小学奥数教程:中国剩余定理 及余数性质拓展_全国通用(含答案)
【精编】奥数精编训练-中国剩余定理及余数性质拓展
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答. 知识点拨 教学目标5-5-4.中国剩余定理及余数性质拓展二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
奥数数论:中国剩余定理例题及答案(一)
奥数数论:中国剩余定理例题及答案(一)展开全文中国剩余定理(ChineseRemainderTheorem)在近代抽象代数学中占有一席非常重要的地位。
下面通过一系列经典例题讲解,帮助大家学好中国剩余定理。
例1:一个住校生,家里每星期给他36元生活费。
该生每天实际只用生活费5元,某天他小姨到学校看他并给了50元钱,他用此钱买了两本喜爱的课外读物花10元,买学习用具花2元,放假回家后说明情况并给家长交回55元。
问:该生带几个星期的生活费?实际在校住几天?一共有多少钱?花去多少钱?用方法二解:列式(36×□+50-10-2)÷5=□……55元{36×(5+55-50+10+2)+50-10-2}÷(5×36)=(36×22+50-10-2)÷180=830÷180 (110)答;1,(110-50+10+2)÷36=2,(括号内□内最小数)2,(110-55)÷5=11,(括号外□内最小数)336×2+50=122,4,122-55=67。
答:该生带2个星期的生活费,实际住校11天,一共有122元,花去67元。
例2:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?解答:5和9的公倍数依次是45、90、135、180、225……这些公倍数中,被7除余1的数是2259和7的公倍数依次是63、126、189、252……这其中,被5除余2的是2525和7的公倍数是35、70、105、140、……其中被9除余5的数是140把以上225252140三个数相加,求得225+252+140=617579三个数的最小公倍数是5*7*9=315 617-315=302因此302就是这个年级至少人数。
小学奥数-中国剩余定理
9+11=20 20÷9=2……2,不符合“除以9余4’’的条件; 20+11=31 31÷9=3……4,符合“除以9余4”的条件; 但31÷4 =7……3,不符合“除以4余1"的条件; 31+99=130,130÷4=32……2,也不符合“除以4余1”的条
件; 130+99 =229,229÷4 =57……1 符合“除以4余1”的条件。 因此这堆糖果至少有229个。
“韩信点兵”的故事
韩信阅兵时,让一队士兵5人一行排队从他面前走 过,他记下最后一行士兵的人数(1人);再让这 队士兵6人一行排队从他面前走过,他记下最后一 行士兵的人数(5人);再让这队士兵7人一行排队 从他面前走过,他记下最后一行士兵的人数(4 人),再让这队士兵11人一行排队从他面前走过, 他记下最后一行士兵的人数(10人)。
实际上70是能被5和7整除但被3除余1,21能被3和7整 除但5除余1,15能被3和5整除但被7除余1。这个系统 算法是南宋时期的数学家秦九韶研究后得到的。 这就是 著名的中国剩余定理。
例6、今有物不知其数, 三三数之剩二, 五五 数之剩三, 七七数之剩二, 问物几何?
题目中此数被3除余2,那就用70乘以2,被5 除余3。
所以这个两位数是56,70,84的公因数,答 案是14 。
例2、有一盒乒乓球,每次8个8个地数,10个 10个地数,12个12个地数,最后总是剩下3个. 这盒乒乓球至少有多少个?
因为每次都多出3个,所以拿走3个乒乓球,那么不 论是8个8个地数, 10个10个地数, 12个12个地数, 都没有剩余,这时乒乓球的个数就应该是8、10和 12的公倍数。[8,10,12]=120 。
小学奥数—中国剩余定理及余数性质拓展
.
【例 22】在 200 至 300 之间,有三个连续的自然数,其中,最小的能被 3 整除,中间的能被 7 整除,最大的 能被 13 整除,那么这样的三个连续自然数分别是多少?
5-5-4.中国剩余定理及余数性质拓展.题库
学生版
page 7 of 8
【例 23】有三个连续自然数,其中最小的能被 15 整除,中间的能被 17 整除,最大的能被 19 整除,请写出 一组这样的三个连续自然数.
【例 7】 某个自然数除以 2 余 1,除以 3 余 2,除以 4 余 1,除以 5 也余 1,则这个数最小是
。
【例 8】 一个大于 10 的自然数,除以 5 余 3,除以 7 余 1,除以 9 余 8,那么满足条件的自然数最小为多少?
【巩固】一个大于 10 的数,除以 3 余 1,除以 5 余 2,除以 11 余 7,问满足条件的最小自然数是多少?
【例 17】如图,在一个圆圈上有几十个孔(不到 100 个),小明像玩跳棋那样,从 A 孔出发沿着逆时针方向, 每隔几孔跳一步,希望一圈以后能跳回到 A 孔.他先试着每隔 2 孔跳一步,结果只能跳到 B 孔.他 又试着每隔 4 孔跳一步,也只能跳到 B 孔.最后他每隔 6 孔跳一步,正好跳回到 A 孔,你知道这 个圆圈上共有多少个孔吗?
与 7 整除的数;21 是 5 除余 1,被 3 与 7 整除的数,因此 21b 是被 5 除余 b,被 3 与 7 整除的数;同理 15c 是被 7 除余 c,被 3、5 整除的数,105 是 3,5,7 的最小公倍数.也就是说, 70a 21b 15c 是被 3 除余 a,被 5 除余 b,被 7 除余 c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍 数.
5-5-4.中国剩余定理及余数性质拓展.题库
奥数精编训练-中国剩余定理及余数性质拓展【精品】
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++a b c 是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学四年级数学奥数题:中国剩余定理
三一文库()/小学四年级〔小学四年级数学奥数题:中国剩余定理〕这篇关于小学四年级数学奥数题:中国剩余定理,是特地为大家整理的,供大家学习参考!【问题】有1个数,除以7余2.除以8余4,除以9余3,这个数至少是多少?这种问题称为“中国剩余定理”问题。
我一般用两种方法解决这类问题。
第一种是逐步满足法,方法麻烦一点,但适合所有这类题目。
第二种是最小共倍法,方法简单,但只适合特殊类型的题目。
还有“中国剩余定理”的方法,但它不完善且解法较为复杂,普及应用有一定难度,还不稳定。
所以一般不用。
下面分别介绍一下常用的两种方法。
通用的方法:逐步满足法【问题】一个数,除以5余1,除以3余2。
问这个数最小是多少?把除以5余1的数从小到大排列:1,6,11,16,21,26,……然后从小到大找除以3余2的,发现最小的是11.所以11就是所求的数。
先满足一个条件,再满足另一个条件,所以称之为“逐步满足法”。
好多数学题目都可以用逐步满足的思想解决。
特殊的方法:最小公倍法情况一【问题】一个数除以5余1,除以3也余1。
问这个数最小是多少?(1除外)除以5余1:说明这个数减去1后是5的倍数。
除以3余1:说明这个数减去1后也是3的倍数。
所以,这个数减去1后是3和5的公倍数。
要求最小,所以这个数减去1后就是3和5的最小公倍数。
即这个数减去1后是15,所以这个数是15+1=16.情况二【问题】一个数除以5余4,除以3余2。
问这个数最小是多少?这种情况也可以用特殊法。
数除以5余4,说明这个数加上1后是5的倍数。
数除以3余2,说明这个数加上1后也是3的倍数。
所以,这个数加上1后是3和5的公倍数。
要求最小,所以这个数加上1后就是3和5的最小公倍数。
即这个数加上1后是15,所以这个数是15-1=14.多个数的,比如3个数的,有时候其中两个可以用特殊法,那就先用特殊法,用特殊法求出满足两个条件的数后再用通用的方法求满足最后一个条件的数。
所以有时候特殊法和通用法混合使用。
小学奥数余数性质(二)精选练习例题含答案解析(附知识点拨及考点)
余数性质(二)教学目标1. 学习余数的三大定理及综合运用2. 理解弃 9 法,并运用其解题知识点拨一、三大余数定理:1.余数的加法定理a与 b的和除以 c的余数,等于 a,b分别除以 c的余数之和,或这个和除以 c的余数。
例如: 23,16除以 5的余数分别是 3 和 1,所以 23+16=39除以 5的余数等于 4,即两个余数的和 3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如: 23,19除以 5的余数分别是 3和 4,所以 23+19=42除以 5的余数等于 3+4=7 除以 5的余数为 22.余数的加法定理a与 b的差除以 c的余数,等于 a,b分别除以 c的余数之差。
例如: 23,16除以 5的余数分别是 3和 1,所以 23- 16=7除以 5的余数等于 2,两个余数差 3-1=2. 当余数的差不够减时时,补上除数再减。
例如: 23,14除以 5的余数分别是 3和 4,23-14=9除以 5的余数等于 4,两个余数差为 3+5-4=43.余数的乘法定理a与 b的乘积除以 c的余数,等于 a,b分别除以 c的余数的积,或者这个积除以c所得的余数。
例如: 23,16除以 5的余数分别是 3和 1,所以 23×16 除以 5的余数等于 3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以 c 的余数。
例如: 23,19除以 5的余数分别是 3和 4,所以 23×19 除以 5的余数等于 3×4除以 5的余数,即 2. 乘方:如果 a与 b除以 m的余数相同,那么 a n与b n除以 m的余数也相同.二、弃九法原理在公元前 9 世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234 1898 18922 678967 178902 8899231234除以 9 的余数为 11898除以 9 的余数为 818922 除以 9 的余数为 4678967 除以 9 的余数为 7178902 除以 9 的余数为 0这些余数的和除以 9 的余数为 2而等式右边和除以 9 的余数为 3,那么上面这个算式一定是错的。
奥数精编训练-中国剩余定理及余数性质拓展-推荐
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++a b c 是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学奥数 中国剩余定理及余数性质拓展 精选练习例题 含答案解析(附知识点拨及考点)
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c 是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a b ca,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
六年级下册数学试题-小升初强化:中国剩余定理(含答案)全国通用
中国剩余定理
【例 1】一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数。
【巩固】在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?
