10蒸汽动力装置循环
沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)
第10章蒸汽动力装置循环一、选择题在蒸汽动力循环中,为达到提高循环热效率的目的,可采用回热技术来提高工质的()[宁波大学2008研]A.循环最高温度B.循环最低温度C.平均吸热温度D.平均放热温度【答案】C【解析】在蒸汽动力循环中,采用回热技术可以提高工质的平均吸热温度,从而达到提高循环热效率的目的。
二、判断题1.回热循环的热效率比郎肯循环高,但比功比朗肯循环低。
()[天津大学2004研] 【答案】对2.抽气回热循环由于提高了效率,所以单位质量的水蒸气做功能力增加。
()[同济大学2006研]【答案】错【解析】抽气回热循环中部分未完全膨胀的蒸汽从汽轮机中抽出,去加热低温冷却水,这样就使得相同的工质情况下,抽气回热循环做功小于普通朗肯循环,因而单位质量的水蒸气做功能力降低。
3.实际蒸汽动力装置与燃气轮装置,采用回热后平均吸热温度与热效率均提高。
()[湖南大学2007研]【答案】对【解析】对实际的蒸汽的动力装置于燃气轮机装置来说,采用回热后,平均吸热温度升高,于是热效率也得到提高。
三、简答题1.朗肯循环采用回热的基本原理是什么?[天津大学2004研]解:基本原理是提高卡诺循环的平均吸热温度来提高热效率。
2.画出朗肯循环和蒸汽压缩制冷循环的T-s图,用各点的状态参数写出:(1)朗肯循环的吸热量、放热量、汽轮机所做的功及循环热效率。
(2)制冷循环的制冷量、压缩机耗功及制冷系数。
[西安交通大学2004研]解:画出朗肯循环和蒸汽压缩制冷循环的T-s图如图10-1所示。
郎肯循环蒸汽压缩制冷循环图10-1(1)参考T-s图,可以得到:朗肯循环的吸热过程为4→1的定压加热过程,吸热量:;郎肯循环的放热过程为2→3的过程,在冷凝器中进行,放热量:;汽轮机中,做功过程为绝热膨胀过程1→2,做工量:;在水泵中被绝热压缩,接受功量为,相对于汽轮机做功来说很小,故有热效率:(2)参考上面的T-s图,可以得到:蒸汽压缩制冷循环的吸热量为:;压缩机耗功为:;制冷系数为:。
工程热力学高教第三版课后习题第十一章答案
(2) p1 = 3MPa , t1 = 500 C , p2 = 6kPa ,由 h-s 图查得:
h1 = 3453kJ/kg 、 h2 = 2226kJ/kg 、 x2 = 0.859 t2 = 36 o C
取 h2′ ≈ cwt2' = 4.187kJ/(kg ⋅ K) × 36 C = 150.7kJ/kg
o
若不计水泵功,则
ηt =
h1 − h2 3453kJ/kg − 2226kJ/kg = = 37.16% h1 − h2′ 3453kJ/kg − 150.7kJ/kg
142
第十一章 蒸汽动力装置循环
d=
1 1 = = 8.15 × 10−7 kg/J 3 h1 − h2 (3453 − 2226) × 10 J/kg
热效率
ηt =
h1 − h2 − wp h1 − h2 − wp
=
(2996 − 2005 − 3)kJ/kg = 34.76% (2996 − 150.7 − 3)kJ/kg
若略去水泵功,则
ηt =
d=
h1 − h2 2996kJ/kg − 2005kJ/kg = = 34.83% h1 − h2′ 2996kJ/kg − 150.7kJ/kg 1 1 = = 1.009 × 10−6 kg/J 3 h1 − h2 (2996 − 2005) ×10 J/kg
143
第十一章 蒸汽动力装置循环
解: (1)由 p1 = 12.0MPa 、 t1 = 450 o C 及再热压力 pb = 2.4MPa ,由 h-s 图查得
