高中数学必修二第二章复习.

合集下载

人教版高中数学必修二导学案第二章空间点直线平面之间的位置关系复习

人教版高中数学必修二导学案第二章空间点直线平面之间的位置关系复习

第二章空间点直线平面之间的位置关系复习三维目标1.使学生掌握知识结构与联系,进一步巩固、深化所学知识;2.通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力.________________________________________________________________________________ 目标三导学做思1问题1.四个公理?问题2.线、面之间的位置关系?问题3.线、面垂直、平行的性质定理及判定定理?问题4.线、面之间所成的角?【学做思2】1.若直线a不平行于平面 ,则下列结论成立的是()A. α内所有的直线都与a 异面;B. α内不存在与a 平行的直线;C. α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AC 与BD 所成角为 A 、030 B 、045 C 、060 D 、0903.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点. (1)求证:PA ∥平面BDE (2)求证:平面PAC ⊥平面BDE(3)若AB a =,PA b =,求三棱锥P-BDE 的达标检测*1. 把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的正棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为 ( ) A. 90° B . 60° C. 45° D.30°(第3题图)*2、下面四个命题:①空间中如果有两个角的两边分别对应平行,那么这两个角相等 ②一个平面内两条直线与另外一个平面平行,则这两个面平行 ③一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直 ④两个平面垂直于交线的直线与另一个平面垂直 其中,正确命题的个数是( )A .0B .1C .2D .3 *3. 已知直线m ,n ,平面βα,,给出下列命题: ①若βαβα⊥⊥⊥则,,m m ;②若βαβα//,//,//则m m ;③若βαβα⊥⊥则,//,m m ;④若异面直线m ,n 互相垂直,则存在过m 的平面与n 垂直. 其中正确的命题的题号为 _______*4. 设l m n 、、是三条不同的直线,αβγ、、是三个不同的平面,下面有四个命题: ①,l l βαβα若∥∥,则∥;②,l n m n l m 若∥∥,则∥;③,l l αβαβ⊥⊥若∥,则; ④,,l m αβ⊥⊥若,.l m αβ⊥⊥则 其中假命题的题号为__________*5.如图,已知四棱锥S -ABCD 的底面ABCD 是正方形,SA ⊥底面ABCD ,E 是SC 上的一点.(1)求证:平面EBD ⊥平面SAC ;(2)设SA =4,AB =2,求点A 到平面SBD 的距离;ACDES*8.如图所示,⊥PA 矩形ABCD 所在平面,N M 、分别是PC AB 、的中点.(1)求证://MN 平面PAD . (2)求证:CD MN ⊥.(3)若45=∠PDA ,求证:⊥MN 平面PCD。

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)

