二次函数图像与abc的关系专题训练

合集下载

二次函数的图像与性质专题训练

二次函数的图像与性质专题训练

二次函数的图象与性质专题【知识点1 二次函数的配方法】二次函数y =ax 2+bx +c (a ≠0)配方成顶点式y =a (x +b 2a )2+4ac−b 24a 2, 对称轴为2b x a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,.【题型1 二次函数的配方法】【例1】用配方法将下列函数化成y =a (x -h )2+k 的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y =2x 2+4x -1 (2)y =12x 2﹣2x +3; (3)y =(1﹣x )(1+2x );【知识点2 二次函数的五点绘图法】利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =−+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【题型2 二次函数的五点绘图法】【例2】已知抛物线y =x 2﹣2x ﹣3(1)写出该抛物线的开口方向、顶点坐标、对称轴、与x 、y 轴交点;(2)选取适当的数据填表格,并在直角坐标系内描点画出该抛物线的图象.【知识点3 二次函数的图象与各系数之间的关系】①二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. ②一次项系数b :在a 确定的前提下,b 决定了抛物线对称轴的位置,概括的说就是“左同右异”. ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置.【题型3 二次函数的图象与各系数之间的关系】【例3-1】如图所示的四个二次函数图象分别对应 ①y =ax 2, ②y =bx 2, ③y =cx 2, ④y =dx 2,则a ,b ,c ,d 的大小关系为 .(用“>”连接)【例3-2】二次函数y=ax2+bx+c(a≠0)图像如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.②④B.②⑤C.①②③D.②③⑤【例3-3】函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【知识点4 二次函数图象的平移变换】平移步骤:①将抛物线解析式转化成顶点式()2y a x h k=−+,确定其顶点坐标()h k,;②平移规律概括成八个字“左加右减,上加下减”.【题型4 二次函数图象的平移变换】【例4】要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象()A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【知识点5 二次函数图象的对称变换】2y ax bx c=++关于x轴对称,得到2y ax bx c=−−−;关于y轴对称,得到2y ax bx c=−+;()2y a x h k=−+关于x轴对称,得到()2y a x h k=−−−;关于y轴对称,得到()2y a x h k=++;2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=−+−;()2y a x h k=−+关于原点对称后,得到的解析式是()2y a x h k=−+−;【题型5 二次函数图象的对称变换】【例5】在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为()A.﹣5B.3C.5D.15【变式5-1】抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为.【变式5-2】在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=﹣(x﹣1)2﹣2 B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【题型6 利用二次函数的性质判断结论】【例6】对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【变式6-1】关于抛物线y =x 2﹣(a +1)x +a ﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧【变式6-2】对于二次函数y =x 2﹣2mx ﹣3,有下列结论:③ 它的图象与x 轴有两个交点;②如果当x ≤﹣1时,y 随x 的增大而减小,则m =﹣1;③如果将它的图象向左平移3个单位后过原点,则m =1;④如果当x =2时的函数值与x =8时的函数值相等,则m =5.其中一定正确的结论是 .(把你认为正确结论的序号都填上)【题型7 利用二次函数的性质比较函数值】【例7】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0, 1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【变式7-1】抛物线y =x 2+x +2,点(2,a ),(﹣1,﹣b ),(3,c ),则a ,b ,c 的大小关系是( )A .c >a >bB .b >a >cC .a >b >cD .无法比较大小【变式7-2】已知点A (b ﹣m ,y 1),B (b ﹣n ,y 2),C (b +m+n 2,y 3)都在二次函数y =﹣x 2+2bx +c 的图象上, 若0<m <n ,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 1<y 3<y 2 【题型8 利用二次函数的性质求字母的范围】【例8】已知抛物线y =﹣(x ﹣2)2+9,当m ≤x ≤5时,0≤y ≤9,则m 的值可以是( )A .﹣2B .1C .3D .4【变式8-1】若抛物线y =(x ﹣m )(x ﹣m ﹣3)经过四个象限,则m 的取值范围是( )A .m <﹣3B .﹣1<m <2C .﹣3<m <0D .﹣2<m <1【题型9 利用二次函数的性质求最值】【例9】若实数m 、n 满足m+n =2,则代数式2m 2+mn +m ﹣n 的最小值是_______.【变式9-2】抛物线y =ax 2+bx +3(a ≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d ≤1,则实数m 的取值范围是( )A .m ≤2或m ≥3B .m ≤3或m ≥4C .2<m <3D .3<m <4*【题型10 二次函数给定范围内的最值问题】【例10】若二次函数y =﹣x 2+mx 在﹣1≤x ≤2时的最大值为3,那么m 的值是( )A .﹣4或72B .﹣2√3或72C .﹣4 或2√3D .﹣2√3或2 √3【变式10-1】已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( )A .3B .﹣3或38C .3或−38D .﹣3或−38 【变式10-2】若二次函数y =x 2﹣2x +5在m ≤x ≤m +1时的最小值为6,那么m 的值是 .二次函数的图象与性质— 易错精选 —1. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下面五条信息:①c <0;②ab <0; ③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0.你认为其中正确的个数有( )A .1个B .2个C .3个D .4个2. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①abc >0;②2a ﹣b =0;③4ac ﹣b 2<0;④若点B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2;⑤am 2+bm <a ﹣b (m 为任意实数);其中,正确结论的个数是( )A .1B .2C .3D .43. 在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出以下结论:①abc <0;②c +2a <0;③9a ﹣3b +c =0;④a ﹣b ≥m (am +b )(m 为实数),其中正确的结论有 .(只填序号)4. 已知二次函数y =ax 2+bx+c (a≠0)的图像如图,有下列6个结论:①abc<0;②b<a ﹣c ;③4a+2b+c>0;④2c<3b ;⑤a+b<m (am+b ),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_____.5. 如图是抛物线21(0)y ax bx c a =++≠图像的一部分,抛物线的顶点坐标为(1,3)A ,与x 轴的一个交点为(4,0)B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;②>0abc ;③抛物线与x 轴的另一个交点时(4,0)−;④方程23ax bx c ++=−有两个不相等的实数根;⑤4a b c m n −+<+;⑥不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是_____________.(填写序号即可)6. 在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).。

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数与abc的关系题

二次函数与abc的关系题

二次函数与abc的关系题
二次函数一般形式为:y = ax^2 + bx + c
其中,a、b、c为常数。

与a,b,c的关系如下:
1. 当a>0时,二次函数的图像开口向上,对应的抛物线的开口朝上;
2. 当a<0时,二次函数的图像开口向下,对应的抛物线的开口朝下;
3. b决定了二次函数图像的偏移量,即左右平移或镜像;
- 当b > 0时,二次函数图像向左平移;
- 当b < 0时,二次函数图像向右平移;
4. c决定了二次函数图像的上下平移;
- 当c > 0时,二次函数图像向上平移;
- 当c < 0时,二次函数图像向下平移。

总结起来,a决定了抛物线的形状(开口向上或向下),b决定了抛物线的平移方向和程度,c决定了抛物线的上下平移。

最全二次函数概念图像与abc的关系专题训练完整版.doc

最全二次函数概念图像与abc的关系专题训练完整版.doc

二次函数2y ax bx c =++图象的位置与abc 的关系归纳:二次函数2y ax bx c =++的对称轴为________,顶点坐标为______________ (1)a 的符号由 决定:①开口方向向 ⇔ a 0;②开口方向向 ⇔ a 0. (2)b 的符号由 决定;①对称轴在y 轴的左侧 ⇔b a 、 ; ②对称轴在y 轴的右侧 ⇔b a 、 ;③对称轴是y 轴 ⇔b0. ④由对称轴公式x=,可确定2a+b 的符号.(3)c 的符号由 决定: ①抛物线与y 轴交于正半轴 ⇔c 0; ②抛物线与y 轴交于负半轴⇔c 0; ③抛物线过原点 ⇔c 0.(4)ac b 42-的符号由 决定: ①抛物线与x 轴有 交点⇔ b 2-4ac 0; ②抛物线与x 轴有 交点⇔ b 2-4ac 0; ③抛物线与x 轴有 交点⇔ b 2-4ac 0;(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号.【典型例题】已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列4个结论中:①abc>0;②b<a+c ;③4a+2b+c>0;④b 2-4ac>0; ⑤b=2a.正确的是 (填序号)【课后作业】1.根据图象填空,:(1)a 0 ,b 0 ,c 0, abc 0. (2)b 2-4ac 0(3)c b a ++ 0;c b a +- 0;(4)当0>x 时,y 的取值范围是 ;当0>y 时,x 的取值范围是 .2.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 有两个交点,则下列结论正确的是( ).A.a ﹥0,bc ﹥0;B.a ﹤0,bc ﹤0;C. a ﹤0, bc ﹥0;D.a ﹥0, bc ﹤03.已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( )A 、ac <0B 、a-b+c >0C 、b=-4aD 、关于x 的方程ax 2+bx+c=0的根是x 1=-1,x 2=54、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0; ②abc >0;③8a+c >0; ④9a+3b+c <0 其中,正确结论的个数是( )A 、1B 、2C 、3D 、45.已知反比例函数xky =的图象在二、四象限,则二次函数222k x kx y +-=的图象大致为( )A6、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是( ) A 、a <0,b <0,c >0,b 2-4ac >0 B 、a >0,b <0,c >0,b 2-4ac <0 C 、a <0,b >0,c <0,b 2-4ac >0 D 、a <0,b >0,c >0,b 2-4ac >07、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是( ) A 、ac <0 B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是x1=-1,x2=38、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A 、a >0B 、b <0C 、c <0D 、a+b+c >09、小明从图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0<c ;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )B .C .A.2个B.3个 C.4个 D.5个10、已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤11、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、412、已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小13、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、414、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()15.二次函数y=ax+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A. 1个B.2个C. 3个D.4个16、如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个17.函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 418.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()2>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个20、已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=—4aD、关于x的方程ax2+bx+c=0的根是x1=—1,x2=521、已知二次函数y=ax²+bx+c(a≠0)的图象如图所示,则下列结论:①ac >0;②a-b+c <0;③当x <0时,y <0;④方程ax ²+bx+c=0(a ≠0)有两个大于-1的实数根. 其中错误的结论有( )A 、②③B 、②④C 、①③D 、①④22、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( )个. A 、1 B 、2 C 、3 D 、423、二次函数y=-x 2+bx+c 的图象如图所示,下列几个结论:①对称轴为x=2;②当y ≤0时,x <0或x >4;③函数解析式为y=-x (x-4);④当x ≤0时,y 随x 的增大而增大. 其中正确的结论有( )A 、①②③④B 、①②③C 、①③④D 、①③ 24、如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论: ①b 2>4ac ;②2a+b=0;③3a+c=0;④a+b+c=0. 其中正确结论的个数是( )25、如图,抛物线y=ax +bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n),与 y 轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论: ①当x >3时,y <0;②3a+b >0;③﹣1≤a ≤﹣;④≤n ≤4. 其中正确的是( ) ①② B . ③④ C . ①③ D . ①③④26、已知二次函数y=ax 2+bx+c (a >0)的图象与x 轴交于点(﹣1,0),(x 1,0), 且1<x 1<2,下列结论正确的个数为( )27、如图所示,二次函数2(0)y ax bx c a =++≠的图象经过点(12)-,的横坐标分别为12x x ,,其中121x -<<-,201x <<,下列结论: ①420a b c -+<;②20a b -<;③1a <-;④284b a ac +>.其中正确的有( ) A .1个 B .2个 C .3个 D .4个28、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②b <a+c ;③2a+b=0;④a+b >m (am+b )(m ≠1的实数). 其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个29、如图,抛物线y=ax 2+bx+c 的对称轴是x=1,下列结论:①b <0;②(a+c )2>b2;③2a+b-c>0;④3b<2c.其中正确的结论有________(填上正确结论的序号).30、已知:二次函数y=ax²+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b <0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A、①⑤B、①②⑤C、②⑤D、①③④31、二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).32、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(x1,0),-3<x1<-2,对称轴为x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④a-b>m(ma+b)(m≠-1的实数);⑤3b+2c>0.其中正确的结论有()A.2个B.3个C.4个D.5个33、已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个数有()A.1个B.2个C.3个D.4个34.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正确结论是.赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点. (2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,且2t t -,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II ) 由(I )得,t m =,即0m >. 将t m =代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,, 且2t t ,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-.∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.)图(1)图(2)天)(1)直接写出图(1)中表示的市场销售单价y (元)与上市时间t (天)(0t >)的函数关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >. (3)设纯收益单价为W 元,则W =销售单价-成本单价. 故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593; ③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56.综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去).∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=.1361017BD ∴=-+=(米).解法二:令21(6)4012x --+=.解得16x =-2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-21823x =+.23617BD ∴=-=(米).解法三:由解法二知,18k =,所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.(1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN x =,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.B A D MF信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式; (2)如果企业同时对A B ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b=+⎧∴⎨=+⎩ 解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中. (1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.B 图(1)图(2)l答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。

