(最新整理)八年级数学尖子生培优竞赛专题辅导专题01平行四边形
平行四边形单元测试(培优压轴卷,八下浙教)-八年级数学下册尖子生培优必刷题(解析版)【浙教版】
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【浙教版】第4章平行四边形单元测试(培优压轴卷,八下浙教)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春·浙江杭州·八年级校考阶段练习)已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为()A.100°B.160°C.80°D.60°【答案】A【分析】首先根据平行四边形的性质可得∠B=∠D,再根据∠B+∠D=200°,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠B+∠D=200°,∴∠B=∠D=100°,故选:A.【点睛】本题考查了平行四边形的性质,熟练掌握和运用平行四边形的性质是解决本题的关键.2.(2023春·浙江·八年级专题练习)若一个正n边形的内角和为1080°,则它的每个外角度数是()A.36°B.45°C.72°D.60°【答案】B【分析】根据多边形内角和公式列出方程,求出n的值,即可求出多边形的边数,再根据多边形的外角和是360°,利用360°除以边数可得外角度数.【详解】解:根据题意,可得(n−2)×180°=1080°,解得n=8,所以,外角的度数为360°÷8=45°.故选:B.【点睛】此题主要考查了多边形的内角与外角,解题关键是根据多边形的内角和公式(n−2)×180°和多边形的外角和为360°进行解答.3.(2023春·浙江·八年级专题练习)下列命题:∵成中心对称的两个图形不一定全等;∵成中心对称的两个图形一定是全等图形;∵两个全等的图形一定关于某点成中心对称;∵中心对称表示两个图形之间的对称关系,中心对称图形是指某一个图形所具有的对称性质.其中真命题的个数是()A.1B.2C.3D.4【答案】B【分析】∵成中心对称的两个图形一定全等;∵成中心对称的两个图形一定是全等图形;∵两个全等的图形不一定关于某点成中心对称;∵中心对称表示两个图形之间的对称关系,中心对称图形是指某一个图形所具有的对称性质.【详解】解:∵成中心对称的两个图形一定全等;故∵为假命题;∵成中心对称的两个图形一定是全等图形;故∵为真命题;∵两个全等的图形不一定关于某点成中心对称;故∵为假命题;∵中心对称表示两个图形之间的对称关系,中心对称图形是指某一个图形所具有的对称性质.故∵为真命题;综上:真命题有2个;故选B.【点睛】本题考查判断命题的真假.熟练掌握成中心对称的两个图形全等,以及中心对称图形的定义,是解题的关键.4.(2023春·浙江·八年级专题练习)用反证法证明“在四边形中,至少有一个内角不大于90°”时,应假设()A.四边形中有一个内角小于90°B.四边形中每一个内角都小于90°C.四边形中有一个内角大于90°D.四边形中每一个内角都大于90°【答案】D【分析】在四边形中,至少有一个内角不大于90°的反面是每一个内角都大于90°,据此即可假设.【详解】解:用反证法证明“在四边形中,至少有一个内角不大于90°”时,等于应先假设:四边形中每一个内角都大于90°.故选:D.【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.5.(2023春·浙江·八年级专题练习)如图,在四边形ABCD中,∠A=120°,∠C=70°,将△BMN沿MN翻折,得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.85°B.80°C.75°D.70°【答案】A【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵MF∥AD,FN∥DC,∵∠BMF=∠A=120°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∵∠BMN=12∠BMF=12×120°=60°,∠BNM=12∠BNF=12×70°=35°,在△BMN中,∠B=180°−(∠BMN+∠BNM)=180°−(60°+35°)=180°−95°=85°.∵∠A+∠B+∠C+∠D=360°,且∠A=120°,∠B=85°,∠C=70°,∵∠D=360°−∠A−∠B−∠C=360°−120°−85°−70°=85°,故选:A.【点睛】本题考查了平行线的性质,翻折变换,平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.6.(2023春·浙江·八年级专题练习)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,若AC=6,则AF=()A.3B.2C.43D.94【答案】B【分析】BF的中点H,连接DH,根据三角形中位线定理得到DH=12FC,DH∥AC,证明△AEF≌△DEH(ASA),根据全等三角形的性质得到,计算即可.【详解】解:取BF的中点H,连接DH,∵BD=DC,BH=HF,∵DH=12FC,DH∥AC,∵∠HDE=∠FAE,在△AEF和△DEH中,{∠AEF=∠DEHAE=DE∠EAF=∠EDH,∵△AEF≌△DEH(ASA),∵AF=DH,∵AF=12FC,∵AC=6,∵AF=13AC=2,故选:B.【点睛】本题考查的是三角形中位线定理、三角形全等的判定和性质,正确作出辅助线是解题的关键.7.(2023春·浙江·八年级专题练习)如图,在△ABC中,以各边为边分别作三个等边三角形BCF,ABD,ACE,若AB=3,AC=4,BC=5,则下列结论:∵AB⊥AC;∵四边形ADFE是平行四边形;∵∠DFE=150°;∵S四边形ADFE=5,其中正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】由AB2+AC2=BC2,得出∠BAC=90°,则∵正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=150°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB= EF=AD=3,得出四边形AEFD是平行四边形,则∵正确;由平行四边形的性质得∠DFE=∠DAE=150°,则∵正确;∠FDA=180°−∠DFE=30°,过点A作AM⊥DF于点M,S▱AEFD=DF⋅AM=12DF⋅AD=12×4×3=6,则∵不正确;即可得出结果.【详解】解:∵32+42=52,∴AB2+AC2=BC2,∴∠BAC=90°,∴AB⊥AC,故∵正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,{BD=BA∠DBF=∠ABCBF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故∵正确;∴∠DFE=∠DAE=150°,故∵正确;∴∠FDA=180°−∠DFE=180°−150°=30°,过点A作AM⊥DF于点M,∴S▱AEFD=DF⋅AM=12DF⋅AD=12×4×3=6,故∵不正确;∴正确的个数是3个,故选:B.【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质,熟练掌握平行四边形的判定与性质是解题的关键.8.(2023春·浙江·八年级专题练习)平面直角坐标系内有点A(0,0),B(2,2),C(6,0)三点,请确定一点D,使以A、B、C、D为顶点的四边形为平行四边形,则的点D的坐标不可以是()A.(−4,2)B.(4,−2)C.(8,2)D.(2,−2)【答案】D【分析】结合平行四边形性质,利用点的平移分三种情况即可得到答案即可得到答案.【详解】解:∵平面直角坐标系内有点A(0,0),B(2,2),C(6,0)三点,∴连接A(0,0),B(2,2),C(6,0)构成△ABC,过△ABC的顶点作其对边平行线,分别交于D1、D2、D3,如图所示:∵在▱ACBD1中,CB∥AD1,∵C(6,0),B(2,2),即C(6,0)向左平移4个单位长度、向上平移2个单位长度得到B(2,2),又A(0,0),∴由点的平移可得D1(−4,2);∵在▱CABD2中,AB∥CD2,∵A(0,0),B(2,2),即A(0,0)向右平移2个单位长度、向上平移2个单位长度得到B(2,2),∴由点的平移可得D2(8,2);∵在▱CBAD3中,BA∥CD3,∵B(2,2),A(0,0),即B(2,2)向左平移2个单位长度、向下平移2个单位长度得到A(0,0),又C(6,0),∴由点的平移可得D3(4,−2);综上所述,符合题意的点D1(−4,2)、D2(8,2)或D3(4,−2)三种情况,故选:D.【点睛】本题考查利用点的平移求平行四边形顶点坐标,涉及平行四边形性质及点的平移法则,熟练掌握点的平移法则是解决问题的关键.9.(2023秋·浙江宁波·八年级校考期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC的面积,只需要知道下列哪个三角形的面积即可()A.△APG B.△ADP C.△DFP D.△FEG【答案】C【分析】先根据勾股定理得S△ABC=S△AFG+S△BDE,FG∥BC,CG∥PE,则四边形CEPG是平行四边形,再由S四边形ECGP =S△DFP,可以得到S△CEG=12S△DFP.【详解】解:由题意得S△ABC=S△AFG+S△BDE,FG∥BC,CG∥PE,∵四边形CEPG是平行四边形,∵S△CEG=12S四边形ECGP,∵S△ABC=S△AFG+S四边形BFPE +S四边形ECGP,∵S四边形ECGP=S△DFP,∵S△CEG=12S△DFP,【点睛】本题主要考查了以直角三角形三边组成的图形的面积,平行四边形的性质与判定,解题的关键在于能够正确理解题意.10.(2023春·八年级单元测试)如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ的最小值为()A.6B.8C.2√2D.4√2【答案】D【分析】由四边形APCQ是平行四边形,PQ最短也就是PO最短,当OP⊥AB时,PO最短,通过计算即可得解;【详解】解:∵四边形APCQ是平行四边形,∴AO=CO,OP=OQ,∵PQ最短也就是PO最短,∴过O作OP′⊥AB与P′,∵∠BAC=45°,∴∵AP′O是等腰直角三角形,AC=4,∵AO=12AO=2√2,∴OP′=√22∴PQ的最小值=2OP′=4√2,故选:D.【点睛】本题考查平行四边形的性质、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(共0分)11.(2022春·浙江杭州·八年级校考期中)在▱ABCD中,BE,CF分别平分∠ABC,∠BCD,交AD于点E,F,若AD=6,EF=2,则AB的长为______.【答案】4或2##2或4【分析】先证AE=AB,同理,DC=DF,则AE=AB=DC=DE,再分两种情况,分别求出AB的长即可.【详解】解:∵四边形ABCD是平行四边形,∵AD∥BC,AB=DC,∵∠AEB=∠EBC,∵BE平分∠ABC,∵∠ABE=∠EBC,∵∠ABE=∠AEB,∵AE=AB,同理,DC=DF,∵AE=AB=DC=DF,分两种情况:∵如图1,则AE+DF=EF+AD,即AB+AB=2+6,解得:AB=4;∵如图2,则AE+EF+DF=AD,即AB+2+AB=6,解得:AB=2;综上所述,AB的长为4或2,故答案为:4或2.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定以及分类讨论等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.12.(2023春·八年级单元测试)如图,在五边形ABCDE中,AB∥ED,∠1,∠2,∠3分别是∠ABC,∠BCD,∠CDE的外角,则∠1+∠2+∠3的度数为___________.【答案】180°##180度【分析】根据两直线平行,同旁内角互补得到以点A、点E为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【详解】反向延长AB,DC,∵AB∥ED,∵∠4+∠5=180°,根据多边形的外角和定理可得∠1+∠2+∠3+∠4+∠5=360°,∵∠1+∠2+∠3=360°−180°=180°.故答案为:180°.【点睛】本题考查了平行线的性质、多边形的外角和定理,理清求解思路是解题的关键.13.(2023春·八年级单元测试)如图,点P是平行四边形ABCD内一点,△PAB的面积为5,△PAD的面积为3,则△PAC的面积为_______.14.(2023春·浙江·八年级专题练习)如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE 向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为__.【答案】7【分析】由平行四边形可得对边相等,可得EF=AE,BF=AB,结合两个三角形的周长,通过列方程可求得FC的长.【详解】解:由折叠可得,EF=AE,BF=AB.∵△FDE的周长为8,△FCB的周长为22,∴DF+AD=8,FC+CB+AB=22.∴平行四边形ABCD的周长=8+22=30,∴AB+BC=BF+BC=15∵△FCB的周长为FC+CB+BF=22∴CF=22−15=7.故填:7.【点睛】本题考查轴对称和平行四边形的性质,熟练掌握轴对称图形沿某直线翻折后能够相互重合、及平行四边形对边平行且相等的性质是解此题的关键.15.(2023春·浙江·八年级专题练习)如图,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=19,则MN的长为_____.【答案】2.5【分析】延长BN交AC于点D,易得△ABN≌△ADN,利用全等三角形的性质可得AD=AB=14,N是BD的中点,则可得MN是△BCD的中位线,从而可求出MN的长.【详解】如图,延长BN交AC于点D.∵BN⊥AN,AN平分∠BAC,∵∠ANB=∠AND=90°,∠NAB=∠NAD.又∵AN=AN,∵△ABN≌△ADN,∵AD=AB=14,BN=DN,∵N是BD的中点.∵M是BC的中点,∵MN是△BCD的中位线,∵MN=12CD=12(AC−CD)=12×(19−14)=2.5.故答案是:2.5.【点睛】本题考查了三角形中位线定理和全等三角形的判定与性质,解答此题的关键是正确作出辅助线.16.(2023春·浙江·八年级专题练习)图1表示一双开门关闭时的状态图,图2表示打开双门过程中,某一时刻的示意图,其中AB为门槛宽度.(1)当∠CAB=∠DBA=60°时,双门间隙CD与门槛宽度AB的比值为____________.(2)若双门间隙CD的距离为2寸,点C和点D距离AB都为1尺(1尺=10寸),则门槛宽度AB是____________寸.【答案】12101【分析】(1)如图所示,延长AC,BD交于点E,则△ABE是等边三角形,进而证明CD是△ABE的中位线,即可求解;(2)取AB的中点O,过D作DE⊥AB于E,在Rt△ADE中,AE2+DE2=AD2,建立方程,解方程即可求解.