第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。

(完整word版)高中数学必修二第二章经典练习试题整理

(完整word版)高中数学必修二第二章经典练习试题整理

完美格式整理版A. 相交 B .异面 C .平行 D •异面或相交第I 卷(选择题) 请修改第I 卷的文字说明6.设四棱锥P- ABCD 勺底面不是平行四边形,用平面(如图),使得截面四边形是平行四边形,则这样的平面a ( )1.在空间,下列哪些命题是正确的( )•① 平行于同一条直线的两条直线互相平行 ② 垂直于同一条直线的两条直线互相平行 ③ 平行于同一个平面的两条直线互相平行 ④ 垂直于不一个平面的两条直线互相平行 A •仅②不正确 B.仅①、④正确 C .仅①正确 D.四个命题都正确2. 如果直线a 是平面a 的斜线,那么在平面%内( )A不存在与a 平行的直线 B不存在与a 垂直的直线C 与a 垂直的直线只有一条D 与a 平行的直线有无数条A.不存在B .只有1个C •恰有4个D.有无数多个高一数学必修二第二章经典练习题a 去截此四棱锥 3.平面a 内有一四边形 ABCD P 为a 外一点, P 点到四边形ABCD 各边的距离相等,则这个四边形 A 必有外接圆 BD 必是正方形必有内切圆( )C既有内切圆又有外接圆4.已知六棱锥PA ±平面 ABC PA= 2AB , 则下列结论正确的是( )A . PB 丄ADBC .直线BC//平面PAED 平面PABL 平面PBC直线PD 与平面ABC 所成的角为45 7.设P 是厶ABC 所在平面外一点, 到厶ABC 各边的距离也相等,那么△ A 是非等腰的直角三角形 BC 是等边三角形DP 到厶ABC 各顶点的距离相等,而且 PABC ( ) 是等腰直角三角形不是A 、B 、C 所述的三角形8.已知正四棱锥S ABCD 的侧棱长与底面边长都相等 点,则AE , SD 所成的角的余弦值为 ,E 是SB 的中 A. 13B.-23 C-33D. 23完美格式整理版5•若a , b是异面直线,直线c // a,则c与b的位置关系是(完美格式整理版侧面BB 1C 1C 的中心,贝V AD 与平面BB 1C 1C 所成角的大小是()15.在正方体ABCD A 1B 1C 1D 1中,0为正方形ABCD 中心,则厲0与平 面ABCD所成角的正切值为() A.、2B.—2C.1D.二323A . 30°B . 45°C . 60°D . 90° w.w.w.k.s.5.u.c.o.m 12.已知直线I 、m ,平面、,且| , m ,则//是I m 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.在正方体 ABCDAB 1C 1D 1中,若E 是A 1C 1的中点,则直线 CE 垂直于( )A ACBBD C A ,D DA 1D 117.四条不共线的线段顺次首尾连接,可确定平面的个数是()A. 1 B . 3 C . 4D. 1 或 49.正方体 ABC —ABCD 中,E 、F 分别是 AA 与CG 的中点,则直线 与DF所成角的大小是 ()EDA .B 。

高中数学必修2第二章试题(含答案)

高中数学必修2第二章试题(含答案)

A高一数学必修2第二章测试题班别 姓名 考号 得分 一、选择题1.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.2.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )A .①和②B .②和③C .③和④D .①和④ 3.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V A B C -中,,,D E F 分别是,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )A .6πB . 2πC . 3πD .随P 点的变化而变化。

5.互不重合的三个平面最多可以把空间分成( )个部分 A .4 B .5 C .7 D .86.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A .090 B .060 C .045 D .030 7.在四面体ABCD 中,已知棱AC ,其余各棱长都为1,则二面角A C D B --的余弦值为( )A .12 B.13C 3D .38.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )A .0B .1C .2D .3请将选择题的答案填入下表:二、填空题:1. 已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。

高一数学2015北师大版高中数学必修二第二章 解析几何初步复习课件

高一数学2015北师大版高中数学必修二第二章 解析几何初步复习课件

BS · 数学
必修2
已知点 P(x, y)满足关系式: x2+y2-6x-4y+12 =0,求: y (1) 的最大值和最小值; x (2)x2+y2 的看作是圆(x,y)与原点连线的斜 x 率,(2)x2+y2 可看作是(x,y)与原点距离的平方.
BS · 数学
BS · 数学
必修2
(2)设圆的一般方程为 x2+y2+Dx+Ey+F=0, 1+144+D+12E+F=0, 则49+100+7D+10E+F=0, 81+4-9D+2E+F=0, 解得 D=-2,E=-4,F=-95. ∴所求圆的方程为 x2+y2-2x-4y-95=0.
BS · 数学
必修2
从点 P(3,-2)发出的光线 l,经过直线 l1:x+y -2=0 反射,若反射光线的反向延长线恰好通过点 Q(5,1), 求 l 的方程.
【思路点拨】 求直线 l 的方程,已知点 P 在 l 上,只需 在 l 上再求出一个点即可.
BS · 数学
必修2
【思路点拨】 设点 P(3,-2)关于 l1:x+y-2=0 对称 的点 P1 的坐标为(x,y),则直线 l1 为线段 PP1 的垂直平分线, 可得方程组 y+2 =1, x-3 x+3 y-2 + 2 -2=0, 2 1).
(1)
|3 k-2|
BS · 数学
必修2
(2)设 u= x2+y2,则 u 为圆 C 上的点到原点的距离,如 图(2)所示.连接 OC 并延长交圆于 A、B 两点,圆心 C(3,2) 与原点 O 的距离是 |OC|= 13. ∴|OA |= 13-1,|OB |= 13+1.
2 2 ∴u2 = | OB | = ( 13 + 1) =14+2 13, max 2 2 u2 min=|OA | =( 13-1) =14-2 13.