【例 2】一个大于100的自然数A除以11余5,除以9余7,除以13余3,这个数最小是多少?
【巩固】一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为。
【例 3】在一个圆圈上有几十个孔(不到100个),如图。
小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔。
他先试着每隔2
孔跳一步,结果只能跳到B孔。
他又试着每隔4孔跳一步,也只能跳到B孔。
最
后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗?
例3图【巩固】一个小于200的数,它除以11余8,除以13余10,这个数是多少?
〖答案〗
【例 1】1102
【巩固】258,259,260
【例 2】1303
【巩固】323
【例 3】91
【巩固】140
集训题
【例 1】一个自然数除以7,8,9后分别余3,5,7,而所得的三个商的和是758,这个数是。
【例 2】(“奥数网杯”六年级试题)三个连续的自然数,从小到大依次是4,7,9的倍数,这三个自然数的和最小是。
【例 3】有连续的三个自然数a,a+1,a+2,它们恰好分别是9,8,7的倍数,求这三个自然数中最小的数至少是多少?
〖答案〗
【例 1】2005
【例 2】483
【例 3】495。
【小学精品奥数】中国剩余定理及余数性质拓展.学生版
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(ChineseRemainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,-=233105128-=,12810523为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不a b c一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
小学奥数教程:中国剩余定理 及余数性质拓展_全国通用(含答案)
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
余数问题之 中国剩余定理 例题+答案
例3、一堆苹果,若5个5个的数则余4个,如果7个7个的数则余5个, 问至少有多少个苹果?
余补 ÷5 4 1 ÷7 5 2
没有同余也没有同补,只能采取逐步满足 法
注意:先满足大的数字7
5×
12 × 19 √
练习3、一个数除以3的余数是2,除以,5的余数是1,问这个数除 以,15的余数是多少?
余补 ÷3 2 1 ÷5 1 4
23×7=161, 159,160,161 √
没有同余也没有同补,只能采取逐步满足 法
注意:先满足大的数字5
6×
11 √
例4、一个数除以3余2,除以,5余3,除以,7余2,求适合此条件的最 小数。
余补 ÷3 2 1 ÷5 3 2 ÷7 2 5
先满足第1,3两项是同余
[3,7]=21
21+2=23 √
练习4、有一些苹果,五个五个地数余下2个,六个六个的数余下2个, 七个七个的数少2个,这些苹果最少有多少个?
中国剩余定理
例1、一些小朋友分组做游戏,第一次分组每组4人余下2人,第二次 分组每组,5人也余下2人,问最少有多少名小朋友做游戏?
余补 ÷4 2 ÷5 2
[4,5]=20
20+2=22
练习1、一个两位数除以9余3,除以,10余3,问这个数是多少?
余补 ÷9 3 ÷10 3
[9,10]=0
90+3=93
余补 ÷5 2 3 ÷6 4 2 ÷7 5 2
先满足后两项是同补 [6,7]=42 42-2=40 × 42×2-2=82 √
例5、一批书大约300本到400本,包装成每包12本剩下11本;每包 18本,缺1本;每包15本就有7包每包各多2本。这批书有多少本?
奥数数论:中国剩余定理例题及答案(二)
奥数数论:中国剩余定理例题及答案(二)一、填空题1. 有一个数,除以3余数是1,除以4余数是3,这个数除以12余数是_____.2. 一个两位数,用它除58余2,除73余3,除85余1,这个两位数是_____.3. 学习委员收买练习本的钱,她只记下四组各交的钱,第一组2.61元,第二组3.19元,第三组2.61元,第四组3.48元,又知道每本练习本价格都超过1角,全班共有_____人.4. 五年级两个班的学生一起排队出操,如果9人排一行,多出一个人;如果10人排一行,同样多出一个人.这两个班最少共有_____人.5. 一个数能被3、5、7整除,若用11去除则余1,这个数最小是_____.6. 同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4人.参加队列训练的学生最少有_____人.7. 把几十个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份4个余3个.这堆苹果共有_____个.8. 一筐苹果,如果按5个一堆放,最后多出3个.如果按6个一堆放,最后多出4个.如果按7个一堆放,还多出1个.这筐苹果至少有_____个.9. 除以3余1,除以5余2,除以7余4的最小三位数是_____.10. 有一筐鸡蛋,当两个两个取、三个三个取、四个四个取、五个五个取时,筐内最后都是剩一个鸡蛋;当七个七个取出时,筐里最后一个也不剩.已知筐里的鸡蛋不足400个,那么筐内原来共有_____个鸡蛋.二、解答题11.有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?12. 求被6除余4,被8除余6,被10除余8的最小整数.13. 一盒围棋子,三只三只数多二只,五只五只数多四只,七只七只数多六只,若此盒围棋子的个数在200到300之间,问有多少围棋子?14. 求一数,使其被4除余2,被6除余4,被9除余8.。
小学奥数题库《数论》余数问题余数的性质4星题(含解析)全国通用版
数论-余数问题-余数的性质-4星题课程目标知识提要余数的性质•余数的基本性质被除数=除数×商+余数除数=(被除数−余数)÷商商=(被除数−余数)÷除数余数小于除数。
•余数的三大性质(1)余数的加法性质:和的余数等于余数的和,或这个和除以除数的余数。
(2)余数的减法性质:差的余数等于余数的差,不够减加除数再减。
(3)余数的乘法性质:积的余数等于余数的积,或者余数的积除以除数的余数。
精选例题余数的性质1. 有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是人.【答案】1484【分析】三所学校的高中生分别是:A校742人,B校732人,C校722人.如果A校或C校初中人数是高中人数的1.5倍,该校总人数是奇数,而按照给出条件得出其他两校总人数都是偶数,与三校总人数5480是偶数矛盾,因此只能是B校的初中人数是高中人数的1.5倍.三校初中的总人数是5480−2196=3284,被3除余2;732被3整除,722被3除余2,742被3除余1.从余数来看2×2+1=5,1×2+2=4,就断定初中人数是高中人数的2倍,只能是C校.所以,A校总人数是742+742=1484(人).2. 在自然数1∼2011中,最多可以取出个数,使得这些数中任意四个数的和都不能被11整除.【答案】550【分析】2011÷11=182⋯9,可以全选余数是3、4、5的,因为3×4=12,5×4=20,在20和22之间还可以有一个21,所以还可以选一个余数是6的.所以是183×3+1=550,这种选法能选到550,选余数是6、7、8和一个余数是5的,还是可以选出550个.3. 如果两个自然数的积被13除余1,那么我们称这两个自然数互为“模13的倒数”,比如,2×7=14,被13除余1,则2和7互为“模13的倒数”;1×1=1,则1的“模的倒数”是它自身,显然,一个自然数如果存在“模13的倒数”,则它的倒数并不是唯一的,比如,14就是1的另一个“模13的倒数”,判断1,2,3,4,5,6,7,8,9,10,11,12是否有“模13的倒数”,并利用所得结论计算1×2×3×4×5×6×7×8×9×10×11×12(记为12!,读作12的阶乘)被13除所得的余数.