二次函数abc的关系测试题及答案

二次函数abc的关系测试题及答案

二次函数中a、b、c的作用练习题1、已知二次函数y=ax2+bx+c的图象如图所示;它与x轴的两个交点分别为﹣1;0; 3;0.对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有A.3个 B.2个 C.1个 D.0个2、已知二次函数的图象如图所示;有下列5个结论:①;②;③;④;⑤;的实数其中正确的结论有 BA. 2个B. 3个C. 4个D. 53、小明从如图所示的二次函数的图象中;观察得出了下面五条信息:①;②;③;④;⑤;你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个4、已知二次函数的图象如图所示;有下列结论:①;②;③;④.其中;正确结论的个数是A. 1B. 2C. 3D. 45、已知抛物线y=ax2+bx+ca>0的对称轴为直线x=-1;与x轴的一个交点为x 1;0;且0<x1<1;下列结论:①9a-3b+c>0;②b<a;③3a+c>0.其中正确结论的个数是A.0 B.1 C.2 D.36、如图为抛物线y=ax2+bx+c的图象;A、B、C为抛物线与坐标轴的交点;且OA=OC=1;AB>AO;下列几个结论:1abc<0;2b>2a;3a-b=-1;44a-2b+1<0.其中正确的个数是A.4 B.3 C.2 D.1解:1∵该抛物线的开口向上;∴a>0;又∵该抛物线的对称轴x=-<0;∴b>0;而该抛物线与y轴交于正半轴;故c>0;∴abc>0;故本选项错误;2由1知;a>0;-<0;∴b>-2a;故本选项错误;3∵OA=OC=1;∴由图象知:C0;1;A-1;0;把C0;1代入y=ax2+bx+c得:c=1;把A-1;0代入y=ax2+bx+c得:a-b=-1;故本选项正确;4由3知;点A的坐标是-1;0.又∵AB>AO;∴当x=-2时;y<0;即4a-2b+1<0;故本选项正确.综上所述;正确的个数是2个.故选C.7.如图所示;二次函数y=ax2+bx+ca≠0的图象经过点-1;2;且与x轴交点的横坐标为x1、x2;其中-2<x1<-1、0<x2<1.下列结论:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac中;正确的结论是解:由图知:抛物线的开口向下;则a<0;抛物线的对称轴x=- >-1;且c>0;①由图可得:当x=-2时;y<0;即4a-2b+c<0;故①正确;②已知x=- >-1;且a<0;所以2a-b<0;故②正确;③已知抛物线经过-1;2;即a-b+c=21;由图知:当x=1时;y<0;即a+b+c<02;由①知:4a-2b+c<03;联立12;得:a+c<1;联立13得:2a-c<-4;故3a<-3;即a<-1;所以③正确;④由于抛物线的对称轴大于-1;所以抛物线的顶点纵坐标应该大于2;即:>2;由于a<0;所以4ac-b2<8a;即b2+8a>4ac;故④正确;因此正确的结论是①②③④.8已知抛物线y=ax2+bx+c的图象如图所示;则下列结论:①abc>0;②a+b+c=2;③a<;④b>1.其中正确的结论是A.①②B.②③C.③④D.②④解:①∵抛物线的开口向上;∴a>0;∵与y轴的交点为在y轴的负半轴上;∴c<0;∵对称轴为x=<0;∴a、b同号;即b>0;∴abc<0;故本选项错误;②当x=1时;函数值为2;∴a+b+c=2;故本选项正确;③∵对称轴x=>-1;解得:<a;∵b>1;∴a>;故本选项错误;④当x=-1时;函数值<0;即a-b+c<0;1又a+b+c=2;将a+c=2-b代入1;2-2b<0;∴b>1故本选项正确;综上所述;其中正确的结论是②④;故选D.9、已知:抛物线y=ax2+bx+ca<0经过点-1;0;且满足4a+2b+c>0;以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2;其中正确的个数有A.1个B.2个C.3个D.4个解:1因为抛物线y=ax2+bx+ca<0经过点-1;0;所以原式可化为a-b+c=0----①;又因为4a+2b+c>0----②;所以②-①得:3a+3b>0;即a+b>0;2②+①×2得;6a+3c>0;即2a+c>0;∴a+c>-a;∵a<0;∴-a>0;故a+c>0;3因为4a+2b+c>0;可以看作y=ax2+bx+ca<0当x=2时的值大于0;草图为:可见c>0;∵a-b+c=0;∴-a+b-c=0;两边同时加2c得-a+b-c+2c=2c;整理得-a+b+c=2c>0;即-a+b+c>0;4∵过-1;0;代入得a-b+c=0;∴c=b-a;再代入4a+2b+c=3b+3a>0;即b>-a∴b>0;a<0;c=b-a >0;又将c=b-a代入b2-2ac=b2-2ab-a=b2-2ab+2a2;∵b2-2ab=bb-2a;b>-a;b-2a>-3a;并且b是正数;∴原式大于3a2.综上可知正确的个数有4个.故选D.10如图;是二次函数y=ax2+bx+c图象的一部分;图象过点A-3;0;对称轴为x=-1.给出四个结论:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正确结论是.解:①∵图象与x轴有交点;对称轴为x==-1;与y轴的交点在y轴的正半轴上;又∵二次函数的图象是抛物线;∴与x轴有两个交点;∴b2-4ac>0;即b2>4ac;正确;②∵抛物线的开口向下;∴a<0;∵与y轴的交点在y轴的正半轴上;∴c>0;∵对称轴为x==-1;∴2a=b;∴2a+b=4a;a≠0;错误;③∵x=-1时y有最大值;由图象可知y≠0;错误;④把x=1;x=-3代入解析式得a+b+c=0;9a-3b+c=0;两边相加整理得5a-b=-c<0;即5a<b.故正确的为①④.1. B2. B3.C.提示:由二次函数的图象知;∴①;②;正确;由x=-1;③正确;由对称轴;得到∴④2a-3b=0是错误.的;x=2;把代入得⑤是正确的;故选C.4. C5.解:∵y=ax2+bx+ca>0的对称轴为直线x=-1;与x轴的一个交点为x1;0;且0<x1<1;∴x=-3时;y=9a-3b+c>0;∵对称轴是x=-1;则=-1;∴b=2a.∵a>0;∴b>a;再取x=1时;y=a+b+c=a+2a+c=3a+c>0.∴①、③正确.故选C 6.。

二次函数系数a、b、c与图像的关系填空题专题练习(含答案).doc

二次函数系数a、b、c与图像的关系填空题专题练习(含答案).doc

二次函数系数a 、b 、c 与图像的关系填空题专题练习1、二次函数y=-x2+bx+c 的图象如图所示,试确定b 、c 的符号;b ____________ 0, c ________ 0.(填不等号)5、已知函数y 二ax"+bx+c 的图象如图所示,则下列结论中:®abc>0;②b 二2。