高中数学人教A版必修2第二章线面,面面垂直的性质和判定辅导讲义

高中数学人教A版必修2第二章线面,面面垂直的性质和判定辅导讲义
2.1 如图,在梯形 ABCD 中,AB//CD,AD=DC=CB=a, ABC=60°,平面 ACFE 平面 ABCD,四边形
ACFE 是矩形,AE=a,点 M 在线段 EF 上.
(1)求证:BC 平面 ACFE;
(2)当 EM 为何值时,AM//平面 BDF?写出结论,并加以证明.
(3)当 EM 为何值时,AM BE?写出结论,并加以证明.
中点,则下列叙述正确的是( )
C
E
B
A
C1
B1
A1
A. CC1 与 B1E 是异面直线
B. AC 平面 ABB1A1
C. AE , B1C1 为异面直线,且 AE B1C1
D. A1C1 // 平面 AB1E
2.1 如图,在底面为平行四边形的四棱锥 P ABCD 中, AB AC , PA 面ABCD ,点 E 是 PD 的
2.3 如图,在正方体 ABCD﹣A1B1C1D1 中,E 为 AB 中点. (1)求直线 AD 和直线 B1C 所成角的大小;(2)求证:平面 EB1D⊥平面 B1CD.
考点三:综合训练
1.1 如图所示,在正四棱柱 ABCD-A1B1C1D1 中,E,F,G,H 分别是 CC1,C1D1,D1D,DC 的中点, N 是 BC 的中点,点 M 在四边形 EFGH 上或其内部运动,且使 MN⊥AC. 对于下列命题:①点 M 可以与点 H 重合;②点 M 可以与点 F 重合;③点 M 可以在线段 FH 上;④点 M 可以与点 E 重合.其中真命题的序号是________(把真命题的序号都填上).
D.3 个
2.1 如图,在直三棱柱 ABC A1B1C1 中,∠ACB=90°,E,F,G 分别是 AA1 ,AC, BB1 的中点, 且 CG⊥ C1G .(1)求证:CG∥平面 BEF; (2)求证:平面 BEF⊥平面 A1C1G .