【答案】12【分析】模13的倒数:(1,1),(2,7),(3,9),(4,10),(5,8),(6,11)1×2×3×4×5×6×7×8×9×10×11×12=(2×7)×(3×9)×(4×10)×(5×8)×(6×11)×12,所以被13除所得的余数为12.4. (1)(123456789+23456879)÷3的余数是;(2)(12345687×24568×365878)÷9的余数是.【答案】(1)2;(2)0.【分析】根据余数定理可得.5. M、N为非零自然数,且2007M+2008N被7整除.M+N的最小值为.【答案】5【分析】2007除以7的余数是5,2008除以7的余数是6,所以5M+6N能被7整除试算,M+N最小值为3+2=5.6. 在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有组.【答案】4.【分析】1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为2+5=2+5+0=7,2+5+3+6=0+2+5+3+6=7+9,所以这样的数组共有下面4个:(2000,2003),(1998,2000,2003),(2000,2003,2001,1995),(1998,2000,2003,2001,1995).7. 三位数abc除以它的各位数字和的余数是1,三位数cba除以它的各位数字和的余数也是1.如果不同的字母代表不同的数字,且a>c,那么abc = .【答案】452【分析】abc−cba=99(a−c),故(a+b+c)∣[99(a−c)],但(a+b+c)必定不是3的倍数,否则abc是3的倍数,abc÷(a+b+c)的余数必为3的倍数.故(a+b+c)∣[11(a−c)],11是质数,且a+b+c>a−c,故(a+b+c)必为11的倍数.若a+b+c=11,则a+c−b=1,b=5,又a、b、c互不相同,a>c,故a=4,c=2,abc=452;若a+b+c=22,则a+c−b=12,b=5,又a、b、c互不相同,a>c,故a=9,c=8,但此解并未满足(a+b+c)∣[11(a−c)]的要求,故知此种情况无解.综上,本题有唯一答案452.8. 如果自然数 a 、b 、c 除以 14 都余 5,则 a +b +c 除以 14,得到的余数是 .【答案】 1【分析】 已知 a ÷14⋯5,b ÷14⋯5,c ÷14⋯5,由余数的可加性得知:(a +b +c)÷14⋯19. 商店里有六箱货物,分别重 15,16,18,19,20,31 千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的 2 倍,那么商店剩下的一箱货物重量是 千克.【答案】 20【分析】 两个顾客买的货物重量是 3 的倍数.(15+16+18+19+20+31)÷(1+2)=119÷3=39⋯⋯2,剩下的一箱货物重量除以 3 应当余 2,只能是 20 千克.10. 由 1、4、7、10、13 组成甲组数,由 2、5、8、11、14 组成乙组数,由 3、6、9、12、15 组成丙组数.现在从三组数中各取一个数相加,共可以得到 个不同的和.【答案】 13【分析】 所得的和数一定是 3 的倍数,最小是 6,最大是 42,中间的 3 的倍数也都能得到,所以一共有 (42−6)÷3+1=13(个) 不同的和.11. 有一个整数,用它去除 70,110,160 所得到的 3 个余数之和是 50,那么这个整数是 .【答案】 29【分析】 (70+110+160)−50=290,50÷3=16......2,除数应当是 290 的大于 17 小于 70 的约数,只可能是 29 和 58,110÷58=1......52,52>50,所以除数不是 58.70÷29=2......12,110÷29=3......23,160÷29=5......15,12+23+15=50,所以除数是 29.12. 四个最简真分数 12、a 3、b 5、c 67,满足:12−a 3+b 5+c 67=20092010.则 a +b +c = .【答案】 32【分析】由题可得1005−670a+402b+30c=2009,整理得402b+30c−670a=1004,考虑除以5的余数,且b<5,推断出b=2,把b=2代入上式,可得3c−67a=20,所以c=29,a=1,a+b+c=32.13. 定义:1!=1,2!=1×2,3!=1×2×3,n!=1×2×3×⋯×n,则2011!+10除以2012的余数为.【答案】10【分析】2011!中包含2与1006,所以2011!是2012的倍数.那么余数为10.14. 将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是.【答案】198【分析】第三个数比第一个数多9,第四个数比第三个数多9;若第一个数除以9余a,则第三个数和第四个数也余a,第五个数则余2a,五个数总和除以9余4a;而由于1+2+3++9=45是9的倍数,易知a=0,即这五个数都是9的倍数;若设第一个数为18,则这五个数分别为18,9,27,36,63;6出现两次不符合要求;若设第一个数为27,则这五个数分别为27,9,36,45,81;符合要求.所有项之和为27+9+36+45+81=19815. 将1∼2015这2015个自然数依次写出,得到一个多位数123456789⋯20142015,这个多位数除以9,余数是.【答案】0【分析】乱切法,求多位数123456789⋯20142015除以9的余数,即要求1+2+3+4+5+⋯+2015=(1+2015)×20152=1008×2015除以9的余数,1008×2015≡0×8 (mod 9),则余数为0.16. 有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔支数的2倍,铅笔支数是钢笔支数的3倍,只有一只盒里放的是水彩笔.这盒水彩笔共有支.【答案】49【分析】铅笔数是钢笔数的3倍,圆珠笔数是钢笔数的2倍,因此这三种笔支数的和是钢笔数的3+2+1=6(倍).17+23+33+36+38+42+49+51=289,除以6余1,所以水彩笔的支数除以6余1,在上述8盒的支数中,只有49除以6余1,因此水彩笔共有49支.17. 22003与20032的和除以7的余数是.【答案】5.【分析】找规律.用7除2,22,23,24,25,26,…的余数分别是2,4,1,2,4,1,2,4,1,…,2的个数是3的倍数时,用7除的余数为1;2的个数是3的倍数多1时,用7除的余数为2;2的个数是3的倍数多2时,用7除的余数为4.因为22003=23×667+2,所以22003除以7余4.又两个数的积除以7的余数,与两个数分别除以7所得余数的积相同.而2003除以7余1,所以20032除以7余1.故22003与20032的和除以7的余数是4+1=5.18. 从1到999这999个自然数中有个数的各位数字之和能被4整除.【答案】248【分析】由于在一个数的前面写上几个0不影响这个数的各位数字之和,所以可以将1到999中的一位数和两位数的前面补上两个或一个0,使之成为一个三位数.现在相当于要求001到999中各位数字之和能被4整除的数的个数.一个数除以4的余数可能为0,1,2,3,0~9中除以4余0的数有3个,除以4余1的也有3个,除以4余2和3的各有2个.三个数的和要能被4整除,必须要求它们除以4的余数的和能被4整除,余数的情况有如下5种:0+0+0;0+1+3;0+2+2;1+1+2;2+3+3.(1)如果是0+0+0,即3个数除以4的余数都是0,则每位上都有3种选择,共有3×3×3=27种可能,但是注意到其中也包含了000这个数,应予排除,所以此时共有27−1=26(个);(2)如果是0+1+3,即3个数除以4的余数分别为0,1,3,而在3个位置上的排列有3!