小学六年级数学行程问题

合集下载

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度x时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差x时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。

(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。

数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

(二)追及问题追及问题也是行程问题中的一种情况。

这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

小学数学——行程问题

小学数学——行程问题

小学数学——行程问题1、甲、乙两辆汽车从A、B两城市同时相向开出,4小时在途中相遇。

已知甲汽车每小时行40千米,乙汽车每小时行55千米,求A、B两城相距多少千米?2、甲、乙两地相距360千米,客车和货车同时从两地相向而行,4小时在途中相遇,已知客车每小时行50千米,求货车每小时行多少千米?3、从北京到沈阳的铁路长738千米,两列火车从两地同时相对开出,北京开出的火车平均每小时行59千米;沈阳开出的火车平均每小时行64千米,两车开出后几小时相遇?4、A、B两城相隔458千米,甲车以每小时46千米,乙车以每小时38千米的速度先后从两城出发,相向而行,相遇时甲车行驶了230千米。

问乙车比甲车早出发几小时?5、两港相距267千米,客船以每小时45千米的速度,货船以每小时33千米的速度先后从两港开出,相向而行,相遇时客船行了135千米,问货船比客船提前几小时开出?6、两个游泳队同时从相距2040米的A、B两地相向出发,甲队从A 地下水,每分钟游40米,乙队从B地下水,每分钟游45米,一艘汽艇负责两队的安全,同时从B地出发,每分钟行驶1200米,遇到甲队就立即返回,返回遇到乙队又向甲队开去,这样不断地往返下去,汽艇行了多少千米两队才能相遇?7、A、B两站相距400千米,甲、乙两车同时从两站相对开出,甲车每小时行35千米,乙车每小时行45千米。

一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折向甲车飞去,遇到甲车又往回飞向乙车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?8、甲、乙两队学生从相距25千米的两地同时出发,相向而行。

一位老师骑自行车,在两队之间不停往返联络。

甲队每小时行4千米,乙队每小时行6千米,两队相遇时,骑自行车的老师一共行了25千米,问骑自行车的老师的速度?9、甲、乙两地相距300千米,客车从甲地开往乙地,每小时行驶40千米,1小时后,货车从乙地开往甲地,每小时行60千米。

六年级 第一讲 行程问题之相遇问题 6份

六年级 第一讲 行程问题之相遇问题 6份

行程问题(一)行程问题的主要数量关系:●速度×时间=路程路程÷速度=时间路程÷时间=速度相遇问题数量关系:甲走的路程+乙走的路程=总路程●速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间一、例题:例1、一辆汽车每分钟行1200米,这辆汽车从苏州到南京用了4小时,苏州到南京大约有多少千米?例2、甲乙两城相距360千米,一辆汽车原定用9小时从甲城开到乙城。

汽车行驶了一半路程,在途中停留30分,如果汽车按原定时间到达乙城,那么,在行驶后半段路程时,应该比原来的时速加快多少?例3、甲乙两辆客车同时从两地相对开出,甲车的速度是54千米/小时,乙车速度是53千米/小时,经过5小时相遇,,两地间公路全长是多少千米?例4、一辆客车和一辆货车分别从相距525千米的甲乙两地相对开出,客车每小时行60千米,货车每小时行45千米,经过多少小时两车相遇?例5、甲乙两列火车同时由相距792千米的两地相向而行,9小时相遇,甲车速度是45千米/小时,乙车速度是多少?例6、一列火车于下午1时30分从甲站开出,每小时行60千米。

半小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。

甲乙两站相距多少千米?例7、苏步青教授是我国著名的数学家,一次出国访问时,他在电车上碰到一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲乙两人同时从两地出发,相向而行。

距离是100千米吗,甲每小时行6千米,乙每小时行4千米,甲带着一只狗,狗每小时行10千米,这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇,这只狗一共走了多少千米?例8、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车乙驶过中点25千米,这时快车和慢车还相距7千米,慢车每小时行多少千米?例9、甲乙两辆汽车同时从东西两地出发,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小学六年级数学路程问题公式