【详解】解:(1)如图所示,延长AC,BD交于点E,∵∠CAB=∠DBA=60°,∵△ABE是等边三角形,∵AC=BD,AC+BD=AB,∵AC=12AE,BD=12BE,∵CD是△ABE的中位线,∵CD=12AB,故答案为:12;(2)取AB的中点O,过D作DE⊥AB于E,如图所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10(寸),OE=12CD=1(寸),AE=(r−1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r−1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101.【点睛】本题考查了勾股定理的应用,等边三角形的性质,中位线的性质,综合运用以上知识是解题的关键.三、解答题17.(2023春·八年级单元测试)如图,下列4×4网格图都是由16个相同的小正方形组成,每个网格图中有4个小正方形已涂上阴影,请你在空白小正方形中,按下列要求涂上阴影:(1)在图1中选取1个空白小正方形涂上阴影,使5个阴影小正方形组成一个轴对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析(2)见解析【分析】(1)根据轴对称图形的定义去添加;(2)根据中心对称图形的定义添加.【详解】(1)选取1个空白小正方形涂上阴影,使5个阴影小正方形组成一个轴对称图形,如下图:(2)选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,如下图:【点睛】本题主要考查了利用旋转设计图案,正确掌握轴对称图形与中心对称图形的定义是解题的关键.18.(2023春·浙江·八年级专题练习)如图,Rt△ABC,∠BAC=90°,D,E分别为AB,BC的中点,BC=10,AC= 6,点F在CA的延长线上,∠FDA=∠B.(1)求AE的长;(2)求四边形AEDF的周长.【答案】(1)5(2)16【分析】(1)直接利用直角三角形斜边上的中线等于斜边的一半求解即可;(2)根据中位线及直角三角形斜边上的中线的性质易证得四边形AFDE为平行四边形,对边相等,进而可得到DE,AF,AE,DF的长,即可得到结果.【详解】(1)解:∵∠BAC=90°,E为BC的中点,BC=10,BC=BE=5;∵AE=12(2)∵D,E分别为AB,BC的中点,AC=3,∵DE∥AC,DE=12由(1)知,AE=BE,∵∠B=∠EAD,∵∠FDA=∠B,∵∠FDA=∠EAD,∵AE∥DF∵四边形AFDE为平行四边形,∵DE=AF=3,AE=DF=5,所以四边形AEDF的周长=5+3+5+3=16.【点睛】本题考查了三角形中位线的定理,直角三角形斜边上的中线,平行四边形的判定及性质,解题的关键是找到角之间的关系和边长之间的关系.19.(2023春·浙江·八年级专题练习)如图,小明从点O出发,前进3米后到达点A(OA=3米),向右转24°,再前进3米后到达点B(AB=OA=3米),又向右转24°,……这样小明一直右转了n次刚好回到出发点O 处.根据以上信息,解答下列问题:(1)n的值为____________.(2)小明走出的这n边形的周长为____________米.(3)若一个正m边形的内角和比外角和多720°,求这个正m边形的每一个内角的度数.【答案】(1)15(2)45(3)135°【分析】(1)根据多边形的外角和等于360°,即可求解;(2)用多边形的边数乘以OA的长,即可求解;(3)根据多边形的内角和定理和外角和定理可得关于m的方程,即可求解.【详解】(1)解:根据题意得:n=360°÷24°=15.故答案为:15(2)解:由(1)得:这个n边形为十五边形,∵这n边形的周长为15OA=15×3=45(米);故答案为:45(3)解:根据题意,得(m−2)×180°=720°+360°,解得m=8,∵这个正m边形的每一个内角的度数为1080°8=135°.【点睛】本题主要考查了多边形的内角和定理和外角和定理的应用,熟练掌握多边形的内角和定理和外角和定理是解题的关键.20.(2022春·浙江杭州·八年级校考期中)如图,在平行四边形ABCD中,AE,BF分别平分∠DAB和∠ABC,交边CD于点E,F,线段AE,BF相交于点M.(1)求证:AE⊥BF;(2)若EF=14AD=3.则AB=.【答案】(1)证明见解析(2)21【分析】(1)由四边形ABCD是平行四边形,可得∠DAB+∠CBA=180°,由AE,BF分别平分∠DAB和∠ABC,可得∠MAB+∠MBA=12∠DAB+12∠ABC=90°,由三角形内角和定理,可得∠AMB=180°−(∠MAB+∠MBA)=90°,进而结论得证;(2)由平行四边形的性质可知,CD∥AB,AD=BC,AB=CD,则∠DEA=∠EAB,由AE分别平分∠DAB,可得∠DAE=∠EAB,即∠DEA=∠DAE,DE=AD,同理CF=BC,由EF=14AD=3,可得DE=BC=CF= AD=12,根据AB=CD=DE+CE=DE+CF−EF计算求解即可.【详解】(1)证明:∵四边形ABCD是平行四边形,∵∠DAB+∠CBA=180°,∵AE,BF分别平分∠DAB和∠ABC,∵∠MAB+∠MBA=12∠DAB+12∠ABC=90°,∵∠AMB=180°−(∠MAB+∠MBA)=90°,∵AE⊥BF;(2)解:∵四边形ABCD是平行四边形,∵CD∥AB,AD=BC,AB=CD,∵∠DEA=∠EAB,∵AE分别平分∠DAB,∵∠DAE=∠EAB,∵∠DEA=∠DAE,∵DE=AD,同理CF=BC,AD=3,∵EF=14∵DE=BC=CF=AD=12,∵AB=CD=DE+CE=DE+CF−EF=12+12−3=21,故答案为:21.【点睛】本题考查了平行四边形的性质,角平分线,等腰三角形的判定与性质,三角形内角和定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.21.(2021春·浙江·八年级期末)如图1,四边形ABCD由等边三角形ABC和等腰直角三角形ACD组成,∠D= Rt∠.(1)如图2,过D作DE//AC,交直线AB于点E,连结CE,请说明△BCE与四边形ABCD的面积相等,并求当AB=6时△BCE的面积;(2)如图3,连结BD,过C作CC′//BD,D作DC′//AB,交于点C′,连结BC′∵求∠CC′D的度数;∵求证:四边形ABC′D是平行四边形.∵∠CC′D=30°;∵见详解.【分析】(1)过点A作AF∵DE于点F,过点C作CH∵AB于点H,由题意易得∠DEA=∠CAB=60°,∠EDA=∵S△BCE=S四边形;ABCD∵AB=6,∵x=3,×6×3√3=9+9√3;∵S△BCE=32+12(2)∵∵AD=CD,AB=BC,∵根据折叠的性质可得BD垂直平分AC,∵∠ADB=∠CDB=∠DCA=45°,∵∠DAB=∠DAC+∠CAB=105°,且DC′//AB,∵∠DAB+∠ADC′=180°,即∠ADC′=75°,∵∠BDC′=∠ADC′−∠ADB=30°,∵CC′//BD,∵∠DC′C=∠BDC′=30°;∵设DC′与BC交于点M,如图所示:由∵可得∠ABD=∠DBC=∠BDC′=30°,∵DM=BM,∵DC′//AB,∵∠ABC=∠DMC=60°,∵∠BCC′=∠DMC−∠CC′D=30°=∠DC′C,∵MC′=MC,∵DC′=DM+MC′=BM+MC=BC,∵DC′=BC=AB,∵DC′//AB,∵四边形ABC′D是平行四边形.【点睛】本题主要考查平行四边形的判定、折叠的性质、等腰直角三角形的性质与判定及等边三角形的性质与判定,熟练掌握平行四边形的判定、折叠的性质、等腰直角三角形的性质与判定及等边三角形的性质与判定是解题的关键.22.(2023春·浙江·八年级专题练习)类比和转化是数学中重要的思想方法,阅读下面的材料,并解答问题:(1)从数学课本中我们已经学习了利用平行四边形的定义和三个定理来判断一个四边形是平行四边形的方法,他们分别是:定义:两组对边分别平行的四边形是平行四边形;定理1:两组对边分别相等的四边形是平行四边形;定理2:一组对边平行且相等的四边形是平行四边形;定理3:____________________.请将定理3补充完整;(2)周老师所在的班级成立了数学兴趣小组,他们在周老师的指导下对平行四边形的判定进行进一步的研究.他们发现:平行四边形的判定都需要两个条件,除上述4个已经被证明过的判定方法外,还有很多由两个条件组成的关于平行四边形判定的命题,他们对这些命题展开了研究.数学爱好者小赵发现“一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形”是一个真命题.请你完成证明:已知:________________,求证:_________________.(3)小珊和小红研究后发现还有一些是假命题,并且能够通过举反例说明.请你写出一个假命题,并举反例说明.(用符号或者文字简要说明你构图的方法)假命题:__________________反例:(4)数学课代表小明想到了一个命题:一组对角相等,一条对角线平分另一条对角线的四边形是平行四边形.为此他和小晨同学讨论了起来.他们一致认为,首先要明确是哪一组对角和哪一条对角线平分了另外一条对角线,所以需要分情况考虑.聪明的同学们,你们能把这个问题研究一下吗?请在答题卡上写上你的研究成果(要求有必要的图形和文字说明).【答案】(1)对角线互相平分的四边形是平行四边形;(2)见解析;(3)见解析;(4)见解析.【分析】(1)根据平行四边形的判定定理即可解答;(2)首先由已知条件及全等三角形判定,可得△ABO ≅△CDO ,AB =CD ,然后根据平行四边形的判定可证四边形ABCD 是平行四边形即可;(3)根据已知条件及平行四边形的判定即可得到答案;(4)根据已知条件分情况讨论证明即可.【详解】(1)对角线互相平分的四边形是平行四边形;(2)已知:在四边形ABCD 中,AB//CD ,对角线AC 和BD 交于点O ,AO =CO ,求证:四边形ABCD 是平行四边形.证明:∵AB//CD ,∵∠ABO =∠CDO ,∠BAO =∠DCO ,在△ABO 和△CDO 中,{∠ABO =∠CDO∠BAO =∠DCO AO =CO,∵△ABO ∵△CDO (AAS ),∵AB =CD .又∵AB//CD ,∵四边形ABCD 是平行四边形.(3)(答案不唯一)假命题:一组对边平行,一组对边相等的四边形是平行四边形.反例:反例如图所示.四边形ABCD是等腰梯形,AB//CD,BC=AD,四边形ABCD满足一组对边平行,一组对边相等,但它不是平行四边形.(4)分两种情况∵已知∠ABC=∠ADC,且BO=DO,四边形ABCD满足一组对角相等,一条对角线平分另一条对角线,但它不是平行四边形.∵已知∠ABC=∠ADC,且AO=CO,反证法:假设四边形ABCD不是平行四边形,则BO≠DO,故可以在射线BD上取和D不重合的点D′,使得D′O=BO,∵AO=CO且D′O=BO,∵四边形ABCD′是平行四边形,∵∠ABC=∠AD′C,∵∠ABC=∠ADC,∵∠ADC=∠AD′C,但D和D′不重合,矛盾,假设不成立,∵四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定、真假命题、反证法,掌握平行四边形的判定定理是解题的关键.23.(2023春·八年级校考单元测试)如图,在直角坐标系中,▱OABC的边OA=18,OC=8√2,∠AOC=45°,点P以每秒2个单位的速度从点C向点B运动,同时,点Q以每秒√2个单位的速度从点O向点C运动,设运动时间为t.(1)求点C,B的坐标;(2)当t为何值时,△APQ的面积时▱OABC的面积的3;8(3)当t为何值时,AP⊥CB,此时,在坐标平面上是否存在点M,使得以A,P,Q,M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标.若不存在,请说明理由.【答案】(1)点C坐标为(8,8),点B坐标为(26,8)(2)t=3或t=6时,△APQ的面积时▱OABC的面积的3;8(3)点M的坐标为(5,13)或(5,−3)或(31,3)【分析】(1)过点C作CD⊥OA,垂足为D,由勾股定理求出OD=CD=8,由平行四边形的性质可得出答案;(2)过点Q作QE⊥x轴于点E,交BC的延长线于点F,根据行程问题中速度、时间与距离之间的关系,用含−S△OAQ−S△CPQ−S△APB,将△APQ t的代数式表示线段EQ、FQ、PC、PB的长,再由S△APQ=S平行四边形OABC的面积用含t的代数式表示并进行整理,即得到y关于t的关系式;(3)当AP⊥CB时,则PA=PB=8,可求出此时t的值,再求出OE、QE的长,以A、P、Q、M为顶点的平行四边形可以AP、AQ、PQ为对角线,以此分类讨论,求出所有符合条件的点M的坐标即可.【详解】(1)解:如图1,过点C作CD⊥OA,垂足为D,∵∠AOC=45°,∴△OCD为等腰直角三角形,在△OCD中,OD2+CD2=OC2,∵OC=8√2,∴OD=CD=√(8√2)2÷2=8,∴点C坐标为(8,8),∵OA=18,即点A坐标为(18,0),∵四边形OABC为平行四边形,∴点B坐标为(26,8);(2)如图2,过点Q作QE⊥x轴于点E,交BC的延长线于点F,则EF=4,∵∠OEQ=90°,∠AOC=45°,∴∠EOQ=∠EQO=45°,∴OE=QE,∵OE2+QE2=OQ2,OQ=√2t,∴2QE2=(√2t)2,∴OE=QE=t,∴QF=8−t,∵S△APQ=S平行四边形OABC−S△OAQ−S△CPQ−S△APB,CP=2t,BP=18−2t,△APQ的面积时▱OABC的面积的38;∵3 8×18×8=18×8−12×18t−12×2t(8−t)−12×8(18−2t)解得:t=3或t=6∵t=3或t=6时,△APQ的面积时▱OABC的面积的38;(3)如图3,当AP⊥CB时,则PA=8,∠OAP=∠APB=90°,∵∠ABC=∠AOC=45°,∴∠PBA=∠PAB=45°,∴PB=PA=8,∴2t=18−8,解得,t=5,当平行四边形APQM1以AQ为对角线,设QM1交x轴于点E,∵QM1∥PA,∴∠OEQ=∠OAP=90°,∴OE=QE=t=1×5=5,∵QM1=PA=8,∴EM1=8−5=3,∴M1(5,−3);当平行四边形PAQM2以PQ为对角线,则QM2∥PA,QM2=PA=8,∴EM2=8+5=13,∴M2(5,13);当平行四边形AQPM3以AP为对角线,作M3G⊥CB交CB的延长线于点G,∵PM3∥AQ,∴∠APM3=∠PAQ,∴∠APB−∠APM3=∠OAP−∠PAQ,∴∠GPM3=∠EAQ,∵∠G=∠AEQ=90°,PM3=AQ,∴△PGM3≌△AEQ(AAS),∴PG=AE=18−5=13,GM3=QE=5,∴x G=18+13=31,∴M3(31,3),综上所述,点M的坐标为(5,13)或(5,−3)或(31,3).【点睛】本题是四边形综合题,考查了平行四边形的判定与性质,等腰直角三角形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.。
初中数学竞赛——平行四边形
