高数第十章曲线积分讲解
对弧长的曲线积分教案
第十章曲线积分与曲面积分 第一节 对弧长的曲线积分一.对弧长的曲线积分的概念 1.引入平面曲线构件L 的线密度ρ是常数,则平面曲线L 的质量为L M ρ=平面曲线构件L 的线密度ρ非均匀的,即ρ是非常数,却是曲线构件L 上点的函数),(y x f =ρ,则平面曲线构件L 质量的计算是把曲线弧L 分成n 个小段:n s s s ∆∆∆,,,21 ,其中i s ∆也表示第i 段小弧的长(0≥i s )。
在小段弧i s ∆上任意取一点),(i i ηξ,则该小段弧的质量近似为i i i s f ∆),(ηξ曲线构件L 的质量近似为∑=→∆ni i i i s f 1),(lim ηξλ那么,曲线构件L 的质量为∑=→∆=ni i i i s f M 1),(lim ηξλ其中}{max 1i ni s ∆=≤≤λ2.对弧长的曲线积分的概念定义 设定义在平面曲线L 上的有界函数),(y x f ,将曲线弧L 任意分割成n 小段弧i s ∆,且并以i s ∆表示第i 段小弧的长,在每小段弧i s ∆上任意取一点),(i i ηξ,作和式∑=∆ni iiisf 1),(ηξ当最大小段弧的长趋于零时,和式的极限存在∑=→∆ni i i i s f 1),(lim ηξλ则此极限值称为函数),(y x f 在平面曲线L 上对弧长的曲线积分(或称为第一类曲线积分)。
记作⎰Lds y x f ),(∑=→∆=ni i i i s f 1),(lim ηξλ其中}{max 1i ni s ∆=≤≤λ,),(y x f 叫做被积函数,ds y x f ),(叫做被积表达式,ds 称为弧微分,L 称为积分路径。
如果L 是封闭曲线,则曲线积分记为⎰Lds y x f ),(3.对弧长的曲线积分的性质 对弧长的曲线积分与积分路径无关,即⎰⎰=BAABds y x f ds y x f 弧弧),(),(。
由于对弧长的曲线积分的定义与定积分、重积分的定义类似,因此也有与它们相类似的性质。
高等数学第10章 曲线积分与曲面积分
80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为
曲线积分
曲线积分一. 第一型曲线积分(对弧长的曲线积分) ds y x f L ),(⎰ 引入:开始接触这个概念对大家可能都很突兀,我们从直观上看它的形式,形式和定积分⎰dx x f )(很像,Right ?那它的物理意义和几何意义按照自然界对称的法则应该和定积分也是相似的咯-----我们如果把),(y x f 看成是线密度函数的话,ds y x f L),(⎰可以理解成为曲线形构件的质量咯(*^__^*) ,这当然是它的物理意义;几何意义呢?想想定积分,几何意义是曲边梯形的面积,那么对第一型曲线积分就是曲面的面积咯,沿着一段弧函数对它的曲线积分就是曲面的面积(PS :这个可以作为一种求曲面面积的求法,后面会有题目介绍) 想必通过上面形象的介绍,我们对第一型曲线积分有了一个初步的认识。
现在来看看它的求法:ds y x f L ),(⎰这个式子我们唯一没见过的就是ds 咯,在这里ds 实际上就是弧长,所以第一型也就是对弧长的曲线积分。
那么第一型的求法就等价于求ds ,然后解个定积分就ok 。
根据高数上学过的微分三角形,如果曲线能够表示成参数方程x =ϕ(t ), y =ψ (t ) (α≤t ≤β), 那么显然dtt t t t f ds y x f )()()]( ),([),(22ψϕψϕ'+'=,于是就有⎰⎰'+'=βαψϕψϕdt t t t t f ds y x f L)()()]( ),([),(22,当然如果不用表示成参数方程,把x 看为参数也可以。
注意注意注意注意注意:1.这里的定积分的下限α一定要小于上限β. 原因在于弧长始终是正的,所以t ∆>0,这样定积分的下限一定小于上限。
当然曲线不仅仅是平面上的,三维空间里也可以,计算方法还是一样 的,即dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψϕωψϕβα'+'+'=⎰⎰Γ。
高数 平面曲线积分 知识点与例题精讲
若 P Q
y
y x
则 B( x1 , y1 ) Pdx Qdy A( x0 , y0 )
A( x0 , y0 )
o
x1 x0
P
(
x,
y0
)dx
y1Q(
y0
x1
,
y)dy
或
y1Q (
y0
x0
,
y
)dy
x1 x0
机动 目录 上页 下页 返回 结束
取圆弧 AB : x cos , y sin ( : 0 )
2
2
2
W
AB
k r2
(
y
d
x
xdy)
y A
L
k
2
o
Bx
思考: 积分路径是否可以取 AO OB ? 为什么?
