m),则b的值为()A.2B.3C.﹣0.5D.﹣211.(4分)甲乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程y(千米)与时间x(时)的函数图象如图所示,下列说法正确的是()①乙的速度为4千米/时②经过1小时,甲追上乙;③经过0.5小时,乙行走的路程约为2千米;④经过1.5小时,乙在甲的前面.A.①②③B.①②C.②③D.②12.(4分)两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.13.(4分)如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.14.(4分)如果方程组的解中的x与y互为相反数,那么k的值是()A.1B.﹣1C.D.﹣15.(4分)某商家在一次买卖中,同时卖出两只型号不同的计算器,每只都以60元出售,其中一只盈利25%,另一只亏本25%,则在这次买卖中,该商家的盈亏情况是()A.不亏不赚B.赚了8元C.亏了8元D.赚了15元二、填空题(每小题4分,共24分)16.(4分)﹣2的相反数是,绝对值是,倒数是.17.(4分)点A在直线y=2x﹣4上运动,当线段OA最短时,OA的长度为.18.(4分)已知A(﹣2,1),B(3,4),点P在x轴上,若P A与PB的和最小,则点P 的坐标为.19.(4分)一次函数y=kx+b的图象经过点A(1,﹣2)并且与正比例函数y=2x的图象平行,则k=,b=.20.(4分)定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=.21.(4分)已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先关于x轴对称,再向右平移1个单位”为一次交换,如此这样,连续经过2017次变换后,正方形ABCD的顶点D的坐标变为.三、解答题(本大题共7个小题,满分76分)22.(16分)计算:(1)(﹣2)×﹣6(2)(5﹣6+)÷.23.(8分)解下列方程组:(1)(2).24.(8分)观察下列等式(1)=(2)=2(3)=3(4)=4…(1)根据你发现的规律写出第5个等式;(2)根据你发现的规律写出第n个等式;(3)验证(2)等式的正确性.25.(8分)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.下面是小明爸爸、妈妈的一段对话.请你用学过的知识帮助小明算出他家今年种植菠萝的投资和收入(收入﹣投资=净赚)26.(8分)小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.27.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.28.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B 品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?29.(11分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D 的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.参考答案与试题解析一、选择题:(每小题4分,共60分)1.【解答】解:∵=3,故选:A.2.【解答】解:﹣1.414,﹣5,3.212112111,是有理数,﹣,2+,是无理数,故选:C.3.【解答】解:∵3<<4,∴4<+1<5,故①错误;②二次根式中x的取值范围是x≥1,正确;③=9,9的平方根是±3,故③错误;④=5,故④错误;⑤=3,故⑤错误;正确的有1个,故选:A.4.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、2与不是同类项,不能合并,故本选项错误;C、3﹣=(3﹣1)=2,故本选项正确;D、与不是同类项,不能合并,故本选项错误.故选:C.5.【解答】解:由题意得,a﹣3=0,b+2=0,解得a=3,b=﹣2,所以,点M的坐标为(3,﹣2),点M在第四象限.故选:D.6.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.7.【解答】解:点A关于x轴的对称点为点B,点B关于y轴的对称点为点C,由点C坐标为(﹣2,3),则点B的坐标为(2,3),故点A的坐标为(2,﹣3).故选:C.8.【解答】解:根据题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.9.【解答】解:A、由k=﹣2知y随x的增大而减小,此选项正确;B、直线过第一、二、四象限,不过第三象限,此选项正确;C、向下平移三个单位得直线y=﹣2x+1,此选项正确;D、与x轴交点坐标为(2,0),此选项错误;故选:D.10.【解答】解:因为直线y=﹣0.5x+b与直线y=x相交于(2,m),把x=2,y=m代入y=x,可得:m=2,把x=2,y=2代入y=﹣0.5x+b,可得:2=﹣1+b,解得:b=3,故选:B.11.【解答】解:①乙的速度为:(4﹣2)÷1=2千米/时,故①错误;②经过1小时,甲追上乙;故②正确;③根据题意得:乙的解析式为:y=2x+2,当x=0.5时,y=3,即乙行走的路程约为3﹣2=1(千米);故③错误;④由图象得:当x甲=x乙=1.5(h)时,y甲>y乙,即经过1.5小时,乙在甲的后面,故④错误.∴正确的只有②.故选:D.12.【解答】解:A、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由一次函数y2=bx+a图象可知,b<0,a<0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a>0,b<0,两结论相矛盾,故错误;C、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;D、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a<0,b<0,两结论相矛盾,故错误.故选:C.13.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选:B.14.【解答】解:由题意可知:x+y=0从而可知:解得:∴k=2x+3y=2﹣3=﹣1故选:B.15.【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=60,解得:x=48,比较可知,第一件赚了12元;第二件可列方程:(1﹣25%)x=60,解得:x=80,比较可知亏了20元,两件相比则一共亏了12﹣20=﹣8元.故选:C.二、填空题(每小题4分,共24分)16.【解答】解:﹣2的相反数是2﹣,绝对值是2﹣,倒数是﹣﹣2,故答案为:2﹣,2﹣,﹣2﹣.17.【解答】解:当线段OA⊥直线y=2x﹣4时,线段OA最短,则直线OA的解析式为:y=﹣x,解得:,∴点A的坐标为(,﹣),∴OA的长度==,故答案为:.18.【解答】解:∵A(﹣2,1),∴点A关于x轴的对称点A′(﹣2,﹣1),设直线A′B的解析式为y=kx+b,∴,解得k=1,b=1,∴直线A′B的解析式为y=x+1,令y=0,解得,x=﹣1,∴P(﹣1,0).故答案为:(﹣1,0).19.【解答】解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b,得2+b=﹣2,解得b=﹣4;故答案为:2,﹣4.20.【解答】解:根据题意得:,解得:,则2※3=4+6=10.故答案为:1021.【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴点D的坐标为(3,3),根据题意得:第1次变换后的点D的对应点的坐标为(3+1,﹣3),即(4,﹣3),第2次变换后的点D的对应点的坐标为:(4+1,3),即(5,3),第3次变换后的点D的对应点的坐标为(5+1,﹣3),即(6,﹣3),第n次变换后的点D的对应点的为:当n为奇数时为(3+n,﹣3),当n为偶数时为(3+n,3),∴连续经过2017次变换后,点D的坐标变为(2020,﹣3).故故答案为:(2020,﹣3).三、解答题(本大题共7个小题,满分76分)22.【解答】解:(1)(﹣2)×﹣6=3﹣6﹣6×=﹣6;(2)(5﹣6+)÷=(20﹣6×3+2)÷=4÷=4.23.【解答】解:(1),由①得:x=y+4③,把③代入②得:4y+16+2y=1,解得:y=﹣,把y=﹣代入③得:x=,则方程组的解为;(2),①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=1,则方程组的解为.24.【解答】解:(1)第5个等式为=5;(2)第n个等式为=n;(3)等式左边===n=右边.25.【解答】解:设小明家去年种植菠萝的投资x元,收入y元,则小明家今年种植菠萝的投资(1+10%)x元,收入(1+35%)y元,依题意,得:,解得:,∴(1+10%)x=4400,(1+35%)y=16200.答:小明家今年种植菠萝的投资4400元,收入16200元.26.【解答】解:(1)200米(1分);(2)设直线AB的解析式为:y=kx+b(2分)由图可知:A(5,0),B(10,1000)∴(4分)解得(6分)∴直线AB的解析式为:y=200x﹣1000(7分);(3)当x=8时,y=200×8﹣1000=600(米)即x=8分钟时,小文离家600米.(9分)27.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).28.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x元、y元,根据题意得,,解得.答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:0≤x≤5,y2=32x,x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48,所以y1=24x,y2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,购买30个计算器时,两种品牌都一样,购买超过30个计算器时,B品牌更合算,购买不足30个计算器时,A品牌更合算,∵需要购买50个计算器,∴买B种品牌的计算器更合算.29.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P 在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).。
长沙市2019-2020年度八年级上学期期中数学试题(I)卷
![长沙市2019-2020年度八年级上学期期中数学试题(I)卷](https://img.taocdn.com/s3/m/2d9a618176a20029bd642d6b.png)
长沙市2019-2020年度八年级上学期期中数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列式子,,,,中,分式共有()A.2个B.3个C.4个D.5个2 . 下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形的三条高线都在三角形的内部.A.①②③B.①②C.②③D.①③3 . 不改变分式的值,将变形,可得()A.B.C.D.4 . 如图,点在正方形的对角线上,且,的两直角边,分别交,于点,.若正方形的边长为,则重叠部分四边形的面积为()A.B.C.D.5 . 已知空气的单位体积质量为克/厘米3,将用小数表示为()A.B.C.D.6 . 计算的值为()A.-8aB.C.D.7 . 如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC8 . 如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H .下列结论:①∠DBE=∠F;②∠F=∠BAC-∠C;③2∠BEF=∠BAF+∠C;④∠BGH=∠ABE+∠C.其中正确的有()A.1B.2C.3D.4二、填空题9 . 如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.10 . 若设A=,当=4时,记此时A的值为;当=3时,记此时A的值为;……则关于的不等式的解集为______.11 . 计算:______.12 . 如图,点在上,,要使,可补充的一个条件是:_________ .(答案不唯一,写一个即可)13 . 若方程的解是正数,则m的取值范围_____.14 . 命题:“三角形内角和为180°”是_________命题(填“真”或“假”).15 . 设△ABC三边为a、b、c,其中a、b满足,则第三边c的取值范围______.16 . 在分式中,当y=______时,分式无意义;当y=______时,分式值为零三、解答题17 . 如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE,求证:AE∥CA.18 . 如图,在△ABC中,.在线段BC上求作一点D,连接AD,使AD=BA.(1)用直尺和圆规完成作图,不写作法,保留作图痕迹;(2)若,求∠CAD的度数.19 . 已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为3.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE等于多少;(1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:①请在图3中画出图形;②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.20 . 化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.21 . 解方程:.22 . 甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.23 . 如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,求证:∠1=∠2.。