h1 = 3212kJ/kg、s1 = 6.302kJ/(kg ⋅ K)、hb = 2819kJ/kg 、 ha = 3243kJ/kg 、 h2 = 2116kJ/kg 、 x 2 = 0.820 p2 = 0.004MPa 、 s1 = sc = sb = 6.302kJ/(kg ⋅ K) , sc ' = 0.4221kJ/(kg ⋅ K) 、 sc " = 8.4725kJ/(kg ⋅ K)
第十一章 蒸汽动力循环装置
第十一章蒸汽动力循环装置水蒸气是工业上最早使用来作为动力机的工质。
在蒸汽动力装置中水时而处于液态,时而处于气态。
因而蒸汽动力装置循环不同于气体动力循环。
此外,水和水蒸气不能燃烧,只能从外界吸收热量,所以蒸汽循环必须配备锅炉,因此装置设备也不同于气体动力装置。
由于燃烧产物不参与循环,故而蒸汽动力装置可利用各种燃料,如煤、渣油,甚至可燃垃圾。
§11-1简单蒸汽动力装置循环——朗肯循环1、工质为水蒸气的卡诺循环由第二定律可知,在相同温限内卡诺循环的热效率最高,而采用气体作工质的循环中,定温过程(加热及放热)难以实现,并且气体绝热线及等温线在p-v图上斜率接近,因此有w较小。
i在采用蒸汽做工质时,由于水的汽化和凝结,当压力不变时温度也不变,因而有了定温放热和定温吸热的可能。
又因为定温即是定压,其在p-v图上与绝热线斜率相差较大,因而可提高w,所以蒸汽机原则上可采用卡诺循环,如图中5-6-7-8-5所i示。
而实际的蒸汽动力装置中不采用上冻循环,其主要原因有以下几点:1)在压缩机中绝热压缩8-5过程难以实现;2)徨仅局限于饱和区,上限温度受临界温度的限制,故即使实现卡诺循环,其热效率也不高;3)膨胀末期,湿蒸汽干度过小,含水分甚多,不利于动力机安全。
所以,实际蒸汽动力循环均以朗肯循环为其基础。
2、朗肯(Rankine)循环朗肯循环是最简单也是最基本的蒸汽动力循环,它由锅炉、汽轮机、冷凝器和水泵4个基本的、也是主要的设备组成。
右图中为该装置的示意图。
水在锅炉中被加热汽化,直至成为过热蒸汽后,进入汽轮机膨胀作功,作功后的低压蒸汽进入冷凝器被冷凝成水,凝结后的水在水泵中被压缩升压后,再回到锅炉中,完成一个循环。
为了突出主要矛盾,分析主要参数对循环的影响,与前述循环一样,首先对实际循环进行简化和理想化,略去摩阻及温差传热等不可逆因素,理想化后的循环由右图(a )所示的热力过程组成,对应的T-s 图如图(b )所示。
第九章蒸汽动力循环装置
第九章 蒸汽动力循环装置工业上最早使用的动力机是用水蒸气做工质的蒸汽动力装置。
在蒸汽动力装置中水时而处于液态,时而处于气态,如在蒸汽锅炉中液态水汽化产生蒸汽,经汽轮机膨胀作功后,进入冷凝器又凝结成水再返回锅炉,而且在汽化和凝结时可维持定温,因而蒸汽动力装置循环不同于气体动力循环。
此外,水和水蒸气不能助燃,只能从外热源吸收热量,所以蒸汽循环必需配备锅炉,因此装置设备也不同于气体动力循环。
由于燃烧产物不参与循环,故而蒸汽动力装置可利用各种燃料,如煤、渣油,甚至可燃垃圾。
第一节简单蒸汽动力装置循环———朗肯循环一、 工质为水蒸气的卡诺循环热力学第二定律已证明,在相同温限内卡诺循环的热效率最高。
在采用气体作工质的循环中,因定温加热和放热难于进行,而且气体的定温线和绝热线在p-v图上的斜率相差不多,以致卡诺循环所作的功并不大,故在实际上难于采用。
在采用蒸汽作工质时,由于水的汽化和蒸汽的凝结,当压力不变时温度也不变,因而实际上也就有了定温加热和放热的可能。
更因这时定温过程亦即定压过程,在p-v图上其与绝热线之间的斜率相差亦大,故所作的功也较大。
所以,以蒸汽为工质时原则上可以采用卡诺循环,如图11-1中循环6-7-8-5-6所示。