注意, 本题只在不含原点的单连通区域内积分与路径
无关 !
Q x
o
( x 0 ) (1,0)
x
( x,0 )
由定理 2 可知存在原函数
x 1
0
dx
x
y 0
dy x2 y2
机动 目录 上页 下页 返回 结束
或
y 0
1
d
y y
2
arctan x
2
y
y (1, y) (x, y) o (1,0) ( x,0 ) x
有关定理的说明:
(1) 开区域G 是一个单连通域.
(2) 函数 P( x, y), Q( x, y) 在G 内具有一阶连
第10章-曲线积分与曲面积分 高等数学教学课件
f (x, y) d s
f (x, y) d s.
L( A,B)
L( B, A)
性质2 设, 为常数,则
L[ f (x, y) g(x, y)]d s L f (x, y)d s L g(x, y)d s.
性质3 若积分路径L可分成两段光滑曲线弧L1,L2, 则
f (x, y) d s f (x, y) d s f (x, y) d s.
把 L分成n个有向小弧段
¼ A0 A1, ¼ A1A2,L , ¼ Ai1Ai ,L , ¼ An1An, (A0(x0, y0) A, An (xn, yn) B).
令xi xi xi1, yi yi yi1,在¼ Ai1Ai上任取点Mi (i ,i ), i 1, 2,L , n,若当小弧段的长度的最大值 0时,和
若L是闭曲线,即L的两个端点重合,那么f (x, y)
在闭曲线L上对弧长的曲线积分记为
ÑL f (x, y) d s.
函数f (x, y, z)在曲线弧上对弧长的曲线积分为
n
f (x, y, z) d s lim 0
i 1
f (xi , yi , zi )si.
性质1 对弧长的曲线积分与曲线L的方向无关,即
方程为x =a cos t, y =a sin t, z = kt, 0 t 2p, k>0.
解 Q x' t asint, y' t a cost, z' t k,
[x '(t)]2 [( y '(t)]2 [z '(t)]2 a2 k2 ,
(x2 y2 z2 ds 2p (a2 k 2t2 ) a2 k 2 dt
d r d xi d yj d zk,即有
高等数学同济六版第十章10-2
取 F (ξ i ,η i ) = P (ξ i ,η i ) i + Q (ξ i ,η i ) j ,
∆Wi ≈ F (ξ i ,η i ) ⋅ M i −1 M i ,
y
F(ξi ,ηi )
B
L
A
M2 M1
Mi−1 x i ∆
一、对坐标的曲线积分的概念与性质
y
变力沿曲线所作的功
L : A → B,
F ( x , y) = P ( x , y)i + Q ( x, y) j
B
L
A
M2 M1
Mi−1 xi ∆
∆yi
Mi Mn−1
常力所作的功 W = F ⋅ AB . o
x
分割 A = M 0 , M 1 ( x1 , y1 ),⋯ , M n−1 ( x n−1 , y n−1 ), M n = B .
n
n
性质 (1) 如α 与β 是 常数 则 常数,则
∫L [α F 1 ( x , y ) + β F 2 ( x , y )] ⋅ d r = α ∫ F 1 ( x , y )d r + β ∫ F 2 ( x , y )d r L L
( 2) 若有向曲线弧 L可分成两段光滑的有向 曲线弧 L1和 L2 , 则
i =1
n
精确值
定义
设L为 xoy面内从点 A到点 B的一条有
向光滑曲线弧 , 函数 P ( x , y ), Q ( x , y )在 L 上有界 . 用 L上的点 M 1 ( x1 , y1 ), M 2 ( x2 , y2 ), ⋯ , M n−1 ( xn−1 , yn−1 )把 L分成 n个有向小弧段 M i −1 M i ( i = 1,2,⋯, n; M 0 = A, M n = B ). 设∆xi = xi − xi −1 , ∆yi = yi − yi −1 , 点( ξ i , ηi )为 M i −1 M i 上任意取定的点 . 如果当各小弧段 长度的最大值 λ → 0时 ,
数学分析考研讲义10
∫ 的部分,计算积分 xyds . C
{ 解:因C :
x = r cosθ y = r sinθ
,0
≤θ
≤
π 2
,所以
∫ ∫ ∫ xyds =
π
2 r2 sinθ cosθ
r2 dθ = r3
uLv+
r
∫ (2) L = L1 + L2 ,
F ( x, y) d r
L
uv
r uv
r
= ∫L1 F ( x, y) d r + ∫L2 F ( x, y) d r .