2019-2020学年八年级上学期期中考试数学试卷含解析
![2019-2020学年八年级上学期期中考试数学试卷含解析](https://img.taocdn.com/s3/m/8308406955270722192ef789.png)
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1 cm,2 cm,3.5 cm B.4 cm,5 cm,9 cmC.5 cm,8 cm,15 cm D.6 cm,8 cm,9 cm3.使分式有意义,则x满足条件()A.x>0 B.x≠0 C.x>1 D.x≠14.如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°6.计算(x4+1)(x2+1)(x+1)(x﹣1)的结果是()A.x8+1 B.x8﹣1 C.(x+1)8D.(x﹣1)87.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣168.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°10.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2b B.2a=b C.a=b D.a=﹣b二.填空题(共6小题)11.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.12.化简:(1)=;(2)(﹣a)3(﹣a)4=;(3)=;(4)a5÷a3•a2=.13.当x=时,分式的值为零.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.若a+b=3,则a2﹣b2+6b=;若2x+5y﹣3=0,则4x•32y=.16.我们知道,672可以写成6×102+7×10+2,对于多项式而言,关于某一字母的多项式都可以按这个字母的降幂排列比如7x+2+6x2可以写成6x2+7x+2.在解决多项式相除的问题时,我们通过对比发现,可以类比多位数的除法,用竖式进行计算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21计算如图,因此:(7x+2+6x2)÷(2x+1)=3x+2.根据阅读材料,(1)试判断:x3﹣x2﹣5x﹣3能否被x+1整除,(请用“能”或“不能”填空)(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是,余式是.三.解答题(共9小题)17.计算:(Ⅰ);(Ⅱ)(﹣2a)2•b3+12a2b2.18.计算:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3).19.如图,AB=AD,∠BAC=∠DAC,∠B=32°,求∠D的度数.20.解方程:﹣1=.21.因式分解:(Ⅰ)m(a﹣3)+2(3﹣a)(Ⅱ)(a﹣2b)2﹣b222.如图,在平面直角坐标系xOy中,△ABC的三个顶点分别落在边长为1的正方形格上,(Ⅰ)分别写出A、B、C三点坐标;(Ⅱ)△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程,并体现在坐标系中.23.先化简,再求值:,请从﹣3,﹣2,﹣1,0中选择一个你喜欢的数作为m的值.24.如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),(1)当∠BPQ=90°时,求AP的长;(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).参考答案与试题解析一.选择题(共10小题)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.下列长度的三条线段能组成三角形的是()A.1 cm,2 cm,3.5 cm B.4 cm,5 cm,9 cmC.5 cm,8 cm,15 cm D.6 cm,8 cm,9 cm【分析】根据三角形的三边关系对各选项进行逐一判断即可.【解答】解:A、∵1+2=3<3.5,∴不能构成三角形,故本选项错误;B、∵4+5=9,∴不能构成三角形,故本选项错误;C、∵8<15﹣5=10,∴不能构成三角形,故本选项错误;D、∵9﹣6<8<9+6,∴能构成三角形,故本选项正确.故选:D.3.使分式有意义,则x满足条件()A.x>0 B.x≠0 C.x>1 D.x≠1【分析】分式有意义时,分母x﹣1≠0.【解答】解:依题意得:x﹣1≠0.解得x≠1.故选:D.4.如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠BAD=∠CAD,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);B、∵∠BAD=∠CAD,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);C、∵∠BAD=∠CAD,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);D、∵∠BAD=∠CAD,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故选:D.5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°【分析】由已知条件,根据线段垂直平分线的性质得到线段及角相等,再利用直角三角形两锐角互余得到∠B=(180°﹣∠ADB)÷2答案可得.【解答】解:∵DE垂直平分AB,∴AD=DB∴∠B=∠DAB∵∠C=90°,∠CAD=20°∴∠B=(180°﹣∠C﹣∠CAD)÷2=35°故选:C.6.计算(x4+1)(x2+1)(x+1)(x﹣1)的结果是()A.x8+1 B.x8﹣1 C.(x+1)8D.(x﹣1)8【分析】根据题目的特点多次使用平方差公式即可求出结果.【解答】解:(x4+1)(x2+1)(x+1)(x﹣1),=(x4+1)(x2+1)(x2﹣1),=(x4+1)(x4﹣1),=x8﹣1.故选:B.7.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣16【分析】根据完全平方式的结构是:a2+2ab+b2和a2﹣2ab+b2两种,据此即可求解.【解答】解:∵x2﹣8x+a可以写成一个完全平方式,∴则a可为:16.故选:C.8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【解答】解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a ﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选:B.10.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2b B.2a=b C.a=b D.a=﹣b【分析】根据作图知OA=OB、PA=PB,据此得OP垂直平分AB,即点P是第二、四象限的平分线,从而得出答案.【解答】解:由“以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点”知OA=OB,即△OAB是以OA、OB为腰的等腰直角三角形,根据“分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点”知点P在AB的中垂线上,则OP垂直平分AB,即点P是第二、四象限的平分线,若点P的坐标为(a,b),则a=﹣b,故选:D.二.填空题(共6小题)11.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【分析】由图可得,固定窗钩BC即,是组成三角形,故可用三角形的稳定性解释.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.12.化简:(1)=a8b3;(2)(﹣a)3(﹣a)4=﹣a7;(3)=;(4)a5÷a3•a2=a4.【分析】(1)直接利用积的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算即可;(3)直接约掉分子与分母中的公因式进而得出答案;(4)直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(1)=a8b3;(2)(﹣a)3(﹣a)4=﹣a7;(3)=;(4)a5÷a3•a2=a4.故答案为:a8b3;﹣a7;;a4.13.当x= 1 时,分式的值为零.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.15.若a+b=3,则a2﹣b2+6b=9 ;若2x+5y﹣3=0,则4x•32y=8 .【分析】把a2﹣b2+6b写成(a+b)(a﹣b)+6b=3(a﹣b)+6b=3(a+b),再把a+b=3代入即可求解;4x•32y=22x•25y=22x+5y,再把2x+5y=3代入即可求解.【解答】解:∵a+b=3,∴a2﹣b2+6b=(a+b)(a﹣b)+6b=3(a﹣b)+6b=3(a+b)=3×3=9;∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:9,8.16.我们知道,672可以写成6×102+7×10+2,对于多项式而言,关于某一字母的多项式都可以按这个字母的降幂排列比如7x+2+6x2可以写成6x2+7x+2.在解决多项式相除的问题时,我们通过对比发现,可以类比多位数的除法,用竖式进行计算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21计算如图,因此:(7x+2+6x2)÷(2x+1)=3x+2.根据阅读材料,(1)试判断:x3﹣x2﹣5x﹣3能否被x+1整除能,(请用“能”或“不能”填空)(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是2x3+x+5 ,余式是﹣3x+5 .【分析】(1)根据阅读材料进行多项式除以多项式即可求解;(2)根据阅读材料进行多项式除以多项式得商和余式.【解答】解:(1)x3﹣x2﹣5x﹣3能被x+1整除.故答案为:能.(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是2x3+x+5,余式是﹣3x+5.故答案为:2x3+x+5、﹣3x+5.三.解答题(共9小题)17.计算:(Ⅰ);(Ⅱ)(﹣2a)2•b3+12a2b2.【分析】(I)根据零指数幂的意义以及乘方的运算法则即可求出答案;(II)根据整式的运算法则即可求出答案.【解答】解:(Ⅰ)原式=1﹣()2017×+1=1﹣+1=2﹣=;(Ⅱ)原式=4a2b3+12a2b2.18.计算:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3).【分析】(Ⅰ)直接利用积的乘方运算法则以及整式的混合运算法则计算得出答案;(Ⅱ)直接利用单项式乘以多项式计算得出答案.【解答】解:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0=4x2﹣4x2=0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3)=﹣6x4y+4x3y+6x2y.19.如图,AB=AD,∠BAC=∠DAC,∠B=32°,求∠D的度数.【分析】由“SAS”可证△ABC≌△ADC,可得∠B=∠D=32°.【解答】解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC(SAS)∴∠B=∠D=32°.20.解方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘x(x﹣2),得x2﹣x2+2x=3,解:x=1.5,经检验x=1.5是分式方程的解.21.因式分解:(Ⅰ)m(a﹣3)+2(3﹣a)(Ⅱ)(a﹣2b)2﹣b2【分析】(Ⅰ)原式变形后,提取公因式即可;(Ⅱ)原式利用平方差公式分解即可.【解答】解:(Ⅰ)原式=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2);(Ⅱ)原式=(a﹣2b+b)(a﹣2b﹣b)=(a﹣b)(a﹣3b).22.如图,在平面直角坐标系xOy中,△ABC的三个顶点分别落在边长为1的正方形格上,(Ⅰ)分别写出A、B、C三点坐标;(Ⅱ)△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程,并体现在坐标系中.【分析】(Ⅰ)由图象可得;(Ⅱ)由轴对称和平移的性质可得.【解答】解:(Ⅰ)由图象可得:点A(0,﹣1),点B(2,﹣1),点C(2,﹣2);(Ⅱ)先将△ABC沿y轴翻折,得到△AB'C',再将△AB'C'向上平移3个单位可得△DEF.23.先化简,再求值:,请从﹣3,﹣2,﹣1,0中选择一个你喜欢的数作为m的值.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:原式=•=m(m+2),当m=﹣1时,原式=﹣1.24.如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),(1)当∠BPQ=90°时,求AP的长;(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.【分析】(1)作PF∥BC交AC于F,由等边三角形的性质就可以得出△APF是等边三角形,△PFD≌△QCD,由直角三角形的性质就可以得出结论;(2)作QF⊥AC,交直线AC的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=CQ,再根据全等三角形的判定定理得出△APE≌△CQF,再由AE=CF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EC+AE=CE+CF=AC,DE =AC,由等边△ABC的边长为3可得出DE=1.5即可.