然而在实际(b)(a)图9-1 水蒸气的朗肯循环的蒸汽动力装置中不采用卡诺循环,其主要原因是:首先,在压缩机中绝热压缩过程8-5难于实现,因状态8是水和蒸汽的混合物,压缩过程中压缩机工作不稳定,同时状态8的比体积比水的比体积大得多,需用比水泵大得多的压缩机;其次,循环局限于饱和区,上限温度受制于临界温度,故即使实现卡诺循环,其热效率也不高;再次,膨胀末期,湿蒸汽干度过小,即含水分甚多,不利于动力机安全。
实际蒸汽动力循环均以朗肯循环为其基础。
二、朗肯循环及其热效率简单蒸汽动力装置流程示意图如图9-2所示,其理想循环———朗肯循环图9-2简单蒸汽动力装置流程示意图的p-v图和T-s图见图9-1。
蒸汽动力循环
第十章 蒸汽动力循环蒸汽动力装置:是实现热能→机械能的动力装置之一。
工质 :水蒸汽。
用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。
本章重点:1、蒸汽动力装置的基本循环朗肯循环匀速回热循环2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径10-1 水蒸气作为工质的卡诺循环热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。
二、为什么不能采用卡诺循环若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。
1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽)可以实现 5-1 定温加热(锅炉)C-5 绝热压缩(压缩机) 难以实现原因:2-C 过程压缩的工质处于低干度的湿汽状态1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比水大的多'23νν>'232000νν≈需比水泵大得多的压缩机使得输出的净功大大p v减少,同时对压缩机不利。
2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。
3、膨胀末期,湿蒸汽所含的水分太多不利于动机为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。
10-2 朗肯循环过程:从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。
1-2 绝热膨胀过程,对外作功2-3 定温(定压)冷凝过程(放热过程)3-4 绝热压缩过程,消耗外界功4-1 定压吸热过程,(三个状态)4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。
工程热力学-第十章-蒸汽动力装置循环.讲课教案
■汽轮机的相对内部效率 T 实际作功与理论作功之比,
T
h1 h2act h1 h2
一般为0.85~0.92。
■耗汽率(steam rate)
输出单位功量的耗汽量称为耗汽率,单位为 k g / J
工程上常用 kg/(kWh) 。
●理想耗汽率:d 0 D /P 0 1 /w T 1 /( h 1 h 2 ) ●实际耗汽率:d i D /P i 1 /w T ,a c t 1 /( h 1 h 2 a c t)
(2)吸热量不变,热效率: iw net,act/q10.3972
实际耗汽率:d i 1 /( h 1 h 2 a c t) 7 .5 9 7 1 0 7 k g /J
(3)作功能力损失
查水和水蒸汽图表,得到:
新蒸汽状态点1:s16.442kJ/(kgK ),h13426kJ/kg
乏汽状态点
胀到状态2,然后进入冷凝器,定压放热变为饱和水2
再经水泵绝热压缩变为过冷水4,也进入回热器。
在回热器中, kg的水蒸汽 0 1 和(1 )kg的过
冷水4混合,变为1kg的饱和水 0 1 。然后经水泵绝热压