(3) (4)
∫L ∫L
k
⋅
uv F
(
x,
uv uFv
(
x,
y
r
)y+) rdGuvr(=x,kuyv⋅)∫L
uv F
(
∴
∫L
(
x,
y
)
ds
=
1
∫0
xdx
+
1
∫0
ydy
+
1
∫0
(
x
+
1
−
x
)
2dx
= 1 + 1 + 2 =1+ 2 . 22
∫ 例 10.1.2 (湖南大学考研试题)计算 x2 + y2 ds ,其中 c : x2 + y2 = −2 y . c
解:令 x = r cosθ , y = r sinθ ,则 c : r = −2sinθ (−π ≤ θ ≤ 0) .
)
dx
+
Q
( x,
r
y
)
dy
高数第十章知识点总结
高数第十章知识点总结
高数第十章主要涉及以下几个知识点:
1.平面曲线的切线和法线:
- 给定曲线的方程,求某点处的切线和法线的方程
- 求切线和法线的交点
- 利用切线和法线求解相关的几何问题
2.曲率与曲率半径:
- 计算曲线在某一点的曲率
- 求曲线的曲率半径
- 利用曲率和曲率半径解决问题,如判断曲线的凹凸性、确定曲线的渐近线等
3.参数方程与极坐标:
- 利用参数方程描述平面上的曲线
- 求参数方程的切线和法线
- 利用极坐标描述平面上的曲线
- 求极坐标曲线的切线和法线
4.空间曲线:
- 求空间曲线的切线和法平面
- 求空间曲线在某点的曲率和曲率半径
- 利用曲率和曲率半径解决空间曲线的运动问题
5.空间曲面:
- 利用方程求解空间曲面的切平面和法线方程
- 求曲面上某点的法向量、法线方程和曲率
- 利用曲率解决曲面上的问题,如判断曲面的性质、求曲面的渐近线等
以上是高数第十章的主要知识点,学习这些知识点可以帮助我们了解平面和空间曲线的性质及其相关应用。
希望对你有所帮助!。
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)教学内容
L( AB) 是直线时,则 L ( AB)
可能采用两类不同的曲线积分的
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q( x, y) 及其一阶偏导数在 D 上连续,
则有
QP
P(x, y)dx Q(x, y)dy
L( AB )
n
lim
(T ) 0
[ f ( k , k , k ) xk
f ( k , k , k ) yk
f ( k , k , k ) zk ]
k1
其中 (T ) 表示分割曲线 L( AB ) 的分法 T 的细度,即 n 段的最大弧长, ( k , k ) 是第 k 段弧
上的任意一点。
物理意义 :第二类曲线积分表示变力 F 沿曲线 L 所作的功, 被积函数 P ( x, y), Q (x, y) 或
(P cos
L ( AB )
F ds
L ( AB )
dQy ds Q cos
dzR d s ds R cos )d s
其中 cos ,cos ,cos 是曲线 AB 上的点的切线的方向余弦,且
dx cos ds,d y cos ds,d z cos ds
一般地,积分曲线的方向余弦是变量。但是,当积分曲线
注 5 计算第二类曲线积分,不论积分曲线是平面曲线还是空间曲线,都有两个方法: ( 1)平面曲线积分:将曲线积分转化为 定积分或重积分 ;
( 2)空间曲线积分:将曲线积分转化为 定积分或曲面积分 。
例 5 计算
y2dx
L
x2dy ,其中 L 为上半椭圆:
x2 a2
《高数》第十章习题课-线面积分的计算
12
练习题: P184 题 3(5) ; P185 题6; 10 3(5). 计算
其中L为上半圆周 提示:
沿逆时针方向.
I ex sin y d x (ex cos y 2)dy 2 ydx
L
L
2 ydx
L AB AB
L
L
:
xy
a a
(1 cos sin t
其中L为上半圆周
沿逆时针方向.
P185 6 . 设在右半平面 x > 0 内, 力
构成力场,其中k 为常数,
场力所作的功与所取的路径无关.
证明在此力场中
P185 10. 求力
沿有向闭曲线 所作的
功, 其中 为平面 x + y + z = 1 被三个坐标面所截成三
角形的整个边界, 从 z 轴正向看去沿顺时针方向.