小学六年级数学路程问题公式

小学六年级数学路程问题公式行程问题的九个公式是如下:
1、基本公式:
路程=速度×时间
速度=路程÷时间
时间=路程÷速度
2、追及问题:
追及时间=路程差÷速度差
速度差=追及路程÷追及时间
追及路程=速度差×追及时间
3、流水问题:
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4、反向行程问题公式:
速度和×相遇(离)时间=相遇(离)路程
相遇(离)路程÷(速度和)=相遇(离)时间相遇(离)路程÷相遇(离)时间=速度和
5、列车过桥问题公式:
(桥长+列车长)÷速度=过桥时间
(桥长+列车长)÷过桥时间=速度
速度×过桥时间=桥+车长度之和。

小学六年级数学行程问题

小学六年级数学行程问题

行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。

2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。

3、基本数量关系:速度x 时间=路程路程速度和x 时间(相遇时间)=路程和(相遇路程)路程和(相遇路程)速度差x 时间(追及时间)=路程差(追击路程)路程差(追击路程)二、学法提示二、学法提示1.火车过桥:火车过桥路程=桥长+车长车长过桥时间=路程÷车速路程÷车速过桥过程可以通过动手演示来帮助理解。

2.水流问题:水流问题: 顺水速度=静水速度+水流速度水流速度逆水速度=静水速度-水流速度水流速度顺水速度-逆水速度=2x 水流速度水流速度3.3.追及问题:追击路程÷速度差追及问题:追击路程÷速度差=追及时间追及时间追击距离÷追及时间=速度差速度差4.相遇问题:相遇问题: 相遇路程÷相遇时间=速度和速度和相遇路程÷速度和=相遇时间相遇时间三、解决行程问题的关键三、解决行程问题的关键画线段图,画线段图,标出已知和未知。

标出已知和未知。

标出已知和未知。

能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,找到解决问找到解决问题的突破口。

题的突破口。

四、练习题四、练习题(一)火车过桥(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。

求客车行驶的速度和车身的长度。

3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。

桥的长度。

4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。

每小时行72千米,这个人每秒行多少米?千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。

小学数学奥数题-----行程问题-有答案

小学数学奥数题-----行程问题-有答案

顺流 B
逆流
8
A
10
图36——1
分析:因为水流速度是每小时3千米,所以顺流比 逆流每小时快6千米。如果怒六时也行8小时, 则只能到A地。那么A、B的距离就是顺流比逆 流8小时多行的航程,即6×8=48千米。而这 段航程又正好是逆流2小时所行的。由此得出 逆流时的速度。列算式为:
(3+3)×8÷(10—8)×10=240(千米)
1
3
1

甲 图35——4
分析:如图所示,汽车到达甲班学生下车的地方 又返回到与乙班学生相遇的地点,汽车所行路 程应为乙班不行的7倍,即比乙班学生多走6倍, 因此汽车单程比乙班步行多(6÷2)=3 (倍)。
汽车返回与乙班相遇时,乙班步行的路程与甲班 学生步行到机场的路程相等。由此得出汽车送 甲班学生下车地点到几长的距离为学校到机场 的距离的1/5。列算式为 24÷(1+3+1)=4.8(千米)
小张50分钟走的路程:6÷60×50=5(千米)
小张2小时10分后共行的路程:10+5÷(50÷10)=11 (千米)
两人行2小时10分后相距的路程:24—(8+11)=5(千米)
两人共同行5千米所需时间:5÷(4+6)=0.5(小时)
相遇时间:2小时10分+0.5小时=2小时40分
行程问题(三)
(20+x)×6=(20—x)×6×1.5
x=4
答:水流速度为每小时4千米。
例题2:有一船行驶于120千米长的河中,逆行 需10小时,顺行要6小时,求船速和水速。
分析:这题条件中有行驶的路程和行驶的时间,这样可 分别算出船在逆流时的行驶速度和顺流时的行驶速度, 再根据和差问题就可以算出船速和水速。列式为

小学数学行程问题及答案

小学数学行程问题及答案

1。

小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?2. 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C 离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.3.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?4.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3。

