§4.3.3 余角和补角 优质课评选教案
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
-重点二:余角、补角的性质掌握。学生需要熟练掌握互为余角、补角的两个角之间的数量关系,并能运用这些关系进行计算。
-举例:如果∠A和∠B互为余角,且∠A=40°,求∠B的度数。
-重点三:运用余角、补角解决实际问题。培养学生将余角、补角知识应用于实际问题的能力,如平面几何图形的角的求解等。
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的概念以及它们之间的数量关系。对于难点部分,比如两个角的和的关系,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角、补角相关的实际问题,如直角三角形中的角度关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过剪纸或使用量角器,学生可以直观地观察到余角和补角的形成。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和等于90°的两个角,补角是指两个角的和等于180°的两个角。它们在几何图形的求解和平面角度的计算中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。在一个等腰直角三角形中,底角的度数如何求解?通过余角的概念,我们可以轻松找到答案。
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的概念:两个角的和等于90°时,这两个角互为余角。
2.补角的概念:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为余角的两个角的和为90°;
四、教学流程
(一)导入新课(用时5分钟)
4.3.3余角和补角的教案.3.3余角和补角
4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。
2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。
3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。
学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。
通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。
在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。
并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。
因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。
同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。
21教学过程: 一、 谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。
4.3.3余角和补角 第一课时教学设计-人教版七年级上册 重庆市綦江区第四届初中数学优质课决赛
§4.3.3《余角和补角》教学设计指导思想与理论依据《数学课程标准》中指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程.认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式.学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.本节课以任务研究的方式展开,通过学生的积极思考、动手实践、合作交流等方式经历探究的全过程,体现了学生的主体性和教师的主导作用.培养了学生的思维能力和创新能力.通过层层深入的设计,紧密连接学生前面所学知识,充分体现了维果斯基的“最近发展区”理论.通过动手、观察、推理从而解决问题,完成对知识的自我建构.。
教学内容本单元属于《课程标准》中“图形与几何”的课程内容,是几何学中最基础的部分,也是后续学习相交线与平行线、三角形、四边形、圆等几何知识的基础。
本单元是训练学生掌握学习几何方法及几何表达的基础和关键,后续学习其他几何知识几乎都要用到本单元中的有关概念及图形语言和符号语言,所有图形研究中涉及的线段与线段、角与角、线段与角之间的基本关系也都与本单元内容紧密相关,因此本单元具有承前启后的作用,在几何学习中占有极其重要的基础性地位。
余角和补角是本章中两个比较重要的基本概念,主要是让学生通过数量关系和图形关系,学习两角互余,互补的概念,然后通过自主探索方式、推出余角和补角的性质,最终使学生运用上述性质来解决问题。
同时,通过对余角和补角的性质的学习,为今后证明角的相等提供一种依据和方法,也为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打下坚实的基础。
核心素养要求1、数学抽象:通过从具体实物中抽象出几何图形,发展数学抽象的素养。
2、直观想象、逻辑推理:通过探索余角和补角的性质,发展直观想象、逻辑推理的素养。
教学目标一、知识与技能在具体的现实情境中,理解余角、补角的概念,掌握余角和补角的性质.二、过程与方法通过余角和补角的学习过程,进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理。
人教版七年级数学上册4.3.3余角与补角教学设计
"将课堂知识运用到生活中,你会发现数学其实无处不在。请同学们找一找家里的剪刀、直角三角板等物品,测量并计算它们的角度关系,感受余角与补角的实际应用。"
3.小组合作,共同探讨以下问题:在几何图形中,如何利用余角与补角的性质解决角度问题?
(二)过程与方法
1.培养学生的观察能力,让学生在实际情境中发现余角与补角的存在,理解其概念。
2.培养学生的逻辑思维能力,让学生通过分析、归纳、总结余角与补角的性质,形成系统的知识体系。
3.培养学生的动手操作能力,让学生在实际操作中掌握余角与补角的计算方法,提高解决问题的能力。
4.培养学生的团队协作能力,让学生在小组合作中学会倾听、交流、互助,共同完成学习任务。
(二)讲授新知
1.教师详细讲解余角与补角的定义,并通过图示和实际例子加深学生理解。
“余角指的是两个角的和等于180度的两个角,而补角指的是两个角的和等于90度的两个角。请看这个图示,角A和角B就是一对余角,因为它们的和等于180度;角C和角D就是一对补角,因为它们的和等于90度。”
2.引导学生总结余角与补角的性质,如:同角(等角)的余角相等,同角(等角)的补角相等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生的学习积极性。
2.培养学生勇于探究、积极思考的学习态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生的空间观念,让学生认识到几何图形在实际生活中的应用,提高学生的应用意识。
4.培养学生遵守数学规则,严谨、踏实的科学态度,为学生今后的学习打下坚实基础。
“同学们,你们发现没有,如果一个图形中有两个角是余角或补角,它们之间有一些什么共同的特点呢?”