3
16
二、曲面积分的计算法
1. 基本方法
曲面积分
第一类( 第二类(
对面积 对坐标
) )
转化
二重积分
(1) 统一积分变量 — 代入曲面方程
(2)
积分元素投影
第一类: 第二类:
始终非负 有向投影
(3) 确定二重积分域
— 把曲面积分域投影到相关坐标面
17
2. 基本技巧
(1) 利用对称性及重心公式简化计算 重心公式
20
例4. 设 为简单闭曲面, a 为任意固定向量, n 为的 单位外法向向量, 试证
证明: 设 n (cos , cos , cos )
(常向量)
则 cos( n ,a ) d S n a 0 dS
高等数学第十章《曲线积分与曲面积分》2
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
∫′-华东师范大学上海市精品课程-高等数学A
第十章 曲线积分和曲面积分1. 第一型曲线积分和第二型曲线积分有什么关系?答:第二型曲线积分是借助于第一型曲线积分定义的,但是它与第一型曲线积分的一个主要区别是:它和曲线的方向有关,这是因为切向量)cos ,cos ,(cos γβα和曲线的方向有关,因此∫∫−++−=++LL Rdz Qdy Pdx Rdz dy Q Pdx ,其中−L 表示与L 方向相反的曲线。
这种区别在计算公式上的表现是:在光滑曲线L :βαωψϕ≤≤===t t z t y t x ),(),(),(上的第一型曲线积分为:dt t t t t t t f ds z y x f L 222)()()())(),(),((),,(ωψϕωψϕβα′+′+′=∫∫。
右边的定积分的上限总大于下限,而对于第二型曲线积分,如果取L 的方向与参数t 增加的方向一致,则有:∫++Ldz z y x R dy z y x Q dx z y x P ),,(),,(),,( ∫′=βαϕωψϕ)())(),(),(({t t t t P Q +))(),(),((t t t ωψϕdt t t t t R t )}())(),(),(()(ωωψϕψ′+′ 而∫−++L Rdz Qdy Pdx∫′=αβϕωψϕ)())(),(),(({t t t t P Q ++′)())(),(),((t t t t ψωψϕdt t t t t R )}())(),(),((ωωψϕ′ 即右端定积分的上下限与曲线的方向有关,下限对应于曲线的起点,上限对应于曲线的终点。
2.试判断下列结果是否正确,为什么? 设∫=L xdy I ,L 是圆周:222a y x =+,取逆时针方向,由于积分曲线是关于y 轴对称,被函数x 是关于x 的奇函数,所以∫=Lxdy I 0=。
答:这是不对的,因为第二型曲线积分不能这样用“对称性”,事实上,2220220cos )sin (cos a d a a d a I πθθθθππ===∫∫这是因为第二型曲线积分(以及第二型曲面积分)涉及积分域的定向问题,奇偶对称性比较复杂. 设L 关于y 轴对称,(1L 为L 在y 轴右侧的部分)有∫∫=L L dy y x Q dy y x Q 为偶函数关于当为奇函数关于当x )y ,x (Q 0x )y ,x (Q ),(2),(1如图10-14设21L L L +=,1:(), :0L yx x a ϕ=→,2:(),:0L y x x a ϕ=−−→ 则∫∫∫+=LL L dy y x Q dy y x Q dy y x Q 12),(),(),( dx x x x Q dx x x x Q a a)())(,()())(,(00−′−−++′+=∫∫−ϕϕϕϕ对dx x x x Q a )())(,(0−′−−∫−ϕϕx t =−0(,())()a Q t t t dt ϕϕ′−∫ 则dx x x x Q x x Q dy y x Q La)())](,())(,([),(0ϕϕϕ′−−=∫∫=′=∫∫为偶函数关于为奇函数关于x y x Q x y x Q dy y x Q dx x x x Q a L ),(0),(),(2)())(,(201ϕϕ3.在与路径无关的等价命题中,为什么要限制D 为单连通区域?答:若D 不是单连通域,则与路径无关的等价命题可能不成立. 如,例:计算∫+−=L y x ydx xdy I 22,其中L 为一条分段光滑且不经过原点的连通闭曲线,L 的方向为逆时针方向。
10考研数学大纲知识点解析(第十章曲线曲面积分(数学一)
.
(3)第一类曲线积分表示的物理意义是曲线的质量,故与方向无关.
【第一类曲线积分的性质】
(1) (2) (3) (4) (5)设在 上
.
.
其中
没有公共部分.
. 其中 表示 的反方向的路径.
,则
.
特别的,
.
【第一类曲线积分的计算】设 为光滑曲线, (1)若 由参数方程
在 上连续. 给出 ,则
其中
在
上有一阶连续导数,且
(3)若积分曲线 关于
轴对称,则
【例题】(89 年,数学一/数学二)
设平面曲线 为下半圆
,则曲线积分
. .
【答案】 . 【解析 1】参数法:设 的参数方程为
【解析 2】将积分曲线 的方程
,即
于是 .
代入被积函数,得 .
【例题】(98 年,数学一)
设 为椭圆
,其周长记为 , 则
.
【答案】 .