缩进入锅炉,定压吸热变为过热蒸汽,开始新的循
环。
2、回热循环分析
■抽汽量
能量方程(吸热量=放热量):
说明:质量不同,因此不能直接从T-s图上判断热量的 变化。
●热效率(提高):
t wnet / q1
锅炉给水的起始加热
温度由 2 提高到 0 1 ,平均
吸热温度提高,平均放热 温度不变,热效率提高。
吸热量:
q 1 h 1 h 4 h 1 ( h 3 w p ) h 1 ( h 2 w p ) 3 2 7 1 . 2 2 k J / k g
热效率计算101蒸汽动力基本循环
对于一般的汽油机, 7-9。
v1 v 2 称为压缩
比,>1,表示工 质在燃烧前被压
缩的程度。
定容燃烧汽油柴油机压缩比的提高受到限制, 因而限制了其热效率的提高。
压缩比↑,
发展了空气和燃料分别压缩的 压燃式内燃机(柴油机)。
以柴油为燃料,定压加热 理想循环是柴油机实际工 作循环的理想化,常称狄
目的:克服汽轮机尾部蒸 汽湿度过大造成的危害。
2、再热循环
高压汽轮 机
低压汽轮机
相当于在朗肯循环的基础上
增加了新的循环:61' 2' 26。
一般而言,采用一次再热循环以后,循 环热效率可提高2%~ 4%左右。 实际应用的再热次数一般不超过两次。
②
q 1(h 1h 3)(h 1 ' h 6)
q2 h2' h3
塞尔(Diesel)循环
2、定压加热循环
实际工作原理图
⑴实际循环工作原理
➢吸气冲程0-1;
➢压缩冲程1-2;(空气被绝热压 缩到燃料的着火点以上)
➢燃烧过程2-3;
由装在气缸顶部的喷嘴将燃料喷入汽缸,燃 料的微粒遇到空气着火燃烧。随着活塞的移 动,燃料不断喷入、不断燃烧,这一燃烧过 程2-3的压力基本保持不变。 ➢工作过程3-4;
燃料喷射停止后,燃烧随即结束,这时活 塞靠高温高压燃烧产物的绝热膨胀而继续 被推向右方而形成工作过程3-4; ➢排气过程4-0;
排气阀们打开,废气迅速排出,最后活塞 反向移动,继续将废气排出,排气过程为 4-0,从而完成一个实际循环。
(2)汽油机实际循环理想化
(3)能量分析及热效率的计算
(3)能量分析及热效率的计算
热效率计算101蒸汽动力基本 循环
第十章 蒸汽动力循环装置
热效率:
b
c
2
0
图10-9 再热循环的T-s图
s
四、再热压力对循环热效率大小的影响
T
1
T1
1
1
T 1'
5
T1
T 1"
4
6
T2
3 2 2'
2
s
蒸汽再热循环的实践
再热压力 pb=pa0.2~0.3p1 p1<10MPa,一般不采用再热 10、12.5、20、30万机组,p1>13.5MPa,一次再热
目录
第十章 10-1 10-2 10-3
蒸汽动力循环装置
简单蒸汽动力装置循环(朗肯循环) 再热循环 回热循环
10-4* 热电合供循环
10-5* 几种与蒸汽有关的动力循环
•
教学目标:掌握蒸汽动力循环及其计算方法。
•
知识点:蒸汽动力基本循环;朗肯循环;回热循环与再热循
环;热电循环;蒸汽—燃气联合循环。
发 电 机
T
2
q2
P
3(2’)
图10-2 简单蒸汽动力装置流程示意图
实际的蒸汽动力循环都是以 朗肯循环为基础的。
1
四个主要装置: 锅炉 汽轮机 凝汽器 给水泵
q1
锅 炉
B
T
汽 轮 机
2
发 电 机
q2
凝汽器 给水泵
4 C
P
3(2’)
图10-2 简单蒸汽动力装置流程示意图
1—2:汽轮机中绝热膨胀
2—3:冷凝器中定压冷凝 3—4:给水泵中绝热压缩
10-3
回热循环
对于一级抽汽回热循环,每千克状态
为1的新蒸汽绝热膨胀到状态01(p01,t01),
10工程热力学第十章 水蒸气及蒸汽动力循环
10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.