;③a+b+c<0;④a-b+c>0.正 确的是 _________ •0; (4) b 2-4ac_ 0.如图,已知抛物线y 二ax'+bx+c(aH0)经过原点和点(-2, 0),则2a -3b0.(填 >、V 或二) 象限.0; (3)c则直线y=abx+c 不过第6、已知如图,抛物线y=ax2+bx+c与x轴交于点A(—1, 0)和点B,化简:如夕★如护的结杲为:①c;②b;③b—a;④a —b + 2c.其中正确的有________________ .7、二次函数y=-x2+bx + c的图象如图,则一次函数y=bx+c的图象不经过第_______________ 象限.8、若二次函数x2+bx+c的图象如图,则ac 0 (“V” “>”或“二”)9、已知二次函数y二ax'+bx+c(aH0)的图象如图所示,则在下列代数式:①ac;②a+b+c;③4a-2b+c;④2a+b;⑤圧-4ac中,值大于0的序号为__________________10、如图是二次函数y=ax2 + bx + c(a^0)的图象的一部分,给出下列命题:①a+b + c二0;②b>2a;③ax2+bx+c=0 的两根分别为一3 和1:④a—2b+c>0.其中正确的命题是 ______________ ・(只要求填写正确命题的序号)有以下结论:①abc>0;②a - b+c<0;③2d二b;④4a+2b+c>0;⑤若点(・2, y()和(・3, y2)在该图象上,则yi>y2.其中正确的结论是 ______________ (填入正确结论的序号).12、如图是二次函数ypx'+bx+c 的部分图像,在下列四个结论中正确的是 _________________① 不等式 ax 2+bx+c>0 的解集是-l<x<5;②a-b+c>0;③b 2-4ac>0;④4a+b<0.下列结论:①4a+b 二0;②9a+c>3b ;③8a+7b+2c>0;④当x>・1时,y 的值随x 值的增大而增大.其中正确的结论有 ______________________ (填序号)14>二次函数y=ax^+bx+c (aHO )的图象如图所示,下列结论:①2a+b 二0;②a+c>b ;③抛物线与 x 轴的另一个交点为(3, 0);④abc>0.其中正确的结论是 _____________________ (填写序号).15、如图是二次函数y=ax 2+bx+c 图彖的一部分,图彖过点A ( - 3, 0),对称轴为直线X 二・1,给 出四个结论:①b 2>4ac ;②2a+b 二0;③a+b+c>0;④若点B ( - 2. 5, yj , C ( - 0. 5, y 2)为函数图象上的两 点,则yi<y2.其中正确结论是 __________________ ・图象过点(-1, 0),对称轴为直线x=2,16、如图,是二次函数y=ax2+bx+c (aHO)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c二0④ax'+bx+c二0的两根分别为・3和1;⑤8a+c>0. 其中正确的命题是____________________________ ・17>二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2 - 4ac>0;④a+b+c<0;⑤la・2b+c<0,其中正确的个数是______________________ .y八18、如图,抛物线y=ax2+bx+c的对称轴是x=-l.且过点(0.5, 0),有下列结论:①abc>0;②a-2b+4c=0;③25a・ 10b+4c=0;④3b+2c>0;⑤a - b^m (am - b);其中所有正确的结论是___________________ .(填写正确结论的序号)19、己知二次函数y=ax2+bx+c (aHO)的图象如图所示,纟合出以下结论: ®b2>4ac;②abc>0③2a-b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是___________ .(填正确结论的序号)x=l20、在二次函数y=ax2+bx+c的图彖如图所示,下列说法中:①b‘・4ac<0;②2占>0;③abc>0;®a-b-c>0,说法正确的是(填序号).21>已知二次函数y=ax2+bx+c (aHO)的图象如图所示,有下列5个结论:①c二0;②该抛物线的对称轴是直线x二・1;③当x=l时,y=2a;④am2+bm+a>0 (mH - 1);⑤设A (100, yi) , B (・100, y2)在该抛物线上,则yi>y2.其中正确的结论有・(写出所有正确结论的序号)22、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,则下列结论:①a+b+c<0;②a - b+c<0;③b+2a<0;④abc>0,其屮正确的是_________________ (填编号)23、如图是二次函数y=ax2+bx+c (aHO)图彖的一部分,现有下列结论:①abc<0;②b?・4ac+5> 0;③2a+b<0;④a-b+c<0;⑤抛物线y=ax2+bx+c (a^O)与x轴的另一个点坐标为(・1, 0), 其屮正确的是(把所有正确结论的序号都填在横线上)y八24、己知实数m, n满足m - n2=l,则代数式n/+2n2+4ni - 1的最小值等于_____________ •25、如图所示,己知二次函数y二ax'+bx+c的图象经过(-1, 0)和(0, -1)两点,则化简代数式_ 乎 + 4 + + 乎 _ 4 二 _______________ .\26如图,抛物线y二ax'+bx+c与x轴交于点A (・1, 0),顶点坐标为(1, n),与y轴的交点在(0, 2)、(0, 3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③_2④3WnW4中,正确的是_______________27、已知二次函数y二ax'+bx+c的图象如图所示,有以下结论:①a+b+cVO;②a - b+c> 1;③abc>0;④4a - 2b+c<0;其中正确的结论是 ______________28、已知二次函数ypx'+bx+c的图象如图所示,它与x轴的两个交点分别为(-1, 0) , (3, 0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有___________________________ .29、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①bV0;②4a+2b+c<0; (3)a・b+c>0;④(a+c) 2<b2.其中正确的是___________________ (把所有正确结论的序号都填在横线上).30^己知二次函数y二ax'+bx + c的图象如图所示,则下列结论:①c二2;②b2—4ac<0;③当x=l时,y的最小值为a+b+c中,正确的有___________________31、已知二次函数y=ax'+bx+c(a^O)的图像如图所示,(1)给出三个结论:①『-4眈>0;②c>0;③b>0,其中正确结论的序号是: ___________ ・(2)给出三个结论:①9a+3b+c〈0:②2c>3b;③8a+c>0,其中正确结论的序号是:________________32、已知抛物线y=ax2+bx+c(a^0)经过点(一1, 0),且顶点在第一象限.有下•列三个结论:①a<0;②a+b+c>0;③一2a >0.其中止确的结论有______________ .丄33>如图,抛物线yi=a (x+2) 2 - 3与2 (x・3) ?+1交于点A(l, 3),过点A作x轴的平行线, 分别交两条抛物线于点B, C.则以下结论:①无论x取何值,y2的值总是正数;②沪1;③当x=0 时,y2 - yi=4④2AB=3AC.34、如图,抛物线"曲"窈-3与卩飞“耳+1交于点八(],3),过点A作x轴的平行_2线,分别交两条抛物线于点B,C.则以下结论:①无论x収何值,乃的值总是正数;②■亍;③当x二0时,y2-yi二6;④AB+AC二10;⑤刃时乃°,其中正确结论的个数是: ________________ .35>函数y二x'+bx+c与y二x的图象如图所示,有以下结论:①b'-4c>0;②3b+c+6=0;③当lVx< 3时,x2+ (b - 1) x+c<0;④JQ+C? = 3迥.其屮正确的有 _______________ .36、如图抛物线y=ax2+bx+c与只轴的一个交点A在点(-2, 0)和(-1, 0)之间(包括这两个点), 定点C是矩形DEFG上(包括边界和内部)的一个动点,贝9:(1)_____________ abc 0(填或“〉”;(2)___________________________ 8的取值范围是.1、答案为:V >;2、答案为:(1)> (2)< (3)> (4)>;3、答案为:>;4、答案为:四;5、答案为:①③④.6、答案为:①③④;7、答案为:四;8、答案为:<;9、答案为:10、答案为11、答案为12、答案为13、答案为14、答案为15、答案为16、答案为17、答案为18、答案为19、答案为20、答案为21、答案为22、答案为23、答案为24、答案为25、答案为26、答案为27、答案为28、答案为29、答案为30、答案为31、答案为32、答案为33、答案为34、答案为35、答案为①②⑤;①③;②④.①③;①③;①④.①④.①③④⑤.3.①③⑤.①②⑤;②③④.①②④⑤.②③.②、④.2a;①③.①③.©:①③④.①③;①;①③①②③;①④.①②④⑤,②③④;参考答案36、答案为:<。

二次函数的图像与系数a、b、c的关系经典习题

二次函数的图像与系数a、b、c的关系经典习题

A B CD yOx yO x yO x yO x yO x 一、二次函数图像与系数a 、b 、c 、关系1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫⎪⎝⎭,在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0 B 、bc <0 C 、a +b +c >0 D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

6、已知反比例函数xky =的图象如图所示,则二次函数222k x kx y +-=的图象大致为( )7、二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )8、函数y=ax 2+bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( )9、在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )10、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )11、在同一坐标系中,函数y=ax 2+bx 与y=xb的图象大致是图中的( )12、已知a <0,b >0,c >0,那么抛物线y =ax 2+bx +c 的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 13、已知二次函数y =ax 2+bx +c 的图象如图1所示,则a ,b ,c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限15、已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.以上说法正确的个数为( )A .0 B .1 C .2 D .3二、⊿的符号的判定例1、下图中⊿0<的是( )(A ) (B ) (C ) (D ) (图3)练习:不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0;B.a>0, △<0;C.a<0, △<0;D.a<0, △<0 三、含a 、b 的代数式符号的判定例1、抛物线y=x 2+2x-4的对称轴是直线( ).A.x=-2B.x=2C.x=-1D.x=1Oy x Oy x y x O y x O ..C A y xOy–1 3 3O xP1 -1O x =1yxy–1 3 3O xP 1 练习:二次函数)1)(3(2-+-=x x y 的图象的对称轴是直线________________.例2、二次函数2(0)y ax bx c a =++≠的图象如图3所示,则①20a b +>②20a b +<③02ba-<④20a b -<⑤20a b ->中正确的有________________________.(请写出序号即可)图4 图5练习:1、二次函数2(0)y ax bx c a =++≠的图象如图4所示,则下列说法不正确的是( ) A .240b ac ->B .0a >C .0c >D .02ba-< 例1、如图5,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则cb a +-的值为 ( )A. 0 B. -1 C. 1 D. 2练习:已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A )第一或第二象限; (B )第三或第四象限;(C )第一或第四象限; (D )第二或第三象限例2已知二次函数c bx ax y ++=2的图象如图所示,那么下列判断正确的是( )(A)abc >0 (B )ac b 42->0(C)2a+b >0 (D )c b a +-24<0练习:1、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个 B .2个 C .3个 D .4个2、抛物线y=ax 2+bx+c 的图象如图6,OA=OC ,则( )(A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是图4 图5 图6图2y 0 1x-1 图1O xy-11作业:1、若二次函数c bx ax y ++=2中,a <0,b >0,c <0,042>-ac b ,则此二次函数图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )3、二次函数c bx ax y ++=2的图象如图1所示,则下列结论中,正确的个数是( )①0<++c b a ;②0>+-c b a ;③0>abc ;④a b 2= (A )4(B )3(C )2 (D )14、已知二次函数c bx ax y ++=2的图象如图2所示,那么下列判断不正确的是( ) (A)abc >0; (B )ac b 42->0;(C)2a+b >0; (D )c b a +-24<05、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,b a +2,c b a ++这四个式子中, 值为正数的有( )A .4个 B .3个 C .2个 D .1个6、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A .ab <0 B .bc <0 C .a +b +c >0 D .a -b +c <07、(2008年安徽省)如图为二次函数y=ax 2+bx +c 的图象,在下列说法中:① ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ② a +b +c >0 ④当x >1时,y 随x 的增大而增大。