初二数学联赛班八年级第1讲平行四边形知识总结归纳一.平行四边形的定义:(1)定义:两组对边分别平行的四边形叫平行四边形.(2)平行四边形的定义包含两层意义:①它是四边形;②它的两组对边分别平行,两者缺一不可.(3)定义既是基本判定也是基本性质:如果一个四边形两组对边分别平行,那么它是平行四边形;反之如果一个四边形是平行四边形,那么它的两组对边分别平行.二.平行四边形的性质:(1)角的性质:平行四边形的邻角互补,对角相等.(2)边的性质:平行四边形的对边平行且相等.(3)对角线的性质:平行四边形的对角线互相平分.(4)中心对称性:平行四边形是中心对称图形,对称中心是对角线的交点.三.平行四边形的判定:(1)定义:有一个角是直角的平行四边形叫做矩形.(2)一组对边法:一组对边平行且相等.(3)对角线法:对角线互相平分.(4)两组对角法:两组对角分别相等.(5)两组对边法:两组对边分别相等.四.三角形的中位线:(1)定义:连结三角形两边中点的线段叫做三角形的中位线.(2)三角形的中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.典型例题一.基本概念和性质【例1】具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补B.两组对角分别相等C.一组对边平行,另一组对边相等D.对角线交点是两对角线中点初二数学联赛班 八年级【例2】 如下左图所示,四边形ABCD 的对角线AC 和BD 相交于点O ,下列判断正确的是( ).A .若AO =OC ,则ABCD 是平行四边形B .若AC =BD ,则ABCD 是平行四边形C .若AO =BO ,CO =DO ,则ABCD 是平行四边形 D .若AO=OC ,BO =OD ,则ABCD 是平行四边形【例3】 如上右图所示,对四边形ABCD 是平行四边形的下列判断,正确的打“√”,错误的打“×”.(1)因为AD ∥BC ,AB =CD ,所以ABCD 是平行四边形.( ) (2)因为AB ∥CD ,AD =BC ,所以ABCD 是平行四边形.( ) (3)因为AD ∥BC ,AD =BC ,所以ABCD 是平行四边形.( ) (4)因为AB ∥CD ,AD ∥BC ,所以ABCD 是平行四边形.( ) (5)因为AB =CD ,AD =BC ,所以ABCD 是平行四边形.( ) (6)因为AD =CD ,AB =AC ,所以ABCD 是平行四边形.( )【例4】 如图所示,在ABCD □中,E 是AD 边上的中点,若ABE EBC ∠=∠,2AB =,求ABCD □的边长.【例5】 如图所示,在四边形ABCD 中,AB =CD ,BC =AD ,E ,F 为对角线AC 上的点,且AE =CF ,求证:BE =DF .DCEBA初二数学联赛班八年级二.巩固提高【例6】如图,在ABCD□中,E、F是对角线AC上两点,且AF CE=,求证:四边形BEDF是平行四边形.【例7】如图,在ABC△中,AB AC=,12cmAB=,F是AB边上的一点,过点F作FE BC∥交CA 于点F,过点E作ED AB∥交BC于点D,求四边形BDEF的周长.【例8】如图,在ABCD□中,CE是DCB∠的平分线,F是AB的中点,6AB=,4BC=,::AE EF FB 是多少?【例9】在ABCD□中,以AD、BC为边分别向外作正ADE△、正BFC△,连结DB、EF交于O点,求证:DO BO=,EO FO=.ED CBAFED CBA ⋅FF ECBADFCDAEO初二数学联赛班 八年级【例10】 如图,AD 、BE 、CF 是ABC △的三条中线,FG BE ∥,EG AB ∥,则ADCG 是平行四边形.【例11】 如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE =AB ,BF =BD ,连接CE ,DF ,相交于点M .求证:CD =CM .三. 与平行四边形相关的杂题【例12】 如图所示,在ABCD □中,EF AB ∥,GH AD ∥,EF 与GH 相交于点O ,图中有多少个平行四边形?【例13】 如图所示,P 是四边形ABCD 的DC 边上的一个动点,当四边形满足什么条件时,PBA △的面积始终保持不变?EFDCBAGD A C BO G F EHP DCBA初二数学联赛班八年级【例14】如图,在ABCD□中,AE BC⊥于E,AF CD⊥于点F,若6AE=,8AF=,ABCD□的周长为98,求ABCD□的面积.【例15】如图,ABC△中,5AB=,6BC=,7AC=,若以A、B、C为顶点作平行四边形,求所作的平行四边形的周长.【例16】平行四边形的对角线分别是10和16,求它的边长的范围.四.三角形的中位线【例17】如图,E为ABCD□中DC边延长线一点,且CE DC=,连AE,分别交BC、BD于点F、G,连AC交BD于O,连OF、BE.(1)求证:AC BE=.(2)求证:2AB OF=.EFGODCBAFEDCBACBA初二数学联赛班 八年级【例18】 如图所示,在平行四边形ABCD 中,EF ∥AB 且交BC 于点E ,交AD 于点F ,连接AE ,BF交于点M ,连接CF ,DE 交于点N ,求证:MN AD ∥且12MN AD =.【例19】 如图,四边形ABCD 四边上的中点分别是E 、F 、G 、H .求证:四边形EFGH 为平行四边形.【例20】 如图,四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点.求证:EF 和GH 互相平分.【例21】 如图,E 、F 为ABC △边AB 、BC 的中点,在AC 上取G 、H 两点,使AG GH HC ==,EG与FH 的延长线相交于D 点.求证:四边形ABCD 为平行四边形.HGFED CBADBAGHEFHGDCB AFE初二数学联赛班八年级【例22】如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作平行四边形ACED,延长DC交EB于F,求证:EF FB=.思维飞跃【例23】如图,四边形ABCD中,AB CD∥,2ADC ABC∠=∠.求证:AB AD CD=+.【例24】如图,在ABC△中,AB AC=中,在AB上取点D,在AC的延长线上取点E,使C E B D=.连DE,交BC于G点.求证:DE被BC平分.GDCBAED CBA初二数学联赛班 八年级【例25】 如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线,交AD 于点E ,交BC 于点F .若PE PF =,且AP AE CP CF +=+,证明:四边形ABCD 为平行四边形.【例26】 如图,E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点.求证:1()2EF AB CD +<.【例27】 如图,在ABC △中,BD 、CE 是ABC △的角平分线,AF CE ⊥于F ,AG BD ⊥于G ,连接FG .求证:FG BC ∥.CFD CBAEGEDCBAF初二数学联赛班八年级作业1.已知四边形ABCD,有以下四个条件:(1)AB CD∥;(2)AB CD=;(3)BC AD∥;(4)BC AD=.从这四个条件中任选两个,能使四边形ABCD成为平行四边形是选法共有()A.6种B.5种C.4种D.3种2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补B.两组对角分别相等C.一组对边平行,另一组对边相等D.对角线交点是两对角线中点3.如图,在ABCD□中,E、F分别在BC、AD上,且AF CE=.求证:四边形AECF是平行四边形.4.如图,在ABCD□中,130A︒∠=,在AD上取DE DC=,求ECB∠的度数.5.在ABCD□中,AE平分DAB∠交BC于E,将BC分为5和4两部分,求平行四边形的周长.DCEBAF DCBAE初二数学联赛班 八年级6. 如图,已知ABCD □中,过对角线的交点的O 的直线交CB 、AD 的延长线于E 和F ,求证:BE DF =.7. 如图,E 、F 分别是四边形ABCD 对角线BD 、AC 的中点,MN 过E 、F 交AB 于M ,交CD 于N ,且AB CD =.求证:BMN CNM ∠=∠.8. 如图所示,在ABC △中,E 为AB 的中点,CD 平分∠ACB ,AD ⊥CD 于点D .试说明:(1)DE ∥BC .(2)1()2DE BC AC =-.9. 在四边形ABCD 中,AB CD =,P ,Q 分别是AD 、BC 的中点,M ,N 分别是对角线AC ,BD中点,证明:PQ 与MN 互相垂直.OEDCBAF DCBA MN FEQ PMNCB D A。
八年级数学培优平行四边形
20第讲平行四边形考点?方法?破译. ⒈理解并掌握平行四边形的定义、性质、和判定方法,并运用它们进行计算与证明. ⒉理解三角形中位线定理并会应用.⒊了解平行四边形是中心对称图形经典?考题?赏析的延长作直线EF分别交DA中:如图在 ABCD,过对角线BD的中点O【例1】已知□N、F.、DC、BC的延长线于点E、M、线AB≌△,请加以证明;⑴观察图形并找出一对全等三角形:△⑵在⑴中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?【变式题组】01.如图,在 ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,□使BE =BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点上,点H在E、C两点之间,连接AE、AF.⑴求证:△ABE≌△FDA;⑵当AE⊥AF时,求∠EBH的度数.02.如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在□BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.是平行四边形.求证:四边形GEHF、CD上,以.点E在边AC,延长BC至D,使CD=BC中,03.如图,在△ABCAB=AC.,连接BG、DE作CG∥AB交EF于点GCE为邻边作CDFE.过点C□有怎样的数量关系?请说明理由;⑴∠ACB与∠DCG.⑵求证:△BCG≌△DCE⊥,BFBE的周长为20,⊥AD【例2】如图,ABCD□.ABCD则的面积为BECD,=2,BF=3.□变式题组】【的长.2.求EC,AE=3,DF=°,.如图,01ABCD中,BE⊥ADBF⊥CD,∠EBF=60□60°=2,∠MBN=BM的中点,N是DC的中点,=1,BN是ABCD02.在中,MAD□求BC的长.03.平行四边形ABCD中,AD=a,CD=b,过点B分别作AD边上的高H和CD边上的高H,ba.ABCD的面积AC=20厘米,求平行四边形已知H≥a, H≥b,对角线ba】【例3(1,0),A(0,1)B(-1,0),C如图:在平面直角坐标系中,有.三点三点构成平行四边形,请写出所B、C⑴若点D与A、有符合条件的点D的坐标;,求直线BD的解析式.⑵选择⑴中符合条件的一点D变式题组】【3x l,直线Bl交于x轴上同一点+3与01.如图,直线l:yy轴交于点A=-,与直线2122轴对称.与点A关于x交y轴于点C,且点C⑴求直线l的解析式;2⑵设D(0,-1),平行于y轴的直线x=t分别交直线l和l于点E、F.是否存在t21的值,使得以A、D、E、F为顶点的四边形是平行四边形,若存在,求出t 的值;若不存在,请说明理由.1x=上是y轴上一动点,在直线y,),B(30),P102.如图,在直角坐标系中,A(,02是否存在点Q,使A、B、P、Q为顶点的四边形为平行四边形?若存在,求出对应的Q点的坐标;若不存在,请说明理由.k的图象都经过点(1,1)1和反比例函数y.=x03.若一次函数y=2-2x⑴求反比例函数的解析式;⑵已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标;⑶利用⑵的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.【例4】如图1.在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明)(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE =HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于M、N,判断?OMN的形状,请直接写出结论.问题二:如图3,在?ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断?AGD的形状并证明.【解法指导】出现中点,联想到三角形中位线是常规思路,因为三角形中位线不仅能进行线段的替换,也可通过平行进行角的转移.】变式题组【.01.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是 AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减小C、线段EF的长不变D、线段EF的长与点P的位置有关DA EPF B C R02.如图,在△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=22,则MD的长为().A.3B.4C.5D.6【例5】如图1,在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM 与BN相交于点P,求证:∠BPM=45°.【解法指导】题中相等线段关联性不强,能否把相等的线段(或角)通过改变位置,将分散的条件集中,从而构造全等三角形解决问题.【变式题组】AB=AC,延长边AB到点D,延长CA到点E,连接DE,ABC如图,01.在等腰△中,若AD=BC =CE=DE,求∠BAC的度数.演练巩固反馈提高□ ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC01.如图,边于点E,则BE等于()A.2cm B.4cmcmD.8C.6cm□ABCD中,AC,BD为对角线,BC02.如图,=6,BC边上的高为4,则阴影部分的面积为().24.12 DB.6 CA.3的延长线于点并延长,交ABBC边的中点,连接DE03.如图,在四边形ABCD中,E为是平行四边形,你认为四个条件中可选择添加一个条件,使四边形ABCD=BF,F,AB)的是(.CDE∠F=∠=∠C D..=BC B.CD=BF C∠AAAD□于ADBD交相交于点O,OE⊥ABCD中,AB≠AD,AC,BD2004.如图,在周长为cm的)的周长为(E,则△ABE点 .10cm.8cm D.4Acm B.6cm C得颜色的花,.某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫605那么下列说法错误的是,GH∥AD∥EF∥DC,BC∥如果有AB紫花,橙花种植面积一定相等B.A.红花,绿花种植面积一定相等蓝花,黄花种植面积一定相等D.C.红花,蓝花种植面积一定相等CF?BE=DCl,下面四个结论中?AB=; ⊥ , ∥.如图,06l lBE∥CFBA⊥lDC2112□□S④S?=S),其中正确的有(=S DCFADEBCFEABCD△△个 .1 .2 .3 .4A个B 个C个D07.已知四边形ABCD,有以下四个条件:?AB∥CD?AB=CD?BC∥AD④BC=AD从这四个条件中任选两个,能使四边形ABCD为平行四边形的选法种数有()A.6种B.5种C.4种D.3种08.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=0BC,∠PEF=18,则∠PFE的度数为________向上翻折,ABEBE为折痕,将△中,点E在边AD中,以09..如图,平行四边形ABCD的长,则FC228,△FCB的周长为点A恰好落在CD上的F点,若△FDE的周长为_________ 为2.5BC向右平移将△ABC沿直线,AB=3,AC=4,°如图,在10.Rt△ABC中,∠BAC=90____ 则下列结论中成立的是,AE,DE相交于点G,连接AD,个单位得到△DEFAC与CGEAGD≌△ABED 四边形是平行四边;?△?平分∠ACEADADE为等腰三角形④?△□. AE边上一点,且AB=如图是ABCD中,EBC.11EADABC≌△求证(1).:△的度数.,求∠AED25,若(2).AE平分∠DAB∠EAC=°□ABCD内一点E满足ED⊥AD于D,且∠EBC=∠如图,12.EDC,∠ECB=45°,找出图中一相等的线段,并加以证明.条与EB顺时针旋转绕点D是AB边上的点,将线段DB是等边三角形,13.已知,如图,△ABCD. AE连接DC,于点DE,延长ED交ACF,60°得到线段DFCADE≌△⑴求证:△AHE的度数.求∠,BC 于点H连接AH,交GDBDCEHE⑵过点作∥交于点,。