【解答】解:(1)作PF∥BC交AC于F,如图1所示:∴∠APF=∠B,∠AFP=∠ACB,∠FPD=∠CQD,∠PFD=∠QCD.∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,AB=BC=AC.∴∠APF=∠AFP=∠A=60°,∴△APF是等边三角形,∴AP=AF=PF.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA),∴FD=CD.∵∠APD=90°,且∠A=60°,∴∠PDA=30°,∴AD=2AP,∴AD=2AF.∵AF+FD=2AF,∴FD=AF.∴AF=FD=CD.∴AF=AC.∵AC=3,AP=AF=1:(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AC,交直线AC的延长线于点F,连接QE,PF,如图2所示:又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=CQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FCQ=60°,在△APE和△CQF中,∵∠AEP=∠CFQ=90°,∴∠APE=∠CQF,在△APE和△CQF中,,∴△APE≌△CQF(AAS),∴AE=CF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EC+AE=CE+CF=AC,∴DE=AC,又∵AC=3,∴DE=1.5,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=72 度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).【分析】(1)由等腰三角形的性质得出∠ABC=∠C=∠BDC=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,由三角形内角和定理得出方程,解方程即可;(2)只要证明△ABE,△AEC是等腰三角形即可.(3)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB =BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.【解答】(1)解:∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=ABC,∵BD是△ABC的一条特异线,∴△ABD和△BCD是等腰三角形,当AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,∴∠BDC=72°,故答案为:72;(2)证明:∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(3)解:如图3,当BD是特异线时如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°=15°=135°,如果AD=AB,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,如果AD=DB,DC=DB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃),如图4中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°﹣20°﹣20°=140°,当CD为特异线时,不合题意.综上所述,符合条件的∠ABC的度数为135°或112.5°或140°.。
2019-2020学年湘教版八年级数学第一学期期中考试试题(解析版)
![2019-2020学年湘教版八年级数学第一学期期中考试试题(解析版)](https://img.taocdn.com/s3/m/3249f6fb58f5f61fb73666da.png)
2019-2020学年八年级数学第一学期期中考试试题一、选择题(本大题共12小题,共36分) 1.下列二次根式中,与是同类二次根式的是( )A .B .3C .D .22.下列运算正确的是( ) A .=B .a 2+a 3=a 5C .(x ﹣3)2=x 2﹣9D .a ﹣2=(a ≠0)3.PM 2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×105B .2.5×106C .2.5×10﹣5D .2.5×10﹣64.若一个多边形的内角和是1080度,则这个多边形的边数为( ) A .6B .7C .8D .105.一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A .﹣2<x <1B .﹣2<x ≤1C .﹣2≤x <1D .﹣2≤x ≤16.下列调查中,适合用全面调查方式的是( ) A .调查全班同学观察《最强大脑》的学生人数 B .某灯泡厂检测一批灯泡的质量 C .了解一批袋装食品是否含有防腐剂 D .了解漯河市中学生课外阅读的情况7.以下列各组数为三角形的边长,能构成直角三角形的是( ) A .8,12,17 B .1,2,3 C .6,8,10D .5,12,98.化简﹣,结果正确的是( )A .﹣1B .1C .0D .±19.某车间要加工170个零件,在加工完90个以后改进了操作方法,每天可多加工10个,一共用5天完成了任务,若改进操作方法后每天加工x 个零件,所列方程正确的是( )A . +=5B . +=5C .+=5D .+=510.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为D ,CD =1,则AB 的长为( )A .B .2C .D .211.若分式方程=2+无解,则a 的值为( )A .4B .2C .1D .012.如图,正方形ABCD 中,点E ,F 分别在BC ,CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①CE =CF ,②∠AEB =75°,③AG =2GC ,④BE +DF =EF ,⑤S △CEF =2S △ABE ,其中结论正确的个数为( )A .2个B .3个C .4个D .5个二、填空题(本大题共6小题,共18分) 13.因式分解:3a 2﹣27= .14.若分式的值为0,则x 的值为 .15.已知是关于x ,y 的二元一次方程组的一组解,则a +b = .16.若式子有意义,则x 的取值范围是 .17.若x +x ﹣1=3,则x 2+x ﹣2的值是 .18.如图是一张长方形纸片ABCD ,已知AB =8,AD =7,E 为AB 上一点,AE =5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP的底边长是.三、解答题(本题共8个小题,共66分,19、20题各5分,21、22题各8分,23题8分,24题9分,25、26题各10分)19.(5分)计算:﹣|2﹣1|+(π﹣)0+()﹣1.20.(8分)先化简,再求值:(+)÷.其中x=.21.(8分)解方程:(1)=;(2)+1=.22.(8分)在我县中小学读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查情况进行了统计,并绘制了不完整条形统计图和扇形统计图.请你结合图中的信息,解答下列问题(1)本次调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占被调查人数的%,最喜爱丙类图书的人所对应的扇形的圆心角度数°.(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校约有学生1800人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.23.(8分)某商城销售A,B两种自行车,A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,要求购进B 型自行车数量不超过A型自行车数量的2倍,总利润不低于13200元,求购进方案.24.(9分)如图,△AOB、△COD是等腰直角三角形,点D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=3,BD=1,求CD.25.(10分)阅读与应用:我们知道(a﹣b)≥0,即a2﹣2ab+b2≥0,所以我们可以得到a2+b2≥2ab(当且仅当a=b,a2+b2=2ab).类比学习:若a和b为实数且a>0,b>0,则必有a+b≥2,当且仅当a=b时取等号;其证明如下:()2=a﹣2+b≥0,∴a+b≥2(当且仅当a=b时,有a+b=2).例如:求y=x+(x>0)的最小值,则y=x+≥2=2,此时当且仅当x=,即x =1时,y的最小值为2.(1)阅读上面材料,当a=时,则代数式a+(a>0)的最小值为.(2)求y=(m>﹣1)的最小值,并求出当y取得最小值时m的值.(3)若0≤x≤4,求代数式的最大值,并求出此时x的值.26.(10分)如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b ,射线OD 是第一象限的一条射线,点Q 在射线OD 上,BP =PQ .并连接BQ 交y 轴于点M .(1)求点A ,B ,C 的坐标为A 、B 、C . (2)当BP ⊥BQ 时,求∠AOQ 的度数.(3)在(2)的条件下,若点P 在x 轴的正半轴上,且OP =3AM ,试求点M 的坐标.参考答案一、选择题1.下列二次根式中,与是同类二次根式的是( )A .B .3C .D .2【分析】利用开根号的知识分别将各选项进行化简,然后即可得出答案. 解:A 、与的被开方数不同,它们不是同类项,故本选项错误;B 、3不是二次根式,故本选项错误;C 、与的被开方数不同,它们不是同类项,故本选项错误;D 、2与的被开方数都是3,它们是同类项,故本选项正确.故选:D .【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式. 2.下列运算正确的是( ) A .=B .a 2+a 3=a 5C .(x ﹣3)2=x 2﹣9D .a ﹣2=(a ≠0)【分析】直接利用二次根式的加减运算法则以及合并同类项法则、负指数幂的性质分别化简得出答案.解:A、+,无法进行计算,故此选项错误;B、a2+a3,无法进行计算,故此选项错误;C、(x﹣3)2=x2﹣6x+9,故此选项错误;D、a﹣2=(a≠0),正确.故选:D.【点评】此题主要考查了二次根式的加减运算以及合并同类项、负指数幂的性质,正确掌握相关运算法则是解题关键.3.PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000025=2.5×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.5.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1 C.﹣2≤x<1 D.﹣2≤x≤1【分析】根据不等式解集的表示方法即可判断.解:该不等式组的解集是:﹣2≤x<1.故选:C.【点评】本题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.6.下列调查中,适合用全面调查方式的是()A.调查全班同学观察《最强大脑》的学生人数B.某灯泡厂检测一批灯泡的质量C.了解一批袋装食品是否含有防腐剂D.了解漯河市中学生课外阅读的情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、调查全班同学观察《最强大脑》的学生人数适合普查;B、某灯泡厂检测一批灯泡的质量适合抽样调查;C、了解一批袋装食品是否含有防腐剂适合抽样调查;D、了解漯河市中学生课外阅读的情况时候抽样调查;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.以下列各组数为三角形的边长,能构成直角三角形的是()A.8,12,17 B.1,2,3 C.6,8,10 D.5,12,9【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解:A、82+122≠172,不能构成直角三角形,故选项错误;B、12+22≠32,不能构成直角三角形,故选项错误;C、62+82=102,能构成直角三角形,故选项正确;D、52+92≠122,不能构成直角三角形,故选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.化简﹣,结果正确的是()A.﹣1 B.1 C.0 D.±1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.解:原式==﹣=﹣1,故选:A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.某车间要加工170个零件,在加工完90个以后改进了操作方法,每天可多加工10个,一共用5天完成了任务,若改进操作方法后每天加工x个零件,所列方程正确的是()A.+=5 B.+=5C.+=5 D.+=5【分析】设改进操作方法后每天加工x个零件,则改进操作方法前每天加工(x﹣10)个零件,根据工作时间=工作总量÷工作效率,即可得出关于x的分式方程,此题得解.解:设改进操作方法后每天加工x个零件,则改进操作方法前每天加工(x﹣10)个零件,根据题意得:+=5.故选:A.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.2【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选:C.【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.11.