5千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下。

5。

小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去。

小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:6.一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

求A至B两地距离.行程问题(一)(基础篇)行程问题的基础知识以及重要知识点★提到行程问题就不得不说3个行程问题中一定会用到的数——s,t,vs ——路程t ——时间v -—速度这3个数之间的关系就是:路程=速度X时间-- s= vt同时可以得出另外两个关系:速度=路程÷时间—— v= s/t时间=路程÷速度—- t= s/v我们来看几个例子:例1,一个人以5米/秒的速度跑了20秒,那么他跑了多远?5米/秒是这个人的速度 v, 20秒是他一共跑的时间 t, 求他跑的距离也就是路程 s,我们就可以直接利用这3个数量的关系 s=vt来计算出路程:s=vt=5x20=100(米)。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

行程问题之相遇问题

行程问题之相遇问题

行程问题之相遇问题小学六年级数学专题之行程问题(一)_________年________月________日第_______周姓名___________得分___________一、基本公式路程=速度×时间;速度=________________;时间=_____________________;二、关于平均速度平均速度=总路程÷总时间例题1:小明家距离学校3千米,一天小明以5米/秒的速度走路去学校;到达学校时发现课本没有带,只好打的刚回家,出租车的速度是20米/秒,请问小明来回家中的平均速度是多少?练习:1、星期天,小明去爬山,上山的速度是5米/秒,下山的速度是15米/秒,问小明上下山的平均速度是多少?2、小明家距离学校5千米,早上小明以5米/秒的速度去上学,在距离家1千米的地方遇见了一个骑自行车的同学,这个同学载着小明以20米/秒的速度到学校,请问小明从家里到学校的平均速度是多少?3、小明从家里以20米/秒的速度骑自行车去商店买东西,然后迅速返回(买东西的时间略不计)回家走了一半路程时,自行车坏了,小明只好以5米/秒的速度走回家去,请问小明来回的平均速度是多少?三、相遇问题相遇路程=速度和×相遇时间相遇路程:相遇问题一般是同时相向而行,要知道“两人同时出发到相遇一起走过的路程”才是相遇路程,若是有人单独走的路程,则需要减去,才是相遇路程;相遇时间:一起出发到相遇所用去的时间,同样单独走过的路程所用的时间要去除;例题1:小明和小红相距3.5千米,小明和小红同时从家里出发朝对方家里走去,小明的速度是2米/秒,小红的速度是5米/秒,请问他们经过多少时间相遇?练习:1、甲、乙两列火车从车站同时相向出发,甲车每小时行驶75千米,乙车每小时行驶88千米,经过3.5小时两车相遇。

两车站之间的铁路长是多少千米?2、甲、乙两列火车同时从相距882千米的两地相向而行,经过4.5小时两车相遇,甲列车每小时行驶93千米,乙列车每小时行驶多少千米?3、甲、乙两辆汽车从相距456千米的两地相向而行,4小时后两车还相距28千米。

小学六年级数学行程问题

小学六年级数学行程问题

基本的行程问题例1:李明家到学校有600米,李明4分钟走60米。

问:李明从家到学校需要多长时间?例2:杰克和玛丽同时从学校出发去游乐园,杰克每分钟走75米,玛丽每分钟行50米,杰克走了20分钟就到了游乐园。

问:玛丽到游乐园需要多长时间?例3:一辆小轿车从A到开往B村,每分钟行420米,计划50分钟到达,但路程行到一半时,小轿车发生的故障,用10分钟修好,如果想准时到达,余下的路程分钟行多米?例4:小东和小西同时从学校出发到同一书店,学校到书店的距离为1800米,小东比小西早到5分钟。

当东西到达书店时,小西离书店还有300米.求:小东从学校到书店用了多少分钟?相遇问题例1:甲乙两人分别从相距30千米的两地同时出发,相向而行。

甲每小时走6千米,乙每小时走4千米。

问(1)甲乙二人几小时相遇?(2)甲乙何时还相距10千米?例2:两城市相距138千米,甲乙两人骑自行车分别从两城同时出发相向而行,甲每小时走13千米,乙每小时走12千米,乙在行进中因修车耽误1小时,然后继续前进与甲相遇。