人教版数学七年级上册4.3.3《 余角和补角》教学设计
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。
本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。
但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。
因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。
三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。
四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。
2.教学难点:理解余角和补角的概念,能够运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。
2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。
六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。
例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。
4.3.3余角和补角的教案.3.3余角和补角
4.3.3余角和补角的教案.3.3余角和补角4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。
2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。
3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。
学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。
通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。
在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。
并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。
因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。
同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。
21教学过程:一、谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。
最新人教版七年级数学上册《余角和补角》优质教案
4.3.3 余角和补角一、新课导入1.导入课题:在5.12大地震中,都江堰大坝受到严重损害,需要修复加固.施工前要求先测量大坝的倾斜角(即图中的∠1),但坝底是由石块堆积而成,量角器无法伸入大坝底部测量,聪明的你有什么简单的方法吗?要解决这问题,我们先来学习4.3.3余角和补角(板书设计).2.三维目标:(1)知识与技能①在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.②了解方位角,能确定具体物体的方位.(2)过程与方法进一步提高学生的抽象概括能力,空间观念的认识和知识运用的能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.(3)情感态度体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步理解数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.3.学习重、难点:重点:余角、补角的意义和性质;方位角及其应用.难点:余角、补角及其性质的应用;画方位角确定物体的具体位置.二、分层学习1.自学指导:(1)自学范围:教材第137页例3之前的容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,弄清楚两个角互余,两个角互补的意义的性质,并能用几何语言描述它们.(4)自学参考提纲:①如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个的余角,用几何语言表示:如果∠α+∠β=90°,那么∠α与∠β互为余角,反过来也成立.②如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个的补角,用几何语言表示:如果∠α+∠β=180°,那么∠α与∠β互为补角,反过来也成立.③a.已知∠α是锐角,则∠α的余角可表示为90°-∠α,∠α的补角可表示为180°-∠α.若∠α的补角是它的3倍,则∠α=45°.b.仿①用几何语言说理的方式说明“等角的补角相等”.∠1与∠3互为补角,∠2与∠4互为补角,∠1=∠2,那么∠3=180°-∠1,∠4=180°-∠2,所以∠3=∠4,这说明∠1的补角与∠2的补角相等,即等角的补角相等.c.对于余角也有类似性质:同角(等角)的余角相等.④∠1与∠2、∠3都互为补角,那么∠2=180°-∠1,∠3=180°-∠1,所以∠2=∠3,这说明∠1的补角∠2、∠3相等,即同角的补角相等.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流、纠错.4.强化:(1)余角、补角的意义.(2)余角、补角的性质.(3)练习:①教材第138页练习第1题.互为余角:第1个角与第4个角,第2个角与第3个角.互为补角:第1个角与第8个角,第2个角与第7个角,第3个角与第6个角,第4个角与第5个角.②已知一个角是70°39′,则它的余角为19°21′,补角为109°21′.③学习以上知识,你能解决“导入课题”中的问题吗?你能想出哪些办法?测量其补角.1.自学指导:(1)自学内容:教材第137页例3和第138页例4.(2)自学时间:8分钟.(3)自学指导:认真阅读课文,体会如何用几何语言进行表述说理,结合图形,进一步理解余角、补角的概念.