人教【数学】培优平行四边形辅导专题训练
一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH=3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【详解】(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,∴AB=2BE,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P在E处,m=△AEQ的面积=12AQ×AE=12×10×4=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ=2222106234AQ AP+=+=,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=534∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22AQ QF'-=6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:22108-,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'=22108-=6,∴A'C=CD-DA'=2, 在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t ,由勾股定理得:AP 2=82+(2t-4)2,A'P 2=22+(22-2t )2,∴82+(2t-4)2=22+(22-2t )2,解得:t=173; 综上所述,t 为12或5或173时,折叠后顶点A 的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=33,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为333,333+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.。
学而思寒假八年级尖子班讲义第1讲平行四边形性质、判定
1 平行四边形性质、判定目标1 掌握平行四边形的性质掌握平行四边形的性质目标2 掌握平行四边形的判定掌握平行四边形的判定目标3 应用平行四边形的性质、判定、三角形全等解决综合问题应用平行四边形的性质、判定、三角形全等解决综合问题【专题简介】【专题简介】与三角形一样,平行四边形也是一种基本的几何图形,宏观的建筑物、开关自如的栅拦门、别具一格的灵柩••••••现实世界中很多物体都有平行四边形的形象。
从本讲开始,我们将依次学习平行四边形、举行、菱形、正方形的概念,并在理解她们的基础上,利用已有的几何知识和方法,搜索并证明他们的性质定理和判定定理:进一步体会研究图形的几何性质的思路和方法,进一步体会研究图形的几何性质的思路和方法,即通过观、即通过观、即通过观、类比、类比、类比、特殊化等途径和方法发特殊化等途径和方法发现图形的几何性质,在通过逻辑推理证明他们现图形的几何性质,在通过逻辑推理证明他们模块一 平行四边形的性质 知识导航知识导航 定义定义示例剖析示例剖析平行四边形:两组对边分别平行的四边形叫做平行四边形(如图):平行四边形的表示:一般按照一定的方向依次表示各项点:如右图的平行四边形不能表示平行四边形ACBD ,也不能表示平行四边形ADBC叫做平行四边形四边形ABCD ÞþýüBC // AD CD // AB 记作□ABCD性质性质示例剖析示例剖析①平行四边形的对边平行;①平行四边形的对边平行;四边形ABCD 为平行四边形ÞAB ∥DC , AD ∥ BC .②平行四边形的对边相等:②平行四边形的对边相等:四边形ABCD 为平行四边形ÞAB ∥DC , AD ∥ BC .③平行四边形的对角相等③平行四边形的对角相等四边形ABCD 为平行四边形Þ∠A=∠C ,∠B=∠D④平行四边形的对角线互相平分④平行四边形的对角线互相平分四边形ABCD 为平行四边形ÞOA=OC ,OB=OD【例1】如图,D 为平行四边形ABCD 的对角线的交点:过O 点作直线EF 分别交CD 、AB 于点E 、F . (1)求证:OE= OF ;(2)若AB =5,BC =4,OE= 1.5,求四边形EFBC 的周长。
部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案
2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题6.3考前必做30题之平行四边形小题培优提升(压轴篇,八下人教)本套试题主要针对期中期末考试的选择填空压轴题,所选题目典型性和代表性强,均为中等偏上和较难的题目,具有一定的综合性,适合学生的培优拔高训练.试题共30题,选择20道,每题3分,填空10道,每题4分,总分100分.涉及的考点主要有以下方面:1.平行四边形的性质:平行四边形的边与角的计算、平行四边形的对角线问题平行四边形的判定:平行四边形的判定方法的认识、判断能否构成平行四边2.形、添加条件成为平行四边形、已知三点构成平行四边形、平行四边形的性质与判定综合3.三角形的中位线:三角形中位线有关线段计算、三角形的中位线与面积一、单选题1.(2023春·江苏·八年级专题练习)如图所示,在四边形ABCD中,已知∠1=∠2,添加下列一个条件,不能判断四边形ABCD成为平行四边形的是( )A.∠D=∠B B.AB∥CD C.AD=BC D.AB=DC2.(2023春·全国·八年级专题练习)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE//AB交AD于点E.若OA=2,ΔAOE的周长为10,则平行四边形ABCD的周长为()A.16B.32C.36D.403.(2023秋·山东烟台·八年级统考期末)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE4.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,P为▱ABCD内一点,且△PAB和△PAD的面积分别为5和2,则△PAC的面积为()A.3B.4C.5D.65.(2023春·江苏·八年级专题练习)如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,若AB=6,AD=8,则EF的长度为( )A.4B.5C.6D.76.(2023春·江苏·八年级专题练习)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.2.3C.4D.77.(2023春·江苏·八年级专题练习)如图,△ABC周长20,D,E在边BC上,BN和CM分别是∠ABC和∠ACB 的平分线,BN⊥AE,CM⊥AD,若BC=8,则MN的长为()A.1B.2C.3D.8.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)已知,在▱ABCD中,点M、N分别是AB、CD的中点,AN、CM交DB于P、Q两点,下列结论:①DP=PQ=QB;②AP=CQ③CQ=2MQ;④S△ADP=1S▱ABCD.其中正确的结论的个数是()4A.4个B.3个C.2个D.1个9.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,E为平行四边形ABCD内一点,且EA=EB=EC,若∠D=50°,则∠AEC的度数是()A.90°B.95°C.100°D.110°10.(2023春·江苏·八年级专题练习)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延BC.连接DM、DN、MN.若AB=6,则DN的长为()长BC至点D,使CD=12A.1B.2C.3D.411.(2022春·黑龙江哈尔滨·八年级校考阶段练习)如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是( )A.1B.2C.3D.412.(2023秋·浙江宁波·八年级校考期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC 的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG13.(2023春·八年级课时练习)如图,在四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AC、AE,AE交CD于点H,∠DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的长为( )A.9B C.10D.14.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③交AB于点E,∠BCD=60°,AD=12AO=DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个15.(2023春·八年级课时练习)如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2;使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2021,最少经过()次操作.A.2B.3C.4D.516.(2023春·全国·八年级专题练习)如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=M 是AD边的中点,点N是AB边上的一个动点.将△AMN沿MN所在的直线翻折到△A′MN,连接A′C.则线段A′C长度的最小值为()A.5B.7C.D.17.(2023春·八年级单元测试)如图所示,在△ABC中,已知点D,E,F,G分别为边BC,AD,CE,BE的中点,且S△ABC=8cm2,则S阴影=()A.2cm2B.1cm2C.0.5cm2D.0.25cm218.(2023春·八年级课时练习)如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将,则B′F的值为()四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于AD,若AE=52DA.3B.C.−1219.(2023春·八年级课时练习)如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4,E,F分别是BD,AC的中点,则EF的长为( )A.1B.1.5C.2D.2.520.(2022春·江西赣州·八年级校考阶段练习)如图,Rt△ABC中,BC=∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接B E1交C D1于D2;过D2作D2E2⊥AC于E2,连接B E2交C D1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BC E1、△BC E2、△BC E3、…、△BC E2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A B C D.4671二、填空题21.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,▱ABCD,∠C 的平分线交AB于点E,交DA延长线于点F,且AE=3cm,EB=5cm,则▱ABCD的周长为______ .22.(2022春·浙江杭州·八年级校考期中)在▱ABCD中,BE,CF分别平分∠ABC,∠BCD,交AD于点E,F,若AD=6,EF=2,则AB的长为______.23.(2022秋·山东济宁·八年级济宁学院附属中学校考期末)如图,在四边形ABCD中,AD∥BC,AD=12 cm,BC=18cm,点P在AD边上以每秒3cm的速度从点A向点D运动,点Q在BC边上,以每秒2cm的速度从点C向点B运动.若P、Q同时出发,当直线PQ在四边形ABCD内部截出一个平行四边形时.点P运动了_____秒.24.(2022秋·山东泰安·八年级统考期末)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2、B2、C2分别是边B1C1、A1C1、A1B1的中点;点A3、B3、C3分别是边B2C2、A2C2、A2B2的中点;…;以此类推,则第2022个三角形的周长是________.25.(2023春·八年级单元测试)如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC 相交于点E、F,若AB=5,BC=6,OF=2,那么四边形ABFE的周长是______.26.(2022春·江苏宿迁·八年级校考阶段练习)如图,矩形ABCD的边AB=4,BC=8,E是AD上一点,DE=2,F是BC上一动点,P、Q分别是EF、AE的中点,则PE+PQ的最小值为_____.27.(2022春·山西晋城·八年级统考期末)如图,点A,B,C的坐标分别是0,2,2,2,0,−1,在平面直角坐标系内有一点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是________.28.(2021春·浙江宁波·八年级校考期中)如图,△ABC边长分别为AB=14,BC=16,AC=26.P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是__________.29.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,平行四边形ABCD中,∠ABC=60°,AB=2,BC=6,P为边AD上的一动点,则PC的最小值等于______.30.(2022·全国·八年级专题练习)如图,△APB中,AB=4,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______________.。