高中数学 必修二 第二章 2.1 2.1.1课后练习题

高中数学  必修二   第二章 2.1 2.1.1课后练习题

第二章 2.1 2.1.1基础巩固一、选择题1.空间中,可以确定一个平面的条件是()A.两条直线B.一点和一条直线C.一个三角形D.三个点[答案] C2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α[答案] A[解析]观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.3.下面四个说法(其中A,B表示点,a表示直线,α表示平面):①∵A⊂α,B⊂α,∴AB⊂α;②∵A∈α,B∉α,∴AB∉α;③∵A∉a,a⊂α,∴A∉α;④∵A∈a,a⊂α,∴A∈α.其中表述方式和推理都正确的命题的序号是()A.①④B.②③C.④D.③[答案] C[解析]①错,应写为A∈α,B∈α;②错,应写为AB⊄α;③错,推理错误,有可能A∈α;④推理与表述都正确.4.如图所示,平面α∩β=l,A,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ等于()A.直线AC B.直线BCC.直线CR D.以上都不对[答案] C[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.5.若一直线a在平面α内,则正确的图形是()[答案] A6.下图中正确表示两个相交平面的是()[答案] D[解析]A中无交线;B中不可见线没有画成虚线;C中虚、实线没按画图规则画,也不正确.D的画法正确.画两平面相交时,一定要画出交线,还要注意画图规则,不可见线一般应画成虚线,有时也可以不画.二、填空题7.已知如图,试用适当的符号表示下列点、直线和平面的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:________.(4)直线CD与平面α:________.(5)平面α与平面β:________.[答案](1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD8.在正方体ABCD-A1B1C1D1中,下列说法正确的是________(填序号).(1)直线AC1在平面CC1B1B内.(2)设正方体ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.(3)由A,C1,B1确定的平面是ADC1B1.(4)由A,C1,B1确定的平面与由A,C1,D确定的平面是同一个平面.[答案](2)(3)(4)[解析](1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.因为O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,因为AD∥B1C1且AD=B1C1,所以四边形AB1C1D是平行四边形,所以A,B1,C1,D共面.三、解答题9.求证:两两相交且不过同一点的三条直线必在同一个平面内.[分析][解析]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:方法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C ∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.方法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α.又A∈α,同理AC⊂α,故直线AB,BC,AC共面.方法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.规律总结:1.利用公理2及三个推论,可以确定平面及平面的个数,公理中要求“不共线的三点”,推论1要求“平面外一点”,推论2要求“两条相交直线”,推论3要求“两条平行线”,因此对公理、推论的条件和结论必须理解清楚.2.对于证明几个点(或几条直线)共面的问题,在由其中几个点(或几条直线)确定一个平面后,只要再证明其他点(或直线)也在该平面内即可.10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.[解析]∵AB∥CD,∴AB,CD共面,设为平面β,∴AC在平面β内,即E在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,根据公理3可得,B,D,E三点共线.能力提升一、选择题1.(2015·天津武清月考)下列说法正确的是()A.两两相交的三条直线确定一个平面B.四边形确定一个平面C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面[答案] C[解析]因为梯形的两腰是相交直线,所以根据确定平面的条件,梯形应确定一个平面.2.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面[答案] D[解析]如果两个平面重合,则排除A、B;两个平面相交,则有一条交线,交线上任取3个点都是两个平面的公共点,故排除C;而D中的三点不论共线还是不共线,则一定能找到一个平面过这3个点.3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④[答案] D[解析]当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确,选D.4.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ、β的交线必过()A.点A B.点BC.点C,但不过点D D.点C和点D[答案] D[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.二、填空题5.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定的平面的个数是________.[答案] 6[解析]如图.6.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.[答案](1)BD(2)AC[解析](1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD =BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.三、解答题7.在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [证明] (1)分别连结EF 、A1B 、D 1C , ∵E 、F 分别是AB 和AA 1的中点, ∴EF ∥A 1B 且EF =12A 1B .又∵A 1D 1綊B 1C 1綊BC , ∴四边形A 1D 1CB 是平行四边形, ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面. (2)∵EF 綊12CD 1,∴直线D 1F 和CE 必相交.设D 1F ∩CE =P , ∵D 1F ⊂平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ⊂平面ABCD ,P ∈EC ,∴P ∈平面ABCD , 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD ,∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.8.(2015·江苏淮安模拟)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l 的位置;(2)设l ∩A 1B 1=P ,求线段PB 1的长.[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.(2)∵M 为AA 1的中点,AD ∥ED 1, ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,于是PB 1=A 1B 1-A 1P =a -14a =34a .。

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)

【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)

垂足
平面 的垂线
l
直线 l 的垂面
P
对定义的认识
①“任何”表示所有.
②直线与平面垂直是直线与平面相交的一种特殊情况,在 垂直时,直线与平面的交点叫做垂足.

等价于对任意的直线
,都有
利用定义,我们得到了判定线面垂直的最基本方法,同时 也得到了线面垂直的最基本的性质.
直线与平面垂直 除定义外,如何判断一条直线与平面垂直呢?
解析:(1)如图 23,∵PO⊥平面 ABC, ∴PA 、PB、PC 在平面 ABC 上的射影分别是 OA、OB、OC. 又∵PA =PB=PC,∴OA=OB=OC. ∴O 是△ ABC 的外心.
图 23
图 24
(2)如图 24,∵PO⊥平面 ABC,
∴PA 在平面 ABC 上的射影是 OA.
∵BC⊥PA ,∴BC⊥OA. 同理可证 AC⊥OB, ∴O是△ ABC 的垂心.故填垂心.
4-1.P 为△ABC 所在平面外一点,O 为 P 在平面 ABC 上的 射影.
(1)若 PA =PB=PC,则 O 是△ABC 的_外__心__; (2)若 PA ⊥BC,PB⊥AC,则 O 是△ABC 的_垂__心__; (3)若 P 到△ABC 三边的距离相等,且 O 在△ABC 内部,则 O 是△ABC 的_内__心___; (4)若 PA 、PB、PC 两两互相垂直,则 O 是△ABC 的垂__心___.
斜线与平面所成的角θ的取值范围 是:______________
线面所成的角 关键:过斜线上一点作平面的垂线
斜线
斜足
A α
射影
P
线面所成角 (锐角∠PAO)
O
1.如图:正方体ABCD-A1B1C1D1中,求: (1)A1C1与面ABCD所成的角 (2) A1C1与面BB1D1D所成的角