中考数学复习之二次函数的图像与性质,考点过关与基础练习题

中考数学复习之二次函数的图像与性质,考点过关与基础练习题

18. 二次函数的应用➢ 知识过关1.二次函数)0(2≠++=a c bx ax y 图像与系数a 、b 、c 的关系(1) 如果抛物线)0(2≠++=a c bx ax y 与x 轴有两个交点,则一元二次方程02=++c bx ax 有两个_____实数根.(2) 如果抛物线)0(2≠++=a c bx ax y 与x 轴只有1个交点,则一元二次方程02=++c bx ax 有两个_____实数根.(3) 如果抛物线)0(2≠++=a c bx ax y 与x 轴无交点,则一元二次方程02=++c bx ax 没有实数根.3. 二次函数与一次交点一次函数)0(≠+=k n kx y 的图像L 与二次函数)0(2≠++=a c bx ax y 的图像G 的交点,由方程nkx y cbx ax y +=++=2{的解的个数确定 (1)方程组有两组不同的解⇔L 与G 有______交点; (2)方程组只有一组解⇔L 与G 只有______交点; (3)方程组无解⇔L 与G_______交点. 4. 二次函数的实际应用建立二次函数模型—求出二次函数解析式—结合函数解析式—解答问题.➢ 考点分类考点1 二次函数图像与系数的关系例1二次函数的图像如图所示,现有下列结论:①042>-ac b ;①a>0;①b>0;①c>0; ①039<++c b a ,则其中结论正确的有( ) A.2个 B.3个 C.4个 D.5个考点2二次函数的实际应用例2某文具店购进一批纪念册,线本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系;当销售单价为22元时,销量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获昨的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?考点3二次函数的综合应用例3如图所示,直线与抛物线相交于点A 和点B ,点P 是线段AB 上异于A 、B 的动点,过点P 作PC①x 轴于点C ,交抛物线于点D. (1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PD 的长有最大值,若存在,求出这个最大值;若不存在,说明理由;(3)当①PAD 为直角三角形时,求点P 的坐标.➢真题演练1.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.2.函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac >0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是()①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①②B.①③C.②③④D.①③④3.如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1B.2C.3D.46.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=−12,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x 的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③7.如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.8.公园草坪上,自动浇水喷头喷出的水线呈一条抛物线,水线上水珠的离地高度y(米)关于水珠与喷头的水平距离x(米)的函数解折武是y=−13x2+43x(0≤x≤4).那么水珠的最大离地高度是米.9.东方商厦将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价元.10.中国跳水队被称为“梦之队”,跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的抛物线.已知跳板AB长为1米,距水面的高OA为3米,C 为入水点,训练时跳水曲线在离起跳点B水平距离1米时达到距水面最大高度k米,分别以OC、OA所在直线为横轴和纵轴,点O为坐标原点建立平面直角坐标系.若跳水运动员在入水时点C与点O的距离在3.5米至4米(含3.5米和4米)才能达到训练要求,则k的取值范围是.11.随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?12.在新农村建设过程中,渣濑湾村采用“花”元素打造了一座花都村庄.如图,一农户用长为25m 的篱笆,一面利用墙,围成有两个小门且中间隔有一道篱笆的长方形花圃.已知小门宽为1m ,设花圃的宽AB 为x (m ),面积为S (m 2). (1)求S 关于x 的函数表达式.(2)如果要围成面积为54m 2的花圃,AB 的长为多少米?(3)若墙的最大长度为10m ,则能围成的花圃的最大面积为多少?并求此时AB 的长.➢ 课后练习1.已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (43,y 1)、C (13,y 2)、D (−13,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .42.已知抛物线y =12x 2﹣bx +c ,当x =1时,y <0;当x =2时,y <0.下列判断:①b 2>2c ;②若c >1,则b >32;③已知点A (m 1,n 1),B (m 2,n 2)在抛物线y =12x 2﹣bx +c 上,当m 1<m 2<b 时,n 1>n 2;④若方程12x 2﹣bx +c =0的两实数根为x 1,x 2,则x 1+x 2>3.其中正确的有( )个. A .1 B .2 C .3 D .43.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,①b 2﹣4ac >0②4a +c <0③当﹣3≤x ≤1时,y ≥0④若B(−52,y 1),C(−12,y 2)为函数图象上的两点,则y 1>y 2,以上结论中正确的有( )A .1个B .2个C .3个D .4个4.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (3,0),与y 轴的交点B 在(0,3)与(0,4)之间(不包括这两点),对称轴为直线x =1.下列结论:①abc <0;②43a +3b +c >0;③−43<a <−1;④若x 1,x 2(x 1<x 2)是方程ax 2+bx +c =m (m <0)的两个根,则有x 1<﹣1<3<x 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个5.如图,抛物线y =ax 2+bx +c (a >0)与x 轴交于A (﹣3,0)、B 两点,与y 轴交于点C ,点(m ﹣5,n )与点(3﹣m ,n )也在该抛物线上.下列结论:①点B 的坐标为(1,0);②方程ax 2+bx +c ﹣2=0有两个不相等的实数根;③54a +c <0;④当x =﹣t 2﹣2时,y ≥c .正确的有( )A .1个B .2个C .3个D .4个6.如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且抛物线经过点(1,0),下面给出了四个结论:①abc>0;②a﹣2b+4c>0;③5a+c<b;④a﹣b=13c.其中结论正确的个数是()A.1个B.2个C.3个D.4个7.如图,物体从点A抛出,物体的高度y(m)与飞行时间t(s)近似满足函数关系式y=−1 5(t﹣3)2+5.(1)OA=m.(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t的取值范围是.8.某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+8t,无人机着陆后滑行秒才能停下来.9.图1是一个斜坡的横截面,tanα=12,斜坡顶端B与地面的距离为3米,为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水柱在空中走过的曲线可以看作抛物线的一部分,设喷出水柱的竖直高度为y(单位:米)(水柱的竖直高度是指水柱与地面的距离),水柱与喷头A的水平距离为x(单位:米),图2记录了y与x 的相关数据,则y与x的函数关系式为.10.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,则小球飞出s时,达到最大高度.11.开学季,福山振华量贩超市从厂家购进A、B两种型号的书包,两次购进书包的情况如表:进货批次A型书包(个)B型书包(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的书包进价各是多少元?(2)在销售过程中,A型书包因为物美价廉而更受消费者喜欢.为了增大B型书包的销售量,超市决定对B型书包进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型书包降价多少元时,每天售出B型书包的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种书包,如果每销售出一个A型书包可获利9元,售出一个B型书包可获利6元,超市决定每售出一个A型书包就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的书包在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?➢冲击A+已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求ADAB+AC的值.。

专题训练(三) 二次函数图象信息题归类

专题训练(三) 二次函数图象信息题归类

专题训练(三) 二次函数图象信息题归类
4.[2018·安顺] 已知二次函数y=ax2+bx+c(a≠0)的图象如图3- ZT-5,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c
>0;④(a+c)2<b2.其中正确的结论有( B )
A.1个
B.2个
C.3个
D.4个
图3-ZT-5
专题训练(三) 二次函数图象信息题归类
0,所以 ac>0,选项 A 错误;由对称轴直线 x=-2ba>0,知 b<0,选项 B 正确; 由抛物线与 x 轴有两个不同的交点,知 b2-4ac>0,选项 C 错误;当 x=1 时, y>0,即 a+b+c>0,选项 D 错误.
专题训练(三) 二次函数图象信息题归类
2.[2018·青岛] 已知一次函数 y=bax+c 的图象如图 3-ZT-2,则 二次函数 y=ax2+bx+c 在平面直角坐标系中的图象可能是( A )
特殊 若a-b+c>0,则x=-1时,y>0
关系 当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1
时,2a-b=0;判断2a+b大于或小于0,看对称轴与直线x=
1的位置关系;判断2a-b大于或小于0,看对称轴与直线x=
-1的位置关系
专题训练(三) 二次函数图象信息题归类
类型之一 利用二次函数图象考查以上表格中的问题
专题训练(三) 二次函数图象信息题归类
5.[2017·广安]如图3-ZT-6所示,抛物线y=ax2+bx+c的顶
点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,
以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a
=3.其中正确结论的个数是( B )

专题:二次函数系数abc与图象的关系(压轴题)

专题:二次函数系数abc与图象的关系(压轴题)

专题 二次函数的图象与系数a 、b 、c 的关系1.(2019·黑龙江省中考模拟)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;①9a+3b+c <0;①c >﹣1;①关于x 的方程ax 2+bx+c=0(a≠0)有一个根为1a-,其中正确结论的个数为( ) A .1 B .2C .3D .4【答案】C【解析】解:由图象开口向下,可知a<0,与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为x=2,所以02ba->,所以b>0,故①正确; 由图象可知当x=3时,y>0,①9a+3b+c>0,故①错误;由图象可知OA<1,①OA=OC ,①OC<1,即-c<1,c>-1,故①正确: 假设方程的一个根为x=1a -,把x=1a -代入方程可得10bc a a-+= ,整理可得ac-b+1=0, 两边同时乘c 可得ac 2-bc+c=0,即方程有一个根为x=-c ,由①可知-c=OA ,而x=OA 是方程的根, ①x=-c 是方程的根,即假设成立,故①正确;综上可知正确的结论有三个;故答案为C.2.(2019·山东省初三二模)二次函数 y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线 x =1,下列结论:①ab <0;①b 2>4ac ;①a +b +2c <0;①3a +c <0. 其中正确的是( ) A .①① B .①①C .①①①D .①①①①【答案】C【解析】①抛物线开口向上,①a>0,①抛物线与y 轴的交点在x 轴下方,①c<0,①ab<0,所以①正确; ①抛物线与x 轴有2个交点,①①=b 2-4ac>0,所以①正确; ①x=1时,y<0,①a+b+c<0,而c<0,①a+b+2c<0,所以①正确; ①抛物线的对称轴为直线x=-b2a=1,①b=-2a ,而x=-1时,y>0,即a-b+c>0,①a+2a+c>0,所以①错误.3.(2019·合肥市第四十八中学初三月考)如图,已知二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ①4a+2b+c >0 ①4ac ﹣b 2<8a ①13<a <23①b >c .其中含所有正确结论的选项是( ) A .①① B .①①① C .①①①D .①①①①【答案】D 【解析】①①函数开口方向向上,①a >0;①对称轴在y 轴右侧,①ab 异号,①抛物线与y 轴交点在y 轴负半轴,①c <0,①abc >0,故①正确;①①图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,①图象与x 轴的另一个交点为(3,0),①当x=2时,y <0,①4a+2b+c <0,故①错误;①①图象与x 轴交于点A (﹣1,0),①当x=﹣1时,y=()()211a b c -+⨯-+=0,①a ﹣b+c=0,即a=b ﹣c ,c=b ﹣a ,①对称轴为直线x=1,①2ba-=1,即b=﹣2a ,①c=b ﹣a=(﹣2a )﹣a=﹣3a ,①4ac ﹣2b =4•a•(﹣3a )﹣()22a -=216a -<0,①8a >0,①4ac ﹣2b <8a ,故①正确;①①图象与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间,①﹣2<c <﹣1,①﹣2<﹣3a <﹣1,①23>a >13,故①正确;①①a >0,①b ﹣c >0,即b >c ,故①正确4.(2019·安徽省初三期末)抛物线y=ax 2+bx+c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;①当x >﹣1时,y 随x 增大而减小;①a+b+c <0;①若方程ax 2+bx+c ﹣m=0没有实数根,则m >2; ①3a+c <0.其中正确结论的个数是( ) A .2个 B .3个C .4个D .5个【答案】C 【解析】(1)①抛物线与x 轴有两个交点,①b 2−4ac >0,①结论①不正确.(2)抛物线的对称轴x =−1,①当x >−1时,y 随x 增大而减小,①结论①正确.(3)①抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,①抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,①当x =1时,y <0,①a +b +c <0,①结论①正确. (4)①y =ax 2+bx +c 的最大值是2,①方程ax 2+bx +c −m =0没有实数根,则m >2,①结论①正确. (5)①抛物线的对称轴x =2ba-=−1,①b =2a , ①a +b +c <0,①a +2a +c <0,①3a +c <0,①结论①正确. 综上,可得正确结论的序号是:①①①①,正确的结论有4个.5.(2019·山东省中考模拟)如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =1.有下列4个结论:①abc >0;①4a +2b +c >0;①2c <3b ;①a +b >m (am +b )(m 是不等于1的实数).其中正确的结论个数有( ) A .1个 B .2个C .3个D .4个【答案】C【解析】解:①由图象可知:a <0,c >0, ①﹣2ba>0,①b >0,①abc <0,故①错误; ①由对称知,当x =2时,函数值大于0,即y =4a+2b+c >0,故①正确; ①当x =3时函数值小于0,y =9a+3b+c <0,且x =2ba-=1, 即a =2b -,代入得9(2b-)+3b+c <0,得2c <3b ,故①正确; ①当x =1时,y 的值最大.此时,y =a+b+c ,而当x =m 时,y =am 2+bm+c , 所以a+b+c >am 2+bm+c ,故a+b >am 2+bm ,即a+b >m (am+b ),故①正确.6.(2019·山东省中考模拟)如图是二次函数2(0)y ax bx c a =++≠图象的一部分,对称轴为12x =,且经过点(2,0)下列说法:①abc<0;①-2b+c=0;①4a+2b+c<0;①若(-52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;①1142a b +>m(am+b)其中(m≠12)其中说法正确的是A .①①①①B .①①C .①①D .①①①【答案】A【解析】解:①由抛物线的开口可知:a <0,又抛物线与y 轴的交点可知:c >0, 对称轴−2ba>0,①b >0,①abc <0,故①正确; ①将(2,0)代入y=ax 2+bx+c (a≠0),①4a+2b+c=0, ①−221b a =,①a=-b ,①-4b+2b+c=0,①-2b+c=0,故①正确; ①由①可知:4a+2b+c=0,故①错误; ①由于抛物线的对称轴为x=12,①(−52,y 1)与(72,y 1)关于x=12对称, 由于x >12时,y 随着x 的增大而减小, ①72>52,①y 1<y 2,故①正确; ①由图象可知:x=12时,y 可取得最大值,且最大值为14a+12b ,①m≠12①14a+12b+c >am 2+bm+c ,①14a+12b >m(am+b),故①正确; 7.(2019·山东省中考模拟)如图,抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在()3,0-和()2,0-之间,其部分图象如图所示,则下列结论:()2140b ac ->;()22a b =;()3点17,2y ⎛⎫- ⎪⎝⎭、23,2y ⎛⎫- ⎪⎝⎭、35,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则123y y y <<;()4320b c +<;()()5t at b a b +≤-(t 为任意实数).其中正确结论的个数是( ) A .2 B .3C .4D .5【答案】C 【解析】(1)抛物线与x 轴有两个交点,所以方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,所以b 2﹣4ac >0,此结论正确;(2)对称轴为x =﹣1=﹣2ba,即b =2a ,此结论正确; (3)由二次函数的对称性可得,x =54与x =﹣134的函数值相等,当x <﹣1时,y 随着x 的增大而增大,所以y 1<y 3<y 2,此结论错误;(4)由图像得,x =﹣3时,y <0,即9a ﹣3b +c <0,因为b =2a ,所以2b×9﹣3b +c <0,即3b +2c <0,此结论正确;(5)要证明t (at +b )≤a ﹣b ,即要证明at 2+bt +c ≤a ﹣b +c ,即要证明抛物线在x =﹣1时取最大值,由图像可得当x =﹣1时,y 最大,此结论正确. 正确结论的个数是4.8.(2018·江苏省中考模拟)二次函数y=ax 2+bx+c (a≠0)的图象如图,下列四个结论:①4a+c <0;①m (am+b )+b >a (m≠﹣1);①关于x 的一元二次方程ax 2+(b ﹣1)x+c=0没有实数根;①ak 4+bk 2<a (k 2+1)2+b (k 2+1)(k 为常数).其中正确结论的个数是( ) A .4个 B .3个C .2个D .1个【答案】D 【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2ba=﹣1,可得b=2a ,当x=﹣3时,y <0,即9a ﹣3b+c <0,9a ﹣6a+c <0,3a+c <0, ①a <0,①4a+c <0,所以①选项结论正确;①①抛物线的对称轴是直线x=﹣1,①y=a ﹣b+c 的值最大,即把x=m (m≠﹣1)代入得:y=am 2+bm+c <a ﹣b+c ,①am 2+bm <a ﹣b ,m (am+b )+b <a ,所以此选项结论不正确; ①ax 2+(b ﹣1)x+c=0,①=(b ﹣1)2﹣4ac , ①a <0,c >0,①ac <0,①﹣4ac >0,①(b ﹣1)2≥0,①①>0,①关于x 的一元二次方程ax 2+(b ﹣1)x+c=0有实数根; ①由图象得:当x >﹣1时,y 随x 的增大而减小,①当k 为常数时,0≤k 2≤k 2+1,①当x=k 2的值大于x=k 2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;。