学会画方位图.(4)自学参考提纲:①例3中要找图中互余的角,就是要找和为90°度的两个角.a.因为点A、O、B在同一直线上,所以∠AOB=180°,即∠AOC+∠BOC=180°.b.又因为OD、OE分别平分∠AOC和∠BOC,所以∠COD=12∠AOC,∠COE=12∠BOC,所以∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°,所以∠COD与∠COE互为余角.c.因为∠AOD=∠COD,∠BOE=∠COE,所以互为余角的角还有∠AOD和∠COE,∠COD和∠BOE,∠AOD和∠BOE.d.观察本例的图形,除了∠AOC与∠BOC互补外,还有哪些角互为补角?∠AOD和∠DOB∠AOE和∠EOB②a.在课本上完成例4中未完成的画图.b.例4中,灯塔A在货轮O的南偏东60°方向上,反过来,货轮O在灯塔A的什么方向上?北偏西60°c.如图,射线OA表示的方向是北偏西30°,射线OB表示的方向是南偏西45°或西南方向,射线OC表示的方向是南偏东70°.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流,纠错.4.强化:(1)理解余角、补角的概念,体会如何用几何语言表述说理.(2)方位角在航行、测绘等工作中经常用到,常以正北,正南方向为基准.三、评价1.学生自我评价:让学生交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学关键在引领学生抓住两角之间特殊关系的要求:涉及角的个数只能是两个,角与角间数量关系是固定的,且与角的位置无关.指导学生解应用题时要认识到:由互余、互补的关系转化为方程计算;实现等角的寻找或角的位置改变.而在方位角的学习中,让学生在自己探索和交流的同时掌握方位角的判断与应用,从而进一步加深对余角和补角的认识.本课时内容很好地体现了数形结合的数学思想,要引导学生形成图形与数式间灵活转化以合理解题的能力.一、基础巩固1.(10分)一个角等于63°29′,则它的余角等于26°31′,它的补角等于116°31′.2.(10分)一个角的补角是余角的3倍,则这个角的度数是45°.3.(10分)射线OA是东北方向,射线OB是北偏西60°方向,则∠AOB的度数是105°.4.(10分)下列说法不正确的是(B)A.任意两直角互补B.任意两锐角互余C.同角或等角的补角相等D.同角或等角的余角相等5.(10分)下列结论正确的个数为(C)①互余且相等的两个角都是45°②锐角的补角一定是钝角③一个角的补角一定大于这个角④一个锐角的补角比这个角的余角大90°A.1个B.2个C.3个D.4个6.(20分)按照上北下南,左西右东的规定,画出表示东南西北的十字线,然后在图上画出来表示下列方向的射线.(1)北偏西30°;(2)南偏东60°;(3)北偏东15°;(4)西南方向.二、综合应用7.(20分)如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中∠α与∠β相等?(1) (2) (3) (4)解:(1)互余;(2)(3)相等;(4)互补.三、拓展延伸8.(10分)如右图,E、D、F在同一条直线上,∠CDE=90°,∠1=∠2.(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?解:(1)互余:∠EDA和∠ADC,∠FDB和∠BDC,∠ADE和∠BDC,∠ADC和∠BDF;互补:∠EDA和∠ADF,∠EDC和∠CDF,∠EDB和∠BDF.(2)∠ADC=∠BDC,∵∠CDE=∠CDF=90°,∠1=∠2,∴∠CDE-∠1=∠CDF-∠2,∠ADC=∠BDC.(3)∠ADF=∠BDE.∵∠1=∠2,∴∠1+∠ADB=∠2+∠ADB,即∠BDE=∠ADF.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
4.3.3余角与补角(教案)
在今天的教学过程中,我发现学生们对于余角与补角的概念掌握得还算不错,但在具体应用上还存在一些问题。尤其是当涉及到不规则图形时,他们往往不知道如何找出互为余角或补角的角对。这说明我们在教学过程中,需要更多地结合实际图形进行讲解,让学生有更直观的感受。
在讲授新课的时候,我尽量用简单的语言和生动的例子来解释余角与补角的定义和性质,这样有助于学生更好地理解。同时,通过分组讨论和实验操作,让学生在实践中掌握这些概念,提高了他们的动手能力和团队协作能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角与补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
三、教学难点与重点
1.教学重点
-重点理并掌握余角与补角的概念,能够准确判断两个角是否为余角或补角。
-重点掌握余角与补角的性质,如互为余角的两个角的和为90°,互为补角的两个角的和为180°。
-重点运用余角与补角的性质解决实际问题,如找出图形中的余角或补角,计算角度等。
-重点通过实例和练习,让学生体会余角与补角在几何证明和计算中的应用。
-难点在于培养学生的空间观念和几何直观,使其能够将余角与补角的概念应用于不同的几何情境中。
举例:在一个不规则的五边形中,指导学生识别并计算互为补角的角对,解释如何利用补角性质解决角度计算问题,帮助学生突破难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.3.3余角与补角”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个角的和为90°或180°的情况?”比如,一块三角形的直角板,其中一个角是90°,那么其他两个角就是余角。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索余角与补角的奥秘。
人教版数学七年级上册4.3.3余角和补角优秀教学案例
四、教学内容与过程
(一)导入新课
1.利用生活实例引入余角和补角的概念。展示一幅道路上的交通标志图,让学生观察并解释直角、锐角和钝角在实际生活中的应用。引导学生思考:除了这些角之外,还有哪些角是我们需要了解的呢?