求从出发到相遇经过几小时?例3:小东和小西两人同时从学校到游乐园,学校到游乐园的距离为1820米。

小东骑车每分钟行200米,小南步行每分钟行60米,小东到游乐园后因有事立即返回,与前来的小南相遇.求这时小南走了多少分钟?例4:两列火车同时从相距720千米的两地出发相向而行,经过3。

6小时相遇。

已知客车的速度为每小时80千米,求货车的速度.例5:甲乙两个工程队合修一条公路。

甲队每天修280米.乙队每天比甲队多修40米.两队同时从公路的两端修起,15天后全部修完。

求这条公路长多少米?例6:甲乙两辆汽车同时从两地相向开出,甲汽车每小时行60千米,乙汽车每小时行52千米,两车离中心16千米处相遇.求两地之间的路程.例7:一辆货车和一辆客车分别从A、B两地同时出发,相向而行。

货车每小时行49千米,客车每小时行51千米。

两车第一次相遇后以原速继续前进,并在到达对方出发点后都立即按原路返回,两车从开始到第二次相遇共用了6小时。

小学六年级数学行程问题综合讲解

小学六年级数学行程问题综合讲解

行程问题需要用到的基本关系:路程=速度时间速度=路程时间时间=路程速度题型一、相遇问题与追及问题相遇问题当中:相遇路程=速度和相遇时间追及问题当中:追及路程=速度差追及时间*********画路程图时必须注意每一段路程对应的问题是相遇问题还是追及问题**********【例题1】甲、乙两人从A地到B地,丙从B地到A地。

他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。

求乙的速度?考点:多次相遇问题.分析:本题可先据甲丙两人速度和及相遇时间求出总路程,再根据乙丙两人的相遇时间求出乙丙两人的速度和之后就能求出乙的速度了.解答:解:(8+10)×5÷(5+1)-10=18×5÷6-10,=15-10,=5(千米).答:乙每小时行5千米.点评:本题据相遇问题的基本关系式:速度和×相遇时间=路程,进行解答即可.【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?分析:两次相遇问题,其实两车一起走了3段两地距离,当然也用了3倍的一次相遇时间。

40×3-30=90km变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离西侧20米处,求东西两地相距多远?60×3-20=160km【例题3】快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时。

两车分别从两站同时开出,相向而行,在离中点18千米处相遇。

甲乙两站相距多少千米?分析:中点相遇问题,实际上是相遇问题和追及问题的综合。

第一步:相同的时间,快车比慢车多行18×2=36千米解:∵快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时快车与慢车的时间比是6 : 10∴快车与慢车的速度比是10:6=5:3∴相遇时,快车行了全程的:5/(5+3)=5/8全程是225÷5/8=360(千米)变式1、快车每小时行48千米,慢车每小时行42千米。

小学六年级数学应用题行程问题(可锻炼学生思维)

小学六年级数学应用题行程问题(可锻炼学生思维)