工程热力学思考题答案
第十章蒸汽动力装置循环1、干饱和蒸汽朗肯循环(图10-1 中循环 6-7-3-4-5-6)与同样初压力下的过热蒸汽朗肯循环(图10-1 中循环1-2-3-4-5-6-1)相比较,前者更接近卡诺循环,但热效率却比后者低,如何解释此结果?答:循环6-7-3-4-5-6局限于饱和区,吸热温度受到水的临界温度的制约,其平均吸热温度较低,故其热效率较循环低。
2、本世纪二三十年代,金属材料的耐热性仅达400℃,为使蒸汽初压提高,用再热循环很有必要。
其后,耐热合金材料有进展,加之其他一些原因,在很长一段时期内不再设计制造按再热循环工作的设备。
但近年来随着初压提高再热循环再次受到注意。
请分析其原因。
答:朗肯循环中提高新蒸汽压力和温度都可以提高循环的热效率,在本世纪二三十年代,材料的耐热性较差,通过提高蒸汽的温度而提高热机的效率比较困难,因此采用再热循环来提高蒸汽初压。
随着耐热材料的研究通过提高蒸汽的温度而提高热机的效率就可以满足工业要求。
因此很长一段时期不再设计制造再热循环工作设备。
近年来使用的蒸汽初压大大提高,由于初压的提高使得乏气干度迅速降低,引起气轮机内部效率降低,另外还会侵蚀汽轮机叶片缩短汽轮机寿命,所以乏气干度不宜太低,必须提高乏气干度,就要使用再热循环。
3、图10-13 所示回热系统中采用的是混合式回热器,靠蒸气与水的混合达到换热的目的。
另有一种表面式换热器,如图10-26 所示,蒸汽在管外冷凝,将凝结热量传给管内的水,这种布置可减少系统中高压水泵的数量。
试分析这种系统在热力学分析上与混合式系统有否不同?图10-26答:回热循环的计算最重要的是计算抽气量:对于混合式回热加热器:其热平衡方程为:()()()1'1'100041h h h h -=--αα 可得:404011'h h h h --=α对于表面式换热器:热平衡方程为:假设在理想换热情况下,没有热损失。
()()1'1'10'0'4'0'11h h h h αααα+-=+- 可得:4040'11'h h h h --=α所以在理想情况下,这两种回热器没有差别。
沈维道《工程热力学》(第4版)章节题库-蒸汽动力装置循环(圣才出品)
过程绝热
十万种考研考证电子书、题库视频学习平台
,所以
锅炉内熵产和作功能力损失
冷凝器内熵产和作轮机的新蒸汽温度 400 ℃、压力 3 MPa,抽汽压 力 0.8 MPa,冷凝器工作压力为 10 kPa,回热器排出 0.8 MPa 的饱和水,忽略水泵功,求 循环热效率(图 10-4)。
图 10-2 解:状态 1: 由 30 MPa、500℃,查水蒸气表,得
状态 2: 由 10 kPa,查饱和水蒸气表,得
据
,所以状态 2 为饱和湿蒸汽状态
状态 3:
5 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
状态 4:
汽轮机输出功 水泵耗功 从锅炉吸热量 冷凝器中放热量 循环热效率
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 10 章 蒸汽动力装置循环
一、选择题 1.工程上尚无进行卡诺循环的蒸汽动力装置的原因是( )。 A.卡诺循环的工质只能是理想气体 B.循环放热量太大,吸热量太小 C.湿饱和蒸汽区温限太小且压缩两相介质困难 D.不能实现等温吸热和等温放热 【答案】C 【解析】卡诺循环是由两个绝热过程和两个等温过程组成的理想可逆过程,并没有对工 质的性质提出任何限制,在湿饱和蒸汽区内进行蒸汽循环,保持吸热和放热过程等压即可以 等温吸热和等温放热。把凝汽器内压力维持在较低的水平,可以把放热量降低到合理的水平。 但是,水蒸气动力循环要实现卡诺循环,必须在湿饱和蒸汽区内进行循环,使得吸热温度不 能大于临界温度,放热必定高于环境温度,两者的温差太小,导致热效率太低,同时压缩过 程的起点是这两相区,而目前压缩两相介质在技术上尚有困难。