(四)总结归纳
1.引导学生进行总结归纳,巩固所学知识。例如,让学生回顾并总结余角和补角的概念、性质以及求解方法。
2.讲解求解余角和补角的方法。引导学生运用数余角和补角。
(三)学生小组讨论
1.设计小组讨论活动,鼓励学生相互交流、分享想法。例如,将学生分成小组,让他们讨论并解释余角和补角的概念,以及它们在实际问题中的应用。
2.组织小组合作项目,让学生共同解决实际问题。例如,让学生分组设计一个游戏,其中一个游戏目标是找到特定角度的余角和补角。
3.利用多媒体手段,如PPT、视频等,为学生提供丰富的学习资源。通过展示不同形状的物体,让学生观察并找出它们的余角和补角。
(二)问题导向
1.引导学生提出问题,激发他们的探究欲望。例如,鼓励学生思考:余角和补角之间有什么关系?它们在实际问题中有何作用?
2.设计具有挑战性的数学题目,让学生独立思考并解决问题。例如,给出一个实际问题:一个三角形的两个角分别是30度和60度,求第三个角的度数。引导学生运用余角和补角的知识解决问题。
(二)过程与方法
1.通过生活实例引入余角和补角的概念,让学生感受数学与生活的紧密联系。
2.采用启发式教学,引导学生主动探索、发现和解决问题。
3.设计小组讨论、互动交流等活动,激发学生的学习兴趣,提高他们的合作意识和团队精神。
4.3.3余角和补角—教案
课题:4.3.3 余角和补角教材分析:1、教材的地位和作用余角和补角是人教版七年级上册“图形知识初步”这一章中非常重要的基本概念。
前面学生学习了角的度量和大小的比较,已经为学习余角和补角打下了一定的基础,通过探索余角和补角性质的学习,为今后证明角的相等提供了一种依据和方法。
2、教材内容教材中本节内容是通过一副三角尺引入余角和补角的概念,然后通过例题得到的结论推出余角和补角的性质,最终使学生能综合运用上述性质来解决问题。
学情分析:本节内容是《4.3角》这一节中的第三节,在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。
具备了一定的图形认识能力和借助图形分析和解决问题的能力,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
我校学生学习基础比较薄弱,识图能力较差,基于以上原因,为更好的使学生理解余角和补角的概念,并为下一节性质作铺垫,特制定此教学内容。
教学目标:一、知识与能力理解两角互余、互补的概念及其性质。
二、过程与方法经历在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质,初步培养学生的推理的能力。
三、情感、态度、价值观通过互余、互补性质的学习过程,培养学生善于观察和独立思考的良好学习习惯。
教学重点:互余、互补的概念及性质教学难点:互余、互补性质的应用并方程思想来处理图形的数量关系课时安排:《4.3.3余角和补角》第一课时教学手段:观察、探究、合作交流、多媒体辅助教学学法指导:通过学生动脑想,勤钻研,主动地学习,增加学生主动参与的机会,增加学生的参与意识,教给学生获取知识的途径,思考问题的方法。
教学过程:引入新课:1、画出一个直角∠ADB ,然后过这个角的顶点在角的内部任意画一条射线DN ,并标记∠ADN =∠1,∠BDN =∠2,观察这个图形中的两个角的数量有什么关系。
(学生分组讨论根据要求动手画图,观察。
4.3.3 余角和补角 教案
4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4如图是一张不规则的纸,先任意折叠,得折痕OC,展开后,通过点O折叠使OA落在OC上,得折痕OD,同样将OB落在OC上得折痕OE,沿着这三条折痕剪开,得到四个角,用其中的两个角拼成一个直角,共有不同的拼法是()A.1种B.2种C.3种D.4种[解析] 由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对.[答案] D探究2角的计算典例2 一个角的补角与这个角的余角的和是平角的34还多1°,求这个角. [解析] 设这个角为x °,则它的余角为(90-x )°,补角为(180-x )°,则(90-x+180-x )=34×180+1,解得x=67.答:这个角为67°.一个角的补角与它的余角的2倍的差是平角的13,则这个角的度数是 .[答案] 60°探究3 方位角典例3 如图,O 点是学校所在位置,A 村位于学校南偏东42°方向,B 村位于学校北偏东25°方向,C 村位于学校北偏西65°方向,在B 村和C 村间的公路OE (射线)平分∠BOC.(1)求∠AOE 的度数;(2)公路OE 上的车站D 相对于学校O 的方位是什么?(以正北、正南方向为基准)[解析] (1)∵A 村位于学校南偏东42°方向,∴∠1=42°,则∠2=48°,∵C 村位于学校北偏西65°方向,∴∠COM=65°,∵B 村位于学校北偏东25°方向,∴∠4=25°,∴∠BOC=90°,∵OE (射线)平分∠BOC ,∴∠COE=45°,∴∠EOM=65°-45°=20°,∴∠AOE=20°+90°+48°=158°.(2)由(1)可得:∠EOM=20°,则车站D 相对于学校O 的方位是:北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有了一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.特别是图形与文字语言之间的转化,以及从实际问题中抽象出几何图形,对学生来说有一定难度.基于学生的以上学情,制定教学难点:运用方位角解决实际问题.。