=6(种),所以此时有3×3×2×6=108(个);(3)如果是0+2+2,即3个数除以4的余数分别为0,2,2,在3个位置上的排列有3种,所以此时有3×2×2×3=36(个);(4)如果是1+1+2,即3个数除以4的余数分别为1,1,2,在3个位置上的排列有3种,所以此时有3×3×2×3=54(个);(5)如果是2+3+3,即3个数除以4的余数分别为2,3,3,在3个位置上的排列有3种,此时有2×2×2×3=24(个).根据加法原理,共有26+108+36+54+24=248(个).19. 下列算式中,“迎”、“春”、“杯”、“数”、“学”、“花”、“园”、“探”、“秘”代表1~9 中的不同非零数字,那么,“迎春杯”所代表三位数的最大值是.1984−迎春杯=2015−数学−花园−探秘【答案】214【分析】(1)将等式整理得:迎春杯+31=数学+花园+探秘,等式两边除以9的余数相同,所以迎春杯除以9的余数只能为7,等式右侧除以9的余数为2;(2)要想迎春杯最大,则数学,花园,探秘应尽量的大,这3个数和最大为96+85+74=255,所以迎春杯最大不大于255−31=224,由于不同汉字代表不同非零数字,所以“迎”最大为2,“春”最大为1;(3)由于迎春杯除以9的余数为7,若“迎”取2,“春”取1,则“杯”为4,经尝试可得:214+31=97+85+67,所以迎春杯最大值为21420. 18+28+38+…+98除以3的余数是多少?【答案】0.【分析】根据等差数列求和列式:18+28+38+…+98=(18+98)×9÷2,整理可得58×9,因为58÷3⋯⋯1,9÷3⋯⋯0,根据余数定理,58×9除以3的余数等于1乘0除以3的余数,即1×0÷3⋯⋯0,所以18+28+38+…+98除以3的余数是0.21. 从1,2,3,4,⋯,2007中取N个不同的数,取出的数中任意三个的和能被15整除.N最大为多少?【答案】134【分析】取出的N个不同的数中,任意三个的和能被15整除,则其中任意两个数除以15的余数相同,且这个余数的3倍能被15整除,所以这个余数只能是0,5或者10.在1∼2007中,除以15的余数为0的有15×1,15×2,⋯,15×133,共有133个;除以15的余数为5的有15×0+5,15×1+5,⋯,15×133+5,共有134个;除以15的余数为10的有15×0+10,15×1+10,⋯,15×133+10,共有134个.所以N最大为134.22. 验算46876×9573=447156412这个算式是否正确?【答案】不正确.【分析】根据余数乘积性质,以及弃九法可知这个算式左边(46876×9573)÷9的余数为6,而右边447156412除以9的余数为7,所以这个算式不成立.23. 有如下图所示的十二张扑克牌.2点、6点、10点各四张,你能从中选出七张牌,使上面点数之和恰等于52吗?说明理由.【答案】不能【分析】因为每张牌除以4的余数均为2,7张牌除以4的余数仍为2,而52是4的倍数,矛盾,所以不能选出这样的7张牌.24. 若a为自然数,证明10∣∣(a2005−a1949).【答案】见解析.【分析】10=2×5,由于a2005与a1949的奇偶性相同,所以2∣∣(a2005−a1949).a2005−a1949=a1949(a56−1),如果a能被5整除,那么5∣a1949(a56−1);如果a不能被5整除,那么a被5除的余数为1、2、3或者4,a4被5除的余数为14、24、34、44被5除的余数,即为1、16、81、256被5除的余数,而这四个数除以5均余1,所以不管a为多少,a4被5除的余数为1,而a56=(a4)14,即14个a4相乘,所以a56除以5均余1,则a56−1能被5整除,有5∣a1949(a56−1).所以5∣(a2005−a1949).由于2与5互质,所以10∣(a2005−a1949).25. 求644312÷19的余数.【答案】11【分析】本题为余数乘法定理的拓展模式,即数字的乘方与一个数相除的余数情况.由6443÷19余2,求原式的余数只要求212÷19的余数即可.但是如果用2÷19发现会进入一个死循环,因为这时被除数比除数小了,所以可以进行适当的调整,212=26×26=64×64,64÷19余数为7,那么求212÷19的余数就转化为求64×64÷19的余数,即49÷19的余数.49÷19余数为11,所以644312÷19的余数为11.26. 从1,2,3,4,⋯,200中取N个不同的数,取出的数中任意三个的和都不能被7整除.N最大为多少?【答案】60【分析】除以7的余数有:0、1、2、3、4、5、6,从余数看,能整除7的组合有:余数和为7:(0,0,0)、(0,1,6)、(0,2,5)、(0,3,4)、(1,1,5)、(1,2,4)、(1,3,3)、(2,2,3);余数和为14:(2,6,6)、(3,5,6)、(4,4,6)、(4,5,5).取1,则不能取6、5、3;取2,则不能取6、5、3;取1和2,则不能取4.1和2,与6、5、4、3选择,要选择取1和2.200÷7=28⋯⋯4,取29个1,取29个2,2个0,共计:29+29+2=60(个).27. 用自然数n去除63,91,129得到的三个余数之和为25,那么n=.【答案】43.【分析】n能整除63+91+129−25=258.因为25÷3=8...1,所以n是258大于8的约数.显然,n不能大于63.符合条件的只有43.28. 已知:a÷5=⋯⋯3,b÷5=⋯⋯2且a>b那么:(1)(a+b)÷5⋯⋯;(2)(a−b)÷5⋯⋯;(3)(a×b)÷5⋯⋯.【答案】(1)0;(2)1;(3)1.【分析】(1)(3+2)÷5⋯⋯0;(2)(3−2)÷5⋯⋯1;(3)(3×2)÷5⋯⋯1.29. 1+2+3+…+2000除以19的余数是多少?【答案】15.【分析】根据等差数列求和列式:1+2+3+…+2000=(1+2000)×2000÷2,整理可得2001×1000,因为2001÷19⋯6,1000÷19⋯12,根据余数定理,2001×1000除以19的余数等于6×12除以19的余数,即6×12÷19⋯15,所以1+2+3+…+2000除以19的余数是15.30. 如果a+b+c是5的倍数,2a+3b+4c也是5的倍数,求证a−c是5的倍数.(a、b、c都是自然数)【答案】见解析【分析】a−c=3(a+b+c)−(2a+3b+4c),所以a−c能被5整除.31. 有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2014个数中,有几个是5的倍数?【答案】402【分析】先观察规律可知这组数从第三个开始,每个数都等于与它相邻的前面两个数的和,所以根据余数的加法性质得出如下表格:数112358⋯⋯⋯⋯⋯⋯⋯⋯⋯除以5的余数112303314044320从上表可知这组自然数除以5的余数是每5个就有一个余数为0,所以2014÷5=402⋯⋯4所以,在这串数的前2014个数中,有402个是5的倍数.32. 六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《数学的发现》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这本《数学的发现》的定价是多少元?【答案】32【分析】六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《数学的发现》的定价是(14+17+18+21+26)÷3=32元.33. 六位数20▫▫08能被49整除,▫▫中的数是多少?【答案】05或54.【分析】设六位数为20ab08,则20ab08=200008+ab00=200008+ab×100.因为200008÷49=4081⋯⋯39,所以(ab×100)÷49的余数为49−39=10.又因为100÷49=2⋯⋯2,所以ab÷49的余数为5.则ab可以是05或54.34. 在所有由1、3、5、7、9中的3个不同数字组成的三位数中,有多少个是3的倍数?【答案】24【分析】除以3余0的数有3,9,除以3余1的数有1,7,除以3余2的数有5,三个数字之和为3的倍数,本题只能从除以3余0,1,2的数中各取一个,每个三位数交换位置又可以变换出6个,因此共有2×2×1×6=24(个).35. (1)123+456+789的结果除以111的余数是多少?