若分式方程=2+无解,则a的值为()A.4 B.2 C.1 D.0【分析】关于x的分式方程=2+无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=4,据此即可求解.解:去分母得:x﹣2(x﹣4)=a解得:x=8﹣a根据题意得:8﹣a=4解得:a=4.故选:A.【点评】本题考查了分式方程无解的条件,是需要识记的内容.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.12.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC 交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE =CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共6小题,共18分)13.因式分解:3a2﹣27=3(a+3)(a﹣3).【分析】直接提取公因式3,进而利用平方差公式分解因式即可.解:3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3).故答案为:3(a+3)(a﹣3).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确掌握公式法分解因式是解题关键.14.若分式的值为0,则x的值为﹣2 .【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.解:由题意,得x2﹣4=0且x﹣2≠0,解得x=﹣2,故答案为:﹣2.【点评】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.已知是关于x,y的二元一次方程组的一组解,则a+b= 5 .【分析】根据方程组解的定义,把问题转化为关于a、b的方程组,求出a、b即可解决问题;解:∵是关于x,y的二元一次方程组的一组解,∴,解得,∴a+b=5,故答案为5.【点评】本题考查二元方程组,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.16.若式子有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式及分式有意义的条件解答即可.解:根据二次根式的性质可知:x+1≥0,即x≥﹣1,又因为分式的分母不能为0,所以x的取值范围是x≥﹣1且x≠0.【点评】此题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当分母中含字母时,还要考虑分母不等于零.17.若x+x﹣1=3,则x2+x﹣2的值是7 .【分析】此题可对x+x﹣1=3两边同时平方求得x2+x﹣2的值.解:由于x+x﹣1=3,则(x+x﹣1)2=32,x2+x﹣2+2=9,即x2+x﹣2=7.故答案为7.【点评】本题主要考查整体法求值,涉及到负整数指数幂的知识点.18.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5或4或5 .【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的底边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本题共8个小题,共66分,19、20题各5分,21、22题各8分,23题8分,24题9分,25、26题各10分)19.(5分)计算:﹣|2﹣1|+(π﹣)0+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.解:原式=2﹣2+1+1+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)先化简,再求值:(+)÷.其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=[﹣]•=(﹣)•=•=,当x=时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.(8分)解方程:(1)=;(2)+1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)去分母得:4x+2=4,解得:x=,经检验x=是增根,分式方程无解;(2)去分母得:x﹣3+x﹣2=﹣3,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(8分)在我县中小学读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查情况进行了统计,并绘制了不完整条形统计图和扇形统计图.请你结合图中的信息,解答下列问题(1)本次调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占被调查人数的40 %,最喜爱丙类图书的人所对应的扇形的圆心角度数72 °.(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校约有学生1800人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;用360°乘以最喜爱丙类图书的人所占的百分比即可;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x 的值可得答案.解:(1)共调查的学生数:40÷20%=200(人),故答案为:200;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;最喜爱丙类图书的人所对应的扇形的圆心角度数:360°×=72°;故答案为15;40;72;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1800×20%,解得:x=144,当x=144时,1.5x=216.答:该校最喜爱丙类图书的女生和男生分别有216人,144人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)某商城销售A,B两种自行车,A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,要求购进B 型自行车数量不超过A型自行车数量的2倍,总利润不低于13200元,求购进方案.【分析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等列出方程(2)购进A型自行车m辆,则购进B型自行车(100﹣m)辆,根据题意列出不等式组即可解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1 600+400=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,由题意,得,解得:33≤m≤36∵m为正整数∴m=34,35,36∴购进方案三种,A类34辆,B类66辆;A类35辆,B类65辆;A类36辆,B类64辆【点评】本题考查了分式方程的应用、一次函数和不等式组,要特别注意自变量m的取值范围24.(9分)如图,△AOB、△COD是等腰直角三角形,点D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=3,BD=1,求CD.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB 和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;(2)由(1)可知△AOC≌△BOD,所以AC=BD=1,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,根据勾股定理即可求出CD的长.(1)证明:∵∠DOB=90°﹣∠AOD,∠AOC=90°﹣∠AOD,∴∠DOB=∠AOC,又∵OC=OD,OA=OB,,∴△AOC≌△BOD(SAS);(2)解:∵△AOC≌△BOD,∴AC=BD=1,∠CAO=∠DBO=45°,∴∠CAB=∠CAO+∠BAO=90°,∴CD==【点评】此题为全等三角形判定的综合题.考查学生综合运用数学知识的能力.25.(10分)阅读与应用:我们知道(a﹣b)≥0,即a2﹣2ab+b2≥0,所以我们可以得到a2+b2≥2ab(当且仅当a=b,a2+b2=2ab).类比学习:若a和b为实数且a>0,b>0,则必有a+b≥2,当且仅当a=b时取等号;其证明如下:()2=a﹣2+b≥0,∴a+b≥2(当且仅当a=b时,有a+b=2).例如:求y=x+(x>0)的最小值,则y=x+≥2=2,此时当且仅当x=,即x =1时,y的最小值为2.(1)阅读上面材料,当a= 2 时,则代数式a+(a>0)的最小值为 4 .(2)求y=(m>﹣1)的最小值,并求出当y取得最小值时m的值.(3)若0≤x≤4,求代数式的最大值,并求出此时x的值.【分析】(1)根据材料得到a+≥2=4,于是得到结论;(2)把原式变形得到y==(m+1)+,于是得到结论;(3)把原式配方,根据非负数的性质即可得到结论.解:(1)∵a+≥2=4,∴当a=2时,则代数式a+(a>0)的最小值为4;故答案为:2,4;(2)当y ===(m +1)+,∴m +1≥,∴当m =3时,y 取得最小值8;(3)∵==, ∴x =2时取得最大值2.【点评】本题考查了配方法的应用,不等式的性质,非负数的性质,读懂材料是解本题的关键,难点是理解和运用材料得到的结论解决问题.26.(10分)如图,四边形OABC 的位置在平面直角坐标系中如图所示,且A (0,a ),B (b ,a ),C (b ,0),又a ,b 满足﹣+b 2+4b +8=0,点P 在x 轴上且横坐标大于b ,射线OD 是第一象限的一条射线,点Q 在射线OD 上,BP =PQ .并连接BQ 交y 轴于点M .(1)求点A ,B ,C 的坐标为A (0,4) 、B (﹣4,4) 、C (﹣4,0) .(2)当BP ⊥BQ 时,求∠AOQ 的度数.(3)在(2)的条件下,若点P 在x 轴的正半轴上,且OP =3AM ,试求点M 的坐标.【分析】(1)根据二次根式的意义得出a =4,b =4,即可得出结论;(2)先判断出△BCP ≌△PNQ (AAS ),得出CP =QN ,BC =PN ,进而OC =PN =4,再分点P 在x 轴正半轴和负半轴两种情况:判断出ON =QN ,即可得出结论;(3)设出点P 的坐标,进而表示出点M 的坐标,确定出直线BM 的解析式,借助(2)的PN =OC =4,表示出点Q (m +4,m +4),代入直线BM 的解析式中即可得出结论.解:(1)∵﹣+b 2+4b +8=0,∴﹣+(b ﹣4)2=0,∴a =4,b =4,∴A(0,4),B(﹣4,4),C(﹣4,0),故答案为(0,4),(﹣4,4),(﹣4,0);(2)由(1)知,A(0,4),B(﹣4,4),C(﹣4,0),∴AB=BC=OC=OA=4,∴四边形OABC是菱形,∵∠AOC=90°,∴菱形OABC是正方形,过点Q作QN⊥x轴于N,∴∠PNQ=90°,∴∠QPN+∠PQN=90°,∵BP⊥BQ,∴∠BPQ=90°,∴∠BPC+∠QPN=90°,∴∠PQN=∠BPC,由(1)知,B(﹣4,4),C(﹣4,0),∴BC=4,BC⊥x,∴∠BCP=∠PNQ=90°,在△BCP和△PNQ中,,∴△BCP≌△PNQ(AAS),∴CP=QN,BC=PN,∴OC=PN=4,①当点P在x轴负半轴时,如图1、OC=CP+OP,PN=OP+ON,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,②当点P在x轴正半轴时,如图2、OC=CP﹣OP,PN=ON﹣OP,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,即:∠AOQ=45°;(3)如图2,过点Q作QN⊥x轴于N,设P(m,0)(m>0),∵OP=3AM,∴AM=OP=m,∴M(0,m+4),∵点B(﹣4,4),∴直线BM的解析式为y=mx+m+4,由(2)知,PN=OC=4,∴N(m+4,0),∴Q(m+4,m+4),∵点Q在直线BM上,∴m(m+4)+m+4=m+4,∴m=0(舍)或m=4,∴M(0,).【点评】此题是四边形综合题,主要考查了正方形的判定和性质,全等三角形的判定和性质,待定系数法,二次根式的意义,同角的余角相等,构造全等三角形和解本题的关键.。
2019-2020学年八年级数学上学期期中质量检测试卷湘教版
![2019-2020学年八年级数学上学期期中质量检测试卷湘教版](https://img.taocdn.com/s3/m/92b296f4e87101f69f3195ef.png)
2019-2020学年八年级数学上学期期中质量检测试卷湘教版一.选择题( 本题共10 小题,每题 3 分,共30 分 )1.当x=()x时,分式的x1值没心义.() x 1A. 0B. 1C.-1D. 22.以下每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1 , 2, 6, 2,, 2,, 3, 43.2011 年 3 月 11日,里氏 9.0 级的日本大地震以致当天地球的自转时间较少了0.000 001 6秒,将0016用科学记数法表示为()A.1610 7B.10 6C.10 5D.1610 54.分式方程31的解为()A. x12x x1x2x4x3 B. C. D.5.以下语句是命题的是()(1)两点之间,线段最短;(2)若是两个角的和是90 度,那么这两个角互余 .(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?;A .( 1)( 2)B.( 3)( 4)C.(2)(3)D.( 1)( 4)6.若是把分式x y中的 x 和y都扩大了 3 倍,那么分式的值()xyA. 扩大 3 倍B.不变C.减小 3 倍D.减小 6 倍7. 4.以以下列图,在△ ABC 中, D 是 BC 延长线上一点,∠B=40°,∠ACD=120°,则∠ A 等于()A. 60°B. 70°C. 80°D. 90°8.如图,在 Rt △ ACB中,∠ ACB=90°,∠ A=25°, D是 AB上一点.将 Rt △ ABC沿 CD折叠,使 B 点落在AC 边上的B′处,则∠ ADB′等于()A.(第25°7 题)B.30°(第C. 35°8 题)D40°.9. 三角形的角均分线是()。