【解析】将 的方程
函数
在空间曲线 上的第一类曲线积分可类似定义为
. 【空间中第一类曲线积分的计算】
若空间曲线 的参数方程为
则
.
【例题】计算曲线积分 上相应于 从 到 的一段弧. 【解析】原式
,其中 为螺旋线
.
【第二类曲线积分的概念(对坐标的曲线积分)】设 为 面内一条有向光滑曲线段,
函数
在 有界,则它们在 上的第二类曲线积分定义为
由 解得
得到的微分方程 ,带入
,得
,
所以
,于是
.
【综合题】(06 年,数学一)设在上半平面 偏导数,且对任意的 都有 向简单闭曲线 ,都有
内,函数
具有连续
.证明:对 内的任意分段光滑的有
高数 第十章 曲线积分与曲面积分
计算
定积分
计算
Stokes公式 计算 曲面积分 Gauss公式
重积分
16
积分概念的联系
定积分
f ( M )d lim f ( M ) i , f ( M )点函数
0
i 1
n
当 R1上区间 a, b]时, f ( M )d f ( x )dx. [
5
基本问题: 如何熟练掌握各种积分的计算
首先判断准确要求的是哪一类积分 重要的是牢牢记住各种积分的计算方法
1、I
L
f ( x , y )ds 代入曲线的方程以及ds,从而化为定积分解之
2、I Pdx Qdy 代入曲线的方程,化为定积分解之 L
P Q 闭合 y x 非闭
( y 2 z 2 ) dS; I z
( x 2 y 2 ) dS
曲面质心: 曲面形心:
x
x
dS ; y
S
;y
ydS ydS
dS ; z
S
;z
dS S
dS zzdS
15
(二)各种积分之间的联系
积分是
P cos Q cos R cos ds
,其中, ,为有向曲面上点
x, y, z 处的
法方向 的方向角。
20
2.选择以下各题中给出的四个结论中一个正确的结论:
(1)设曲面是上半球面 : x 2 y 2 z 2 R 2 , z 0, 曲面 1 是 曲面在第一卦限中的部分 , 则有 C .
条 件 等
高等数学第10章课后习题答案(科学出版社)
第十章曲线积分与曲面积分习题详解习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧;解: L AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2cos I ππθ-=⎰4cos (1d ππθθ-==+⎰.(2)(1)Lx y ds ++⎰ ,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解: L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Lx y ds ++⎰(1)OAx y ds =++⎰(1)ABx y ds +++⎰ (1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是ds dx ===,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA, 而:AB 1y x =-,01x ≤≤,于是ds ==. 故10(1)[(1)ABx y ds x x ++=+-+=⎰⎰,同理可知:BO 0x =(01y ≤≤),0d s =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. xyoABC综上所述33(1)322Lx y ds -+=+=+⎰ (3)⎰,其中L 为圆周22x y x +=;解 直接化为定积分.1L 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ==.于是201cos222d πθθ=⋅=⎰⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解 如图所示, 2222 LABBCCDx yzds x yzds x yzds x yzds =++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt ==,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==故122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))x yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222LBB CC Dx y z d s x y z d sx y z d sd s =++⎰⎰⎰⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
《高等数学》第十章曲线积分与曲面积分 第五节
G
B( x , y )
C ( x , y0 )
o
u( x , y ) x P ( x , y0 )dx y Q( x , y )dy
0 0
x
x
y
AC CB
或 u( x , y ) y Q( x0 , y )dy x P ( x , y )dx
一重积分中,牛顿—莱布尼茨公式
f(x)积分区间[a , b]
y
y f x
b
a
f ( x )dx F (b) F (a )
二重积分中, 格林公式
o a
y
b x
D
f(x, y)积分区域D
x y dxdy L Pdx Qdy . D P Q
o
三重积分中, 高斯公式和斯托克斯公式
2
设 P ( x , y ) x 2 2 xy , Q( x , y ) x 2 y 4 .
则 P,Q 在全平面上有连续的 一阶偏导数,且
1
y
B
1
P 2 x , y
Q 2 x. x
o
x
Q P 即 . 全平面是单连通域。 y x
因此,积分与路径无关。
10
P 2 x , y
( x, y)
D
0 , y0 )
P ( x , y )dx Q( x , y )dy
0
x
当起点A( x , y )固定时,
0
O
积分的值取决于终点 B( x , y ), 因此,它是 x , y的函数,
定义 u( x , y )
( x, y)
( x0 , y0 )
高数课件第十章 曲线积分与曲面积分
Σ: x−y+z = 在第四卦限部分的上侧 1 在第四卦限部分的上侧.