(2)224468−6678的结果除以22的余数是多少?【答案】(1)36;(2)12【分析】简答:利用替换求余法计算.36. 已知98个互不相同的质数p1,p2,⋯,p98,记N=p12+p22+⋯+p982,问:N被3除的余数是多少?【答案】1或2.【分析】(1)这些质数中不含质数3,所以该数平方后被3除的余数就是1,所以N被3除的余数就是98被3除的余数,是2;(2)如果有3,那么剩下97个除以3余1.3的平方除以3余数是0,那么N除以3的余数1.37. 已知n!+4等于两个相邻自然数的乘积,试确定自然数n的值.(n!=1×2×3×⋯×n)【答案】2【分析】注意到两个相邻自然数的乘积除以3只能余0或余2.因为当n⩾3时,n!+4除以3余1,所以n<3,尝试n取0、1、2后得n为2.38. 从1,2,3,⋯⋯49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【答案】23【分析】将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出8+7+7+1=23个39. (1)21100的个位数字是多少?32014除以10的余数是多少?(2)32014除以7的余数是多少?【答案】(1)6;9(2)4【分析】详解:(1)2n的个位数字依次是2、4、8、6、⋯每四个数为一个周期.100除以4的余数是0,那么2100的个位数字是周期中的第四个数6.3n的个位数字依次是3、9、7、1、⋯每四个数为一个周期.2014除以4的余数是2,那么32014的个位数字是周期中的第二个数9.(2)3n除以7的余数依次是3、2、6、4、5、1、⋯每六个数为一个周期.2014除以6的余数是4.所以32014除以7的余数是周期中的第四个数4.40. 甲、乙两个天平上都放着一定重量的物体,问:哪—个是平衡的?【答案】天平乙是平衡的.【分析】考虑除以3,所得的余数.因为478除以3余1,9763除以3也余1(只要看4+7+8,9+7+6+3除以3的余数),所以478×9763除以3余1×1=1,而4666514除以3余2(即4+6+6+6+5+1+4除以3余2),因此478×9763≠4666514,从而天平甲不平衡.天平乙是平衡的.41. 有6个密封的盒子,分别装有红球、白球和黑球,每个盒子里只有一种颜色的球,且球的个数分别是15,16,18,19,20,31,已知黑球的个数是红球个数的两倍,装白球的盒子只有1个,问:(1)装有15个球的盒子里装的是什么颜色的球?(2)有多少个盒子里装的是黑球?【答案】(1)红球;(2)3【分析】(1)所有球的个数:15+16+18+19+20+31=119(个).黑球的个数是红球的2倍,黑球加红球的个数是红球的2+1=3倍119÷3=39⋯⋯2根据余数的可加可减性,白球的个数除以3也是余2,白球的个数只能是20.黑球和红球共:119−20=99(个).红球:99÷3=33(个)只能是15+18=33(个).答:装有15个球的盒子里装的是红球.(2)还剩下16,19,31的盒子里装的是黑球,即有3个盒子.答:有3个盒子里装的是黑球.42. 如果(3a+b)是7的倍数,求证(2b−a)也是7的倍数.(a、b都是自然数).【答案】见解析【分析】方法一:因为(3a+b)是7的倍数,所以(6a+2b)也是7的倍数,所以(6a+2b−7a)即(2b−a),也是7的倍数.方法二:设3a+b=7k,那么a=7k−b3,所以2b−a=7b−7k3也是7的倍数.43. 11+22+33+44+⋯+20052005除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2005这2005个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94的个位数字,为4,由于2005个加数共可分成100组另5个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005,它们和的个位数字是1+4+7+6+5=23的个位数3,所以原式的个位数字是3,即除以10的余数是3.44. 今天是星期四,101000天之后将是星期几?【答案】星期一【分析】先求较小的n,使10n除以7的余数为1.10除以7余3,102除以7余2,103=10×102除以7余3×2=6,104=102×102除以7余2×2=4,106=103×103除以7的余数等于6×6=36除以7的余数等于1,所以,101000除以7的余数等于104×106×166除以7的余数等于4×1=4故101000天后为星期一.45. 在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【答案】99【分析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,⋯,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5⋯⋯9,所以共有5×18+9=99个这样的数.46. 如果六位数1992▫▫能被105整除,那么它的最后两位数是多少?【答案】90【分析】方法一:利用整除特征.因为105=3×7×5,所以这个六位数同时满足能被3、7、5整除的数的特征即可.末位只能为0或5.①如果末位填入0,那么数字和为1+9+9+2+▫+0=21+▫,要求数字和是3的倍数,所以▫可以为0,3,6,9,验证200−199=1,230−199=31,260−199=61,290−199=91,有91是7的倍数,即199290是7的倍数,所以题中数字的末两位为90.②如果末位填入5,同上解法,验证没有数同时满足能被3、7、5整除的特征.所以,题中数的末两位只能是90.方法二:采用试除法用199200试除,199200÷105=1897⋯⋯15,余15可以看成不足,105−15=90.所以补上90,即在末两位的方格内填入90即可.47. 22008+20082除以7的余数是多少?【答案】3【分析】23=8除以7的余数为1,2008=3×669+1,所以22008=23×669+1=(23)669×2,其除以7的余数为:1669×2=2;2008除以7的余数为6,则20082除以7的余数等于62除以7的余数,为1;所以22008+20082除以7的余数为:2+1=3.48. 甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【答案】17【分析】设这个数为M,则603÷M=A1⋯⋯r1,939÷M=A2⋯⋯r2,393÷M=A3⋯⋯r3,r1=2×r2,r2=2×r3,要消去余数r1,r2,r3,我们只能先把把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,这样被除数和余数都扩大2倍,同理,第三个式子乘以4.这样我们可以得到下面的式子:603÷M=A1…r1,(939×2)÷M=2A2…(r2×2),(393×4)÷M=4A3⋯⋯(r3×4)这样余数就处理成相同的.最后两两相减消去余数,意味着能被M整除.939×2−603=1275,393×4−603=969,1275−969= 306,(1275,306)=51=3×17.603,939,393这三个数有公约数3.51÷3=17.则A等于17.49. 如果(a+2b)被5除余数为2,(3a−b)被5除所得的余数为3,求证:(a−b)能被5整除.(a、b都是自然数).【答案】证明见解析【分析】方法一:设a+2b=5k+2,3a−b=5l+3,解方程组 $\left\{ \begin{gathered}a + 2b = 5k +2 \hfill \\3a - b = 5l +3 \hfill \\\end{gathered} \right.