A .直线 B. 射线 C. 线段 D. 以上都不对10. 甲、乙两人同时分别从 A 、B 两地沿同一条公路骑自行车到C 地,已知 A 、C 两地间的距 离为 110 千米, B 、C 两地间的距离为 100 千米。
2019-2020学年八年级上学期期中考试数学试卷含解析
![2019-2020学年八年级上学期期中考试数学试卷含解析](https://img.taocdn.com/s3/m/b8b27d5555270722192ef7ff.png)
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共8小题)1.下列图案中,属于轴对称图形的是()A.B.C.D.2.16的平方根是()A.4 B.±4 C.D.±3.如图,在数轴上,与表示的点最接近的点是()A.点A B.点B C.点C D.点D4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC=1,AC=2,AB=C.BC:AC:AB=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS6.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺7.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC 上,则∠EAN=()A.58°B.32°C.36°D.34°8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°二.填空题(共10小题)9.比较大小: 2.10.下列五个数,2π,,,3.1415926中,是无理数的有.11.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为.12.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB 于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为.15.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.16.如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC =4,则这两块直角三角板顶点A、A′之间的距离等于.18.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为°.三.解答题(共8小题)19.求下列各式中的x的值:(1)4x2=9;(2)(x+1)3=﹣27.20.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.22.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.23.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.24.如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.(1)求证:∠EBD=∠EDB.(2)若∠BED=120°,试判断△BDC的形状.25.(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACGF.求证S△AEF=S△ABC.(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.26.“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:∵S△ABC=S△ABP+S△ACP∴AC▪BF=AB▪PD+AC▪PE∵AB=AC∴AC▪BF=AC▪(PD+PE)∴BF=PD+PE(1)【变式】如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.(2)【迁移】如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.(3)【拓展】若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能参考答案与试题解析一.选择题(共8小题)1.下列图案中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案不是轴对称图形,此选项不符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案是轴对称图形,符合题意;D、此图案不是轴对称图形,不符合题意;故选:C.2.16的平方根是()A.4 B.±4 C.D.±【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选:B.3.如图,在数轴上,与表示的点最接近的点是()A.点A B.点B C.点C D.点D 【分析】依据被开方数越大,对应的算术平方根越大进行比较即可.【解答】解:∵12=1,22=4,∴12<3<22,∴1<<2.∴与表示的点最接近的点是D.故选:D.4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC=1,AC=2,AB=C.BC:AC:AB=3:4:5 D.∠A:∠B:∠C=3:4:5 【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【解答】解:A、∵12+()2=22,∴△ABC是直角三角形,故本选项不符合题意;B、∵12+22=()2,∴△ABC是直角三角形,故本选项不符合题意;C、∵32+42=52,∴△ABC是直角三角形,故本选项不符合题意;D、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴∠A=45°,∠5=60°,∠C=75°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.5.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【分析】根据SAS证明△AOB≌△A′OB′(SAS)即可;【解答】解:∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准,∴判定△OAB≌△OA′B′的理由是SAS.故选:A.6.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解答】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC 上,则∠EAN=()A.58°B.32°C.36°D.34°【分析】先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC ﹣(∠BAE+∠CAN)解答即可.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣∠BAD.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=50°,又∵∠AEC=90°,∴∠ACB=∠ACB'=40°,故选:A.二.填空题(共10小题)9.比较大小:> 2.【分析】首先分别求出、2的立方的值各是多少;然后根据实数大小比较的方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出、2的立方的大小关系,即可推得、2的大小关系.【解答】解:=9,23=8,∵9>8,∴>2.故答案为:>.10.下列五个数,2π,,,3.1415926中,是无理数的有2π,.【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有2π,,故答案为:2π,.11.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为 2.5×105.【分析】根据四舍五入,可得精确到万位的数,根据科学记数法表示的方法,可得答案.【解答】解:将249900精确到万位,并用科学记数法表示为2.5×105,故答案为:2.5×105.12.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD= 4 .【分析】证明△ADB≌△ADC,根据全等三角形的性质得到BD=CD=BC=3,∠ADB=∠ADC=90°,根据勾股定理计算.【解答】解:在△ADB和△ADC中,,∴△ADB≌△ADC(AAS)∴BD=CD=BC=3,∠ADB=∠ADC=90°,由勾股定理得,AD==4,故答案为;4.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一)..(只需填一个即可)【分析】要判定△ABC≌△FDE,已知AC=FE,AB=DF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB 于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为 2 .【分析】作DP′⊥AB于P′,根据垂线段最短得到此时PD最小,根据角平分线的性质解答.【解答】解:如图,作DP′⊥AB于P′,则此时PD=P′D最小,由尺规作图可知,AD平分∠CAB,又∠C=90°,DP′⊥AB,∴DP′=CD=2,∴PD的最小值为2,故答案为:2.15.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为9 .【分析】先根据角平分线的性质和平行线判断出OM=BM、ON=CN,也就得到三角形的周长就等于AB与AC的长度之和.【解答】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.16.如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为 2 .【分析】由勾股定理的AE==8,证明△AEB≌△FBC(AAS),得出BF=AE =8,即可得出EF=BE﹣BF=10﹣8=2.【解答】解:∵∠ABC=90°,AD∥BC,∴∠A=180°﹣∠ABC=90°,∴∠AEB=∠FBC,∵BE=BC=10,∴AE===8,∵CF⊥BE,∴∠A=∠BFC=90°,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE=8,∴EF=BE﹣BF=10﹣8=2;故答案为:2.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC =4,则这两块直角三角板顶点A、A′之间的距离等于 2 .【分析】连接AA',由旋转的性质可得CM=C'M=2,AM=A'M=2,可证△AMA'是等边三角形,即可求AA'的长.【解答】解:如图,连接AA',∵点M是AC中点,∴AM=CM=AC=2,∵旋转,∴CM=C'M,AM=A'M∴A'M=MC=AM=2,∴∠C'A'B'=∠A'CM=30°∴∠AMA'=∠C'A'B'+∠MCA'=60°,且AM=A'M∴△AMA'是等边三角形∴A'A=AM=2故答案为:218.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为40或20 °.【分析】先根据三角形外角性质,得出∠ADC=60°,则设∠C=∠EDC=α,进而得到∠ADE=60°﹣α,∠AED=2α,∠DAE=120°﹣α,最后根据△ADE为等腰三角形,进行分类讨论即可.【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故答案为:20或40.三.解答题(共8小题)19.求下列各式中的x的值:(1)4x2=9;(2)(x+1)3=﹣27.【分析】(1)将x的系数化为1,然后两边同时直接开平方求解;(2)方程两边同时开立方即可求解.【解答】解:(1)∵x2=,∴x=±;(2)∵(x+1)3=﹣27,∴x+1=﹣3,x=﹣4.20.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.【分析】只要证明△DBE≌△CEF(SAS),可得∠BDE=∠CEF,由∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,推出∠ABC=∠DEF即可解决问题;【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,∴∠ABC=∠DEF,∴∠ABC=∠ACB=∠DEF.22.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】证明:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.23.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.【分析】(1)作线段AC的中垂线,其与BC的交点即为所求;(2)设BP=x,则PA=CP=8﹣x,根据AB2+BP2=AP2求解可得.【解答】解:(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.24.如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.(1)求证:∠EBD=∠EDB.(2)若∠BED=120°,试判断△BDC的形状.【分析】(1)根据直角三角形的性质解答即可;(2)根据等边三角形的性质和判定、以及线段平分线的性质解答即可.