[高中数学必修2]第二章 平面解析几何初步 知识梳理

[高中数学必修2]第二章  平面解析几何初步 知识梳理

第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。

数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。

记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。

可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。

(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。

从点A 到点B的向量,记作AB 。

线段AB 的长叫做向量AB 的长度,记作|AB|。

我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。

例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。

注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。

③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。

(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。

对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。

已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。

人教版高中数学必修二第2章2.22.2.3直线与平面平行的性质

人教版高中数学必修二第2章2.22.2.3直线与平面平行的性质

223直线与平面平行的性质学习目标1. 了解直线与平面平行的性质定理的探究以及证明过 程.2. 理解直线与平面平行的性质定理的含义并能应用.(重点) 3. 能够综合应用直线与平面平行的判定定理和性质定 理进行线面平行的相互转化.(难点) 自主预习。

播新和 zizHi jyt xi口新知初探I直线与平面平行的性质定理 文字语言一条直线与一个平面平行, 面的交线与该直线平行• 过该直线的任意一个平面与已知平符号语言a // a, a? 3, aA b? a /b 图形语言思考:若a // a b? a,则直线a 一定与直线b 平行吗?[提示]不一定.由a / a,可知直线a 与平面a 无公共点,又b? a,,所以a 与b 无公共点,所以直线a 与直线b 平行或异面.口初试身^□1. 如图,过正方体 ABCD-A'B C 'D 的棱BB '作一平面交平面 CDD'C 于EE : 则BB 与EE 的位置关系是()核心素养通过学习直线与平面 平行的性质,提升直观 想象、逻辑推理的数学 素养•A .平行B .相交C•异面D .不确定A [因为BB'// 平面CDD C ;BB 7 平面BB'E'E,平面BB'E^G 平面CDD C=EE 所以BB ' // EE '.]2. 设m、n是平面a外的两条直线,给出以下三个论断:①m// n;②m// a;③n// a以其中两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:________ .(用序号表示)①②?③(或①③?②)[设过m的平面B与a交于I •因为m//a,所以m//l,因为m // n,所以n // I,因为n?a, I? a,所以n // a]合作探究。