专题01 二次函数图象与系数a、b、c相关的判断问题-2022中考数学二次函数重点题型全国通用解析版

专题01 二次函数图象与系数a、b、c相关的判断问题-2022中考数学二次函数重点题型全国通用解析版

专题01 二次函数图象与系数a 、b 、c 相关结论的判断问题一、单选题1.(2021·山东烟台招远市中考一模)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④30a c +<;⑤1c a ->.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【分析】 从抛物线的开口方向,对称轴,与坐标轴的交点,函数的增减性等去分析判断即可.【详解】∵从图象上看出,直线x =1与抛物线的交点位于第四象限,∴0a b c ++<,故①正确;∵从图象上看出,直线x = -1时,函数有最大值,y =a -b +c ,当x =0时,函数值为y =c =1,∴1a b c -+>,故②正确;∵-12b a=-<0, ∴ab >0,∵c =1,∴0abc >,故③正确;∵0a b c ++<,b =2a ,∴30a c +<,故④正确;∵1a b c -+>,b =2a ,∴1c a ->,故⑤正确.故选D .2.(2021·四川广安市中考真题)二次函数()20y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -≥+,④30a c +<,正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】 根据抛物线的开口方向,对称轴,与y 轴交点可得a ,b ,c 的符号,从而判断①;再根据二次函数的对称性,与x 轴的交点可得当x =-2时,y >0,可判断②;再根据x =-1时,y 取最大值可得a -b +c ≥ax 2+bx +c ,从而判断③;最后根据x =1时,y =a +b +c ,结合b =2a ,可判断④.【详解】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即12b a-=-, ∴b =2a ,则b <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;∵抛物线对称轴为直线x =-1,与x 轴的一个交点横坐标在0和1之间,则与x 轴的另一个交点在-2和-3之间,∴当x =-2时,y =4a -2b +c >0,故②错误;∵x =-1时,y =ax 2+bx +c 的最大值是a -b +c ,∴a -b +c ≥ax 2+bx +c ,∴a -b ≥ax 2+bx ,即a -b ≥x (ax +b ),故③正确;∵当x =1时,y =a +b +c <0,b =2a ,∴a +2a +c =3a +c <0,故④正确;故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).3.(2021·广东肇庆市九年级月考)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②0abc >;③20a b -=;④80a c +<;⑤930a b c ++<.其中结论正确的个数有( )A .1B .2C .3D .4【答案】C【分析】 观察抛物线与x 轴的交点情况即可对①作出判断;根据抛物线的开口方向、对称轴的位置及抛物线与y 轴的交点位置即可对②作出判断;根据抛物线的对称轴为直线x =1,即可对③作出判断;观察图象当x =-2时,y >0,从而可对④作出判断;观察图象当x =3时,y <0,从而可对⑤作出判断.【详解】抛物线与x 轴有两个交点,240b ac ∴->,即24b ac >,故①正确;抛物线开口向上,0a ∴>,对称轴在y 轴的右侧,0b ∴<,抛物线与y 轴交于负半轴,0c ∴<,0abc ∴>,故②正确;12b a-=, 20a b ∴+=,故③错误;2x =-时,0y >,420a b c ∴-+>,即80a c +>,故④错误;根据抛物线的对称性可知,当3x =时,0y <,930a b c ∴++<,故⑤正确,故选:C .【点睛】本题考查了二次函数的图象与性质,涉及数形结合;对于此类问题,一般是看抛物线的开口方向可确定a 的符号、看对称轴的位置可确定b 的符号、看抛物线与y 轴的交点位置确定c 的符号,看抛物线与x 轴交点的个数确定判别式的符号,根据函数图象可确定2ax bx c ++的符号.关键是熟练掌握二次函数的图象与性质.4.(2021·黑龙江牡丹江市中考真题)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c >0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为( )A .1B .2C .3D .4【答案】B【分析】 根据二次函数的图象和性质逐一进行判断即可【详解】解:∵抛物线y =ax 2+bx +c (a ≠0)的开口向上,∴a >0,∵抛物线线y =ax 2+bx +c (a ≠0)的顶点坐标为(1,n ),∴对称轴x =12b a-=, ∴b =-2a <0,∵抛物线与y 轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c <-2<0, ∴ab c>0;故①正确; ∵抛物线线x 轴的一个交点B (3,0),∴9a +3b +c =0,抛物线线x 轴的一个交点(-1,0),∵b =-2a∴c =32b , ∴-3<32b <-2, ∴﹣2<b 43<-,故②错误; ∵抛物线线x 轴的一个交点(-1,0),∴a -b +c =0,∴(a +c )2﹣b 2=(a +b +c )(a -b +c )=0,故③正确;∵a >0,∴-a <0∵b =-2a∴3a +2b =-a <0∴2c ﹣a >2(a +b +c ),∵抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),∴a +b +c =n ,∴2c ﹣a >2n ;故④错误;故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),明确以下几点:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;③常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).5.(2021·湖北荆门中考真题)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .1【答案】A【分析】根据已知条件可判断0c >,0a b <<,据此逐项分析解题即可.【详解】 解:抛物线开口向下0a ∴<把(1,0)A ,(,0)B m 代入2y ax bx c =++得200a b c am bm c ++=⎧⎨++=⎩2am bm a b ∴+=+20am bm a b ∴+--=(1)()0m am a b -++=21m -<<-0am a b ∴++=,(1)am c a m b ∴=+=-0c ∴>110m ∴-<+<10m +<11022m +∴-<< 1022b a∴-<-< 10b a∴>> 0a b ∴<<①220b c b a b b a +=--=->,故①正确;②220a c a a b a b +=--=-<,故②正确;③ (1)2230a m b c b c b a b b a +-+=-+=---=-->,故③正确;;④若方程()(1)10a x m x ---=有两个不相等的实数根,即2(1)10ax a m x am -++-=22(1)4(1)a m a am ∆=+--222(1)44a m a m a =+-+2244a b b a a a--=-⋅+ 22444b a ab a =+++24()4b a a b a =+++2440b ac a =-+>244ac b a ∴-<,故④正确,即正确结论的个数是4,故选:A .6.(2021·四川达州市中考真题)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】 ①根据图象开口向上,对称轴位置,与y 轴交点分别判断出a ,b ,c 的正负 ②根据对称轴公式2b x a =-,12x =判断,a b 的大小关系 ③根据2x =时,0y =,比较423a b c ++与0的大小;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等结合②的结论判断即可⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.【详解】①图象开口朝上,故0a > ,根据对称轴“左同右异”可知0b <,图象与y 轴交点位于x 轴下方,可知c <00abc ∴>故①正确; ②122b x a =-=得=-a b 0a b ∴+=故②错误;③2y ax bx c =++经过()2,0420a b c ∴++=又由①得c <04230a b c ∴++<故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等∴ 当1x =-时0y =,即0a b c -+=a b =-20a c ∴+=即12c a=- ∴ 2y ax bx c =++经过,02c a ⎛⎫⎪⎝⎭,即经过(1,0)- 故④正确; ⑤当12x =时,1142y a b c =++, 当x m =时,2y am bm c =++ 0a > ∴ 函数有最小值1142a b c ++∴ 21142am bm c a b c ++≥++ 化简得2440am bm b +-≥,故⑤正确.综上所述:①③④⑤正确.故选D .【点睛】本题考查二次函数图象与性质,二次函数解析式中系数与图象的关系,结合图象逐项分析,结已知条件得出结论是解题的关键.7.(2021·广西福绵九年级期中)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为直线1x =,给出下列结论:①0abc >;②当2x >时,0y >;③80a c +>;④30a b +<,其中正确的结论有( )A .①②B .①③C .①③④D .②④【答案】B【分析】该函数开口方向向上,则a >0,由对称轴可知,b =−2a <0,与y 轴交点在y 轴负半轴,则c <0,再根据一些特殊点,比如x =1,x =−1,顶点等进行判断即可.【详解】 解:函数开口方向向上,0a ∴>,对称轴为直线1x =,即12b a-=, 20b a ∴=-<, 抛物线与y 轴交点在y 轴负半轴,0c ∴<,0abc ∴>,故①正确,由图象可知,当0x =时,0y c =<,由函数的对称性可知,2x =时,0y c =<,且当1x >时,y 随x 的增大而增大,故②错误,当2x =-时,420y a b c =-+>,即80a c +>,故③正确,320a b a b a a +=++=>,故④错误,综上,正确的是①③,故选:B .【点睛】本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换是解题关键.8.(2021·山东日照中考真题)抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B【分析】 ①由图象开口方向,对称轴位置,与y 轴交点位置判断a ,b ,c 符号.②把2x =±分别代入函数解析式,结合图象可得22(4)(2)a c b +-的结果符号为负.③由抛物线开口向上,距离对称轴距离越远的点y 值越大.④由抛物线顶点纵坐标为m 可得2ax bx c m ++,从而进行判断21ax bx c m ++=-无实数根.【详解】 解:①抛物线图象开口向上,0a ∴>,对称轴在直线y 轴左侧,a ∴,b 同号,0b >,抛物线与y 轴交点在x 轴下方,0c ∴<,0abc ∴<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b ∴+-<,即22(4)(2)a c b +<,故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--,12|1||1|x x +>+,∴点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y ∴>,故③错误. ④抛物线的顶点坐标为(1,)m -,y m ∴,2ax bx c m ∴++,21ax bx c m ∴++=-无实数根.故④正确,综上所述,①②④正确,故选:B .【点睛】本题考查二次函数的图象的性质,解题关键是熟练掌握二次函数2(0)y ax bx c a =++≠中a ,b ,c 与函数图象的关系.9.(2021·山东枣庄中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫- ⎪⎝⎭,25,2y ⎛⎫ ⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ≠).正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【分析】 先根据抛物线开口向下、与y 轴的交点位于y 轴正半轴0,0a c <>,再根据对称轴可得0b a =->,由此可判断结论①;将点()2,0代入二次函数的解析式可判断结论②③;根据二次函数的对称轴可得其增减性,由此可判断结论④;利用二次函数的性质可求出其最大值,由此即可得判断结论⑤.【详解】 解:抛物线的开口向下,与y 轴的交点位于y 轴正半轴,0,0a c ∴<>, 抛物线的对称轴为122b x a =-=, 0b a ∴=->, 0abc ∴<,则结论①正确;将点()2,0代入二次函数的解析式得:420a b c ++=,则结论③错误;将=-a b 代入得:20b c -+=,则结论②正确; 抛物线的对称轴为12x =, 32x ∴=和12x =-时的函数值相等,即都为1y , 又当12x ≥时,y 随x 的增大而减小,且3522<, 12y y ∴>,则结论④错误; 由函数图象可知,当12x =时,y 取得最大值,最大值为1111142424a b c b b c b c ++=-++=+, 12m ≠, 214b c am bm c +>++∴, 即1()4b c m am b c +>++,结论⑤正确; 综上,正确的结论有①②⑤,共3个,故选:B .【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题关键.10.(2021·山东日照九年级月考)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:①0abc >;②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤若(),m n m n <为方程()()3230a x x +-+=的两个根,则3m <-且2n >,其中正确的结论有( )个.A .2B .3C .4D .5【答案】B【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由函数图象可得,0a <,0b <,0c >, 则0abc >,故①正确;122b a -=-,得a b =, 3x =-时,930y a bc =-+=,60a c ∴+=,6c a ∴=-,33630a c a a a ∴+=-=->,故②正确; 由图象可知,当12x <-时,y 随x 的增大而增大,当102x -<<时,y 随x 的增大而减小,故③错误;抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-,∴该抛物线与x 轴的另一个交点的坐标为(2,0), 20ax bx c ∴++=的两个根为13x =-,22x =, 211()0a b c x x ∴+⋅+=的两个根为13x =-,22x =,∴一元二次方程20cx bx a ++=的两根分别为113x =-,212x =,故④正确;该函数与x 轴的两个交点为(3,0)-,(2,0),∴该函数的解析式可以为(3)(2)y a x x =+-,当3y =-时,3(3)(2)a x x -=+-∴当3y =-对应的x 的值一个小于3-,一个大于2,∴若m ,()n m n <为方程(3)(2)30a x x +-+=的两个根,则3m <-且2n >,故⑤错误; 故选:B .