【解答】证明:(1)在Rt△ABC中,∠ABC=90°,∵E是AC的中点,∴BE=EC=AC,同理可得:DE=EC=AC,∴BE=DE,∴∠EBD=∠EDB,(2)△DBC为等边三角形,∵BE=DE,∴点E在BD的中垂线上,∵AB=AD,∴点A在BD的中垂线上,∴AE垂直平分DB,∴BC=DC,在△DEB中,DE=BE,∵AE垂直平分BD,∴∠AEB=∠BED=60°,∴∠DBE=90°﹣∠BED=30°,∵BE=EC,∴∠EBC=∠ECB=30°,∴∠DBC=60°,∴△DBC为等边三角形.25.(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACGF.求证S△AEF=S△ABC.(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.【分析】(1)作辅助线,证明△AMC≌△ANF(AAS),得CM=FN根据三角形面积公式可得结论;(2)同理得:S△AEF=S△ABC=S△BDI=S△CHG,设BO=x,则CO=4﹣x,根据勾股定理列方程得:17﹣x2=25﹣(4﹣x)2,解得:x=1,根据面积和可得S六边形DEFGHI.【解答】证明:(1)如图①,过点C作CM⊥AB,过F作FN⊥EA与EA的延长线交于点N,∴∠CMA=∠ANF=90°,∵四边形ABDE和四边形ACGF是正方形,∴AB=AE,AC=AF,∠BAE=∠CAF=90°,∴∠CAM+∠CAN=∠FAN+∠CAN=90°,∴∠CAM=∠FAN,在△AMC和△ANF中,∵,∴△AMC≌△ANF(AAS),∴CM=FN,∴AE•FN=,∴S△AEF=S△ABC.(2)由上题结论得:S△AEF=S△ABC=S△BDI=S△CHG,由题意得:AB=,AC=5,BC=4,过点O作AO⊥BC,设BO=x,则CO=4﹣x,在Rt△ABO和Rt△ACO中,AO2=AB2﹣BO2=AC2﹣CO2,即17﹣x2=25﹣(4﹣x)2,解得:x=1,∴AO=4,S六边形DEFGHI=S正方形ABDE+S正方形BCHI+S正方形ACGF+S△AEF+S△BDI+S△CHG+S△ABC,=17+25+16+4××4×4,=90.26.“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:∵S△ABC=S△ABP+S△ACP∴AC▪BF=AB▪PD+AC▪PE∵AB=AC∴AC▪BF=AC▪(PD+PE)∴BF=PD+PE(1)【变式】如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.(2)【迁移】如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.(3)【拓展】若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能【分析】(1)如图②,连接AP,根据三角形的面积公式列方程即可得到结论;(2)如图③,过A作AH⊥BC于H,连接PA,PB,PC,根据三角形的面积公式列方程得到AH=PD+PE+PF=7,根据等腰三角形的性质得到CH=BC=AC,根据勾股定理即可得到结论;(3)如图④,设等边△ABC的高为h,点P到△ABC的三边的距离为h1=2,h2=3,h3=6,分三种情况讨论即可得到结论.【解答】解:(1)BF=PD﹣PE,如图②,连接AP,∵S△ABC=S△ABP﹣S△ACP,∴AC•BF=AB•PD﹣AC•PE,∵AB=AC,∴BF=PD﹣PE;(2)如图③,过A作AH⊥BC于H,连接PA,PB,PC,∵S△ABC=S△ABP+S△ACP+S△BCP,AH•BC=PD•AB+PF•AC+PE•BC,∵△ABC是等边三角形,∴AB=AC=BC,∴AH=PD+PE+PF=7,∵AB=AC,AH⊥BC,∴CH=BC=AC,在Rt△AHC中,∠AHC=90°,∴AH2+CH2=AC2,∴AH=AC,∴AC=7,∴AC==;(3)如图④,设等边△ABC的高为h,点P到△ABC的三边的距离为h1=2,h2=3,h3=6,如图,当P在i区域时,h=h1+h2+h3=2+3+6=11;当P在ii区域时,h=h1+h3﹣h2=2+6﹣3=5,或h=h2+h3﹣h1=3+6﹣2=7,当P在iii区域时,h=h3﹣h2﹣h1=1,综上所述,等边△ABC的高的所有可能的值为11,7,5,1.。
2019-2020学年湖南省长沙市名校八年级(上)期中质量检测数学试题含答案
![2019-2020学年湖南省长沙市名校八年级(上)期中质量检测数学试题含答案](https://img.taocdn.com/s3/m/02b26a8858fb770bf68a55ac.png)
2019-2020学年湖南省长沙市名校八年级(上)期中质量检测数学试卷一、选择题(每小题3分,共45分,)1.下列图形中是轴对称图形的是()A B C D2.下列说法正确的是( )A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线3.若一个三角形的一边长为3cm,则它的周长可能为( ) A.4cm B.5cm C.6cm D.8cm4.如图,把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125°B.120°C.140°D.130°5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSS B.SASC.AAS D.ASA6.若正n边形的每个内角都是120°,则n的值是( ) A.3 B.4 C.6 D.87.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )A.5 B.5或6 C.5或7 D.5或6或78.已知等腰三角形的一个角的度数是50°,那么它的其它两个角的度数是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.60°,70°或30°,100°9.一个多边形的内角和是外角和的3倍,则这个多边形是( )A.六边形B.七边形C.八边形D.九边形10.已知点M(a,3),B(2,b)关于x轴对称,则a+b的值( )A.﹣5 B.5 C.﹣1 D.111.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于( )A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm 12.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B.AM=CNC.AB=CD D.AM∥CN13.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形14.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )A.1个B.2个C.3个D.4个15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.3 B.4 C.6 D.5二、填空题(每小题3分,满分30分)16.如图所示,观察规律并填空:__________.17.如图,用直尺和圆规作一个角等于已知角,能得出的依据是__________.18.在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=__________.19.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.20.如图,在△ABC中,AC的垂直平分线交AC于E,交BC 于D,△ABD的周长为20cm,AE=5cm,则△ABC的周长是__________cm.21.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,3)重合,那么A,B两点之间的距离等于__________.22.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x=__________.23.已知△ABC的三边长分别为a,b,c,化简:|a﹣b+c|﹣|a﹣b﹣c|=__________.24.如图,已知∠1=∠2,请你添上一个条件:__________,使△ABC≌△ADC.25.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于__________.三、(本大题共6小题,共45分)26.已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF,AB=CD.求证:CE∥DF.27.如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是__________.(2)添加条件后,请说明△ABC≌△ADE的理由.28.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.29.如图,在△ABC中,AB=AC,点D、E分别是AB、AC的中点,点F是BE、CD的交点,求证:BF=CF.30.如图△ABC,AD平分∠BAC,AD⊥CD垂足为D,DE∥AB 交AC于点E,求证:AE=CE.31.已知:如图1,△ABC和△EDC都是等边三角形,点D、E分别在BC、AC上.(1)填空:∠AED=__________=__________度.(2)求证:AD=BE.(3)如图将图1中的△EDC沿BC所在直线翻折(如图2所示),其它条件不变,(2)中结论是否还成立?请说明理由.参考答案一、选择题(本大题共15小题,每小题3分,共45分,请将你认为正确的答案前面的代号填入每题序号前的括号内)1.故选B2.故选B.3.故选:D.4.故选D.5.故选D.6.故选:C7.故选:D.8.故选C.9.故选C.10.C.11.故选:C.12.故选:B.13.故选D.14.D.15.A.二、填空题(共10小题,每小题3分,满分30分)16..17.SSS.18.8cm或2cm.19.360°.20.30cm.21.6.22.3.23.2a﹣2b.24.∠B=∠D或∠ACB=∠ACD或AB=AD(答案不唯一),25.10°.三、(本大题共6小题,共45分)26.【解答】证明:∵AE∥BF,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,∴AC=BD,在△AEC和△BFD中,,∴△AEC≌△BFD(SAS),∴∠ECA=∠D,∴CE∥DF.27.【解答】解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).28.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.29.【解答】证明:∵AB=AC,点D、E分别是AB、AC的中点.∴∠DBC=∠ECB,DB=EC,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS),∴∠DCB=∠EBC,∴BF=CF.30.【解答】解:∵AD是∠BAC的平分线,∴∠BAD=∠DAC,∵DE∥AB,∴∠ADE=∠BAD,∴∠EAD=∠EDA,∴AE=DE,∵AD⊥CD,∴∠CAD+∠ACD=90°,∠ADE+∠EDC=90°,∵∠EDA=∠EAD,∴∠EDC=∠ACD,∴DE=CE,∴AE=CE.31.【解答】解:(1)∵△EDC都是等边三角形,∴∠CED=∠CDE=60°,∴∠AED=∠BDE=120°(2)证明:∵△ABC和△EDC都是等边三角形,∴AC=BC,EC=DC.∴AC﹣EC=BC﹣DC,即AE=BD.在△AED和△BDE中,,∴△AED≌△BDE(SAS).∴AD=BE.(3)AD=BE仍成立;理由如下:∵△ABC和△CDE都是等边三角形,∴AC=BC,EC=DC,∠ACD=∠BCE=60°.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.。
2019-2020学年湘教版初二数学上册期中数学试题及答案
![2019-2020学年湘教版初二数学上册期中数学试题及答案](https://img.taocdn.com/s3/m/558c01addaef5ef7ba0d3cb8.png)