4.3.3 余角和补角教案
4.3.3 余角和补角教案
教学目的:
1、知识与技能:
⑴、在详细的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、理解方位角,能确定详细物体的方位。
2、过程与方法:
进一步进步学生的抽象概括才能,开展空间观念和知识运用才能,学会简单的逻辑推理,并能对问题的结论进展合理的猜测。
3、情感态度与价值观:
体会观察、归纳、推理对数学知识中获取数学猜测和论证的重要作用,初步数学中推理的严谨性和结论确实定性,能在独立考虑和小组交流中获益。
重、难点及关键:
1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用标准的语言描绘性质是难点。
3、关键:理解推理的意义和推理过程是掌握性质的关键。
教学过程:
一、引入新课:
让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾连续了两次很长的时间,历经约二百年才完工。
设计为垂直建造,但是在工程开场后不久便由于地基不均匀和土层松软而倾斜。
二、新课讲解:
1、探究互为余角的定义:
假如两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
即:1是2的余角或2是1的余角。
七年级(人教版)集体备课教案:4.3.3 《余角和补角》
七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。
本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。
教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。
二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。
但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。
三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。
同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。
难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。
五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。
通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。
六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。
此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。
例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。
4.3.3余角和补角(第1课时)教案
4.3.3余角和补角第1课时学习目标:1.掌握一个角的余角和补角的概念2.掌握余角和补角的性质.重点:认识角的互余、互补关系及性质.难点:通过简单的推理,归纳出余角、补角的性质,并用规范的语言描述性质. 复习旧知 计算:(1)29°19′+60°41′=90° (2)45°+45°=90° (3)28°+62°=90° (4)90°+90°=180° (5)60°+120°=180° (6)34°34′+145°26′=180° 新课讲解一、余角的定义如果两个角的和等于90°(直角),就说这两个角互为互余, 即其中一个角是另一个角的余角。
几何语言:∵∠1+∠2=90°,∴∠1与∠2互为余角或: ∵∠1与∠2互为余角,∴∠1+∠2=90°二、补角的定义如果两个角的和等于180°(平角),就说这两个角互为补角. 即其中一个是另一个角的补角。
几何语言:∵∠3+∠4=180°,∴∠3与∠4互为补角或: ∵∠3与∠4互为补角,∴∠3+∠4=180°注意:互余、互补是两个角之间的数量关系,互余和互补的两个角只与度数的和有关,与位置无关. 三、针对练习1、 图中各角,哪些互为余角?21432、图中各角,哪些互为补角?3、判断正误,对的打√,错的打×(1)270角与630角互为余角. ( √ )(2)480角与1420角互为补角. ( × )(3)互补的两个角,不可能相等. ( × )(4)∠A+ ∠B+ ∠C=1800,则∠A、∠B、∠C互为补角.( × )(5)若∠1和∠2互余,则∠1、∠2一定是锐角. ( √ )4、计算与思考∠A ∠A的余角∠A的补角9°81°171°22°68°158°60°30°120°37°53°143°57°42′32°18′122°18′x 90°-x 180°-x观察∠A的余角和补角的结果,你能得出什么结论?结论:一个锐角的补角比它的余角大90°.四、余角和补角的性质1、余角的性质(1) 画一画:已知∠α(如图所示),请画出∠α的余角.(2)图中∠α的余角∠1,∠2的大小有什么关系?为什么?解:∵∠1=90°-∠α,∠2=90°-∠α∴∠1=∠2问:通过计算你得出什么结论?结论:同角的余角相等.如图所示,已知∠α与∠1互余,∠β与∠2互余,且∠α=∠β,则∠1,∠2的大小有什么关系?为什么?∵∠1=90°-∠α,∠2=90°-∠β又∵∠α=∠β∴∠1=∠2问:通过计算你得出什么结论?