I星驀养直线与平面平行性质定理的应用[探究问题]1. 直线与平面平行性质定理的条件有哪些?[提示]线面平行的性质定理的条件有三个:(1) 直线a与平面a平行,即a / a;(2) 平面a、B相交于一条直线,即aG b;(3) 直线a在平面B内,即a? B三个条件缺一不可.2. 直线与平面平行的性质定理有什么作用?[提示]定理的作用:(1) 线面平行?线线平行;(2) 画一条直线与已知直线平行.3. 直线与平面平行的判定定理和性质定理有什么联系?[提示]经常利用判定定理证明线面平行,再利用性质定理证明线线平行.【例1】 如图,用平行于四面体 ABCD 的一组对棱AB , CD 的平面截此 四面体•求证:截面 MNPQ 是平行四边形.[证明] 因为AB //平面 MNPQ ,平面 ABC A 平面 MNPQ = MN ,且 AB?平面 ABC ,所以由线面平行的性质定理,知AB / MN ,同理,AB//PQ ,所以MN // PQ.同理可得 MQ // NP.所以截面MNPQ 为平行四边形.对蕊凍吭 将本例变为:如图所示,四边形 ABCD 是矩形,P ■ 平面ABCD , 过BC 作平面BCFE 交AP 于E ,交DP 于F.[证明]因为四边形ABCD 为矩形,所以BC / AD ,因为AD?平面PAD , BC?平面PAD ,所以BC /平面PAD.因为平面BCFE G 平面FAD = EF ,所以 BC //EF. 求证:四边形因为AD = BC, AD托F,所以BC M EF,所以四边形BCFE是梯形.1.利用线面平行性质定理解题的步骤:2 •证明线线平行的方法:(1) 定义:在同一个平面内没有公共点的两条直线平行.(2) 平行公理:平行于同一条直线的两条直线平行.a //a(3) 线面平行的性质定理:a? B ? a//b,应用时题目条件中需有线面aA b平行.【例2】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA=3,点F在棱RA上,且AF = 1,点E在棱PD上,若CE//平面BDF,求PE : ED 的值.B[解]过点E作EG // FD交AP于点G,连接CG,连接AC交BD于点O, 连接FO.因为EG// FD , EG?平面BDF, FD?平面BDF ,所以EG//平面BDF ,又EG A CE= E, CE//平面BDF, EG?平面CGE, CE?平面CGE,所以平面CGE//平面BDF,又CG?平面CGE,所以CG//平面BDF,又平面BDF A平面PAC= FO, CG?平面PAC,所以FO // CG,又O为AC的中点,所以F为AG的中点,所以FG = GP= 1,所以E为PD的中点,PE : ED= 1 : 1.利用线面平行的性质定理计算有关问题的三个关键点:(1) 根据已知线面平行关系推出线线平行关系.(2) 在三角形内利用三角形中位线性质、平行线分线段成比例定理推出有关线段的关系.(3) 利用所得关系计算求值.働跟礙训练I如图所示,在棱长为6的正方体ABCD-A i B i C i D i 中,点E, F 分别是棱C i D i , B i C i 的中点,过A , E , F 三点作该正方体的截面,则截面的周长为 ____________ .6 13+ 3 2 [如图所示,延长EF ,A i B i 相交于点M ,连接AM ,交BB i 于 点H ,连接FH ,延长FE , A i D i 相交于点N ,连接AN 交DD i 于点G ,连接EG ,可得截面五边形AHFEG ,因为几何体ABCD-A i B i C i D i 是棱长为6的正方体,且ii E 、F 分别是棱 C i D i , B i C i 的中点,所以 EF = 3 2,易知 B i M = C i E = QC i D i = 2 A i B i ,又 B i H //AA i ,所以 B i H = iAA i = 2, J 则 BH = 4,易知 AG = AH = 62 + 42= 2 i3, EG = FH =、32 + 22= i3,所以截面的周长为 6 i3+ 3,2]i •在遇到线面平行时,常需作出过已知直线与已知平面相交的辅助平面, 以便运用线面平行的性质.2 •要灵活应用线线平行、线面平行的相互联系、相互转化•在解决立体几 何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的 最有效的方法.当堂达标科固观基1 •如图,在三棱锥SABC中,E, F分别是SB SC上的点,且EF //平面ABC,则()A. EF与BC相交B. EF // BCC. EF与BC异面D. 以上均有可能B [因为平面SBC n平面ABC= BC,又因为EF //平面ABC,所以EF // BC.]2 .直线a//平面a, a内有n条直线交于一点,则这n条直线中与直线a平行的直线有()A. 0条B . 1条C. 0条或1条 D .无数条C [过直线a与交点作平面B,设平面B与a交于直线b,则a// b,若所给n 条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a平行的直线有0条.]3. 过正方体ABCD-A1B1C1D1的三顶点A1, C1, B的平面与底面ABCD所在的平面的交线为I,则I与A1C1的位置关系是__________ .平行[因为A1C1 /平面ABCD,A1C1?平面A1C1B,平面ABCD n平面A1C1B= I,由线面平行的性质定理,所以A1C1//IJ4. 如图,在三棱柱ABC-A1B1C1中,D是棱CC1上的一点,P是AD的延长线与A1C1延长线的交点,且PB1//平面BDA1,求证:CD = C1D.[证明]如图,连接AB1与BA1交于点0,连接0D,因为PB i // 平面BDA i, PB i?平面AB i P,平面AB i P n平面BDA i = OD,所以OD // PB i, 又AO= B i O,所以AD = PD,又AC// C i P,所以CD = C i D.。

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )

高中数学必修2第二章-空间点、直线、平面之间的位置关系

高中数学必修2第二章-空间点、直线、平面之间的位置关系
两个平面的位置关系有且只有两种 ①两个平面平行——没有公共点 ②两个平面相交——有一条公共直线.
分类的依据是什么?
公理3 如果两个不重合的平面有一个公共 点,那么它们有且只有一条过该点的公共直线.
两个平面平行或相交的画法及表示


m


//
=m
2.1
直线、平面平行的 判定及其性质
主要内容
平面内两条相交直线 空间中两条异面直线
已知两条异面直线a,b,经过空间任一点O作直
线 a // a, •b // b ,把 与a 所b 成的锐角(或直角)叫
做异面直线a与b所成的角.
b

a
b
b
O
a
O aa
异面直线所成的角
探究
我们规定两条平行直线的夹角为0°,那么 两条异面直线所成的角的取值范围是什么?
两条直线的位置关系
空间中的直线与直线之间有三种位置关系:
共面直线
相交直线: 同一平面内,有且只有一 个公共点;
平行直线: 同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
定理的应用
A
例1. 如图,空间四边形ABCD中, F
E、F分别是 AB,AD的中点. E
D
求证:EF∥平面BCD.
B
C
分析:要证明线面平行只需证明线线平行,
即在平面BCD内找一条直线 平行于EF,由已
知的条件怎样找这条直线?
定理的应用
A
例1. 如图,空间四边形ABCD中, F

高中数学新人教A版必修2 第2章 2-1空间点、直线、平面的位置关系

高中数学新人教A版必修2 第2章 2-1空间点、直线、平面的位置关系

A B
AB
B
A
作用:用于判定线在面内
小结:公理2及其推论 A,B,C不共线
A,B,C确定一平面.
A∈ a
A和a确定一平面.
aIb=P
a和b确定一平面.
ab
a和b确定一平面.
作用:用于确定一个平面.
A
B C
Aa
aP
b
a
b
公理3:若两个不重合平面有一个公共点, 则它们有且只有一条过该点的公共直线。
空间中基本图形:点、线、面
一、平面的表示方法
1.特点:平面是无限延展,没有厚度的.
(但常用平面的一部分表示平面)
2.画法:水平或竖直的平面常用平行四边形表示.
D
D
C
C
A
B
A
3.记法:
B
①平面α、平面β、平面γ(标记在边上)
②平面ABCD、平面AC或平面BD
巩固:判断下列各题的说法正确与否,在正 确的说法的题号后打 ,否则打 .
CA
C (G)
A
G
E
H
DB
HE F
D
B(F)
空间两条不重合直线的位图关系有且只有三种:
若从有没有公共点的角度来看,可分为两类 :
(1) 有且仅有一个公共点相交直线
(
2)
没有公共点
平行直线 异面直线
若从有没有共面的角度来看,也可分为两类:
(1)
在同一个平面内
相交直线 平行直线
( 2)不同在任何一个平面内异面直线
A1
B1
(2) 直线MB1与CC1异面直线关系
主要特征:既不平行,也不相交
异面直线的定义:
D A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a / /b
线面平行);
b
a

3. 直线与平面平行的性质定理:线面平行 β
b a / /b a / / a
线线平行 a b
α
4. 判断平面与平面平行的方法: 关键是找平行线
法一:三角形的中位线定理; 法二:平行四边形的平行关系。
(1)定义法:平面与平面没有公共点则面面平行;
(1)求异面直线A1B与B1C所成的角的大小; (2)求直线A1B与平面BB1D1D所成的角; (3)求二面角A—BD—A1的正切值; (4)求证:平面A1BD//平面CB1D1;
A1
D1 B1 D A
C1
(5)求证 : 直线AC1 平面A1BD;
(6)求证 : 平面ABC1 平面A1BD;
一、平面的特点:
(1)“平”;(2)“无限延展”; (3) “无厚薄”;(4)“无大小”;(5) “无宽窄”
二:平面的表示
记作:平面 平面 ABCD
D A

C B
平面AC或平面BD
三、空间中几种位置关系
1、点与直线的位置关系
(1)点A在直线l上: (2)点A在直线l外:
Al
Al
记作:
2、点与平面的位置关系
β
a
α
a
l
A
例1. , a , a a / /
小结: 空间中的平行关系的转化
线线 平行 线面平行判定 线面平行性质 线面 面面平行判定 平行 面面平行性质 面面 平行
面面平行性质
空间中的垂直关系的转化 线线 垂直 线面 垂直 面面 垂直
平行和垂直关系的转化
空间中的平行
β
Байду номын сангаасa b
a a / /b b
α
8. 判断平面与平面垂直的方法: (1)定义法:两个平面相交,如果它们所成的二面 角是直二面角。 (2)判定定理:线线垂直线面垂直面面垂直
a a 面
β