【点睛】本题考查二次函数图象与系数的关系、根与系数的关系、抛物线与x 轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.(2021·四川省宜宾市中考一模)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线2x =,下列结论:①40a b +=;93a c b +>;③8720a b c ++>;④若点()13,A y -、点21,2B y ⎛⎫- ⎪⎝⎭、点37,2C y ⎛⎫ ⎪⎝⎭在该函数图象上,则132y y y <<;⑤若方程(1)(53a x x +-=-)的两根为1x 和2x ,且12x x <,则1215x x <-<<;⑥44a b b a+=-, 其中正确的结论有( )A .3B .4C .5D .6 【答案】A【分析】利用对称轴方程得到−2b a=2,则b =−4a ,于是可对①进行判断;利用x =−3时,y <0可对②进行判断;利用图象过点(−1,0)得到a −b +c =0,把b =−4a 代入得到c =−5a ,则8a +7b +2c =−30a ,然后利用a <0可对③进行判断;根据二次函数的性质,通过比较A 、B 、C 点到对称轴的距离的大小得到y 1<y 2<y 3.则可对④进行判断.根据抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(5,0),则抛物线解析式为y =a (x +1)(x −5),所以方程a (x +1)(x −5)=−3的两根x 1和x 2为抛物线y =a (x +1)(x −5)与直线y =−3的交点的横坐标,于是结合函数图象可对⑤进行判断; 根据b =−4a ,可对⑥进行判断.【详解】解:∵抛物线的对称轴为直线x =−2b a=2, ∴b =−4a ,即4a +b =0,所以①正确;∵x =−3时,y <0,∴9a −3b +c <0,即9a +c <3b ,所以②错误;∵抛物线经过点(−1,0),∴a −b +c =0,而b =−4a ,∴a +4a +c =0,则c =−5a ,∴8a +7b +2c =8a −28a −10a =−30a ,∵a <0,∴8a +7b +2c >0,所以③正确;∵点A (−3,y 1)到直线x =2的距离最大、点C (72,y 3)到直线x =2的距离最小,抛物线开口向下,∴y 1<y 2<y 3.所以④错误.∵抛物线的对称轴为直线x =2,抛物线与x 轴的一个交点坐标为(−1,0),∴抛物线与x 轴的另一个交点坐标为(5,0),∴抛物线解析式为y =a (x +1)(x −5),∴方程a (x +1)(x −5)=−3的两根x 1和x 2为抛物线y =a (x +1)(x −5)与直线y =−3的交点的横坐标,∴x 1<−1<5<x 2;所以⑤正确;∵b =−4a , ∴()()4145a b b a +=-+-=-,故⑥错误; 故选A .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:Δ>0时,抛物线与x 轴有2个交点;Δ=0时,抛物线与x 轴有1个交点;Δ<0时,抛物线与x 轴没有交点.12.(2021·黑龙江齐齐哈尔中考真题)如图,二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象及性质逐项分析即可判断.【详解】解:∵二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0, ∴当x =1时,0a b c ++=,故结论①正确;根据函数图象可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a -=-, 根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确;根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1,故结论③正确;根据函数图象可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.二、填空题13.(2021·北京师大附中九年级月考)二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①abc <0;②3a +c <0;③b 2﹣4ac >0;④16a +4b +c >0.其中正确结论的个数是:___.【答案】3【分析】根据二次函数图象的性质(开口方向、对称轴、与坐标轴交点以及特殊点的值),确定对应代数值的符号即可.【详解】解:图象开口方向向上,所以0a >, 对称轴为12b a-=,20b a =-< 图象与y 轴交点在x 轴下方,∴0c <∴0abc >,①错误;由图象可得,当1x =-时,0y <,即0a b c -+<,∴30a c +<,②正确;图象与x 轴有两个交点,∴240b ac ->,③正确;由图象可知,当2x =-时,0y >,又因为(2,)y -关于1x =对称的点为(4,)y∴当4x =时,0y >,即1640a b c ++>,④正确所以正确的个数为3故答案为3【点睛】此题考查了二次函数的图象与系数的关系,解题的关键是根据函数图象确定出对应代数值的符号.14.(2021·湖北新洲九年级月考)抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②20a b -=;③240b ac ->;④420a b c ++>;其中判断正确的选项是____________.【答案】②③④【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b =2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用对称轴方程可对②判断;利用抛物线与x 轴交点个数可对③进行判断; 利用当x =2时,y >0,可对④判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =2b a-=−1, ∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵b =2a ,∴20a b -=,所以②正确;∵抛物线与x 轴有2个交点,∴Δ=240b ac ->,所以③正确;∵当x =2时,y >0,∴420a b c ++>,所以④正确.故答案是:②③④.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:Δ=b 2−4ac >0时,抛物线与x 轴有2个交点;Δ=b 2−4ac =0时,抛物线与x 轴有1个交点;Δ=b 2−4ac <0时,抛物线与x 轴没有交点.15.如图是二次函数2y ax bx c =++的图象的一部分;图象过点(3,0)A -,对称轴为1x =-,给出四个结论:①24b ac >;②20a b +=;③0a b c -+=;④5a b <.其中正确的是__________.(填序号)【答案】①④【分析】①由图象与x 轴有交点,对称轴为x =2b a-=﹣1,与y 轴的交点在y 轴的正半轴上,可以推出b 2﹣4ac >0,可对①进行判断;②由抛物线的开口向下知a <0,与y 轴的交点在y 轴的正半轴上得到c >0,由对称轴为x =2b a -=﹣1,可对②进行分析判断;③由x =﹣1时y 有最大值,由图象可知y ≠0,可对③进行分析判断;④把x =1,x =﹣3代入解析式得a +b +c =0,9a ﹣3b +c =0,两边相加整理得5a ﹣b =﹣c <0,即5a <b ,即可对④进行判断.【详解】①∵图象与x 轴有交点,对称轴为x =2b a-=﹣1,与y 轴的交点在y 轴的正半轴上, 又∵二次函数的图象是抛物线,∴与x 轴有两个交点, ∴b 2﹣4ac >0,即b 2>4ac ,故①正确;②∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c >0,∵对称轴为x =2b a-=﹣1, ∴2a =b ,∴2a +b =4a ,a ≠0,故②错误;③∵x =﹣1时y 有最大值,由图象可知y ≠0,故③错误;④把x =1,x =﹣3代入解析式得a +b +c =0,9a ﹣3b +c =0,两边相加整理得5a ﹣b =﹣c <0,即5a <b ,故④正确;故答案为:①④.【点睛】本题考查了二次函数的图象与系数的关系,解题关键是掌握二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,要注意数形结合思想的运用.16.(2021·贵州黔东南中考真题)如图,二次函数()2=++0y ax bx c a ≠的函数图象经过点(1,2),且与x 轴交点的横坐标分别为1x 、2x ,其中 -1<1x <0,1<2x <2,下列结论:①0abc >;②20a b +<;③420a b c -+>;④当()12x m m =<<时,22am bm c <+-;⑤1b > ,其中正确的有 ___________.(填写正确的序号)【答案】②④⑤【分析】根据二次函数的开口方向、对称轴、与x 轴、y 轴的交点坐标以及过特殊点时系数a 、b 、c 满足的关系等知识进行综合判断即可.【详解】解:抛物线开口向下,a <0,对称轴在y 轴的右侧,a 、b 异号,因此b >0,与y 轴的交点在正半轴,c >0,所以abc <0,故①错误;对称轴在0~1之间,于是有0<-2b a<1,又a <0,所以2a +b <0,故②正确; 当x =-2时,y =4a -b +c <0,故③错误;当x =m (1<m <2)时,y =am 2+bm +c <2,所以am 2+bm <2-c ,故④正确;当x =-1时,y =a -b +c <0,当x =1时,y =a +b +c =2,所以-2b <-2,即b >1,故⑤正确; 综上所述,正确的结论有:②④⑤,故答案为:②④⑤.【点睛】本题考查了二次函数的图象和性质,不等式的性质等知识,掌握抛物线的所处的位置与系数a 、b 、c 满足的关系是正确判断的前提.17.(2021·山东泰安中考真题)如图是抛物线2y ax bx c =++的部分图象,图象过点(3,0),对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根.其中正确的为________(将所有正确结论的序号都填入).【答案】②④【分析】根据二次函数的图象与性质对各项进行判断即可.【详解】解:∵抛物线的开口向下,与y 轴的交点在y 轴的正半轴,∴a <0,c >0,∵抛物线的对称轴为直线x =1, ∴﹣2b a=1,即b =﹣2a >0 ∴abc <0,故①错误;∵抛物线与x 轴的一个交点坐标为(3,0),∴根据对称性,与x 轴的另一个交点坐标为(﹣1,0),∴a ﹣b +c =0,故②正确;根据图象,y 是有最大值,但不一定是3,故③错误;由210ax bx c +++=得2=1ax bx c ++﹣,根据图象,抛物线与直线y =﹣1有交点,∴210ax bx c +++=有实数根,故④正确,综上,正确的为②④,故答案为:②④.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,会利用数形结合思想解决问题是解答的关键.18.(2021·山东济宁中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的正半轴交于点A ,对称轴为直线1x =,下面结论:①0abc <;②20a b +=;③30a c +>;④方程()20y ax bx c a =++≠必有一个根大于1-且小于0.其中正确的是____(只填序号).【答案】①②④.【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立.【详解】解:由图象可得,a <0,b >0,c >0,则abc <0,故①正确;∵-2b a=1, ∴b =-2a ,∴2a +b =0,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x =1, ∴函数图象与x 轴的另一个交点在点(0,0)和点(-1,0)之间,故④正确;∴当x =-1时,y =a -b +c <0,∴y =a +2a +c <0,∴3a +c <0,故③错误;故答案为:①②④.19.(2021·湖北武汉市九年级月考)如图,二次函数()20y ax bx c a =++>的图象与x 轴交于两点()1,0x ,()2,0,其中101x <<,下列四个结论①0abc <;②20a c -<;③240a b c ++>;④44a b b a+<-,正确的序号是__________.【答案】①④【分析】根据抛物线开口向上,抛物线对称轴,抛物线与y 轴的交点可判断①正确;根据图象与x 轴交于两点(x 1,0),(2,0)和对称轴的位置可判断②错误;当x 12=时,y 的值为14a 12+b +c ,结合对称轴可判断③错误;根据对称轴12b a->;可得2a +b <0,变形可判断④正确; 【详解】解:①∵抛物线开口向上,∴a >0,∵抛物线对称轴在y 轴的右侧,∴b <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①正确;②∵图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1, ∴2021222b a ++-<<,∴1322b a -<<, 当322b a -<时,b >﹣3a , ∵当x =2时,y =4a +2b +c =0,∴b =﹣2a 12-c , ∴﹣2a 12-c >﹣3a , ∴2a ﹣c >0,故②错误;③当x 12=时,y 的值为14a 12+b +c , 给14a 12+b +c 乘以4,即可化为a +2b +4c , ∵抛物线的对称轴在1322b a -<<, ∴x 12=关于对称轴对称点的横坐标在32和52之间, 由图象可知在32和2之间y 为负值,2和52之间y 为正值, ∴a +2b +4c 与0的关系不能确定,故③错误; ④∵12b a->, ∴2a +b <0,∴(2a +b )2>0,4a 2+b 2+4ab >0,4a 2+b 2>﹣4ab ,∵a >0,b <0,∴ab <0, ∴2244a b ab+-<, 即44a b b a+-<, 故④正确.故答案:①④.20.(2021·湖北武汉市九年级月考)抛物线()20y ax bx c a =++≠与x 轴交于点()2,0-、()1,0x ,其中110x -<<,0c <,下列四个结论:①0abc >;②20a c -<;③()()30a b a b -->;④若m ,n (m n <)为关于x 的方程()()1210a x x x +-+=的两个根,则32m n -<+<-.其中正确的结论是______(填写序号).【答案】②④【分析】由题意可知,a <0,c <0,由对称轴可知得出b <0,故判断①;由当x =−2时,y =0和当x =−1时,y >0可以判断②;由当x =−1时,a −b +c >0和322b a -->,可以判断③;y =ax 2+bx +c =a (x +2)(x −x 1)向上平移1个单位得到,对称轴不变,可以判断④.【详解】解:∵抛物线()20y ax bx c a =++≠与x 轴交于点()2,0-、()1,0x ,其中110x -<<,0c <,∴抛物线的大致形状为∴a <0,对称轴2b a-<0, ∴b <0, ∴0abc <,故①错误;∵当2x =-时,0y =,即420a b c -+=①,当1x =-时,0y >,即0a b c -+>②,由①得:24b a c =+,把24b a c =+代入②×2得:2(4)+20a a c c -+>,整理得:2a c -<0,故②正确;当1x =-时,+a b c ->0,∴0a b c -->>, 又∵322b a -->, ∴30<-a b ,∴()(3)0a b a b --<,故③错误;∵1(2)()10a x x x +-+=,即y '为21(2)()y ax bx c a a x x =++=+-向上平移1个单位得到,∴12,m n x -<>, ∴3122m n +--<<, ∴32m n -+-<<,故④正确;故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );△决定抛物线与x 轴交点个数:Δ=b 2−4ac >0时,抛物线与x 轴有2个交点;Δ=b 2−4ac =0时,抛物线与x 轴有1个交点;Δ=b 2−4ac <0时,抛物线与x 轴没有交点.。