八年级下期数学培优思维训练(平行四边形)
八年级下期数学培优思维训练三、平行四边形 (一)知识梳理: (二)方法归纳: (三)范例精讲:1.如图,△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,S △ABC =4cm 2,求阴影部分的面积.2.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A. B.C.D.3.如图,在□ABCD 中,过对角线BD 上一点P ,作EF∥BC,HG∥AB,若四边形AEPH 和四边形CFPG 的面积分别为S 1和S 2,则S 1与S 2的大小关系为( ) A.S 1>S 2B. S 1=S 2C.S 1<S 2D.不能确定4.如图,一个平行四边形被分成面积为S1,S2,S3,S4的四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,14S S 与23S S 的大小关系为( )A.1423S S S S >B.1423S S S S <C.1423S S S S =D.不能确定5.在□ABCD 中,点A 1,A 2,A 3,A 4和C 1,C 2,C 3,C 4分别AB 和CD 的五等分点,点B 1,B 2,和D 1,D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 面积为( )A.2B.3/5C.5/3D.156.如图,在△ABC 中,AB=AC .M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连接DN 、EM .若AB=13cm ,BC=10cm ,DE=5cm ,则图中阴影部分的面积是_____________.7.如图,四边形ABCD是一块某地示意图,EFG是流经这块菜地的水渠,水渠东边的地属张家承包,西边的地属李家承包,现村委会在田园规划中需将流经菜地的水渠取直,并要保持张、李两家的承包土地面积不变,请你设计一个挖渠的方案,就在给出的图形上画出设计示意图,并说明理由.8.已知等边△ABC的边长为a,P为△ABC内任意一点,且PD∥AB,PE∥BC,PF∥AC. 则,PD+PE+PF的值是一个定值吗?如果是,求出这个定值.9.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点. 求证:四边形EGFH是平行四边形.10.如图,以△ABC的三条边为边向BC的同侧作等边△ABP、等边△ACQ,等边△BCR.求证:四边形PAQR是平行四边形.11.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G. (1)探索AG与GD的数量关系,并证明你的结论.(2)求△DFG与四边形AEFG的面积比.12.如图,四边形ABCD中,对角线AC、BD相交于点O,AC=BD,M、N分别是AB、CD 的中点,MN分别交BD、AC于E、F. 求证:△OEF是等腰三角形.13.如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)求证:FG=12(AB+BC+AC).(2)如图(2),BD、CE分别是△ABC的内角平分线,探索线段FG与△ABC三边的数量关系?并证明你的结论.(3)如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线.探索线段FG 与△ABC三边的数量关系?并证明你的结论.(四)思维训练:1.如图,小红作出了边长为1的第1个正三角形△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2、B 2、C 2,作出了第二个正三角形△A 2B 2C 2,算出第2个正△A 2B 2C 2的面积,用同样的方法作出了第3个正△A 3B 3C 3,算出第3个正△A 3B 3C 3的面积,依此方法作下去,由此可得第n 次作出的正△A n B n C n 的面积是 _________ .2.如图,四边形ABCD 中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,得到四边形A 2B 2C 2D 2,…,依此类推,得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为 ______ .3.如图所示,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.4.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线分别交直线MN于E、F.求证:∠DEN=∠F.5.如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.6.如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN 分别交AB,AC于P,Q.求证:AP=AQ.7.如图:AD是△ABC的高,M、N、E分别是AB、AC、BC边上的中点.(1)求证:ME=DN;(2)若BC=AD=12,AC=13,求四边形DEMN的面积.8.如图所示,M、N分别为平行四边形ABCD边BC、CD上的点,且MN∥BD,则△AND的面积△ABM的面积有什么关系?说明理由.9.如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE绕A点顺时针旋转60°到△ABF的位置(如图2),连接DF、EF.①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;②试判断四边形CDFE的形状,并说明理由.10.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△AB C”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).11.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,∥此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(3)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)12.平行四边形ABCD中,AB=2 cm,BC=12 cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2 cm,点Q在边AD上,由点D向点A运动,速度为每秒1 cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为y cm2,用含t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是□ABCD面积的四分之三?13.在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.14.已知在□ABCD中,AE⊥BC于E,DF平分∠ADC 交线段AE于F.(1)如图1,若AE=AD,∠ADC=60°,请直接写出线段CD与AF+BE之间所满足等量关系;(2)如图2,若AE=AD,你在(1)中得到的结论是否仍然成立,若成立,对你的结论加以证明,若不成立,请说明理由;15.已知:如图,在梯形ABCD中,AD∥BC,AD=24 cm,BC=30cm,点P自点A向D以1 cm/s的速度运动,到D点即停止.点Q自点C向B以2 cm/s 的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?16.如图a、b,在□ABCD中,∠BAD,∠ABC的平分线AF,BG分别与线段CD两侧的延长线(或线段CD)相交于点F,G,AF与BG相交于点E.(1)在图a中,求证:AF⊥BG,DF=CG;(2)在图b中,仍有(1)中的AF⊥BG,DF=CG成立.请解答下面问题:①若AB=10,AD=6,BG=4,求FG和AF的长;②是否能给□ABCD的边和角各添加一个条件,使得点E恰好落在CD边上且△ABE为等腰三角形?若能,请写出所给条件;若不能,请说明理由.17.小刘遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小刘是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小刘同学的思路回答:(1)图2中AH的长等于_________.(2)如果AC=a,EF=b,则AH的长等于_________.18.如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由..。
学而思寒假八年级尖子班讲义第1讲平行四边形性质、判定
1 平行四边形性质、判定目标1 掌握平行四边形的性质 目标2 掌握平行四边形的判定目标3 应用平行四边形的性质、判定、三角形全等解决综合问题【专题简介】与三角形一样,平行四边形也是一种基本的几何图形,宏观的建筑物、开关自如的栅拦门、别具一格的灵柩••••••现实世界中很多物体都有平行四边形的形象。
从本讲开始,我们将依次学习平行四边形、举行、菱形、正方形的概念,并在理解她们的基础上,利用已有的几何知识和方法,搜索并证明他们的性质定理和判定定理:进一步体会研究图形的几何性质的思路和方法,即通过观、类比、特殊化等途径和方法发现图形的几何性质,在通过逻辑推理证明他们模块一 平行四边形的性质 知识导航 定义示例剖析平行四边形:两组对边分别平行的四边形叫做平行四边形(如图):平行四边形的表示:一般按照一定的方向依次表示各项点:如右图的平行四边形不能表示平行四边形ACBD ,也不能表示平行四边形ADBC叫做平行四边形四边形ABCD ⇒⎭⎬⎫BC // AD CD // AB 记作□ABCD性质示例剖析①平行四边形的对边平行;四边形ABCD 为平行四边形⇒AB ∥DC , AD ∥ BC .②平行四边形的对边相等:四边形ABCD 为平行四边形⇒AB ∥DC , AD ∥ BC .③平行四边形的对角相等∠B=∠D④平行四边形的对角线互相平分四边形ABCD为平行四边形 OA=OC,OB=OD【例1】如图,D为平行四边形ABCD的对角线的交点:过O点作直线EF 分别交CD、AB于点E、F.(1)求证:OE= OF;(2)若AB =5,BC =4,OE= 1.5,求四边形EFBC的周长。
(3)若S四边形CEFB= 10,求S□ABCD.【练】如图,在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F,求证:DE=BF.【总结】:由【练】的结论可知,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,【思考】:两条平行线之间的距离、点与点之间的距离、点到直线的距离有何区别和联系?【例2】如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E.G两点,CE、BG交于点o.(1)求证:AG= DE:(3)在(2)的条件下,求OE²+OG²的值【练】(2015年汉阳区八下期中)如图,在平行四边形ABCD中,AB=6, ∠BAD的角平分线与BC的延长线交于点E、与DC交于点F,且点F 为边DC的中点,∠ADC的角平分线交AB于点M,交AE于点N,连接DE(1)求证:BC-=CE(2)若DM=2,求DE的长【例3】如图,在平行四边形ABCD中,AB≠AD,AC、BD相交于点O、OE⊥BD交AD于点E点.①求证:OB平分∠CBE:②若平行四边形ABCD的周长为20,求△ABE的周长.【练】(2015年武汉六中八下期中)如图,平行四边形ABCD的对角线相交于点D,周长为20cm, ABOC的周长比△AOB的周长长2cm,则AB=________.【例4】如图,在平行四边形ABCD中,M、N分别是AD、AB上的点,且BM=DN,其交点为P,设∠CPB=a,∠CPD=β,求α和β的大小关系?【练】如图,由25个点构成的5x5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A、B为顶点,面积为2的阵点平行四边形的个数为______【拓】I、如图,E是平行四边形ABCD内一点,且ED⊥CD,EB⊥CB,∠AED =135.(1)求证:∠ADE= ∠ABE;(2)求∠EAB的度数:(3)求证:EB= BC:(4)猜测AB- DE与AE的数量关系并证明2、(2012年武汉市中考第12题)在面积15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5, BC=6,求CE+CF 的值.模块二 平行四边形五大判定 判定实例剖析①定义:两组对边分别平行的四边形是平行四边形叫做平行四边形四边形ABCD ⇒⎭⎬⎫CD // AB BC // AD②一组对边平行且相等的四边形式平行四边形叫做平行四边形四边形ABCD ⇒=⎭⎬⎫CD AB CD // AB③两组对边分别相等的四边形是平行四边 形.叫做平行四边形四边形ABCD ⇒==⎭⎬⎫BC AD CD AB④两组对角分别相等的四边形是平行四边 形.叫做平行四边形四边形ABCD ⇒∠=∠∠=∠⎭⎬⎫D B C A⑤对角线互相平分的四边形是平行四边形叫做平行四边形四边形ABCD ⇒====⎪⎭⎪⎬⎫BD 21OD OBAC 21OC OA【例5】对于下列说法,正确的请给出证明,错误的请举出反例. (1)—组对边平行,一组对角相等的四边形是平行四边形(2)一组对边平行,另一组对边相等的四边形是平行四边形(3)一组对边相等,一组对角相等的四边形是平行四边形(4)一组对边相等,一条对角线平分另一条对角线的四边形是平行四边形 (5)一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形(6)凸四边形的每一条对角线都平分四边形的面积,则这个四边形是平行四边形(7)一组对角相等,一条对角线平分另一条对角线的四边形是平形四边形.【练】如图,平行四边形ABCD中,E、F分别为AD. BC上的点,且BF=DE,连接AF. CE. BE. DF.AF与BE招交于M点,DF s与CE相交于N点,求证:四边形FMEN为平行四边形.【例6】如图,在平行四边形ABCD的四边上分别取AE= CF,DM=BN,求证:EF与MN互相平分【练】如图,平行四边形ABCD的对角线AC. BD交于O点,点E.F在AC上,点G、H在BD 上,且AF= CE,BH =DG.求证:四边形EHFG为平行四边形.