解: (c sα,c sβ,c sγ) = 1 ( ,− ,1 o o o 1 1) 3 1 I =∫∫ [f (x y z)+x−2f (x y z)−y+f (x y z)+z]dS , , , , , , ∑ 3 1 =∫∫ [x−y+z]dS ∑ 3 1 1 3 1 =∫∫ dS= . = ∑ 3 3 2 2
+∫ ( x y−3 y2 +y2) d 32 x y u(x y =∫ 5x d , ) x 0
4 0
x
y
32 2 3 1 3 =x + x y −xy + y 3 2 因此方程的通解为 5 3 2 2 3 1 3 x + x y −xy + y =C 2 3
5
y
(x y , )
o (x0 x ,)
2π R 2 2 2
π
+ ∫ dθ ∫π dϕ ∫
2 0 3
2π
π
2 R cos ϕ
0
r cos ϕ ⋅ r sin ϕ dr
2 2 2
第十章 曲线积分与曲面积分
1. 第一类曲线积分 物质曲线质量) (物质曲线质量) 2. 第二类曲线积分 变力作功) (变力作功) 3. 第一类曲面积分 曲面薄板质量) (曲面薄板质量) 4. 第二类曲面积分 通量) (通量)
曲线积分
曲面积分
1. 第一类曲线积分的计算
(1)利用参数方程化为定积分 利用参数方程化为定积分 • 对光滑曲线弧
f (x y d =∫ f[ ( )ψ( ) φ 2( )+ ′2( )dt ∫ , ) s α φt , t ] ′ t ψ t L
高数10章第2节对坐标曲线积分
06 曲线积分在实际问题中应 用
面积、体积和弧长计算
01
02
03
面积计算
通过曲线积分可以计算由 平面曲线所围成的面积, 例如计算不规则图形的面 积。
体积计算
在空间中,曲线积分可以 用来计算由曲线旋转或平 移所生成的立体体积。
弧长计算
曲线积分还可以用来计算 曲线的弧长,特别是对于 那些无法直接通过几何方 法求解的曲线。
质心、形心和转动惯量计算
质心计算
在物理学和工程学中,经常需要 计算物体的质心位置,曲线积分 可以帮助我们找到由曲线构成的
物体的质心。
形心计算
形心是描述物体几何形状的一个重 要参数,曲线积分同样可以用来计 算由曲线构成的物体的形心。
转动惯量计算
转动惯量是描述物体旋转运动特性 的物理量,曲线积分可以用来计算 由曲线构成的物体绕某轴的转动惯 量。
斯托克斯公式在电磁学、流体力学等 领域有着广泛的应用,可以用来计算 磁场、电场、流场等物理量。
在使用斯托克斯公式时,需要注意被积 函数在包含曲面Σ的空间区域内是否满 足具有一阶连续偏导数的条件,以及曲 面Σ和边界曲线Γ的取向是否正确。
其他求解方法
01
直接计算法
对于一些简单的第二类曲线积分问题,可以直接通过参数化曲线并代入
面积等。
培养分析问题和解决问题的能力,提高数学素养和思维水平。
03
内容概述
本节主要介绍对坐标的曲线积分,包括曲线积分的定义、性质和计算方法。 通过具体例题,讲解如何运用定积分求解曲线积分,并介绍一些常用的计算技巧。
讨论曲线积分在实际问题中的应用,如计算平面曲线的长度、空间曲线的质量等。
02 对坐标曲线积分基本概念
高数10章第2节对坐标曲线积分
高等数学第十章曲线积分
y
L
0
. a 2
L
x 2 y 2 ds 2 ads
2
2 a cos ad
2
a
x
2a
2 0
2 cosd 2a .
【例3】计算 I
1 xds, 其中 L 为双曲线 xy 1从点( , 2)至 L 2
点(1, 1) 的弧段.
1 1 分析 或x 的 x y 形式, 故从计算方法框图上看, 我们可采用线路1的方法计算。
(这里 L 为区域 D 的正向边界曲线) 3.利用积分与路径无关的条件计算法
c Pdx Qdy 与路径无关 Pdx Qdy 0 ,为区域内任意闭曲线.
L
c
P Q , ( x, y ) G ─单连域. y x
du Pdx Qdy, ( x, y ) G —单连域.