$ 得到 $\left\{ \begin{gathered}a = \dfrac{{10l+ 5k + 8}}{7} \hfill \\b = \dfrac{{3 +15k - 5l}}{7} \hfill \\\end{gathered} \right.$,所以a−b=15l−10k+57能被5整除.方法二:由题目条件2(3a−b)−3(a+2b)能被5整除,即3a−8b能被5整除,继而得到3a−3b能被5整除,所以a−b能被5整除.50. 在六位数11▫▫11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【答案】53【分析】采用试除法.设六位数为11ab11,则11ab11=11×10000+ab00+11=110011+ab00如果一个数能同时被17和19整除,那么一定能被323整除.110011÷323=340⋯⋯191,余191也可以看成不足323−191=132.所以当ab00=132+323n时,即ab00是100的倍数时,六位数才是323的倍数.所以有323n的末位只能是10−2=8,所以n只能是6,16,26,⋯验证有n=16时,132+ 323×16=5300,所以原题的方框中填入5,3得到的115311满足题意.−1的个位数字是多少?51. 自然数2×2×2×...×2⏟67个2【答案】7.的个数数字,再减去1即为所求(特别的如果是0,【分析】我们先计算2×2×2×...×2⏟67个2那么减去1后的个位数字因为借位为9).将一个数除以10,所得的余数即是这个数的个位数字.而积的余数,等于同余余数的积.2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以10的余数为6;2×2×2×2×2除以10的余数为2,2×2×...×2除以10的余数为4,⏟6个22×2×...×2除以10的余数为8,⏟7个22×2×...×2除以10的余数为6;⋯⋯⏟8个2也就是说,n个2相乘所得的积除以10的余数每4个数一循环.除以10的余数同余与2×2×2,即余数为8,因为67÷4=16⋯⋯3,所以2×2×2...×2⏟67个2−1除以10的余数为7.所以2×2×2...×2⏟67个2−1的个位数字为7.即2×2×2...×2⏟67个2评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.52. 11+22+33+44+⋯⋯+20132013+20142014除以10所得的余数为多少?【答案】3【分析】求结果除以10的余数即求其个位数字.从1到2014这2014个数的个位数字是10个一循环的,而对一个数的幂方的个位数,我们知道它总是4个一循环的,因此把所有加数的个位数按每20个(20是4和10的最小公倍数)一组,则不同组中对应的个位数字应该是一样的.首先计算11+22+33+44+⋯⋯+2020的个位数字,为1+4+7+6+5+6+3+6+9+0+1+6+3+6+5+6+7+4+9+0=94结果的个位数字为4,由于2014个加数共可分成100组另14个数,100组的个位数字和是4×100=400的个位数即0,另外5个数为20012001、20022002、20032003、20042004、20052005、…… 20142014,它们和的个位数字是1+4+7+6+5+6+3+6+9+0+1+6+3+6=63,63的个位数3,所以原式的个位数字是3,即除以10的余数是3.53. 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【答案】见解析.【分析】1996÷4=499,下面证明可以找到1个各位数字都是1的自然数,它是499的倍数.取500个数:1,11,111,⋯⋯,111⋯⋯1(500个1).用499去除这500个数,得到500个余数a1,a2,a3,⋯,a500.由于余数只能取0,1,2,⋯,498这499个值,所以根据抽屉原则,必有2个余数是相同的,这2个数的差就是499的倍数,差的前若干位是1,后若干位是0:11⋯100⋯0.又499和10是互质的,所以它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,这是1996的倍数.54. 已知n!+3是一个完全平方数,试确定自然数n的值.(n!=1×2×3×⋯×n)【答案】0、1或3【分析】枚举验证n为0、1、2、3、4、…,得到n为0、1或3时满足.因为当n⩾4时,n!+3除以4余3,根据完全平方数除以4只能余0或余1,可知当n⩾4时,n!+1不可能是完全平方数.55. 算式188+288+388+⋯+1988+2088的结果除以9、13的余数分别是多少?【答案】8;10【分析】188+288+388+⋯+1988+2008=(188+2088)×10然后利用替换求余法计算.56. (1)87784+49235×81368除以4、9的余数分別是多少?(2)365366+367368×369370除以7、11、13的余数分别是多少?【答案】(1)0;2(2)2;2;2【分析】 详解:提示,特性求余法和替换法结合使用.57. 用 0 至 9 这十个数字各 1 次,组成四位数、三位数、两位数和一位数各 1 个,并使这四个数两两互质.已知组成的四位数是 1860,那么其他的三个数是多少?【答案】 7;43;529【分析】 1860=22×3×5×31,一位数只能是 7,另外两个数的末位只能是 3 和 9.剩下的数字之和除以 3 余 2,只能拆成两个数除以 3 余 1 的组合,所以 4 和 2、5 是分成两组,49 是 7 的倍数,所以两位数只能是 43,259 是 7 的倍数,所以三位数只能是 529.58. 在任意的四个自然数中,是否其中必有两个数,它们的差能被 3 整除?【答案】 是.【分析】 因为任何整数除以 3,其余数只可能是 0,1,2 三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以 3 的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以 3 的余数相同,所以这两个数的差必能被 3 整除.59. 一个大于 1 的数去除 290,235,200 时,得余数分别为 a ,a +2,a +5,则这个自然数是多少?【答案】 19【分析】 设这个数为 x ,则有{290÷x =m ⋯⋯a235÷x =n ⋯⋯a +2200÷x =p ⋯⋯a +5可以转化为:{290÷x =m ⋯⋯a233÷x =n ⋯⋯a 195÷x =p ⋯⋯a即有 290≡233(modx)≡195(modx),根据同余性质,可知 x 为它们两两差的约数,又290−233=57,290−195=95,233−195=38,(38,57,95)=19,所以这个自然数为 19.60. 算式 2009×2009+2010×2010+2011×2011 除以 31 的余数是多少?【答案】 15【分析】 简答:利用替换求余法计算.61. 已知60,154,200被某自然数除所得的余数分别是a−1,a2,a3−1,求该自然数的值.【答案】29【分析】根据题意可知,自然数61,154,201被该数除所得余数分别是a,a2,a3.由于a2=a×a,所以自然数612=3721与154同余;由于a3=a×a2,所以61×154=9394与201同余,所以除数是3721−154=3567和9394−201=9193的公约数,运用辗转相除法可得到(3567,9193)=29,该除数为29.经检验成立.62. 一个自然数除429、480所得的余数相等,求这个自然数的值.【答案】3,17或51.【分析】这两个数除以该自然数的余数相同,也就是同余,那么这两个数的差除以该自然数就除得开,也就是(480−429)能够除得开,即51.51=3×17,这个数可以是3,17或51.63. 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【答案】12504【分析】五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8×9×9×9×3=17496(个).所以满足条件的五位数共有30000−17496=12504(个).64. (3130+3031)被13除所得的余数是多少?【答案】3【分析】31被13除所得的余数为5,当n取1,2,3,⋯,时5n被13除所得余数分别是5,12,8,1,5,12,8,1,⋯,以4为周期循环出现,所以530被13除的余数与52被13除的余数相同,余12,则3130除以13的余数为12;30被13除所得的余数是4,当n取1,2,3,⋯,时,4n被13除所得的余数分别是4,3,12,9,10,1,4,3,12,9,10,⋯,以6为周期循环出现,所以431被13除所得的余数等于41被13除所得的余数,即4,故3031除以13的余数为4;所以(3130+3031)被13除所得的余数是12+4−13=3.65. 求1∼2013的自然数中最多可以取出多少个数,使得任意两数之和不能被两数之差整除?。