2019-2020学年八年级数学上册期中试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,属于轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.a6÷a3=a2B.a3•a3=a9C.a3•(﹣a)2=a5D.(2a3)3=8a273.(3分)在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1)B.(﹣3,1)C.(3,﹣1)D.(﹣3,﹣1)4.(3分)已知等腰三角形的两边长分别是4和6,则它的周长是()A.14B.16C.18D.14或165.(3分)下列式子从左到右变形是因式分解的是()A.(x+2)2=x2+4x+4B.10x2y3=3x2y•5y2C.x2﹣4x+1=x(x﹣4)+1D.y3﹣y=y(y+1)(y﹣1)6.(3分)如图,在△ABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC长为12cm,BE长为8cm,则EC的长为()A.8cm B.6cm C.4cm D.2cm7.(3分)若(x+2)(x﹣a)中不含x项,那么a的值为()A.0B.2C.﹣2D.48.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)如图,将一个长方形纸片ABCD沿着EF折叠,使C,D两点分别落在点C′,D′处,若∠BFE=70°,则∠AED′的度数为()A.70°B.40°C.30°D.20°10.(3分)如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.211.(3分)如图,△ABC和△CDE均为等边三角形,点A,D,E在同一直线上,连接BE,若∠CAE=25°,则∠EBC的度数是()A.35°B.30°C.25°D.20°12.(3分)如图所示,在平面直角坐标系中A(0,0),B(4,0),△AP1B是直角三角形,且∠P1=90°,∠P1BA=30°,P1到x轴的距离为,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D.依此类推,则旋转2017次后,得到的直角三角形的直角顶点P2018的坐标为()A.(8017,)B.(8017,)C.(8069,)D.(8069,)二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:x2y﹣4y=.14.(3分)计算:(﹣0.25)2019×42018=.15.(3分)若x2+mx+9是关于x的完全平方式,则m=.16.(3分)如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,AC=2,则BE的长为.17.(3分)如图,在△ABC中,∠C=50°,BD为AC边上的高,E是BC上一点,且BD =BE,则∠BED的度数为.18.(3分)如图,在等腰直角△ABC中,∠ACB=90°,∠ABC的角平分线BE与∠BAC 外角平分线AD交于点F,分别交AC和BC的延长线于点E,D,过点F作FH⊥AD交于AC的延长线于点H,交BC的延长线于点G,则下列结论:①∠AFB=45°;②FE =FG;③△DFH为等腰直角三角形;④BD=AH+BE.其中正确的结论有.三、解答题(本大题共8道题,共66分)19.(8分)计算:(1)y(2x﹣y)﹣(x+y)2(2)(﹣2a2)3+2a2•a4﹣a8÷a220.(6分)先化简,再求值[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷2y,其中x=2,y=(x﹣3)021.(7分)如图,在平面直角坐标系中有三个点A(2,3),B(1,1),C(4,2).(1)连接A、B、C三点,请在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标并求CC1的长度;(3)求△ABC的面积.22.(8分)如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使DB=DE.(1)求∠BDE的度数;(2)求证:△CED为等腰三角形.23.(8分)如图,有三种卡片,其中边长为a的正方形卡片有一张,边长分别为a,b的长方形卡片4张,边长为b的正方形卡片4张,用这9张卡片拼成一个大正方形.(1)求这个正方形的边长(用含a,b的式子表示);(2)已知拼成的大正方形边长为5,ab=3,求a2+4b2的值.24.(9分)如图,直线MN一侧有一等腰Rt△ABC,其中∠ACB=90°,CA=CB,直线MN过顶点C,分别过点A,B作AE⊥MN,BF⊥MN,垂直分别为点EF,∠CAB的角平分AG交BC于点O,交MN于点G,连接BG,满足AG⊥BG,延长AC,BG交于点D.(1)证明:CE=BF;(2)求证:AC+CO=AB;(3)若BG=2,求线段AO的长度.25.(10分)阅读材料:如果一个数的平方等于﹣1,记为记i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i:(3+i)i=3i+i2=3i﹣1.②若他们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:i3=,i4=;(2)求(2+i)2的共轭复数;(3)已知(a+i)(b+i)=1+3i,求a2+b2(i2+i3+i4…+i2018)的值.26.(10分)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO,AB边上的动点,点P,点Q同时从点A出发,若P以个单位每秒的速度从点A向点O运动,点Q以2个单位每秒的速度从点A向点B运动,设运动时间为t.(1)如图1,已知点A的坐标为(a,b),且满足(a﹣3)2+|a﹣b|=0,求A点坐标;(2)如图1,连接BP,OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形?若能,试求:①运动时间t;②此时四边形APDQ的面积;若不能,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:A、a6÷a3=a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、a3•(﹣a)2=a5,正确;D、(2a3)3=8a9,故此选项错误;故选:C.3.【解答】解:点P(3,1)关于x轴对称点的坐标是(3,﹣1).故选:C.4.【解答】解:(1)当4是腰时,符合三角形的三边关系,周长=4+4+5=14;(2)当6是腰时,符合三角形的三边关系,周长=4+6+6=16.故选:D.5.【解答】解:A、(x+2)2=x2+4x+4,从左到右变形是整式的乘法运算,故此选项错误;B、10x2y3=3x2y•5y2,10x2y3,不是多项式,故左到右变形不是因式分解,故此选项错误;C、x2﹣4x+1=x(x﹣4)+1,不符合因式分解的定义,故此选项错误;D、y3﹣y=y(y+1)(y﹣1),从左到右是因式分解,符合题意.故选:D.6.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵AC=12cm,BE=8cm,∴EC=AC﹣AE=AC﹣BE=12﹣8=4cm,故选:C.7.【解答】解:(x+2)(x﹣a)=x2+2x﹣ax﹣2a=x2+(2﹣a)x﹣2a,由题意得,2﹣a=0,解得,a=2,故选:B.8.【解答】解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.【解答】解:∵AD∥BC,∴∠DEF=∠BFE=70°,由折叠可得,∠DED'=2∠DEF=140°,∴∠AED'=180°﹣140°=40°,故选:B.10.【解答】解:∵EF垂直平分AB,∴A、B关于EF对称,设AC交EF于点D,∴当P和D重合时,BP+CP的值最小,最小值等于AC的长,∴BP+CP的最小值=6.故选:B.11.【解答】解:∵△ABC和△CDE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD,∵∠CAD=25°,故选:C.12.【解答】解:由题意P1(1,),P2(7,﹣),P3(9,),P4(15,﹣),…P2018[7+8×(1009﹣1),﹣],即P20018(8071,﹣).故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)13.【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).14.【解答】解:(﹣0.25)2019×42018=(﹣0.25)2018×42018×(﹣0.25)=(﹣0.25×4)2018×(﹣0.25)=﹣0.25.故答案为:﹣0.25.15.【解答】解:根据完全平方公式,得()2=9,解得m=±6,故答案为:±6.16.【解答】解:∵DE垂直平分AB,∴EA=EB,∴∠EAB=∠B=15°,∴∠AEC=15°+15°=30°,在Rt△AEC中,∠AEC=30°,∴AE=2AC=4,∴BE=4,故答案为:4.17.【解答】解:∵BD⊥AC,∴∠CBC=90°﹣∠C=40°,∵BD=BE,∴∠BDE=∠BED=(180°﹣40°)=70°,故答案为70°.18.【解答】解:∵BE是∠ABC的角平分线,AD是∠BAC外角平分线,∴∠AFB=∠ACB=45°,故①正确;∵FH⊥AD,∴∠AFB=∠BFG=45°,又∵FB=FB,∠ABF=∠FBG,∴△F AB≌△FGB,∴FG=F A.又可利用角的计算知∠F AE=∠FEA=67.5°,∴F A=FE,∴FE=FG,故②正确;∵∠DFG=∠HF A=90°,FG=F A,易证∠FGD=∠F AH,∴△DFG≌△HF A,∴DF=FH,∴△DFH为等腰直角三角形,故③正确;由△DFG≌△HF A可得DG=AH,由△F AB≌△FGB可得BG=AB,∵BD=DG+GB,BD=AH+AB,故④错误.故答案为:①②③.三、解答题(本大题共8道题,共66分)19.【解答】解:(1)y(2x﹣y)﹣(x+y)2=2xy﹣y2﹣x2﹣y2﹣2xy=﹣2y2﹣x2;(2)(﹣2a2)3+2a2•a4﹣a8÷a2=﹣8a6+2a6﹣a6=﹣7a6.20.【解答】解:原式=(4x2﹣y2﹣4x2+12xy﹣9y2)÷2y=(﹣10y2+12xy)÷2y=﹣5y+6x,当x=﹣2,y=(x﹣3)0=1时,原式=﹣5﹣12=﹣17.21.【解答】解:(1)如图所示:△A1B1C1即为所求,(2)点C1的坐标为(﹣4,2),CC1的长度=8;(3)△ABC的面积=.22.【解答】解:(1)∵DB=DE,∴∠E=∠DBE,∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,∵△ABC是等边三角形,BD是高,∴∠DBC=30°,∴∠E=∠DBE=30°,∴∠BDE=120°;(2)∵∠ACB=60°,∠E=30°,∴∠CDE=∠ACB﹣∠E=30°,∴∠CDE=∠E,∴CD=CE,∴△CED是等腰三角形.23.【解答】解:(1)根据题意得:a2+4ab+4b2=(a+2b)2,则这个正方形的边长为a+2b;(2)由(1)得:a+2b=5,∴a2+4ab+4b2=(a+2b)2=52=25∵ab=3,∴a2+4b2=(a2+4ab+4b2)﹣4ab=25﹣4×3=25﹣12=13 24.【解答】(1)证明:∵AE⊥MN,BF⊥MN,∠ACB=90°∴∠AEC=∠CFB=∠ABC=90°,∴∠EAC+∠ACE=90°,∠ACE+∠BCF=90°,∴∠EAC=∠BCF,∵AC=BC,∴△AEC≌△CFB(AAS),∴CE=BF.(2)证明:如图1中,作OK⊥AB于K.∵AC=BC,∠ACB=90°,∴∠CBA=45°,∵OK⊥AB,∴∠OKB=90°,∴∠KOB=∠KBO=45°,∴OK=BK,∵∠OAC=∠OAK,∠ACO=∠AKO=90°,∵AO=AO,∴△ACO≌△AKO(AAS),∴AC=AK,CO=OK,∴OC=OK=BK,∴AB=AK+BK=AC+CO.(3)解:如图2中,在GA上取一点L,使得GL=GB,连接BL.∵GL=GB=2,∴BL=2,∠GBL=∠GLB=45°,∵∠LAB=∠DAB=22.5°,∠GLB=∠LAB+∠LBA,∴∠LAB=∠LBA=22.5°,∴AL=BL=2,∴AG=2+2,∵∠GBO=∠GAB=22.5°,∠BGO=∠AGB,∴△GBO∽△GAB,∴=,∴GO==2﹣2,∴AO=AG﹣OG=2+2﹣(2﹣2)=4.25.【解答】解:(1)∵i2=﹣1,∴i3=i2•i=﹣1•i=﹣i,i4=i2•i2=﹣1•(﹣1)=1;(2)(2+i)2=i2+4i+4=﹣1+4i+4=3+4i,故(2+i)2的共轭复数是3﹣4i;(3)∵(a+i)(b+i)=ab﹣1+(a+b)i=1+3i,∴ab﹣1=1,a+b=3,解得a=1,b=2或a=2,b=1,当a=1,b=2时,a2+b2(i2+i3+i4…+i2018)=1+4(﹣1﹣i+1+i…+1+i﹣1)=﹣3;当a=2,b=1时,a2+b2(i2+i3+i4…+i2018)=4+1(﹣1﹣i+1+i…+1+i﹣1)=3.故a2+b2(i2+i3+i4…+i2018)的值为﹣3或3.故答案为:﹣i,1.26.【解答】解:(1)∵(a﹣3)2+|a﹣b|=0,∴a=3,b=3∴点A(3,3)(2)∵△AOB是等边三角形,点A(3,3)∴AO=BO=AB=6,∠AOB=∠ABO=60°=∠A,∵∠OCP=60°=∠AOB,∴∠AOB=∠QOB+∠AOQ=∠QOB+∠PBO=∠POC,∴∠AOQ=∠PBO,且AO=BO,∠A=∠AOB,∴△AOQ≌△OBP(ASA)∴OP=AQ,∴6﹣t=2t∴t=∴当t=时,∠OCP=60°;(3)如图,过点D作PF⊥AO,DE⊥AB,连接AD,∵△ABO是等边三角形,D是OB中点,点A(3,3)∴OD=BD=3,∠AOB=∠ABO=60°,AD=3又∵∠DFO=∠DEB=90°,∴△ODF≌△BDE(AAS)∴OF=BE,DF=DE,∵AO=AB,∴AO﹣OF=AB﹣BE∴AF=AE,∵DF=DE,PD=DQ,∴Rt△DFP≌Rt△DEQ(HL)∴PF=EQ,∵OD=3,∠AOD=60°,∠DFO=90°,∴∠ODF=30°∴OF=,DF=OF=∴AF=AO﹣OF==AE,BE=OF=∵AP+AQ=AP+AE+EQ=AP+PF+AE=AF=AE=2AF∴t+2t=9∴t=∴当t=时,D,P,Q三点是能构成使∠PDQ=120°的等腰三角形,∵Rt△DFP≌Rt△DEQ,∴S△DFP=S△DEQ,∴S四边形APDQ=S四边形AFDQ=S△AOB﹣2S△OFD=﹣2×=。
2019-2020学年八年级数学上学期期中原创卷A卷(湖南)(全解全析)
![2019-2020学年八年级数学上学期期中原创卷A卷(湖南)(全解全析)](https://img.taocdn.com/s3/m/3c1bf92655270722192ef755.png)
=
x 1 x2
x2 (x 1)2
1 x 1
,(3
分)
由 x–2≠0 且(x–1)2≠0 可得 x≠2 且 x≠1,所以 x=0,
当 x 0 时,原式 1 .(6 分)
21.【解析】(1)去分母得:1-x-x-3=-x+2,
解得:x=-4,
经检验 x=-4 是分式方程的解.(4 分)
27
14.【答案】
4
【解析】原式=
x12n
4x
6n=
1 4
x 6n,∵
x2n
3 ,∴原式
1 4
3
3=
27 4
,故答案为:
27 4
.
15.【答案】66
【解析】∵AD⊥BC,∠BAD=42°,∴∠ABD=90°–42°=48°.
1
∵BE 是△ABC 的内角平分线,∴∠ABF= ∠ABD=24°,
19.【解析】(1) 14 16 ( 1 )2 | 3|3 2
1 4 1 33 4
116 27
10 .(3 分)
(2) (x 1)2 25 ,
x 1 5 或 x 1 5 ,
解得 x16 或 x2=–4.(6 分)
20.【解析】原式 ( 2x 3 x 2) (x 1)2 x2 x2 x2
D 不正确;理由如下:要使 AM=CM,则必须使∠DAC=45°,由已知条件知∠DAC 的度数为大于 0°小
于 60°均可,∴AM=CM 不成立,故选 D.