由于圆周 x 2 y 2 ax 在极坐标下的方程为 a cos ,
), 2 2
故从解题方法框图上看,我们可采用线路3的方法计算。 解: 圆周 x y ax 在极坐标下的方程为 a cos (
2 2
则 ds 2 2 d ad . 故
L与 L 构成封闭曲线,然后在封闭曲线L L上应用Green
公式, 即
Q P L L Pdx Qdy ( x y )dxdy. D
再计算 L Pdx Qdy, 最后将两式相减便得原曲线积分的值,即
I (
L L
)Pdx Qdy
第十章 曲 线 积 分
对弧长的曲线积分(第一型曲线积分)
一、对弧长的曲线积分的概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 +ψ ′2( x) dx
• 对光滑曲线弧
∫L f ( x, y)ds
β = ∫α f (r(θ )cosθ , r(θ )sinθ )
r 2(θ ) + r′2(θ ) dθ
机动 目录 上页 下页 返回 结束
思考与练习
x2 y2 周长为a = 1周长为 , 求 1. 已知椭圆 L : + 4 3
证: 根据定义
= lim ∑ f (ξk ,ηk )∆sk
λ →0 k=1
机动 目录 上页 下页 返回 结束
n
设各分点对应参数为 点 (ξk ,ηk )对应参数为
∆sk = ∫ttk ϕ′2(t ) +ψ ′2(t ) d t k−1
′ ′ = ϕ′2(τ k ) +ψ ′2(τ k ) ∆tk ,
β = ∫α f (ϕ(t ) ,ψ (t ),ω(t ) ) ϕ′2(t ) +ψ ′2(t ) + ω′2(t ) d t
机动 目录 上页 下页 返回 结束
例1. 计算
其中 L 是抛物线
上点 O (0,0)
与点 B (1,1) 之间的一段弧 . 解: QL : y = x2 ( 0 ≤ x ≤ 1)
机动
目录
上页
下页
返回
结束
2. L为球面 x2 + y2 + z2 = R2 在第一卦限与三个坐标 为球面 面的交线 , 求其形心 .
R L2 解: 如图所示 , 交线长度为 L3 l = 3∫ L ds = 3 ⋅ 2π R = 3π R R o 1 2 4 y 由对称性 , 形心坐标为 R L1 x 1 z = y = x = ∫ L + L + L x ds l 1 2 3 2 1 = [ ∫ L x ds + ∫ L x ds + ∫ L x ds ]= ∫ L x ds 2 3 l 1 l 1
1 = ∫0 x
1 = ∫0 x
y
1 + 4x dx
2
3 2 1
B(1,1)
y = x2 L
1 = (1 + 4x2 ) 12 1 = ( 5 5 − 1) 12
0
o
1x
机动
目录
上页
下页
返回
结束
例2. 计算半径为 R ,中心角为 的圆弧 L 对于它的对 中心角为 称轴的转动惯量I 设线密度 称轴的转动惯量 (设线密度µ = 1). 建立坐标系如图, 解: 建立坐标系如图 则
机动
目录
上页
下页
返回
结束
一、对弧长的曲线积分的概念
1.引例 1.引例: 曲线形构件的质量 引例 假设曲线形细长构件在空间所占 弧段为AB , 其线密度为 弧段为 为计算此构件的质量, 采用 为计算此构件的质量,
B
Mk (ξk ,ηk ,ζ k ) ∆s k Mk −1
“大化小 常代变 近似和 求极限” 大化小, 常代变, 近似和, 求极限” 大化小 可得
第十章 曲线积分与曲面积分
积分学 定积分二重积分三重积分曲线积分 曲面积分 积分域 区间域 平面域 空间域 曲线域 数量值函数的曲线积分 曲线积分 向量值函数在定向曲线上的积分 数量值函数的曲面积分 曲面积分 向量值函数在定向曲面上的积分 曲面域
第十章 第一节 数量值函数的曲线积分
一、第一类曲线积分的概念 二、第一类曲线积分的计算法
= 2π a2ρ a2 + k2
(2) L的质量 m = ∫ L ρ ds = 2π ρ a + k 的质量
2 2
2π ∫ 0 cos t d t
机动
而
= aρ a + k
2
2
=0
目录 上页 下页 返回 结束
= aρ a
2
2
2 2π sin t d t + k ∫0
2 2π + k ∫ 0 t dt
如果方程为极坐标形式: 如果方程为极坐标形式 L : r = r(θ ) (α ≤ θ ≤ β ), 则
β = ∫α f (r(θ )cosθ , r(θ )sinθ )
r 2(θ ) + r′2(θ ) dθ
推广: 推广 设空间曲线弧的参数方程为 Γ : x = φ(t ), y = ψ (t ) , z = ω(t ) (α ≤ t ≤ β ) 则 ∫ Γ f ( x, y, z)ds