6 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
工程热力学第11章答案
第11章蒸汽动力装置循环11-1朗肯循环中,汽轮机入口参数为:p1=12MPa、t1=540℃。
试计算乏汽压力分别0.005MPa、0.01MPa和0.1MPa时的循环热效率,通过比较计算结果,说明什么问题?解:查水和水蒸汽焓-熵图,汽轮机入口焓为:h1=3455kJ/kg乏汽压力p c为0.005MPa时:乏汽焓h2=2015kJ/kg,温度t s =34℃给水泵入口焓h2´=4.1868t s =4.1868×34=142.351kJ/kg11-3 某再热循环,其新汽参数为p1=12MPa、t1=540℃,再热压力为5MPa,再热后的温度为540℃,乏汽压力为p2=6kPa,设汽机功率为125MW,循环水在凝汽器中的温升为10℃。
不计水泵耗功。
求循环热效率、蒸汽流量和流经凝汽器的循环冷却水流量。
解:据 36001000mnet q w P =,蒸汽流量h t w P q net m /61.27710001621101253600100036003=×××==根据凝汽器中的热平衡:冷却水吸收的热量=乏汽放出的热量 )(32h h q t c q m w p w −=∆循环水流量 ()()h t t c h h q q w p m w /81.13440101868.4912.154218261.27732=×−×=∆−=11-4 水蒸气绝热稳定流经一汽轮机,入口p 1=10MPa 、t 1=510℃,出口p 2=10kPa ,x 2=0.9,如果质量流量为100kg/s ,求:汽轮机的相对内效率及输出功率。
解:查h-s 图:热效率 %36.44583.3663583.20381112=−=−=q q t η 机组功率()()MW 69.2253600583.2038583.36631000500q q P 21m m =−××=−==q q w net11-6 汽轮机理想动力装置,功率为125MW ,其新汽参数为p 1=10MPa 、t 1=500℃,采用一次抽汽回热,抽汽压力为2MPa ,乏汽压力为p 2=10kPa ,不计水泵耗功。
工程热力学第10章蒸汽动力装置循环
本章学习目标
1. 描述水蒸气朗肯循环的构成,画出水蒸气朗肯循环p-v图 和T-s 图,计算循环参数、耗气率和热效率。
2. 指出摩阻对水蒸气朗肯循环的影响并进行计算; 3. 描述蒸汽动力装置再热循环的构成、画出循环p-v图
和T-s 图,分析再热对循环的影响;
4. 说明并分析计算蒸汽动力装置抽汽回热循环的实施及 构成,画出循环p-v图和T-s 图,计算抽汽量和抽汽回 热循环其它参数;
4
6. 蒸汽动力装置工作流程和简化 蒸汽电厂示意图
二、朗肯循环 (Rankine cycle) 1. 水蒸气的卡诺循环
. . 4 p1 1
. . s
s
3 p2 2
p1
1
p2
.. .. 4
3
2
水蒸气卡诺循环有可能实现,但:
1)温限小 2)膨胀末端x太小 3)压缩两相物质的困难
实际并不实行卡诺循环
6
约850K(580℃) 约500K(227℃)随π变
不能如燃气轮 机装置般回热
约36℃(6kPa)
蒸汽动力装置循环回热的两种方式 混合式
.
. .. 01’
αkg
1kg
. . .01 .1-αkg
1-αkg
20
间壁式
工程多采用间壁式,热力学分析两者相似。
21
四、回热循环计算
1. 抽汽量
? 能量方程:
1 T2S2 1 T2 1 s2 s2'
T1S1
T1 s1 s01'
1 T2 T1
24
3)回热器中过程不可逆,为什么循环ηt 上升? 4)回热器是间壁式,α怎么求?