(完整)小学奥数:剩余定理
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。
这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式。
①有一个数,除以3余2,除以4余1,问这个数除以12余几? 解:除以3余2的数有:2, 5, 8, 11,14, 17, 20, 23… 它们除以12的余数是:2,5,8,11,2,5,8,11… 除以4余1的数有:1, 5, 9, 13, 17, 21, 25, 29… 它们除以12的余数是:1, 5, 9, 1, 5, 9,…. 一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。
如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案. ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。
解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20,23, 26… 再列出除以5余3的数:3, 8, 13, 18, 23, 28… 这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23, 30… 就得出符合题目条件的最小数是23. 事实上,我们已把题目中三个条件合并成一个:被105除余23.那么韩信点的兵在1000-1500之间,可能是105×10+23=1073人问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三”术曰:三三数剩一置几何?答曰:五乘七乘二得之七十。
小学奥数题库《数论》余数问题中国剩余定理5星题(含解析)全国通用版
数论-余数问题-中国剩余定理-5星题课程目标知识提要中国剩余定理•概述中国剩余定理即我们常说的“物不知数”,是利用同余式组来求解的一类问题。
A、一个数分别除以两个数余数相同的时候,将原数减去这个余数之后可以整除那两个数B、上述情况下的余数虽有不同,但与各自对应的除数的差相同,将原数加上这个差之后便可以整除C、其他情况下,凑出相同余数之后,运用第一种情况的方法.精选例题中国剩余定理1. 一个自然数除以7、8、9后分别余1、2、3,而所得的三个商的和是570,这个数是多少?【答案】1506.【分析】设这个数为x.[7,8,9]=504,504−6=498,则x=498+504n.498+504n−17+498+504n−28+498+504n−39=570 71+72n+62+63n+55+56n=570191n=382n=2x =498+504×2=1506.2. 一个不超过 200 的自然数,如果用四进制表示,那么它的数字之和是 5;如果用六进制表示,那么它的数字之和是 8;如果用八进制表示,那么它的数字之和是 9.如果用十进制表示,那么这个数是多少?【答案】 23【分析】 根据结论:“在 n 进制中,一个自然数与它的数字和模 (n −1) 同余”,所以这个数 {÷3⋯2,÷5⋯3,÷7⋯2, 利用物不知数可以求出符合的答案为 23、128、233、…,符合“不超过 200”的只有 23 和 128,经检验,23=(113)4=(35)6=(27)8,128=(2000)4=(332)6=(200)8,只有 23 符合.3. 有一类三位数,它们除以 2、3、4、5、6 所得到的余数互不相同(可以含 0).这样的三位数中最小的三个是多少?【答案】 118、119、155【分析】 设这个三位数为 N ,先写出所有的情况再分析:{ N ÷2⋯0、1,N ÷3⋯0、1、2,N ÷4⋯0、1、2、3,N ÷5⋯0、1、2、3、4,N ÷6⋯0、1、2、3、4、5.首先,N 除以 4 不可能余 0 或余 1,否则和 N 除以 2 的余数相同;N 除以 6 不可能余 0 或余 1 或余 2,否则和 N 除以 3 的余数相同.所以情况变为{ N ÷2⋯0、1,N ÷3⋯0、1、2,N ÷4⋯2、3,N ÷5⋯0、1、2、3、4,N ÷6⋯3、4、5.若这个数是偶数,很明显 {N ÷2⋯0,N ÷4⋯2,N ÷6⋯4, 所以 { N ÷2⋯0,N ÷3⋯1,N ÷4⋯2,N ÷5⋯3,N ÷6⋯4, 利用物不知数解出通解为 58+60k(k =0,1,2⋯),最小符合题意的解是 118;若这个数是奇数,很明显 {N ÷2⋯1,N ÷4⋯3, 那么 {N ÷2⋯1,N ÷4⋯3,N ÷6⋯5, 因为 N 除以 6 余 5,所以 N 除以 3 余 2,所以 {N ÷2⋯1,N ÷3⋯2,N ÷4⋯3,N ÷6⋯5, 此时 N 除以 5 有 2 种情况,若 { N ÷2⋯1,N ÷3⋯2,N ÷4⋯3,N ÷5⋯0,N ÷6⋯5, 利用物不知数解出通解为 35+60k(k =0,1,2⋯),最小符合题意的解是 155;若 { N ÷2⋯1,N ÷3⋯2,N ÷4⋯3,N ÷5⋯4,N ÷6⋯5, 利用物不知数解出通解为 59+60k(k =0,1,2⋯),最小符合题意的解是 119;这样的三位数中最小的三个是 118、119、155.4. 有连续的三个自然数 a 、a +1、a +2,它们恰好分别是 9、8、7 的倍数,求这三个自然数中最小的数至少是多少?【答案】 495【分析】 法一:由 a +1 是 8 的倍数,得到 a 被 8 除余 7,由 a +2 是 7 的倍数,得到 a 被 7 除余 5,现在相当于一个数 a 除以 9 余 0,除以 8 余 7,除以 7 余 5.运用中国剩余定理求 a (用逐步满足的方法也可以)7 和 8 的公倍数中除以 9 余 1 的最小为 280;7 和 9 的公倍数中除以 8 余 1 的最小是 441;8 和 9 的公倍数中除以 7 余 1 的最小是 288,根据中国剩余定理,280×0+441×7+288×5=4527 符合各个余数条件,但 4527 不是最小的,还需要减去 7、8、9 的公倍数,可知 4527−(7×8×9)×8=495 是满足各个余数条件的最小值,所以 a 至少是 495.法二:仔细观察,可知由于 a 、a +1、a +2 恰好分别是 9、8、7 的倍数,那么 a +9、a +1+8、a +2+7 也分别是 9、8、7 的倍数,即 a +9 是 9、8、7 的公倍数,那么 a +9 的最小值是 9×8×7=504,即 a 至少是 504−9=495.。
奥数数论:中国剩余定理要点及解题技巧
奥数数论:中国剩余定理要点及解题技巧中国剩余定理(ChineseRemainderTheorem)在近代抽象代数学中占有⼀席⾮常重要的地位。
下⾯给⼤家讲解中国剩余定理的由来、知识点及解题技巧,帮助⼤家学好中国剩余定理。
◆ 中国剩余定理的由来
韩信点兵⼜称为中国剩余定理,相传汉⾼祖刘邦问⼤将军韩信统御兵⼠多少,韩信答说,每3⼈⼀列余1⼈、5⼈⼀列余2⼈、7⼈⼀列余4⼈、13⼈⼀列余6⼈……。
刘邦茫然⽽不知其数。
我们先考虑下列的问题:假设兵不满⼀万,每5⼈⼀列、9⼈⼀列、13⼈⼀列、17⼈⼀列都剩3⼈,则兵有多少?