等角的余角相等3、补角的性质(1)画一画已知∠α(如图所示),请画出∠α的补角(2)图中∠α的补角∠1,∠2的大小有什么关系?为什么?解:∵∠1=180°-∠α,∠2=180°-∠α∴∠1=∠2问:通过计算你得出什么结论?结论:同角的补角相等.如图所示,已知∠α与∠1互补,∠β与∠2互补,且∠α=∠β,则∠1,∠2的大小有什么关系?为什么?∵∠1=90°-∠α,∠2=90°-∠β又∵∠α=∠β ∴∠1=∠2问:通过计算你得出什么结论? 等角的补角相等 五、例题讲解如图,点A ,O ,B 在同一直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC,图中哪些角互为余角? 解:∵点A ,O ,B 在同一直线上, ∴∠AOC 和 ∠BOC 互为补角.又∵射线 OD 和射线 OE 分别平分∠AOC 和∠BOC ∴∠COD+∠COE=12∠AOC+12∠BOC =12(∠AOC+∠BOC ) = 90°. ∴∠COD 和∠COE 互为余角,同理∠AOD 和∠BOE,∠AOD 和∠COE,∠COD 和∠BOE 也互为余角. 六、随堂检测1.一个角是70°39′,求它的余角和补角. 解:它的余角=90°-70°39′=19°21′它的补角=180°-70°39′=109°21′2. ∠α的补角是它的3倍, ∠α是多少度? 解:∵ ∠α的补角是它的3倍 ∴180°- ∠α=3 ∠α则∠α=45°3、如图,已知∠ACB 和∠CDB 都是直角. (1) 图中哪几对角互余? 解: ∠A+∠B=90° ∠A+∠2=90°∠1+∠B=90° ∠1+∠2=90°(2) 图中哪几对角是相等的角(直角除外)?为什么? 解: ∠B=∠2(同角的余角相等)∠A=∠1(同角的余角相等) 课堂小结谈谈你对余角和补角的认识.(畅所欲言) 板书设计OABC D E 4.3.3余角和补角第1课时同(等)角的余角相等 同(等)角的补角相等。
人教版七年级数学上册4.3.3余角和补角教学设计
1.教师引导学生回顾本节课所学内容,总结余角和补角的定义、性质和求解方法。
2.学生分享自己在学习过程中的收获和感悟,提出学习中遇到的问题。
3.教师针对学生的问题进行解答,强调重点和难点。
4.布置课后作业,要求学生在课后巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学的余角和补角知识,特布置以下作业:
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,使他们认识到数学在生活中的重要性。
2.激作意识,使他们学会与他人共同解决问题,相互学习,共同进步。
4.培养学生严谨、踏实的学术作风,使他们认识到学习数学需要勤奋和思考。
二、学情分析
例如:一个等腰三角形的底角为50度,求顶角的度数。
4.创新思维题:探讨余角和补角在几何图形中的巧妙应用,设计一道有趣的几何题目,并给出解答。
5.课后阅读:阅读教材相关内容,预习下一节课将要学习的知识,了解直角三角形的性质。
作业要求:
1.请同学们认真完成作业,保持字迹工整,以便于教师批改和反馈。
2.遇到问题及时与同学或老师沟通交流,共同解决,提高自己的解题能力。
2.自主探究,理解概念:
给学生提供丰富的学习资源,如教材、教辅、网络资料等,让他们在自主学习的基础上,通过小组讨论、师生互动等方式,掌握余角和补角的定义及其性质。
3.实践操作,巩固知识:
设计不同难度的练习题,让学生在实践中巩固所学知识。注重分层教学,针对不同学生的需求,提供适当的指导,帮助他们突破难点。
a.基础练习:求给定角的余角和补角;
b.提高练习:运用余角和补角的性质解决实际问题;
c.拓展练习:探讨余角和补角在几何图形中的应用。
人教版七年级数学上册:4.3.3余角和补角说课稿
(二)教学目标
知识与技能:
1.理解并掌握余角和补角的概念。
2.能够运用余角和补角的性质进行计算。
3.能够运用余角和补角的知识解决实际问题。
过程与方法:
3.对于小组讨论,设计更具吸引力的讨论题目,并适时给予指导和激励。
课后,我将通过以下方式评估教学效果:
1.收集和分析学生的练习和作业,评估知识掌握情况。
2.与学生交流,了解他们对课堂内容的理解和感受。
3.自我反思,记录教学过程中的亮点和不足。
反思和改进措施:
1.根据学生的反馈调整教学方法和节奏。
2.对课堂活动进行优化,提高学生的参与度。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.个人练习:设计具有代表性的练习题,让学生独立完成,检验学习效果。
2.小组讨论:将学生分成小组,针对实际问题进行讨论,共同解决。
3.数学游戏:设计余角和补角相关的数学游戏,让学生在游戏中巩固知识。
4.实践活动:让学生在课后寻找生活中的余角和补角实例,并进行记录和分享。
这些教具和多媒体资源在教学中的作用是:直观展示知识点,激发学生学习兴趣,提高课堂互动性,帮助学生更好地理解和掌握知识。
(三)互动方式
为促进学生的参与和合作,我计划设计以题进行提问,引导学生积极思考,检验学习效果。
2.小组讨论:将学生分成小组,针对实际问题进行讨论,鼓励他们发表见解,共同解决问题。
3.课堂游戏:设计余角和补角相关的数学游戏,让学生在游戏中互动,提高学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§4.3.3 余角和补角
授课教师:中山市纪中三鑫双语学校李皓
教材:新人教版七年级上册
一、教学目标
知识目标:(1)理解和掌握余角、补角的概念及其几何语言的表示方法;
(2)会求已知角的余角和补角;
(3)初步获得余角和补角的性质.