例A466266
蒸汽动力循环 ppt课件
2
1
4
13
4
h1
h1 = 129.3 kJ/kg s h2 = 3330.7 kJ/kg s
ppt课件
21
水蒸气的绝热过程
汽轮机、水泵
qhwt
T
1
q=0
wt hh1h2
可逆过程: s
p1 p2 2 2’
不可逆过程
s
ppt课件
22
二、朗肯循环功和热的计算
T
汽轮机作功: wT h1 h2
1
凝汽器中的定压放热量:
1 6
2 s
ppt课件
t
h1 h2 h1 h3
p1 t1 p2
29
三、蒸汽参数对热效率的影响
1、初温 t1 对热效率ηt 的影响
p1 , p2不变,t1
T
1'
1
5
6
t
1
T2 T1
优点:
•T1
t
• x 2 ' ,有利于汽轮
机安全。
4
缺点:
3
2 2 ' • 对耐热要求高,
目前初温一般小
s 于620℃
锅炉Boiler设备图
ppt课件
12
汽轮机(透平Turbine)机组刨面图
ppt课件
13
凝汽器Condenser和冷却塔系统图
ppt课件
14
Natura冷l-却dr塔if实t 体C图ooling Tower
ppt课件
15
10-1、简单蒸汽动力循环——朗肯循环
一、蒸汽动力循环简化
1
12 汽轮机 s 膨胀
基本内容
ppt课件
2
动力循环:以获得功为目的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图11-4汽轮机高压缸
图11-6汽轮机低压缸
蒸汽电厂示意图
动力循环研究目的和分类
动力循环:以获得功为目的
——工质连续不断地将从高温热源取得的热 量的一部分转换成对外的净功
——正向循环
实际循环与卡诺循环
卡诺热机只有理论意义,最高理想 实际上 T s 很难实现 内燃机 t1=2000oC,t2=300oC tC =74.7% 实际t =30~40% 火力发电 t1=600oC,t2=25oC
1)蒸汽是历史上最早广泛使用的工质,19世纪后期 蒸汽动力装置的大量使用,促使生产力飞速发展, 促使资本主义诞生。 2)目前世界75%电力,国内78%电力来自火电厂,绝 大部分来自蒸汽动力。
3)蒸汽动力装置可利用各种燃料。
4)蒸汽是无污染、价廉、易得的工质。
图11-1电厂鸟览图 图11-3汽轮机车间等图 图11-5汽轮机中压缸 图11-2锅炉
h2 1 T h1 h2
(h1–h2—理想绝热焓降—ideal enthalpy drop; isentropic enthalpy drop )
T 5 4
4' 3 3'
优点:
•
T2
t
1 6
2
2'
s
缺点: •受环境温度限制, 现在大型机组p2为 0.0035~0.005MPa, 相应的饱和温度约为 27~ 33℃ ,已接近事 实上可能达到的最低 限度。冬天热效率高
五、有摩阻的实际朗肯循环 1.T-s图及h-s图
q1 h1 h3 不变 忽略水泵功: q2 h2act h2'
t
2.不可逆性衡量 a)汽轮机内部相对效率ηT(简称汽机效率)
T
wt ,Tact wt ,T
h1 h2act h1 h2
近代大功率汽轮机ηT在0.85~0.92左右
h2act的确定方法: 运行中,测出p2及x2,按hx=x2h″+(1-x2)h′ 设计中,选定ηT按 h2 act h1 T h1 h2
tC =65.9% 实际t =40%
回热和联合循环t 可达50%
研究动力循环的目的:
合理安排循环、提高热效率
按工质
气体动力循环:内燃机、燃气轮机 空气为主的燃气 按理想气体处理
蒸汽动力循环:外燃机 水蒸气等
实际气体
§10-1 简单蒸汽动力装置循环 —郎肯循环(Rankine cycle)
朗肯循环
wnet
四、如何提高朗肯循环的热效率
h1 h2 t h1 h3
T 5 4 3 2 s 1 6
影响热效率的 参数?