【例7】如图,E ,F 分别为△ABC 的边AB ,AC 的中点,求证:FE ∥BC ,EF=21BC 【练】如图,F 为△ABC 的边AC 的中点,FE ∥BC ,求证:E 为AB 的中点且EF= 21BC【总结】:(1)中位线:在△ABC 中,E ,F 分别为边AB 、AC 的中点,连接EF ,像EF 这样,连接 三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形中位线平行于三角形的第三边,并且等于第三边的一半. 【例7】和【练】是中位线定理及其推论的证明【例8】已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD=BF ,以AD 为边 作等边三角形ADE.求证:(1)△ACD ≌△CBF; (2)四边形CDEF为平行四边形如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.当AB≠AC时,证明四边形ADFE为平行四边形.【拓】(I)如图,平行四边形ABCD,以AC为边在两侧各作一个等边△ACP. △ACQ.求证:四边形BPDQ为平行四边形(2)如图,△ABC与△CDE均为等腰直角三角形,且BC⊥CD.求证:∠AFB=45°且AE=2BD.第一讲平行四边形性质、判定课后作业1.【2014武珞路期中】平行四边形ABCD中,BC=10,AC与BD交于O,A0=4,B0=7,△ABC比△DBC 周长小()A.3B.4C.5D.62.【2014武珞路期中】下列条件能判定四边形ABCD是平行四边形的是()A. ∠A=∠B,∠C-=∠DB. AB∥CD,AD=BCC. AB∥CD,∠A=∠CD. AO=BO,CO=DO3.【2014汉阳期中】平行四边形的一边长为10 cm,那么这个平行四边形的两条对角线长可以是()A.4cm和6 cm B.6 cm和8 cm C. 20 cm和30 cm D.8 cm和12cm4.【2014汉阳期中】lA、B、C、D在同一平面内,从:①AB∥CD;②AB=CD;③BC//AD; ④BC=AD,这四个条件中任选两个,能使四边形ABCD成为平行四边A.3种B.4种C.5钟 D.6种5.下列说法中错误的是( ).A. 平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C. 心对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形6.【2014武珞路期中】平行四边形ABCD中,AD=12,BD=10,AC=26,则四边形ABCD的面积是_________.2,7.【2014武珞路期中】在平行四边形ABCD中,BC边上的高为4,AB=5,AC= 5则平行四边形ABCD的周长等于______.8.【2014武昌区期中】如图,平行四边形ABCD中,点E在AD上,点F在BC上,且DE= BF.(1)求证:OE=OF (2)求证:AF= CE.9.【2014二中期中】如图,四边形ABCD是平行四边形,BE平分∠ABC ,DF平分∠ADC,求证:四边形DEBF是平行四边形10. ▱ABCD中,BD8为对角线,点G、H分别在BA、DC的延长线上,且AG=CH,E、F是BD上两点,BE=DF,求证:四边形GEHF为平行四边形.11. 如图,在平行四边形ABCD中,∠BCD和∠ABC的角平分线交于点O,BO和CD的延长线交于E.(1)求证:C0⊥BE;(2)求证:BO =EO。
培优班初二数学——平行四边形的性质和判定精品教案
机场西分校 白云区机场路又一居正门一楼86326306 精信教育个性化教案学生姓名备课时间 1月 10 日 年级科目 初二 教师姓名 陈波 课时 2 课时授课时间 3月 22 日课题 平行四边形的性质和判定教学 目标1.1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质4、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.重点难点 考点 1平行四边形对角线互相平分的性质,以及性质的应用.2综合运用平行四边形的性质进行有关的论证和计算.3平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.教学基本内容、知识大纲【检查预习、检查家庭作业】针对学生所做情况,重点问题重点讲解,提高学生综合运用知识的能力,查缺补漏,等级评定。
【梳理知识】1、 理解平行四边形的基本性质2、 熟练地进行平行四边形的判定和证明3、熟练地进行平行四边形的在实际问题中的应用【达标测试】平行四边形的判定,证明,与应用【家庭作业】平行四边形的巩固与复习家长 意见家长签名BDA CA CDB O【检查预习、检查家庭作业】针对学生所做情况,重点问题重点讲解,提高学生综合运用知识的能力,查缺补漏,等级评定。
【梳理知识】平行四边形的性质和判定1,基本概念1,平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(, 2,平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫.二、平行四边形的判定定理(一)平行四边形的判定定理:两组对边分别相等的四边形是平行四边形符号表示: ∵AB =CD ,AD =BC∴四边形ABCD 是平行四边形 对角线互相平分的四边形是平行四边形符号表示:∵OA =OC ,OB =OD∴四边形ABCD 是平行四边形 让学生自己证明:两组对角分别相等的四边形是平行四边形例1 已知:如图ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形.若将E 、F 移动到OA 、OC 的延长线上,其余条件不变,结论还成立吗?ABDOCA BDOC例2:已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC 。
新八年级暑假数学培优班第18讲 平行四边形判定
平行四边形的判定【知识要点】1.平行四边形的5个判定方法:(1)边:两组对边分别平行的四边形是平行四边形。
////AB CD ABCD AD BC ⎫⇒⎬⎭叫做平行四边形。
(2)边:两组对边分别相等的四边形是平行四边形。
A B C D A B C D A D B C =⎫⇒⎬=⎭叫做平行四边形。
(3)边:一组对边平行且相等的四边形是平行四边形。
//AB CD ABCD AB CD ⎫⇒⎬=⎭叫做平行四边形。
(4)角:两组对角分别相等的四边形是平行四边形。
A C ABCDB D ∠=∠⎫⇒⎬∠=∠⎭是平行四边形。
(5)对角线:对角线互相平分的四边形是平行四边形。
O A O C A B C D O B O D =⎫⇒⎬=⎭叫做平行四边形。
2.平行四边形的知识运用包括三个方面:(1)直接运用平行四边形的性质去解决问题,求角、线段,证明角相等,互补,证明线段相等或平分;(2)判定一个四边形是平行四边形,从而判定两直线平行;(3)先判定一个四边形是平行四边形,然后用平行四边形的性质去解决某些问题。
【经典例题】例1 如图,在 ABCD 中,AE=CG ,求证:GF=HE 。
ABCDABCDOA BCDEFH例2 如图,口ABCD 中,点M 、N 是对角线AC 上的点,且AM=CN ,DE=BF 。
求证:四边形MFNE 是平行四边形。
例3 如图,AB//CD ,∠ABC=∠ADC ,AE=CF ,BE=DF ,求证:EF 与AC 互相平分。
例4 已知:如图,在平行四边形ABCD 中,BE ⊥AC 于点E ,DF ⊥AC 于点F ,又M 、N 分别是DC 、AB 的中点。
求证:四边形EMFN 是平行四边形。
·ACNMF例5 已知:如图,分别以△ABC 的三边为边长在BC 边的同侧面作等边△ABD 、△BCE 、△ACF ,连结DE 、EF 。
求证:四边形ADEF 是平行四边形。
例6 如图,△ABC 为等边三角形,D 、F 分别为CB 、BA 上的点,且CD=BF ,以AD 为一边作等边△ADE 。
平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.1平行四边形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•南海区校级月考)下面性质中,平行四边形不一定具备的是()A.邻角互补B.邻边相等C.对边平行D.对角线互相平分2.(2022春•隆安县期中)在▱ABCD中,∠B=60°,那么下列各式中成立的是()A.∠A+∠C=180°B.∠D=60°C.∠A=100°D.∠B+∠D=180°3.(2022春•曹妃甸区期末)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x之间的关系是()A.y=x B.y=90﹣x C.y=180﹣x D.y=180+x4.(2022春•淇滨区校级期末)如图,已知▱ABCD中,对角线AC,BD相交于点O,AD=3,AC=8,BD =4,那么BC的长度为()A.6B.5C.4D.35.(2022春•辉县市期末)在▱ABCD中,AC,BD交于点O,△OAB的周长等于5.5cm,BD=4cm,AB+CD =5cm,则AC的长为()A.3cm B.2.5cm C.2cm D.1.5cm6.(2022春•宁都县期末)将平行四边形ABCD放在平面直角坐标系中,顶点A,B,C的坐标分别是(0,0),(4,0),(5,2),则顶点D的坐标是()A.(4,3)B.(1,3)C.(1,2)D.(4,2)7.(2021秋•平阳县校级月考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22B.18C.22或20D.18或228.(2021秋•宁阳县期末)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.B.4C.D.89.(2022秋•永嘉县校级月考)在平行四边形ABCD中,五块阴影部分的面积分别为S1,S2,S3,S4,S5,如图所示,则下列选项中的关系正确的是()A.S1+S2+S3=S4+S5B.S2+S3=S1+S4+S5C.S3+S4=S1+S2+S5D.S2+S4=S1+S3+S510.(2022春•鼓楼区校级期中)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,点C(4,0),B(6,2),直线y=2x+1以每秒3个单位的速度向下平移,经过多少秒该直线可将▱OABC的面积平分()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022春•姑苏区校级月考)平行四边形ABCD中,∠B:∠C=3:2,则∠C=°.12.(2022秋•任城区校级月考)▱ABCD中,∠A=45°,BC=,则AB与CD之间的距离是;若AB=3,四边形ABCD的面积是,△ABD的面积是.13.(2022•襄汾县一模)如图,在▱ABCD中,点E在AD上,EC平分∠BED,若∠EBC=30°,BE=10,则四边形ABCD的面积为.14.(2022春•遂溪县期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,若AC=10,BD=6,BC=4,则平行四边形ABCD的面积为.15.(2022秋•九龙坡区校级月考)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若▱ABCD的面积为16,且AH:HD=1:3.则图中阴影部分的面积为.16.(2022•景德镇模拟)在▱ABCD中,AB=4,∠ABC,∠BCD的平分线BE,CF分别与直线AD交于点E,F,当点A,D,E,F相邻两点间的距离相等时,BC的长为.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•自贡期末)如图,在▱ABCD中,AF∥CE;求证:BE=DF.18.(2022春•新化县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AC=10,BD=14,CD=5.2,求△AOB的周长.19.(2022春•望城区期末)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.20.(2022春•社旗县月考)如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.21.(2021春•玉林期中)如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.22.(2021春•拱墅区校级期中)如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.23.(2021秋•东平县期末)如图①,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.(1)求证:BE=DF;(2)若图中的条件都不变,将EF转动到图②的位置,那么上述结论是否成立?说明理由.24.(2022春•成华区校级期中)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,点F为CE的中点,点G是CD上的一点,连接DF、EG、AG.(1)若CF=4,AE=6,求BE的长;(2)若∠CEG=∠AGE,那么:①判断线段AG和EG的数量关系,并说明理由;②求证:∠1=∠2.。
【八年级数学培优竞赛-素养提升】专题01 平行四边形