1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了 公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的 倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用 秒.、B 两城相距56千米.有甲、乙、丙三人.甲、乙从A 城,丙从B 城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经 小时,乙在甲丙之间的中点6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了 步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走米,妹每秒走米,他们第十次相遇时,妹妹还需走 米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要 分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有 公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C 时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D 与第三个人相遇,然后两人同乘自行车前往B ;第二个人在C 处下车后继续步行前往B 地.结果三个人同时到达B 地.那么,C 距A 处多少千米D 距A 处多少千米13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时公里,骑车人速度为每小时公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时千米.已知A 、C 两镇水路相距50千米,水流速度为每小时千米.某人从A 镇上乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.AD、B两地相距150千米.两列火车同时从A地开往B地.快车每小时行60千米.慢车每小时行48千米.当快车到达B地时,慢车离B地还有千米.2.某人沿直线从甲城到乙城去旅行,去的时候以每小时30公里的速度匀速前进.回来时以每小时60公里的速度匀速返回,此人在往返行程中的平均速度是每小时公里.3.某教师每天早上驾车40公里到学校需要用55分钟,某天早上她迟离开家7分钟,那么她的车速每小时为公里时才能和平常一样按时到达学校.4.一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕,如果仍需要在预定时间内到达乙地.汽车行驶余下的路程时,每分钟须比原来快米.5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需分钟才能追上乙.6.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑米,乙每秒钟跑米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了次.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.8.有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗”司机回答:“十分钟前我超过一辆自行车”,这人继续走了10分钟,遇到自行车.已知自行车速度是人步行速度的三倍,汽车的速度是步行速度的倍.9.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2点40分到达.汽车速度是劳模步行速度的倍.10.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点.在这1小时内有分钟这两条船的前进方向相同11.一个圆的周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行厘米和厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒12.小明和小刚乘火车出外旅行,离开车时间只有2小时,他们家离车站12公里,两人步行每小时只能走4公里,按这个速度非误车不可.恰好小华骑自行车经过,就先将小明带了9公里,让小明继续步行,接着返回原路接小刚.小华在距他们家3公里处遇到小刚,带着小刚追小明.他们提前赶到了车站.你知道他俩在开车前几分钟到达车站的吗13.有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间(按小时计算)14.甲乙两地相距很远,每天从甲、乙两地同时相对开出一辆客车,两车速度和路线相同,都要经过整整五天才能到达终点站,然后休整两天,又按原路返回.在这条线路上的每辆客车都这样往返运行.为了保证这条线路上客运任务能正常进行,问这条线路上至少应配备多少辆客车.。

小学六年级数学行程问题完整版

小学六年级数学行程问题完整版

小学六年级数学行程问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】行程问题例1 甲乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

辆车在距中点32千米处相遇。

东西两地相距多少千米?例2 快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?例3 快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米?例4 甲、乙两列火车同时从A、B两城相对开出,行了小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇?例5 客车从甲地,货车从乙地同时相对开出。

一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米?例6 甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。

甲车出发到相遇用了多少小时?例7 客车从甲地到乙地要10小时,货车从乙地到甲地要15小时,两车同时从两地相对开出,相遇时客车比货车多行了90千米,甲、乙两地之间的距离是多少千米?相遇时客车和货车各行了多少千米?例8 客车和货车同时从甲、乙两地相向而行,在距离中点6千米处相遇,已知货车速度是客车速度的4/5,甲、乙两地相遇多少千米?例9 甲、乙两车同时从A、B两地相对开出,经过8小时相遇,相遇后两车继续前进,甲车又用了6小时到达B 地,乙车要用多少小时才能从B地到达A地。

例10 一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开到甲地,这辆汽车的平均速度N 是多少千米?例11 小明上山每分钟行50米,16分钟到达山顶,再按每分钟80米的速度按原路下山,那么,上、下山每分钟平均行多少米?例12 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

小学数学知识点:行程问题

小学数学知识点:行程问题

小学数学知识点:行程问题公式:1. 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。

2.常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。

3.常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。

4.行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。

3)静水速度=(顺水速度+逆水速度)/24)水流速度=(顺水速度–逆水速度)/25.基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例题:例1:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

分析:本题关键在求得火车行驶120秒和80秒所对应的距离。

解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。

评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。

例2:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。

解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲的速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。

小学数学思维方法: 行程问题初步

小学数学思维方法: 行程问题初步

行程问题初步【知识要点】一、行程问题初步:1.路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。

平均速度=总路程÷总时间。

2.相遇问题数量关系:距离和=速度和×相遇所需时间3.追及问题数量关系:追及距离=速度差×追及所需时间二、比例类行程问题:主要讲解如何利用比例求解行程问题,而行程问题中的三个量:速度、时间、路程在某些时候存在比例关系.【典型例题】例1骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希望中午12点到,那么应以怎样的速度行进?解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。