α
a A
8. 平面与平面垂直的性质定理: 面面垂直线面垂直
l a al
定义:不同在 任何 一个平面内的两条直线叫做异面直线 。 两直线异面的判别一 : 两条直线 既不相交、又不平行. 两直线异面的判别二 : 两条直线不同在任何一个平面内.
2.判断直线与平面平行的方法: (1)定义法:直线与平面没有公共点则线面平行; (2)判定定理:(线线平行 a b a / /
公理1
如果一条直线上的两点在一个平面内,那么这 条直线在此平面内。 作用:判定直线是否在平面内.
公理2
推论1 推论2 推论3 公理3
过不在一条直线上的三点,有且只有一个平 面. 作用:确定平面的主要依据.
经过一条直线和这条直线外的一点,有且只有 一个平面。 经过两条相交直线,有且只有一个平面。 经过两条平行直线,有且只有一个平面。 如果两个不重合的平面有一个公共点,那么它 们有且只有一条过该点的公共直线.
C B
(7)求点A1到平面CB1D1的距离.
例2如图所示,在长方体中,AB=AD=1,AA1=2,M是 棱CC1的中点 (Ⅰ)求异面直线A1M和C1D1所成的角的正切值; (Ⅱ)证明:平面ABM⊥平面A1B1M
空间中的垂直
1.异面直线所成角:范围
求异面直线所成的角的步骤是:
(0,90]
一作(找):作(或找)平行线; 二证:证明所作的角为所求的异面直线所成的角; 三求:在一恰当的三角形中求出角。
2. 直线与平面所成角:范围
P A O
[0,90]
注:已知角,要求角, 关键找射影。

例1:在棱长为1的正方体ABCD—A1B1C1D1中,
(2)判定定理:线线平行线面平行面面平行
a ,b ab P // a // , b //
b

P
a

5. 平面与平面平行的性质: ⑴如果两个平面平行,那么在一个平面内的所有直线 都与另一个平面平行. / / , a a a / /
作用:(1)判断两个平面相交的依据; (2)判断点在直线上。
1.如果三个平面两两相交,那么它们的 交线有多少条?画出图形表示你的结论。
答:有可能1条,也有可能3条交线。
( 1)
( 2)
2、 3个平面把空间分成几部分?
( 1)
4
( 2)
6
( 3)
6
( 4)
7
( 5)
8
1.异面直线: 证明异面直线时常用反证法。
⑵如果两个平行平面同时和第三个平面相交,那么它 们的交线平行. / / , a, b a / /b
⑶如果一条直线和两个平行平面中的一个相交,那么 它也和另一个平面相交. / / , a A a B ⑷夹在两个平行平面间的所有平行线段相等。




a
b
a

6. 直线与平面垂直的方法:
(1)定义法:直线 l 与平面 内的任意一条直线都垂直。
(2)判定定理:线线垂直线面垂直
a l b a b A
la l b
l
b

A
a
(3)例 1.a / /b, a b
7. 直线与平面垂直的性质:
点A在平面 内: 记作 A . 点B在平面 外: 记作B .
3、空间中直线与直线之间的位置关系
相交直线 同在一个平面内 平行直线
按平面基本性质分
不同在任何一个平面内: 异面直线
按公共点个数分
有一个公共点: 相交直线
无 公 共 点 平行直线
异面直线
4、直线与平面的位置关系
直线a在平面内
有无数个公共点

a a
a α
a α A
直线a 与平面α相交
有且只有一个公共点
A
直线a与平面α平行
没有公共点
a

a //α
其中直线与平面相交或平行的情况统称为直线在平面外.
5、两个平面的位置关系
位置关系
公共点 符号表示 图形表示 两平面平行 没有公共点 α∥β 两平面相交
有一条公共直线
α∩β=a
相关文档
最新文档