能力目标:(1)经历观察、操作、推理、交流等过程,发展空间观念和知识运用能
力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
(2)能运用互为余角、互为补角、等相关的知识解决一些实际问题。
(3)初步体会类比的数学思想。
情感目标:在活动中培养学生乐于探究、合作的习惯,体验探索成功、感受创新的乐趣,从而培养学习数学的主动性;进一步体会“数学就在我们身边”,增
强学生用数学解决实际问题的意识。
二、教材分析
重点:余角、补角的概念和性质。
因为它们是几何的基础知识,教学时可用文字语言、图形语言、符号语言三结合的方法强调概念和性质的本质特征,突出重点。
难点:学生探索等角的余角相等、等角的补角相等的过程以及对其意义的理解,并能解决一些实际问题。
初步的“说理”也是难点之一。
三、教学方法与手段
方法:采用启发式的教学方法。
用问题引导同学们去探索发现,并以三角板、多媒体课件、为手段辅助教学,使学生积极参与到数学课堂中来。
四、教材过程
本节课设计了五个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索余角和补角的定义、性质;第三环节反馈练习;第四环节课堂小结;第五环节作业布置.
第一环节: 设置问题情境,启发引导
的度数,但人不能进入围墙,如何测量?。
问题:如图,要测量两堵围墙所成的角AOB
设计意图:通过设置问题情境,调动学生学习数学的兴趣,让学生感受数学来源于生活,同时又为生活服务。
3
21B
A
2
1
第二环节 自主探索余角和补角的定义、性质
你知道一副三角尺中每个三角尺的度数吗? 师:οοο904545=+, ο
οο906030=+
1、互为余角的概念:如果两个角的和是90°(直角),就说这两个角互为余角,即其中每
一个角是另一个角的余角。
(学生阐述,教师引导) 2、符号语言:
符号语言的书写:若ο
9021=∠+∠,则1∠与2∠互为余角。
若1∠与2∠互为余角,则ο
9021=∠+∠。
设计意图: 让学生初步体会几何的三种语言的相互转化以及符号语言的书写。
3、图中给出的各角,哪些互为余角? ο
10、ο
30、ο
50、ο
60、ο
40、ο
80 生1: ο
10和ο
80互为余角; 生2: ο
30和ο
60互为余角; 生3: ο
50和ο
40互为余角;
设计意图:让学生巩固、加深对概念的应用,强调互为余角是指两个角的数量关系。
4、 教师提问:
已知:如图, ο
90321=∠+∠+∠,则1∠、2∠、3∠互为余角吗? 生: 1∠、2∠、3∠不互为余角;
师:请问1∠、2∠、3∠为什么不互为余角?
生:因为在互为余角是指两个角的关系,而这里是三个角。
师:非常正确。
设计意图:出示幻灯片(几何图形的演示)通过学生自学及教师的点拨,使学生明确互为
余角这个概念讨论的是两个角的关系。
问题变式1:请问在这幅图中,你能找到2个角互为余角吗?如果能,并表示出来。
2
1
43
1
生:AOB ∠与BOD ∠互为余角;AOC ∠与COD ∠互为余角
设计意图:这是本节课的亮点之一,对几何图形的认识和变式,使学生能更进一步
了解互为余角的概念,规范几何语言的书写,逐步培养对几何的识图能力。
效果:借助多媒体演示操作,使学生在感官上能够认识到只要两个角的等于ο
90就
称这两个角互为余角,跟这两个角的位置没有关系。
5、画一画:
已知任意一个锐角1∠,请借助三角板画出它的所有余角。
设计意图:通过让学生亲自动手操作,使学生更进一步加深对定义的理解,以及培养学
生的动手能力,能更好的参与到课堂中,激发学生学习数学的积极性。
6、探究余角的性质
已知:1∠与2∠互余,3∠与4∠互余,且41∠=∠ 请问: 2∠与3∠相等吗?为什么? 理由 Θ 1∠与2∠互余
∴ ο
9021=∠+∠ Θ 1∠与2∠互余 ∴ ο9021=∠+∠
又Θ 41∠=∠ ∴ 32∠=∠ (学生口答,老师板书)
设计意图:这也是本节课的亮点之一,通过学生自己动手操作后,拿出学生自己画出的
图形,学生的认识更加深刻,从而又能探究并简单证明余角的性质,初步让学生感受几何推理语言。
7、 你能仿照“余角”的概念描述“补角”的概念吗?