这就需要通过已知条件,求出时间和路程。

假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。

B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。

因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是20÷(15-10)=4(时)。

由此知,A,B是上午7点出发的,甲、乙两地的距离是15×4=60(千米)。

要想中午12点到,即想(12-7=)5时行60千米,速度应为60÷(12-7)=12(千米/时)。

例2 划船比赛前讨论了两个比赛方案。

第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。

这两个方案哪个好?解一:路程一定时,速度越快,所用时间越短。

在这两个方案中,速度不是固定的,因此不好直接比较。

在第二个方案中,因为两种速度划行的时间相同,所以以3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。

六年级数学下册行程问题

六年级数学下册行程问题

六年级数学下册行程问题行程问题(1)【知识要点】行程问题的三个基本量是:速度、时间、路程,它们之间的关系是:速度×时间=路程,路程÷速度=时间,路程÷时间=速度行程问题按所行方向的不同,可分为①相遇问题(相向而行)②相离问题(相背而行)③追及问题(同向而行),其基本数量关系是:①相遇问题:速度和×相遇时间=路程②相离问题:速度和×时间=相距路程③追及问题:速度差×时间=追及路程【基本练习】1、一辆客车和一辆小车同时从甲、乙两地相对开出,经过2.5小时相遇。

已知,甲乙两地相距多少千米?客车每小时行72千米,是小车速度的342、客、货两车同时从相距378千米的两地相对开出,客车每小时行72千米,货车每小时行63千米,经过几小时两车相遇?相遇时客车比货车多行多少千米?3、甲、乙两车同时从相距540千米的两地相对开出,经过3.6小时相遇。

已知甲车每小时行72,乙车每小时行多少千米?4、甲、乙两车同时从相距567千米的两地相对开出,经过3.5小时相遇。

已知甲、乙两车的速度比是5:4,甲、乙两车每小时各行多少千米?5、甲、乙两船同时从武汉出发开往上海,已知甲船每小时行52千米,乙船每小时行45千米,8小时后,两船相距多少千米?【例1】一辆客车和一辆货车同时从甲、乙两地相对开出,在距中点12千米处相遇。

已知客、货两车的速度比是6:5,甲、乙两地相距多少千米?分析:时间一定,路程和速度成正比例,客、货两车的速度比是6:5,所以相遇时两车所行的路程的比也是6:5,即甲车行了全程的611,乙车行了全程的511;又两车在距中点12千米处相遇,也就是相遇时甲车比乙车多行了12×2=24千米。

解答:12×2÷(611-511)=练习1:1、甲、乙两车同时从A 、B 两地相对开出,在距中点15千米处相遇。

已知甲、乙两车的速度比是7:8,A 、B两地相距多少千米?2、两辆汽车同时从A 地出发开往B 地,甲、乙两车的速度比是6:5,甲车达到B 地后立即返回,在距B 地12千米处与乙车相遇。

小学六年级数学应用题总复习行程及流水问题

小学六年级数学应用题总复习行程及流水问题

小学六年级数学应用题总复习:行程及流水问题及答案一、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。

解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:1、基本题型:一辆车从甲地到乙地。

(1)、路程=速度×时间(2)、速度=路程÷时间(3)、时间=路程÷速度2、相遇问题:两辆车同时相向而行或在封闭路线中同时相背而行.(1)、路程=速度和×相遇时间(2)、相遇时间=路程÷速度和(3)、其中一辆车的速度=路程÷相遇时间-另一辆车的速度3、追击问题:同时同向而行(速度慢的在前,快的在后)(1)、追击时间=追击路程÷速度差(2)、速度差=追击路程÷追击时间(3)、追击路程=追击时间×速度差例1:甲在乙的后面28 千米,两人同时同向而行,甲每小时行16 千米,乙每小时行9 千米,甲几小时追上乙?分析:甲每小时比乙多行(16—9 )千米,也就是甲每小时可以追近乙(16—9 )千米,这是速度差。

已知甲在乙的后面28 千米(追击路程),28 千米里包含着几个( 16-9 )千米,也就是追击所需要的时间。

列式 2 8 ÷ ( 16-9 )=4 (小时)模拟试题1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