13.【答案】0
【解析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,那么一个数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市宁乡县2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共9小题,共27.0分)1.在下列四个交通标志图中,是轴对称图形的是()A. B. C. D.2.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A. 2cmB. 3cmC. 8cmD. 15cm3.在Rt△ABC中,∠C=90°,∠B=30°,直角边AC的长为2 cm,则斜边AB长为()a=1 B. 1a=1 C. 4a=1 D. 2a=1A. 124.一个多边形的外角和是内角和的一半,则它是()边形.A. 7B. 6C. 5D. 45.已知等腰三角形的顶角是50°,则它的底角是()A. 50°B. 65°C. 75°D. 80°6.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A. BC=AD,∠ABC=∠BADB. BC=AD,AC=BDC. AC=BD,∠CAB=∠DBAD. BC=AD,∠CAB=∠DBA7.如图,若△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE=()A. 7B. 8C. 9D.108.如图,在三角形纸片ABC中,AB=9cm,BC=8cm,AC=5cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△ADE的周长为()A. 5cmB. 6cmC. 9cmD. 12cm9.等腰三角形的周长为14,且边长为整数,则腰与底边分别为()A. 3和8B. 4和6C. 6和2D. 4和6或者6和2二、填空题(本大题共9小题,共27.0分)10.如图,木工师傅做好一门框后钉上木条AB、CD,使门框不变形,这种做法的数学原理是.11.计算:a5⋅a3⋅a=______ .12.已知A(1,−2)与点B关于y轴对称.则点B的坐标是______ .13.12.如图,∠ACD是△ABC的外角,若∠B=50°,∠ACD=120°,则∠A=_________14.若正多边形的一个外角是60°,则这个正多边形的内角和是______.15.如图,已知AB//CD,∠A=49°,∠C=27°,则∠E的度数为______.16.如图,AB=DC,请补充一个条件______ ,使△BAD≌△DCB.17.定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么这个“特征角”α的度数为_______.18.若∠BAC=30°,AP平分∠BAC,PD//AC,且PD=6,PE⊥AC,则PE=______.三、解答题(本大题共8小题,共66.0分)19.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.20.如图,点D,C在BF上,AB//EF,∠A=∠E,BD=CF.求证:AB=EF.21.已知:如图,△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E、F.求证:EB=FC.22.尺规作图:如图,有两条公路l,m和两个村庄A,B,现要建一座信号发射塔,使它到两条公路l,m和两个村庄A,B的距离都相等.(保留作图痕迹)23.已知:在△ABC中,AB=AC,D在AB上,DE//AC.求证:DB=DE.24.如图,在平面直角坐标系xOy中,A(2,4),B(1,1),C(3,2).(1)求出△ABC的面积;(2)作出△ABC关于y轴对称的△A1B1C1.25.在△ABC中,∠BAC的角平分线与BC的垂直平分线相交于D点,DN⊥AC,DM⊥AB,求证:BM=CN.26.如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC边于点F,AG平分∠BAC交CD于点G,求证:BF=AG.-------- 答案与解析 --------1.答案:B解析:本题主要考查了轴对称图形的定义.根据轴对称图形的定义进行解答即可.解:A.不是轴对称图形,故A错误;B.是轴对称图形,故B正确;C.不是轴对称图形,故C错误;D.不是轴对称图形,故D错误;故选B.2.答案:C解析:本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.解:∵5+8=13,8−5=3,∴根据三角形三边关系,第三条边应在3cm∼13cm之间(不包含3和13).故选C.3.答案:C解析:本题考查了含30°角的直角三角形的性质,属于基础题.根据直角三角形的性质得出AB=2AC,从而得出AB的长即可.解:∵△ABC为直角三角形,∠B=30°,∠C=90°,∴AB=2AC,∵AC=2cm,∴AB=4cm.故选C.4.答案:B解析:多边形的外角和是360度,多边形的外角和是内角和的一半,则多边形的内角和是720度,根据多边形的内角和可以表示成(n−2)⋅180°,依此列方程可求解.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.解:设多边形边数为n.则360°×2=(n−2)⋅180°,解得n=6.故选B.5.答案:B解析:本题考查三角形内角和定理和等腰三角形的性质的运用,解答此题由顶角为50°,可得两底角的和为180°−50°=130°,然后根据两底角相等,可得一个底角的度数.解:∵等腰三角形的一个顶角为50°∴底角=(180°−50°)÷2=65°.故选B.6.答案:D解析:解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.答案:C解析:证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD是∠ABC的平分线,∴AD=CD=12AC,∠DBC=12∠ABC=30°,∵CE=CD,∴CE=12AC=3∴BE=BC+CE=6+3=9.故选C.因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,BD是∠ABC的平分线,则∠DBC=30°,AD=CD=12AC,再由题中条件CE=CD,即可求得BE.本题考查了等腰三角形的性质及等边三角形的性质,考查了学生综合运用数学知识的能力,得到AD=CD=12AC是正确解答本题的关键.8.答案:B解析:本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=9cm,BC=8cm,∴AE=AB−BE=AB−BC=9−8=1cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+1,=6cm.故选B.9.答案:D解析:此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.设腰长为x,则底边为14−2x,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.解:设腰长为x,则底边为14−2x,∵14−2x−x<x<14−2x+x,∴3.5<x<7,∵三边长均为整数,∴x可取的值为:4或5或6,∴当腰长为4时,底边为6;当腰长为5时,底边为4,当腰长为6时,底边为2;综上所述,以上三种情况都有可能.故选D.10.答案:三角形的稳定性解析:本题考查三角形稳定性的实际应用,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,这种做法根据的是三角形的稳定性.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.解:由题图知,构造出的是三角形,结合实际情况可知用到了三角形的稳定性.故答案为:三角形的稳定性.11.答案:a9解析:解:原式=a5+3+1=a9故答案为:a9.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.12.答案:(−1,−2)解析:解:∵A(1,−2)与点B关于y轴对称,∴点B的坐标是(−1,−2).故答案为:(−1,−2).根据“关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变”解答即可.本题考查了关于x轴、y轴对称的点的坐标,(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).13.答案:70°解析:根据三角形的外角的性质计算.【详解】解:由三角形的外角的性质可知,∠A=∠ACD−∠B=70°,故答案为:70°.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.14.答案:720°解析:解答本题的关键是求出该正多边形的边数与熟记多边形的内角和公式.根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6−2)×180°=720°.故答案为:720°.15.答案:22°解析:解:∵AB//CD,∴∠DFE=∠A=49°,又∵∠C=27°,∴∠E=49°−27°=22°,故答案为22°.根据AB//CD,求出∠DFE=49°,再根据三角形外角的定义性质求出∠E的度数.本题考查了平行线的性质、三角形的外角的性质,找到相应的平行线是解题的关键.16.答案:∠ABD=∠CDB(答案不唯一)解析:解:添加条件是∠ABD=∠CDB,理由是:在△BAD和△DCB中,{AB=DC∠ABD=∠CDB BD=DB,∴△BAD≌△DCB(SAS),故答案为:∠ABD=∠CDB(答案不唯一).添加条件是∠ABD=∠CDB,根据SAS推出即可.本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.答案:48°或96°或88°解析:本题考查了三角形内角和定理:三角形内角和是180°.会运用分类讨论的方法解决数学问题.当“特征角”为48°时,即α=48°;当β=48°时,利用新定义得到“特征角”α=96°;当第三个角为48°时,根据三角形内角和得到α+12α+48°=180°,解关于α的方程即可.解:当“特征角”为48°时,即α=48°;当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,即得α=88°,综上所述,这个“特征角”α的度数为48°或96°或88°.故答案为48°或96°或88°.18.答案:3解析:解:过P作PF⊥AB于F,∵PD//AC,∴∠FDP=∠BAC=30°,∴在Rt△PDF中,PF=12PD=3,∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=3.故答案为:3.过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=30°,再根据30度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.本题考查了角平分线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.19.答案:解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,{AD=BC ∠A=∠B AF=BE,∴△ADF≌△BCE(SAS).解析:本题考查全等三角形的判定,解题的关键是求证AF=BE,根据全等三角形的判定即可求证:△ADF≌△BCE.20.答案:证明:∵AB//EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC与△EFD中{∠A=∠E ∠B=∠F BC=FD,∴△ABC≌△EFD(AAS),∴AB=EF.解析:利用AAS证明△ABC≌△EFD,再根据全等三角形的性质可得AB=EF;此题主要考查了全等三角形的判定与性质,解决问题的关键是证明△ABC≌△EFD.21.答案:证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中{DE=DFBD=CD∴Rt△BDE≌Rt△CDF(HL),∴EB=FC.解析:本题主要考查全等三角形的判定和性质,利用角平分线的性质得到DE=DF是解题的关键.由角平分线的性质可求得DE=DF,可证明Rt△BDE≌Rt△CDF,可求得BE=FC.22.答案:解:作直线m和l的夹角平分线,作AB的垂直平分线,两线的交点P就是所求.解析:到两条公路l,m的距离相等,则在两线的夹角的平分线上,到两个村庄A,B的距离都相等,则在线段AB的垂直平分线上,两线的交点就是所求的点.此题主要考查了:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.23.答案:证明:∵AB=AC,∴∠C=∠B,∵DE//AC,∴∠C=∠DEB,∴∠DEB=∠B,∴DB=DE.解析:本题考查了等腰三角形的判定与性质,平行线的性质.根据等边对等角得到∠B=∠C,根据平行线的性质得到∠C=∠DEB,从而得到∠B=∠DEB,根据等角对等边即可得证.24.答案:解:(1)S△ABC=2×3−12×1×3−12×1×2−1 2×1×2=52;(2)如图所示:△A1B1C1,即为所求.解析:(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)利用关于y轴对称点的性质得出对应点坐标,进而得出答案.此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.25.答案:证明:连接BD,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN.解析:本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键,根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.26.答案:证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∠BAC=45°,∴∠GAC=12又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠EAC=90°,∠EAC+∠ACG=90°,∴∠BAF=∠ACG,又∵AB=CA,∴△ABF≌△CAG(ASA),∴BF=AG解析:由等腰直角三角形的性质可得∠B=∠GAC=45°,AB=AC,由余角的性质可得∠BAF=∠ACG,可证△ABF≌△CAG,可得BF=AG.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练运用全等三角形的判定是本题的关键.。