互为补角的概念:如果两个角的和是180°(平角),就说这两个角互为补角,即其中
O
D
B
A
21
2
1
O
D
C
B
A
每一个角是另一个角的补角。
设计意图:通过学生自学及类比的学习方法,在已经学习了余角概念的基础上,使学
生明确补角的概念。
几何语言的书写:若ο
180
4
3=
∠
+
∠,则3
∠与4
∠互为补角。
若3
∠与4
∠互为补角。
则ο
180
4
3=
∠
+
∠
重点突破:已知:ο
180
2
1=
∠
+
∠,则1
∠与2
∠互为补角;
通过展示动画的课件,使学生能更清楚的认识互为补角是两个角的数量关
系,与这两个角的位置无关。
从图中你能找出几对补角?
8、运用所学的知识解决情境中的问题。
问题:如图,要测量两堵围墙所成的角AOB
∠的度数,但人不能进入围墙,如何测量?。
设计意图:让学生利用本节课学习的内容,数学来源于生活,同时又为生活服务;
9、已知直线AC、BD相交于点o
(1)AOB
∠的补角有
(2)AOD
∠和BOC
∠相等吗?请说明理由。
ΘAOB
∠与AOD
∠互为补角
∴ο
180
=
∠
+
∠AOD
AOB
ΘAOB
∠与BOC
∠互为补角
∴ο
180
=
∠
+
∠BOC
AOB
∴BOC
AOD∠
-
=
∠
-ο
ο180
180
∴BOC
AOD∠
=
∠
设计意图:这是本节课的亮点之一,通过实际问题抽象出数学问题,并且很自然的得出等
角(同角)的补角的性质相等的数学定理。
D
C
B
O
A
1、判断题:
①若ο
18021=∠+∠,则2∠是补角。
( ) ②互余的两个角都是锐角。
( )
③如果ο
25=∠A ,ο
75=∠B ,那么A ∠与B ∠互为余角。
( )
④互补的两个角不可能相等。
( ) 设计意图:更进一步让学生了理解余角和补角的概念。
2、填空题:
(1)∠A=25°37 ,则它的余角 为_______,它的补角为________.
(2)、已知∠A=50°,则∠A 的余角是____ 补角是____ ,补角与余角的差是____. (3)、一个锐角为X 度 ,它的余角为 ______ 度 ,它的补角为_______ 度,则它
的补角比余角大___度.
3、讲解例题:
例1:一个角的补角是它的3倍,求这个角的度数。
解: 设这个角是ο
x ,则它的补角是()ο
x -180, 根据题意得:
x x 3180=-
解得: ο
60=x
答:这个角的度数是60 °
设计意图:解这类题的关键是找出题设中的等量关系列方程求解,这是用方程的观点来
解决余角、补角问题.利用角的数量关系列方程求解,使学生认识到几何问题也可以转化为代数问题,几何与代数是密不可分的。
4、练习:如图,O 是直线AB 上一点,OC 是∠AOB 的平分线
①∠1的余角是_________ ②∠1的补角是________ ③∠DOB 的补角是________
设计意图:通过对图形的认识和了解,进一步加深互余和互补概念的理解。
(1)这节课,我学会了
本节课学习了余角和补角的定义,并通过简单的推理,得到出了余角和补角的性质。
第五环节 作业布置
1、课本第144页:8、13题。
附: 板书设计
4.3.3 余角和补角
1、余角的定义 :如果两个角的和是ο
90,就说这两个角互为余角; 即其中每一个角是另一个角的余角。
几何语言: 如果ο
9021=∠+∠,那么1∠与2∠互为余角。
已知锐角α∠,则它的余角是α-ο
90
2、补角的定义:如果两个角的和是ο
180,就说这两个角互为补角; 即其中每一个角是另一个角的补角。
几何语言:如果ο
9043=∠+∠,那么3∠与4∠互为余角。
已知β∠,则它的补角是β-ο
180 3、余角的性质:等角(同角)的余角相等;
4、补角的性质:等角(同角)的补角相等。