专题训练(二) 二次函数系数a,b,c与图象的关系

专题训练(二)  二次函数系数a,b,c与图象的关系

专题训练(二)二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象的关系知识储备二次函数y=ax2+bx+c的图象与字母系数a,b,c 之间的关系:项目字母字母的符号图象的特征a a>0 开口向上a<0 开口向下bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧c c=0 经过原点c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4ac b2-4ac=0与x轴有一个交点(顶点)b2-4ac>0 与x轴有两个交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c;当x=-1时,y=a-b+c当x=2时,y=4a+2b+c;当x=-2时,y=4a-2b+c若a+b+c>0,则当x=1时,y>0若a-b+c>0,则当x=-1时,y>0当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1时,2a-b=0;判断2a+b的值大于还是小于0,看对称轴与直线x=1的位置关系;判断2a-b的值大于还是小于0,看对称轴与直线x=-1的位置关系▶类型一利用二次函数图象考查以上表格中的问题1.[2020·宁波江北区期末]二次函数y=ax2+bx+c(a≠0)的图象如图1所示,则下列关系式错误的是()A.a<0B.b>0C.b2-4ac>0D.a+b+c<0图 1 图22.[2020·宁波]如图2,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是A.abc<0 B.4ac-b2>0C.c-a>0D.当x=-n2-2(n为实数)时,y≥c3.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()图 3▶类型二利用二次函数图象考查ma+nc或mb+nc(m,n为非零整数)与0的关系4.如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1.给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0.其中,正确的结论有()图4A.1个B.2个C.3个D.4个5.[2020·遵义改编]抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-2,抛物线与x轴的一个交点在点(-4, 0)和点(-3,0)之间,其部分图象如图5所示,下列结论中正确的有()①4a-b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等的实数根;④b2+2b>4ac.图5A.1个B.2个C.3个D.4个▶类型三利用二次函数图象考查am2+bm+c(a≠0,a,b,c为常数)与a+b+c的关系6.已知二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=1,其图象如图6所示,现有下列结论:①abc>0,②b-2a<0,③a-b+c>0,④a+b>n(an+b)(n ≠1),⑤2c<3b.其中正确的是()A.①③B.②⑤C.③④D.④⑤图6 图77.抛物线y=ax2+bx+c(a≠0)的一部分如图7所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1,有下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有() A.5个B.4个C.3个D.2个▶类型四利用二次函数图象解一元二次方程或不等式8.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D.x1=-1,x2=59.二次函数y=ax2+bx+c(a≠0)的图象如图8所示,则关于x的不等式ax2+bx+c>0的解是()图8A.x<-1B.x>3C.-1<x<3D.x<-1或x>3▶类型五利用一次函数、二次函数的图象解一元二次方程或不等式10.如图9所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解为()图9A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥911.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图10所示,则方程ax2+(32b x+c=0的两根之和()图10A.大于0B.等于0C.小于0D.不能确定专题二教师详解详析1.D[解析] 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.故选D.2.D[解析] ∵二次函数图象的对称轴为直线x=-1,∴-b2a=-1,∴b=2a.又∵a>0,∴b>0.∵抛物线与y轴正半轴交于点C,∴c>0,∴abc>0,故A错误;∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,∴4ac-b2<0,故B错误;∵b=2a,∴当x=-1时,y=a-b+c=c-a<0,故C 错误;当x=-n2-2(n为实数)时,y=a(-n2-2)2+b(-n2-2)+c=a(-n2-2)2+2a(-n2-2)+c=a( n2+1)2-a+c.∵n为实数,∴n2≥0,(n2+1)2≥1.又∵a>0,∴a(n2+1)2-a≥0,∴y≥c,故D正确,因此本题选D.3.C4.C[解析] ∵抛物线开口向下,∴a<0.∵抛物线交y轴于正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确;∵抛物线的对称轴为直线x=1,∴-b2a=1,∴-b=2a,∴2a+b=0,故③错误;∵抛物线与x轴的两个交点关于对称轴对称,∴点(3,0)关于直线x=1的对称点为(-1,0),即抛物线经过点(-1,0),∴a-b+c=0,故④正确.综上可知,正确的结论有①②④,共3个.5.C[解析] 由-b2a=-2,得4a-b=0,故①正确;由抛物线与x轴的一个交点在点(-4,0)和点(-3,0)之间,当x≤-2时,y随x的增大而增大,可知当x=-3时,y>0,由抛物线的对称性可知,当x=-1时,y>0,即a-b+c>0.又4a=b,∴a-4a+c>0,即c>3a.故②错误; 由图象得,关于x的方程ax2+bx+c=2有两个不相等的实数根正确; 由4ac-b24a=3,得4ac-b2=12a,∴4ac=12a+b2=3b+b2.易知a<0,b<0,c<0,∴4ac<2b+b2 ,故④正确.故选C.6.D[解析] ①由图象可知:a<0,b>0,c>0,∴abc<0,故此选项错误;②当x=-2时,y=4a-2b+c<0,即b-2a>c2>0,故此选项错误;③当x=-1时,y=a-b+c<0,故此选项错误;④当x=1时,y的值最大,此时,y=a+b+c,而当x=n 时,y=an2+bn+c,所以a+b+c>an2+bn+c(n≠1),故a+b>an2+bn,即a+b>n(an+b)(n≠1),故此选项正确.⑤由抛物线的对称性可知当x=3时函数值小于0,即y=9a+3b+c<0.∵抛物线的对称轴为直线x=-b2a=1,∴a=-b2,代入9a+3b+c<0,得9-b2 +3b+c<0,得2c<3b,故此选项正确;故④⑤正确.因此本题选D.7.B8.D9.D[解析] 根据图象可知,当y=0时,对应的x的值分别为x1=-1,x2=3.当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,当函数值y>0时,x的取值范围是x<-1或x>3.故选D.10.A[解析] 由图象可以看出:二次函数y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的图象的交点的横坐标分别为-1,9.而当y1≥y2时,对应的图象正好在两交点之间,所以-1≤x≤9.故选A.11.A。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线与在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.在抛物线上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线与下列命题中错误的是( ) A .两条抛物线关于轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于轴对称 D .两条抛物线没有公共点 6.抛物线y=-b +3的对称轴是___,顶点是___。

7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

8.抛物线的顶点坐标是( )A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( ) A .y=3-2 B .y=3+22y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-------2(1)x -2(1)x +C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -3 11.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( ) A .抛物线的形状相同 B .抛物线的顶点相同 C .抛物线对称轴相同 D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。

二次函数系数abc与图像关系练习题

二次函数系数abc与图像关系练习题

二次函数系数a、b、c与图像的关系知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c 的符号.(6)由对称轴公式x=,可确定2a+b的符号.一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.42.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B2个C3个D.4个..4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.45.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2B.m<3C.m>3D.2<m<37.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011?重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(2011?雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(2011?孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为( 12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及析:抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c >0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点本题主要考查了二次函数的图象和性质,解答本题关键是掌握评:二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b ﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考二次函数图象与系数的关系.点:分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点析:在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c (a≠0),二次项系数a决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2B.m<3C.m>3D.2<m<3考点:二次函数图象与系数的关系.分由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的析:不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交析:点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。