专题01 平行四边形【专题解读】平行四边形在八年级知识点中占据着举足轻重的地位,从静态看,具备“四对”的特性;从动态看,是一般三角形绕一边中点“旋转”180°,形成中心对称中最简洁的图形,亦可看做一条线段沿着某个方向平移一定的距离形成,这也是处理平行四边形存在性的常用手段.因此,平移和旋转是本节内容的主题.思维索引例1.(1)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ;②BC =AD :③∠A =∠C ;④∠B =∠D .四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 ( )A .5种B .4种C .3种D .1种D(图2)OECBA(2)如图1,由25个点构成一个正方形点阵,横纵方向相邻的两点之间的距离都是1个单位,以A ,B 为顶点,再选择两个点构成一个面积为2的平行四边形,这样的平行四边形共有 个.(3)如图2,在Rt △ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的□ADCE 中,DE 的最小值是 .(4)如图3,在□ABCD 中,AB =13,AD =3,将□ABCD 绕点A 旋转,当点D 的对应点D ′落在AB 边上时,点C 的对应点C ′恰好与点B 、C 在同一直线上,则此时△C ′D ′B 的面积为 .例2.如图,已知直线y =-x +6与x 轴交于点B ,与y 轴交于点C .直线y =x +2与直线y =-x +6交于点A ,与x 轴交于点D ,点Q (3,t )在直线y =-x +6上.(1)求点A 的坐标及t 的值;(2)在直线y =x +2上是否存在点P ,使以O ,A ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点P 坐标.素养提升1.□ABCD 中,E ,F 是对角线BD 上不同的两点.下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF2.如图,在□ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠P AB ,则AP 等于( )A .4B .5C .6D .7xy(第3题)DCB AO3.如图,在平面直角坐标系xOy 中,四边形ABCD 是平行四边形,A (-1,3)、B (1,1)、C (5,1). 规定“把□4BCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2018次变换后,□ABCD 的顶点D 的坐标变为 ( )A .(-2015,3)B .(-2015,-3)C .(-2016,3)D .(-2016,-3) 4.在平面直角坐标系xOy 中,已知□OBAC ,其中点O (0,0)、A (-8,-6)、B (m ,34m -3),则 □OBAC 的面积为( )A . 12B . 18C . 24D . 365.如图,□ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为8cm ,则□ABCD 的周长为 .6.如图,□ABCD中,AE⊥BC,AF⊥DC,AB∶AD=2∶3,∠BAD=2∠ABC,则CF∶CE的值为 .7.如图,□OABC的顶点A、C分别在直线x=2和x=5上,O是坐标原点,则对角线OB长的最小值为 .8.如图,在平面直角坐标系xOy中,直线l1∶y=-12x+3分别与x轴、y轴交于点B、C,且与直线l2∶y=12x交于点A.若D是线段OA上的点,且△COD的面积为3,在平面内是否存在点P,使以O、C、D、P为顶点的四边形是平行四边形?若存在,则点P的坐标为 .9.如图1,平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C 对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.10.如图,B(0,8),D(10,0),一次函数y=4241111x+的图象过C(16,n),与x轴交于A点.(1)求证:四边形ABCD为平行四边形;(2)将△AOB绕点O顺时针旋转,旋转得△A1OB1,问:能否使以点O、A1、D、B1为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由.11.如图1,在平面直角坐标系xOy中,四边形OABC中,AB∥OC,点A(4,0),直线p=134x-+经过顶点B,与y轴交于顶点C.(1)求顶点B的坐标:(2)如图2,直线l经过点C,与直线AB交于点M,点O′为点O关于直线l的对称点,连接并延长CO′,交直线AB于第一象限的点D.当CD=5时,求直线l的解析式;(3)在(2)的条件下,点P在直线l上运动,点Q在直线OD上运动,以P,Q,B,C为顶点的四边形能否成为平行四边形?若能,直接写出点P的坐标;若不能,说明理由.12.如图1,在□4BCD中,AB=5,AD=8,∠A=60°,点P为AD边上任意一点,连接PB,并将PB 绕点P逆时针旋转90°得到线段PB′.(1)当∠DPB′=20°时,∠ABP=;(2)如图2,连结BB′,点P从A运动到D的过程中,求△PBB′面积的取值范围;(3)若点B ′恰好落在□ABCD 边AD 或BC 所在的直线上时,直接写出AP 的长. (结果保留根号,不必化简)备用图DDCCBB AAA 图2图1A专题01平行四边形【思维索引】例1.(1)C ;(2)9;(3)4;(4)60.例2.(1)A (2,4),t=3;(2)P (—1,1)或(5,7). 【素养提升】1.B ;2.C ;3.B ;4.C ;5.16;6. 1:4;7. 7;8.(2,—2)或(—2,2)或(2,4);9.(1)四边形OBDA 为平行四边形(利用对角线互相平分的四边形是平行四边形); (2)①3222a;②当F 在OB 275;当F 在BD 上时,E 、C 、F 三点共线,6275a; 当F 在AD 上时,1227125a.10.(1)提示:证明BC//AD ,BC=AD ; (2)当OD 为边时或;当OD 为对角线时,. 11.(1)B (4,2);(2)M (4,1),l :132yx ;(3)BC 为边时,P (—2,4)或(5,21);当BC 为对角线时,P (2,2). 12.(1)10°或50°;(2)由题知:2'21=BP S PBB Δ,当BP ⊥AD 时,BP 最小,此时235=BP ,'PBB S Δ的最小值为815;当P 与D 重合时,BP 最大,此时BP=7,'PBB S Δ的最大值为249,故249≤≤875'PBB S Δ;(3)25=AP 或235+25.。
八年级数学同步培优竞赛详附答案:第十五讲-平行四边形
名师第十五讲平行四边形平行四边形是一类特殊的四边形,它的特殊性体现在边、角、对角线上,矩形、菱形是特殊的平行四边形,矩形的特殊性体现在有一个角是直角,菱形的特殊性体现在邻边相等,所以,它们既有平行四边形的性质,又有各自特殊的性质.对角线是解决四边形问题的常用线段,对角线本身的特征又可以决定四边形的形状、大小,连对角线后,平行四边形就产生特殊三角形,因此解平行四边形相关问题时,既用到全等三角形法,特殊三角形性质,又要善于在乎行四边形的背景下探索问题,利用平行四边形丰富的性质为解题服务.熟悉以下基本图形、基本结论:例题求解【例1】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥A C于F,那么PE+PF的值为 .(全国初中数学联赛试题)思路点拨分别求出PE、PF困难,△AOD为等腰三角形,若联想“到等腰三角形底边上任一点到两腰距离的和等于腰上的高”这一性质,则问题迎刃而解.注特殊与一般是对立统一的,在一定条件下可以互相转化,相对于一般而言,特殊的事物往往更简单、更直观、更具体.因而人们常常通过特殊去认识一般;另一方面,一般概括了特殊,一般比特殊更为深刻地反映着事物的本质,所以人们也往往通过一般去了解特殊.一般与特殊,是知识之间联系的一种重要形式,知识常常在一般到特殊或特殊到一般的变化过程中,不斩地得到延伸与拓展.【例2】已知四边形ABCD,从下列条件中:(1)AB∠CD,(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A.4种 B.9种 C.13种 D. 15种(山东省竞赛题)思路点拨根据平行四边形的判定方法及新的组合方式判定.【例3】】如图,在△ADC中,∠DAC=90°,AD⊥BC,DC、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC.(湖北省荆州市中考题)思路点拨从角的角度证明困难,连结CF,在四边形AGFE的背景下思考问题,证明四边形AGFE 为特殊平行四边形,证题的关键是能分解出直角三角形中的基本图形.【例4】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD.(全国初中数学联赛试题)思路点拨尽管图形复杂,但证明目标明确,只需证明△CPB≌△DPB,应从图中分离出特殊三角形、特殊四边形,充分运用它们的性质为证题服务.【例5】如图,在等腰三角形ABC中,延长边AB到点D,延长边CA到点E,连结DE,恰有AD=BC=CE=DE.求∠BAC的度数.(北京市竞赛题)思路点拨 题设条件给出的是线段的等量关系,要求的却是角的度数,相等的线段可得到全等三角形、特殊三角形,为此需通过构造平行四边形改变它们的位置.注 课本中平行四边形的判定定理是从边、角、对角线三个方面探讨的,一般情况是,从四边形边、角、对角线三类元素任意选取两类,任意组合就产生许多判定平行四边形的命题.其中有真命题与假命题,对于假命题,要善于并熟悉构造反例.构造反例是学习数学的一种重要技能,可以帮助我们理解概念.培养推理能力,数学史上就曾有许多著名的论断被一个巧妙的反例推翻的实例.若题设条件中有彼此平行的线段或造成平行的因素,则通过作平行线,构造平行四边形,这是解四边形问题的常用技巧,这是由于平行四边形能使角的位置更理想,送线段到恰当的地方,使线段比良性传递.学力训练1.如图,BD 是平行四边形ABCD 的对角线,点E 、F 在B D上,要使四边形A ECF 是平行 四边形,还需要增加的一个条件是 (填上你认为正确的一个即可,不必考 虑所有可能情形)(宁波市中考题)2.(1)如图,已知矩形ABC D中,对角线A C、BD 相交于O ,AE ⊥B D于E ,若∠DAE:∠B AE =3:1,则∠CAC = ; (河南省中考题)(2)矩形的一个角的平分线分矩形一边为lcm 和3cm 两部分,则这个矩形的面积为 cm 2. (武汉市中考题)3.如图,以△AB C的三边为边在B C的同一侧分别作三个等边三角形,即△ABD 、△B CE 、△ACF .(1)四边形ADEF 是 ;(2)当△ABC 满足条件 时,四边形A DEF 为矩形;(3)当△ABC 满足条件 时,四边形ADEF 不存在. (2000年贵州省中考题)4.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+3,则这两边之积为 . (2001年天津市选拔赛试题)5.四边形的四条边长分别是a 、b 、c 、d,其中a、c 为对边,且满足cd ab d c b a 222222+=+++,则这个四边形一定是()A.平行四边形B.两组对角分别相等的四边形C.对角线互相垂直的四边形 D.对角线相等的四边形6.如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.98 B.196 C.280 D. 284(湖北省荆州市中考题)7.如图,菱形花坛ABCD的边长为6m,∠B=60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )A.123 m B.20m C. 22m D.24m(吉林省中考题)8.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.AD>BC B.AD<BCC.AD=BC D.AD与BC的大小关系不能确定(“希望杯”邀请赛试题)9.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADC.(1)求证:△ACD≌△CNBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论. (南通市中考题)10.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于C,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.(黑龙江省中考题)11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:CO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当△ABC满足什么条件时,四边形AECF是正方形?12.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有对四边形面积相等,它们是.(常州市中考题)13.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+3,∠ABC=60°,则菱形ABCD的面积为 .14.如图,矩形ABCD的对角线相交于O,AE平分∠BAD交BC于E,∠CAE=15°,则∠BOE= . 15.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为 . (山东省竞赛题)16.如图,平行四边形ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是( )A.60°B.65° C.70° D.75° (“希望杯”邀请赛试题)17.如图,正△AEF 的边长与菱形ABCD 的边长相等,点E、F分别在BC 、C D上,则∠B的度数是( ) A.70° B.75° C .80° D .95°(重庆市竞赛题)18.如图,正方形ABCD 外有一点P,P 在BC 外侧,并在平行线AB 与CD 之间,若PA=17,PB=2,PC =5,则PD =( )A.25B.19 C .32 D.17 (“五羊杯”竞赛题)19.如图,在平行四边形AB CD 中,B C=2AB,CZ⊥AB 于E ,F为AD 的中点,若∠AEF=54°,则∠B=( )A.54° B.60° C .66° D.72°(武汉市选拔赛试题)20.如图,在Rt △ABC 中,∠ABC=90°,∠C =60°,BC=2,D 是AC 的中点,以D作DE ⊥AC 与C B的延长线交于E,以AB 、BE 为邻边作长方形ABEF ,连结DF ,求DF 的长.21.如图,菱形的对角线AC 与B D交于点O ,延长BA 到E ,使AE=21A B,连结OE ,延长DE 交CA 的延长线于F.求证:OE=21DF . 22.阅读下面短文:如图1,△ABC 是直角三角形,∠C=90°,现将△ABC 补成矩形,使△ABC 的两个顶点为矩形一边的两个端点,第三个便点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个:矩形ACB D和矩形AE FB (如图2).解答问题;(1)设图2中矩形ACBD和矩形AEFB的面积分别为Sl、S2,则S1 S2(填“>”,“=”或“<”); (2)如图3,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出个,利用图3把它画出来;(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,则符合要求的矩形可以画出个,利用图4把它画出来;(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?(陕西省中考题)23.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.(杭州市“求是杯”竞赛题)24.如图,在锐角△ABC中,AD、CZ分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连结PQ、DE.(1)求证;直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.(“希望杯”邀请赛试题)。
八年级竞赛辅导之平行四边形
要成为一位卓越的学校经营者,有四种途径:一、成功的经营者要有不耻下问、虚心学习他人的经营理念策略。
二、参观经营绩效卓越的学校,吸收其长处,作为改进的借镜。
三、藉由不断地阅读相关文献,充实自己,塑造经营风格。
四、在经营的实战中,验证成功的理念与策略,是经由不断修正与创新,而蜕变成一位有效的学校经营者。
本文谨就办学心得,提供学校经营的一流团队、两全关键、三新时代、四追内涵、五意理念、六好信条、七有特征、八种征兆、九要策略、十化方向等浅见,就教于教育先进。