⾸先我们先求5、9、13、17之最⼩公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最⼩公倍数为这些数的积),然后再加3,得9948(⼈)。
中国有⼀本数学古书「孙⼦算经」也有类似的问题:
「今有物,不知其数,三三数之,剩⼆,五五数之,剩三,七七数之,剩⼆,问物⼏何?」答⽈:「⼆⼗三」术⽈:「三三数之剩⼆,置⼀百四⼗,五五数之剩三,置六⼗三,七七数之
剩⼆,置三⼗,并之,得⼆百三⼗三,以⼆百⼀⼗减之,即得。
凡三三数之剩⼀,则置七⼗,
五五数之剩⼀,则置⼆⼗⼀,七七数之剩⼀,则置⼗五,即得。
」
孙⼦算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上⾯这种问题的解法,中国⼈发现得⽐西⽅早,所以这个问题的推⼴及其解法,被
称为中国剩余定理。
◆ 中国剩余定理要点及解题技巧。
奥数-余数问题-中国剩余定理
同余问题同余定理1 如果a,b除以c的余数相同,那么我们说a,b对于c是同余的。
并且我们说a,b之间的差能被c整除。
(a b c三个数都是自然数)例1:有一个大于1的数,除45,59,101所得的余数相同,求这个数可能是多少?习题1:已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.同余定理2 a和b的积除以c的余数,等于a,b分别除以c的余数的积或者这个余数的积再除以c所得的余数。
(a b c均为自然数)例2:22003除以7的余数是多少?例3:今有一类类数最小那个又什么?(中国剩余定理)习题3:有一类数,除以7余2,除以8余4,除以9余3。
问这类数中最小的是什么?习题4:有一类自然数,其中每个数与3的和都是5的倍数,与4的差都是7的倍数。
问这个数最小是多少?例4:有三个吉利数字,888,518,666,用他们同时除以一个相同的自然数,所得的余数为a,a+7,a+10.试问这个自然数是多少?习题5:140,225,293同时除以某一个自然数得到的余数相同,试问这个自然数是多少?余数又是多少?例5:如果时针现在表示的时间是18点整,那么分针旋转1990圈之后是_____点钟.习题6:1999年1月1日是星期五,试问2002年6月1日是星期几?例6:节日的街上挂起了长长的一排彩灯,共2013盏。
从第一盏开始,按照5盏红灯,4盏黄灯,3盏蓝灯,2盏绿灯不断地排下去。
问:(1)第1982盏灯的颜色是什么?(2)蓝灯共有多少盏?习题7:甲乙丙丁四个小朋友玩报数游戏,规定,甲报1乙报2丙报3丁报4甲报5乙报6丙报7……,问报2012的那个人是谁?、【基础训练】1.小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8.正确的商是_____,余数是_____.2. a 24=121……b,要使余数最大,被除数应该等于_____.3. 一个三位数被37除余17,被36除余3,那么这个三位数是_____.4. 今天周四,2012天之后是星期________6. 如果时针现在表示的时间是18点整,那么分针旋转1990圈之后是_____点钟.7. 如果按红、橙、黄、绿、青、蓝、紫的顺序,将19921992……1992只彩灯依次反复排列,那么_____颜色的彩1991个1992灯必定要比其他颜色的彩灯少一只.【难题挑战】1.393除以一个两位数,余数为8,这样的两位数有_____个,它们是_____.2.自然数n除63,91,129所得余数之和为25,则n是多少?3.盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?4.韩信点兵:有兵一队,若列成五行纵队,则末行一人,成六行纵队,则末行五人,成七行纵队,则末行四人,成十一行纵队,则末行十人.求兵数.5.有一堆棋子,三个三个地数剩下2个,五个五个地数剩下4个,七个七个地数剩下6个.问这堆棋子最少有多少个?6.某数除以7余3,除以8余4,除以9余5.从小到大求出适合条件的十个数.7.某数除以5余2,除以7余4,除以11余8.求适合条件的最小数.8.一猴子数一堆桃子.两个两个地数剩下1个,三个三个地数剩下1个,五个五个地数剩下3个,七个七个地数剩下3个.问这堆桃子最少是多少个?9.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果【超越极限】小明往一个大池里扔石子,第一次扔1个石子,第二次扔2个石子,第三次扔3个石子,第四次扔4个石子……,他准备扔到大池的石子总数被106除,余数是0止,那么小明应扔_____次.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。
”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。
中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。
(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。
先由5735⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270⨯=是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。
最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:⨯+⨯+⨯±=-,其中k是自然数。
k k270321245[3,5,7]233[3,5,7]也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。
例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算2703212452[3,5,7]23⨯+⨯+⨯-⨯=得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128。
例题精讲模块一、余数性质综合【例 1】一个数除以3的余数是2,除以5的余数是1,则这个数除以15的余数是。
【考点】余数性质综合【难度】1星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】除以3余2的数有:2、5、8、11、14除以5余1的数有:1、6、11、16、21观察得到符合条件的答案是11【答案】11【例 2】有一群猴子正要分56个桃子.每只猴子可以分到同样个数的桃子。
这时.又窜来4只猴子。
只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子.则最后每只猴子分到桃子___个。
【考点】余数性质综合【难度】2星【题型】填空【关键词】希望杯,六年级,初赛,第19题,6分【解析】56的约数有:1、2、4、7、8、14、28、56,55的约数有:1、5、11、55,其中只有11=7+4,所以原来有7只猴,后来有11只猴,每只猴子分到55÷11=5个.【答案】5【巩固】一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。
但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到个桃子。
【考点】余数性质综合【难度】2星【题型】填空【关键词】希望杯,四年级,复赛,第7题,4分【解析】56的因数有1,2,4,7,8,14,28,56,其中只有4和8相差4,所以最后有猴子8只,每只猴子分到56÷8=7个桃子。
【答案】7【例 3】一个小于200的数,它除以11余8,除以13余10,这个数是几?【考点】余数性质综合【难度】3星【题型】解答【解析】根据总结,我们发现这两个除数与余数的差都等于118=1310=3--,观察发现这个数加上3后就能同时被11和13整除,所以[11、13]=143,所以这个数是143-3=140。
【答案】140【巩固】不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。
问最多有多少名同学?【考点】余数性质综合 【难度】3星 【题型】填空【关键词】华杯赛,初赛,第10题【解析】 此题实际是一个不足100的整数,减去5能被8整除,即除以8余5,减去8能被5整除,即除以5余3,求其最大值。
13除以8余5,除以5余3,8和5的最小公倍数为40,13+2×40=93,为满足条件的整数,即最多有93名同学。
【答案】93【例 4】 5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少____人。
【考点】余数性质综合 【难度】2星 【题型】填空【关键词】小数报,初赛【解析】 题意相当于:除以3余2,除以4余3,除以5余4,除以6余5,这样我们根据总结知道都只能“凑缺”,所以都缺1,这样班级人数就是[3、4、5、6]-1=60-1=59人。
【答案】59【巩固】 有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是 。
【考点】余数性质综合 【难度】2星 【题型】填空【关键词】华杯赛,五年级,决赛,第7题,10分【解析】 这个数加1能同时被2,3,4,5,6整除,而 [2,3,4,5,6]=60所以这个数最小是 60-1=59。
【答案】59【巩固】n 除以2余1,除以3余2,除以4余3,除以5余4,,除以16余15。
n 最小为 。
【考点】余数性质综合 【难度】2星 【题型】填空【关键词】走美杯,5年级,决赛,第1题,8分【解析】n 加上1后变成116~的公倍数,所以1n +最小为169571113720720⨯⨯⨯⨯⨯=,n 最小为720719。
【答案】720719【巩固】 小朋友们要做一次“动物保护”宣传活动,若1人拿3个动物小玩具,则最后余下2个动物小玩具;若1人拿4个动物小玩具,则最后余下3个动物小玩具;若1人拿5个动物小玩具,则最后余下4动物小玩具。
那么这次活动中小朋友至少拿了______个动物小玩具。
【考点】余数性质综合 【难度】2星 【题型】填空【关键词】学而思杯,3年级,第9题【解析】 那么再加一个玩具,玩具总数就能同时被3,4,5整除,能同时被3,4,5整除最小整数位60。
所以这次活动小朋友至少拿了59个玩具。
【答案】59【巩固】 小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。
那么一起做游戏的小朋友至少有 人。
【考点】余数性质综合 【难度】2星 【题型】填空【关键词】希望杯,四年级,复赛,第15题,6分【解析】 这个数除以3余2,除以4余3,除以5余4,那么加上一个人这些小朋友的数量能整除3、4、5,3×4×5=60,那么小朋友至少59人【答案】59【例 5】 一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数.【考点】余数性质综合 【难度】2星 【题型】解答【解析】 这个数被7,8,9除的余数分别是1,2,3,所以这个数加上6后能被7,8,9整除,而[]7,8,9504=,所以这个数加上6后是504的倍数.由于这个数被7,8,9除的三个商数的和是570,那么这个数加上6后被被7,8,9除的三个商数的和是570111573+++=,而504950485047787989191÷+÷+÷=⨯+⨯+⨯=,5731913÷=,所以这个数加上6等于504的3倍,这个数是504361506⨯-=.【答案】1506【例 6】数119很奇特:当被2除时,余数为1;当被3除时,余数为2;当被4除时,余数为3;当被5除时,余数为4;当被6除时,余数为5.问:具有这种性质的三位数还有几个?【考点】余数性质综合【难度】3星【题型】解答【解析】[1,2,3,4,5,6]60=.三位数中60的倍数15个.所以,除了119外,还有15114-=(个).【答案】14【巩固】有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【考点】余数性质综合【难度】3星【题型】填空【关键词】迎春杯,六年级,初赛,3题【解析】由题意可知,这批书如果再多2本,那么按24本,28本,32本一捆全书时,都将恰好分成整数本.所以这批书的本数加上2之后是24,28,32的公倍数,而[24,28,32]672=,所以这批书的本数是k-(k是整数).由于这批书少于1000本,所以k只能为1,这批书有670本.6722【答案】670本【例 7】某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是。