已知每辆车长5米,两车间隔10米。

问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。

如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。

第一个方案是在比赛中分别以2。

5米/秒和3。

5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题
例1 甲乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

辆车在距中点32千米处相遇。

东西两地相距多少千米?
例2 快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?
例3快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米?
例4甲、乙两列火车同时从A、B两城相对开出,行了3.2小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇?
例5客车从甲地,货车从乙地同时相对开出。

一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米?
例6甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。

甲车出发到相遇用了多少小时?
例7客车从甲地到乙地要10小时,货车从乙地到甲地要15小时,两车同时从两地相对开出,相遇时客车比货车多行了90千米,甲、乙两地之间的距离是多少千米?相遇时客车和货车各行了多少千米?
例8客车和货车同时从甲、乙两地相向而行,在距离中点6千米处相遇,已知货车速度是客车速度的4/5,甲、乙两地相遇多少千米?
例9甲、乙两车同时从A、B两地相对开出,经过8小时相遇,相遇后两车继续前进,甲车又用了6小时到达B地,乙车要用多少小时才能从B地到达A地。

例10一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开到甲地,这辆汽车的平均速度N 是多少千米?
例11小明上山每分钟行50米,16分钟到达山顶,再按每分钟80米的速度按原路下山,那么,上、下山每分钟平均行多少米?
例12甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村两村相距多少千米?
例13甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米,又行3小时,两车又相距120千米。

A、B两地相距多少千米?
例14甲、乙两车同时从A、B两地同时相向而行,8小时相遇,相遇后两车继续行驶,3小时后两车相距360千米,求A、B两地的距离。

追击问题
例15中巴车每小时行60千米。

小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前。

求几小时后小轿车追上中巴车?
变式练习:
(1)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分跑120米;哥哥在后,每分跑140米。

几分后哥哥追上弟弟?
(2)甲骑自行车从A地到B地,每小时行16千米,1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。

A、B两地相距多少千米?
(3)甲、乙两人以每分60米的速度同时、同地、同向步行出发。

走15分钟后甲返回原地取东西,而乙继续前进。

甲取东西用去5分钟的时间,然后改骑自行车以每分钟360千米的速度追乙,甲骑车多少分钟才能追上乙?
例16一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

问:汽车是在离甲地多远处修车的?
列方程解应用题
例17一辆汽车从甲地开往乙地,平均每小时行20千米。

到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。

求甲乙两地间的路程。

例18一个通讯员骑自行车需要在规定的时间内把信件送到某地,每小时走15千米可早到0.4小时,如果每小时走12千米就要迟到0.25小时,他去某地的路程有多远?
例19东、西两地相距5400米,甲、乙从东地,丙从西地同时出发,相向而行。

甲每分钟行55米,乙每分钟行60米,丙每分钟行70米。

多少分钟后乙正好走到甲、丙两人之间的中点处?
例20快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。

途中快车因故停留3小时。

结果两车同时到达B地。

求A、B两地间的距离。

例21一位同学在360米长的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米。

求他后一半路程用了多少时间?
综合(相向、相背、同向而行)问题
例22甲、乙两地相距420千米。

一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米。

求正在整修路面的一段路长多少千米?
例23客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原速前进。

到达对方站后立即返回,两车再次相遇时客车比货车多行21.6千米。

甲乙两站间的路程是多少千米?
例24两地相距460千米,甲列车开出2小时后,乙列车与甲列车相向开出,经过4小时与甲列车相遇。

已知甲列车每小时比乙列车多行10千米。

求甲列车每小时行多少千米?
例25小明和小军同时从学校和少年宫出发,相向而行,小明每分钟走90米,两人相遇后,小明再走4分钟到达少年宫,小军再走270米到达学校。

小军每分钟走多少米?
例26甲、乙两地相距48千米,其中一部份是上坡路,其余是下坡路。

某人骑自行车从甲地到乙地后沿原路返回,去时用了4小时12分,返回时用了3小时48分。

已知自行车上坡是每小时行10千米,求自行车下坡时每小时行多少千米?。

相关文档
最新文档