θ sin 2θ α 3
4 0
机动
目录
上页
下页
返回
结束
例3. 计算
其中L为双纽线 其中 为双纽线
( x2 + y2 ) 2 = a2( x2 − y2 ) ( a > 0)
解: 在极坐标系下 它在第一象限部分为
y
(0 ≤ θ ≤ π ) 4
π
ቤተ መጻሕፍቲ ባይዱ
L1 : r = a cos 2θ
利用对称性 , 得
∫Γ ∑ f (ξk ,ηk ,ζ k )∆sk = f ( x, y, z)ds λ →0
记作
lim
k =1
都存在, 都存在 则称此极限为函数
在曲线
Γ上对弧长的曲线积分, 或第一类曲线积分 上对弧长的曲线积分 或第一类曲线积分. 称为被积函数, Γ 称为被积函数, 称为积分弧段 . 曲线形构件的质量 M = ∫Γ ρ ( x, y, z)ds
(Γ由 组成) 组成
( l 为曲线弧 Γ 的长度 的长度)
机动
目录
上页
下页
返回
结束
二、对弧长的曲线积分的计算法
转化
基本思路: 基本思路 求曲线积分 定理: 定理
计算定积分
是定义在光滑曲线弧
上的连续函数, 则曲线积分 上的连续函数
且
β f ( x, y) d s = ∫α f [ϕ (t ) ,ψ (t )] ϕ′2(t ) +ψ ′2(t ) d t ∫L
圆Γ的形心 在原点, 在原点 故 X =0
机动 目录 上页 下页 返回 结束
例6. 计算
其中Γ 其中Γ为球面 x + y
2
2
的交线 + z2 = 9 与平面x + z = 1的交线. 2 1 ( x − 1)2 + 1 y2 = 1 2 4 解 : Γ : 2 , 化为参数方程 x+ z =1 x = 2 cosθ + 1 2 ( 0 ≤ θ ≤ 2π ) Γ : y = 2sinθ z = 1 − 2 cosθ 2 则
2π 2 a + k2 (3a2 + 4π 2k2 ) = 3
机动 目录 上页 下页 返回 结束
例5. 计算 被平面
其中Γ 其中Γ为球面 所截的圆周. 所截的圆周
解: 由对称性可知 ∫ x2 ds = ∫ y2 ds = ∫ z2 ds Γ Γ Γ
1 ∴ ∫Γ x ds = ∫Γ ( x2 + y2 + z2 )ds 3 1 2 1 2 = ∫Γ a ds = a ⋅2π a 3 3 2 3 = πa 3
y
3
(2xy + 3x2 + 4 y2 )ds ∫L
提示: 提示 利用对称性 ∫L 2xy ds = 0
2 2
−2
o
2x
x y 原式 = 12∫L( + )ds = 12∫L ds = 12a 4 3
分析: 分析 ∫L 2xy ds = ∫L 2xy ds + ∫L下 2xyds 上
= ∫ 2x L
机动 目录 上页 下页
Mk ∆sk Mk −1
Γ
返回 结束
如果 L 是 xoy 面上的曲线弧 , 则定义对弧长的曲线积 分为
∫ L f ( x, y)ds = lim ∑ f (ξk ,ηk )∆sk
λ →0 k=1
n
如果 L 是闭曲线 , 则记为 ∫ L f ( x, y)ds . 思考: 思考 (1) 若在 L 上 f (x, y)≡1, 问∫ Ld s 表示什么 ? (2) 定积分是否可看作对弧长曲线积分的特例 ? 否! 对弧长的曲线积分要求 ds ≥ 0 , 但定积分中 dx 可能为负 可能为负.
的长度) (3) ∫ Γ ds = l ( l 曲线弧 Γ 的长度
( Γ由Γ , Γ2 组成) 1
机动 目录 上页 下页 返回 结束
3. 计算 • 对光滑曲线弧
β ∫L f ( x, y)ds = ∫α f [φ (t ),ψ (t )] φ′2(t ) +ψ ′2(t ) d t
• 对光滑曲线弧
机动 目录 上页 下页 返回 结束
内容小结
1. 定义 ∫L f ( x, y)ds
∫ Γ f ( x, y, z)ds
2. 性质
(1) ∫ Γ[ α f ( x, y, z) + β g( x, y, z) ] ds
+ β ∫L g( x, y, z)ds (α, β 为常数)
(2) ∫ Γ f ( x, y, z)ds = ∫ Γ f ( x, y, z)ds + ∫ Γ f ( x, y, z)ds 1 2
M=
∑
k =1
n
A
机动
目录
上页
下页
返回
结束
2.定义 . 是空间中一条有限长的光滑曲线, 设 Γ 是空间中一条有限长的光滑曲线 上的一个有界函数, 义在 Γ上的一个有界函数 若通过对 Γ 的任意分割 和对 局部的任意取点, 下列“乘积和式极限” 局部的任意取点 下列“乘积和式极限”
n
(ξk ,ηk ,ζ k )