p1
t1
p2
1.蒸汽初温对朗肯循环热效率的影响
p1 , p2不变,t1
T 5 4 3 2 2' s
1'
优点:
• •
T1 x2'
t
,有利于汽机
1 6
安全。 缺点: • 对耐热及强度要 求高,目前初温 一般在550℃左右 • v2' 汽机出口 尺寸大
1 d0 h1 h2
kg/J,工程上用kg/ kW h
耗汽量
D0 d0 P 0
P 0 功率,W
汽耗率:蒸汽动力装置每输出1kW.h 功量所消耗的蒸汽量kg
kJ 1(kW h) 1( ) 3600( s ) 3600(kJ ) s kJ d wnet ( ) 3600(kJ ) kg 3600(kJ ) 3600 d (kg ) kJ w net 3600 wnet ( ) d kg
第十章 蒸汽动力装置循环
本章内容要求
掌握蒸汽动力装置的基本循环-朗肯循环及其热效 率分析;
学会分析蒸汽参数对朗肯循环热效率的影响;
理解朗肯循环的构成、热效率计算式,以及利用 T-s图分析循环; 理解再热循环、抽汽回热循环和抽汽量;
了解其它循环方。
蒸汽及蒸汽动力装置(steam power plant) :
p 4 1 12 汽轮机 s 膨胀 23 凝汽器 p 放热 34 给水泵 s 压缩
41 锅炉
3 2
p 吸热
v
朗肯循环T-s和h-s图
12 汽轮机 s 膨胀 34 给水泵 s 压缩 T h 23 凝汽器 p 放热 41 锅炉 p 吸热
1 4
3 2
1
4 3
2
s
s
压水堆核电厂蒸汽循环装置
2.蒸汽初压对朗肯循环热效率的影响
t1 , p2不变,p1
T
优点:
• •
1'
T1 v2'
t
,汽轮机出口
5
4' 4 3
5'
6'
1
6
2' 2
s
尺寸小 缺点: • 对强度要求高 • x2' 不利于汽 轮机安全。一般 要求出口干度大 于0.85~ 0.88
3.乏汽压力(背压)对朗肯循环热效率的影响
p1 , t1不变,p2
水蒸气动力循环系统 汽轮机 四个主要装置: 锅炉 汽轮机 发电机 凝汽器 给水泵 凝汽器
锅 炉
给水泵
一、水蒸气动力循环系统的简化
简化(理想化):
1 锅 炉
4
汽轮机
12 汽轮机 s 膨胀 23 凝汽器 p 放热
发电机 34 给水泵 s 压缩 2
41 锅炉 凝汽器 3
p 吸热
朗肯循环
给水泵
朗肯循环pv图
一般很小,占0.8~1%,忽略泵功
1
h1 h2 h1 h2 t h1 h3 h1 h2'
4 3
2 s
三、耗汽率(steam rate)及耗汽量
工程上常用汽耗率:反映装置经济性,设备尺寸 理想耗汽率(ideal steam rate) d0 —装置每输出单位功量所消耗的蒸汽量
锅炉中的定压吸热量: 4 3 2
q1 h1 h4
s
循环净功:
wnet wT wP (h1 h2 ) (h4 h3 )
循环净热量: qnet q1 q2 (h1 h4 ) (h2 h3 ) (h1 h2 ) (h4 h3 )
wnet wT ,12 wP,34 (h1 h2 ) 0 t q1 q1 h1 h4 h
火电厂、核电厂蒸汽循环T-S图比较
T
1 4 3 4 T
1
2
s
3
2 s
核电厂二回路蒸汽循环T-S图
火电厂水蒸气(朗肯)循环T-S图
朗肯循环与卡诺循环的比较
二、朗肯循环功和热的计算
汽轮机作功: wT ,12 h1 h2
凝汽器中的定压放热量:
q2 h2 h3
水泵绝热压缩耗功:
h
1
wP,34 h4 h3