学校经营的一流团队卓越的领导者(校长)、有效的管理者(主任)、尽责的执行者(教师)、勤奋的学习者(学生)、合作的支持者(家长),是经营一流学校不可或缺的坚强团队。
制度与人何者重要?制度是死的,人是活的,制度再好,如果人没有执行的意愿,也是枉然。
人的品质远较制度重要,是学校经营成败的关键。
所谓人的品质,包括有形及无形两方面,有形的是指学历、经验、能力;无形的是指热心、合作、守法。
「有怎样的校长,就有怎样的学校」,成功的校长必须由一群有效率的教职员来衬托;「有怎样的老师,就有怎样的学生」,成功的老师,必须由一群有上进心的学生来衬托。
学校经营的一流团队必需兼具卓越的领航者及称职的摇桨者,同心协力,共赴成功。
一、卓越的领航者(一)校长是学校的舵手,成功的舵手必须掌握方向,身先士卒,全心投入,运用资源,统合意志,随时自省检讨,才不会被骤起的风浪或外在的挑衅,迷失方向。
(二)校长在努力办学过程中,不但要求学校的生存发展及提升效率品质,更重要的是要重视价值创造,回归思考学校教育的目的何在?因为校长是树立教育重点及决定价值导向的人。
(三)校长面对日益激烈竞争的环境,千万不能被老旧的观念所封锁,必须检讨是否了解自己?是否了解学校?是否了解学生、老师及家长?是否了解社区?是否了解相关学校及机构?是否了解教育改革动向?是否了解社会发展趋势?重做一名学生,努力学习新观念、新科技,不仅要懂得应变,更要快速的改变,才不会淹没在变化快速的廿一世纪竞争的激流中。
八年级数学上册一对一培优讲义(平行四边形)
八年级数学一对一个性化辅导教案学生学校年级次数第次科目数学教师日期时段课题平行四边形教学重点1、平行四边形2、常考题型及相关的方法讲解教学难点1、平行四边形2、常考题型及相关的方法讲解教学目标1、平行四边形2、常考题型及相关的方法讲解教学步骤及教学内容教学过程:一、教学衔接(课前环节)1、对学生上节课的错题回顾讲解2、回顾上节课的知识点3、对本堂课要讲的教学内容进行说明二、教学内容1、平行四边形2、常考题型及相关的方法讲解3、教学辅助练习(或探究训练)4、知识总结5、知识的延伸和拓展布置作业:课后作业(详见讲义)管理人员签字:日期:年月日作业布置1、学生上次作业评价:○好○较好○一般○差备注:2、本次课后作业:课堂小结本堂课通过对平行四边形及相关的方法讲解,使学生对这些内容掌握更好。
学生签字:日期:年月日平行四边形要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 要点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点五、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.类型一、平行四边形的性质1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为∠DAB、∠CBA的平分线.求证:DF=EC.举一反三:【变式】如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.类型二、平行四边形的判定2、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.举一反三:【变式】如图所示,在ABCD中,E、F分别为BC、AD上的点,且BE=DF,求证:∠AEC=∠AFC.类型三、平行四边形与面积有关的计算3、如图所示,在ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=60°,BE=2cm,DF=3cm,求AB,BC的长及ABCD的面积.举一反三:【变式】如图,已知ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,求该平行四边形的面积.类型四、三角形的中位线4、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【巩固练习】1. 如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是().A.AC⊥BDB.AB=CDC. BO=ODD.∠BAD=∠BCD2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ). A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图所示,在ABCD中,AC与BD相交于点O,E是边BC的中点,AB=4,则OE的长是( ).A.2 B.2 C.1 D.1 25. 平行四边形的一边长是10cm,那么它的两条对角线的长可以是().A.4cm和6cmB.6cm和8cmC.8cm和10cmD.10cm和12cm6. 如图,ABCD中,∠DAB的平分线AE交CD于E,AB=5,BC=3,则EC的长().A.1 B.1.5 C.2 D.37. 如图所示,在ABCD中,对角线相交于点O,已知AB=24 cm,BC=18 cm,△AOB的周长为54 cm,则△AOD的周长为________cm.cm.8. 已知ABCD,如图所示,AB=8cm,BC=10cm,∠B=30°,ABCD的面积为____29.在ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.10. 在ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则ABCD的面积为______.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点AD=BC,∠PEF=18°,则∠PFE的度数是.三.解答题13. 已知:如图,E、F是ABCD的对角线AC上的两点,AE=CF.求证:四边形BEDF是平行四边形.14.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.。
中考数学培优专题复习平行四边形练习题附详细答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC2,∴AC22(2)(2)2+=,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图,在Rt △ABC 中,∠B=90°,AC=60cm ,∠A=60°,点D 从点C 出发沿CA 方向以4cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE=DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12. 【解析】【分析】(1)利用t 表示出CD 以及AE 的长,然后在直角△CDF 中,利用直角三角形的性质求得DF 的长,即可证明;(2)易证四边形AEFD 是平行四边形,当AD=AE 时,四边形AEFD 是菱形,据此即可列方程求得t 的值;(3)△DEF 为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt △ABC 中,∠C=90°﹣∠A=30°, ∴AB=12AC=12×60=30cm , ∵CD=4t ,AE=2t , 又∵在Rt △CDF 中,∠C=30°,∴DF=12CD=2t ,∴DF=AE ;∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.3.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?465522【解析】分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+;【详解】如图1,当∠AB′F=90°时,此时A、B′、E三点共线,∵∠B=90°,∴AE=2222AB BE=86++=10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+ =22;综上,可得B′D 4655或2【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.4.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE =BE ,∴DE 是Rt △ADB 斜边上的中线,∴DE =AE =BE ,∵AE =BD ,∴DE =BD =BE ,∴△DBE 是等边三角形,∴∠EDB =∠DBE =60°,∵AB ∥DC ,∴∠DBC =∠DBE =60°,∴∠EDF =120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =54或552-或32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG , ∴EH HG AF AG =, ∴124222x x x -=--, ∴125555x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32, 综上,x =545-5或32. 【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.6.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+2FC.【答案】(1)25422)证明见解析【解析】【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC2AB=2,求出AF=2,CF=AC﹣AF2,求出△CEF 是等腰直角三角形,得出EF=CF2,CE2CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG2CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE≌△AFH,得出BE=FH,即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC2AB=2,∵4AF=3AC=2,∴AF=2∴CF=AC﹣AF2∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF2CE2CF=2,在Rt△AEF中,由勾股定理得:AE2225AF EF+==∴△AEF的周长=AE+EF+AF=252322542(2)证明:延长GF 交BC 于M ,连接AG ,如图2所示:则△CGM 和△CFG 是等腰直角三角形,∴CM =CG ,CG 2,∴BM =DG ,∵AF =AB ,∴AF =AD ,在Rt △AFG 和Rt △ADG 中,AG AG AF AD =⎧⎨=⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴FG =DG ,∴BM =FG ,∵∠BAC =∠EAH =45°,∴∠BAE =∠FAH ,∵FG ⊥AC ,∴∠AFH =90°,在△ABE 和△AFH 中,90B AFH AB AFBAE FAH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△AFH (ASA ),∴BE =FH ,∵BM =BE +EM ,FG =FH +HG ,∴EM =HG ,∵EC =EM +CM ,CM =CG 2CF ,∴EC =HG 2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.7.(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG .(拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)【答案】见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩=== ∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.8.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】解:(1)∵A (﹣6,0)、C (0,6),O (0,0),∴四边形OABC 是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B ,∵OB =2,OA′=OA =6,∠OBC =45°,∴A′B =626,∴BD =(626)21262=-,∴CD =6﹣(1262-=626,∴BC 与A′B′的交点D 的坐标为(662-6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为)-+;333,333(3)如图③,连接OB,AC相交于点K,则K是OB的中点,∵P为线段BC′的中点,∴PK=1OC′=3,2∴P在以K为圆心,3为半径的圆上运动,∵AK=2∴AP最大值为323,AP的最小值为323,AP+.∴AP长的取值范围为323323【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P的轨迹.9.如图,点E是正方形ABCD的边A B上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.【答案】证明见解析.【解析】分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF详解:证明:∵CF⊥CE,∴∠ECF=90°,又∵∠BCG=90°,∴∠BCE+∠ECD =∠DCF+∠ECD∴∠BCE=∠DCF,在△BCE与△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.10.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.。
18.1平行四边形专题培优突破(教案)
在实践活动方面,我觉得同学们参与度很高,但在实验操作过程中,有些同学对面积计算方法的掌握不够熟练。针对这个问题,我打算在下一节课中增加一些类似的练习题,让学生们多动手操作,提高他们的计算能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、性质和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行四边形面积计算的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
注意:由于字数限制,以上内容并未达到2000字,但在实际教案编写中,每个重点和难点的内容可以进一步拓展和详细说明,以确保学生能够透彻理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《18.1平行四边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过形状像楼梯、窗户或者桌面上的图案?”(举例说明)这个问题与我们将要学习的平行四边形密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。