二次函数系数abc符号的关系

二次函数系数abc符号的关系

y
解析:⑴根据题意 得:
,
3
解得
所以抛物线的解析式为
-1 O
x
⑵令
解得
根据图象可得当函数值y为正数时,自变量x的取值范围是
y
ox
y
o
x
四、二次函数y=ax2+bx+c(a≠0)的几个特
例:
y
y=a+b+c
1、当x=1 时,
y=a-b+c
2、当x= -1时, y=4a+2b+c
-2 -1 o 1 2
x
3、当x=2时,
y=4a-2b+c
…………… ……………
练4习、:当二x=次-2函时数, y=ax2+bx+c(a≠0)的图
练习:1、二次函数y=ax2+bx+c(a≠0)的图象
如图所示,则a、b、c的符号为( B ) y
A、a<0,b>0,c>0 B、a<0,b>0,c<0
C、a<0,b<0,c>0 D、a<0,b<0,c<0 o
x
2、二次函数y=ax2+bx+c(a≠0)的图象
如图所示,则a、b、c的符号为( A )

△=0时抛物线与x轴有一个交点
△<0时抛物线于x轴没有交点
练习:填空
(1)函数y=ax2 +bx+c(a 0)的函数值恒为正的
条件为:
,恒为负的条件为:

(2)已知抛物线y=ax2 +bx+c的图象在x轴的下方,
则方程ax2 +bx+c 0的解的情况为

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)

初中数学专题训练:二次函数图象与a,b,c,b2-4ac等符号问题(含答案)二次函数y=ax2+bx+c(a≠0)的图象特征与a,b,c及判别式b2-4ac的符号之间的关系:一、选择题1.已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )A.当a=1时,函数图象过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.二次函数y=ax2+bx+c的图象如图2-ZT-1所示,则下列关系式错误的是( )图2-ZT-1A.a<0B.b>0C.b2-4ac>0D.a+b+c<03.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b 的取值范围是( )A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤24.已知二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-2所示,则正比例函数y=(b+c)x与反比例函数y=a-b-cx在同一坐标系中的大致图象是( )图2-ZT-2图2-ZT-35.已知抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )图2-ZT-46.二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-5所示,对称轴是直线x=1.下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是( )图2-ZT-5A.①④ B.②④C .①②③D .①②③④7.如图2-ZT -6,抛物线y =ax 2+bx +c 的图象交x 轴于点A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC .下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc >0,其中正确的结论有( )图2-ZT -6A .1个B .2个C .3个D .4个8.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图2-ZT -7所示,则下列结论:①4a -b =0;②c <0;③-3a +c >0;④4a -2b >at 2+bt (t 为实数);⑤点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,则y 1<y 2<y 3.正确的结论有( )图2-ZT -7A .4个B .3个C .2个D .1个 二、填空题9.二次函数y =ax 2+bx +c 的图象的一部分如图2-ZT -8所示,则a 的取值范围是________.图2-ZT-810.如图2-ZT-9是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y=mx+n(m≠0)与抛物线交于A,B两点,下列结论:2①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b.其中正确的结论是________.(只填写序号)图2-ZT-911.如图2-ZT-10,二次函数y=ax2+bx+c的图象的对称轴在y轴的右侧,其图象与x 轴交于点A(-1,0),C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.图2-ZT-1012.如图2-ZT-11,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④当a=12时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有四个.其中正确的结论是________(只填序号).图2-ZT-11三、解答题13.如图2-ZT-12,二次函数y=ax2+bx+c的图象与x轴交于B,C两点,交y轴于点A.(1)根据图象确定a,b,c的符号;(2)如果OC=OA=13OB,BC=4,求这个二次函数的表达式.图2-ZT-1214.已知函数y=ax2+bx+c,若a>0,b<0,c<0,则这个函数的图象与x轴交点的情况是怎样的?若无交点,请说明理由;若有交点,请说明有几个交点及交点分别在x轴的哪个半轴上.详解详析二次函数图象与a,b,c,b2-4ac等符号问题1.[答案] D2.[解析] D 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,即a+b+c>0,所以D选项的关系式错误.3.[答案] A4.[答案] C5.[解析] B 由公共点的横坐标为1,且在反比例函数y=bx的图象上,当x=1时,y=b,即公共点的坐标为(1,b).又点(1,b)在抛物线上,得a+b+c=b,即a+c=0.由a≠0知ac<0,一次函数y=bx+ac的图象与y轴的交点在负半轴上,而反比例函数y=bx的图象的一支在第一象限,故b>0,一次函数的图象满足y随x的增大而增大,选项B符合条件.故选B.6.[解析] C ①抛物线的开口向上,所以a>0.抛物线的对称轴为直线x=-b2a=1,所以b<0,所以ab<0.所以①正确;②抛物线与x轴有两个交点,所以b2-4ac>0,所以b2>4ac.所以②正确;③由图象知,当x=1时,y=a+b+c<0.又抛物线与y轴交于负半轴,所以c<0,所以a+b +2c<0.所以③正确;④由抛物线的对称性知当x =3时,y =9a +3b +c>0.又-b2a=1,所以b =-2a,所以3a +c>0.所以④错误.综上可知,正确的是①②③.故选C.7.[解析] C 在y =ax 2+bx +c 中,当x =0时y =c,∴C(0,c),∴OC =-c.∵OB=OC,∴B(-c,0).∵A(-2,0),∴-c,-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c·(-2)=c a .∵c≠0,∴a =12,②正确;∵-c,-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B(-c,0)代入y =ax 2+bx +c,得0=a(-c)2+b·(-c)+c,即ac 2-bc +c =0.∵c≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在x 轴左侧,∴-b2a <0,∴b >0,∴a +b >0.∵抛物线与y 轴负半轴交于点C,∴c <0.∴a +bc<0,④错误.8.[解析] B ∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,∴-b2a=-2,∴4a -b =0,故①正确;∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,∴另一个交点位于(-1,0)和(0,0)之间,∴抛物线与y 轴的交点在原点的下方,∴c <0.故②正确;∵4a -b =0,∴b =4a.∵当x =-3时,y =9a -3b +c =9a -12a +c =-3a +c>0,故③正确;∵4a -b =0,∴b =4a,∴at 2+bt -(4a -2b)=at 2+4at -(4a -2×4a)=at 2+4at +4a =a(t 2+4t +4)=a(t +2)2.∵t 为实数,a <0,∴a(t +2)2≤0,∴at 2+bt -(4a -2b)≤0,∴at 2+bt≤4a-2b,即4a -2b≥at 2+bt,∴④错误;∵点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,∴将它们描在图象上可得由图象可知:y1<y3<y2,故⑤错误.综上所述,正确的有3个.故选B.9.[答案] -1<a<0[解析] ∵抛物线开口向下,∴a<0.∵函数图象过点(0,1),∴c=1.∵函数图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴a的取值范围是-1<a<0.10.[答案] ②⑤[解析] ①根据函数图象的开口方向、对称轴、与y轴交点可知,a<0,b>0,c>0,故abc<0;②根据函数图象的顶点坐标可知,方程ax2+bx+c=3有两个相等的实数根,即x1=x2=1;③根据抛物线的对称性可知,抛物线与x轴的另一个交点是(-2,0);④根据函数图象,当1<x<4时,有y2<y1;⑤当x=1时,y=a+b+c=3≥x(ax+b)+c,∴x(ax+b)≤a+b.故正确的结论有②⑤.11.[答案] ①④[解析] 由抛物线的开口向上可知,a >0,且抛物线经过点A(-1,0),B(0,-2),对称轴在y 轴的右侧可得⎩⎪⎨⎪⎧a -b +c =0,c =-2,-b2a >0,即a -b =2,b <0,故a =2+b <2.综合可知0<a <2;由a -b =2可得a =b +2,将其代入0<a <2中,得0<b +2<2,即-2<b <0;当|a|=|b|时,因为a >0,b <0,故有a =-b.又a -b =2,可得a =1,b =-1. 故原函数为y =x 2-x -2,当y =0时,即有x 2-x -2=0,解得x 1=-1,x 2=2, 此时x 2=2>5-1.故答案为:①④. 12.[答案] ③④[解析] ∵抛物线与x 轴的交点A,B 的横坐标分别为-1,3,∴AB =4,对称轴为直线x =-b2a=1,∴b =-2a,即2a +b =0.故①错误;根据图象知,当x =1时,y <0,即a +b +c <0.故②错误;∵点A 的坐标为(-1,0),∴a -b +c =0,而b =-2a,∴a +2a +c =0,即c =-3a.故③正确;当a =12时,b =-1,c =-32,抛物线的函数表达式为y =12x 2-x -32.设对称轴直线x =1与x 轴的交点为E,∴把x =1代入y =12x 2-x -32,得y =12-1-32=-2,∴点D 的坐标为(1,-2),∴AE =2,BE =2,DE =2,∴△ADE 和△BDE 都为等腰直角三角形,∴△ABD 为等腰直角三角形.故④正确;要使△ACB 为等腰三角形,则必须保证AB =BC =4或AB =AC =4或AC =BC,当AB =BC =4时,∵BO =3,△BOC 为直角三角形,OC 的长为|c|,∴c 2=16-9=7.∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-7,与2a +b =0,a -b +c =0联立组成方程组,解得a =73; 当AB =AC =4时,∵AO =1,△AOC 为直角三角形,OC 的长为|c|,∴c 2=16-1=15. ∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-15,与2a +b =0,a -b +c =0联立组成方程组,解得a =153; 当AC =BC 时,在△AOC 中,AC 2=1+c 2,在△BOC 中,BC 2=c 2+9.∵AC =BC,∴1+c 2=c 2+9,此方程无解.∴只有两个a 值满足条件.故⑤错误.综上所述,正确的结论是③④.13.解:(1)∵抛物线开口向上,∴a>0. 又∵对称轴x =-b2a<0, ∴a,b 同号,即b>0.∵抛物线与y 轴交于负半轴,∴c<0. 综上所述,a>0,b>0,c<0. (2)∵OC=OA =13OB,BC =4,∴点A 的坐标为(0,-1),点B 的坐标为(-3,0),点C 的坐标为(1,0).把A,B,C 三点的坐标分别代入y =ax 2+bx +c 中,可得⎩⎨⎧-1=c ,0=9a -3b +c ,0=a +b +c ,解得⎩⎪⎨⎪⎧a =13,b =23,c =-1,∴该二次函数的表达式是y =13x 2+23x -1.14.[全品导学号:63422210]解:∵a>0,b <0,c <0,∴b 2-4ac >0, ∴这个函数图象与x 轴有两个交点.设这个函数图象与x 轴的交点坐标为(x 1,0),(x 2,0). ∵x 1·x 2=ca ,a >0,c <0,∴x 1·x 2<0,∴这个函数图象与x轴有两个交点,一个交点在x轴的正半轴上,另一个交点在x轴的负半轴上.。

中考数学一轮复习《二次函数的图像与性质》练习题(含答案)

中考数学一轮复习《二次函数的图像与性质》练习题(含答案)

中考数学一轮复习《二次函数的图像与性质》练习题(含答案)课时1二次函数图象与性质、抛物线与系数a、b、c的关系(建议答题时间:20分钟)1. (2017长沙)抛物线y=2(x-3)2+4的顶点坐标是()A. (3,4)B. (-3,4)C. (3,-4)D. (2,4)2. (2017金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是()A. 对称轴是直线x=1,最小值是2B. 对称轴是直线x=1,最大值是2C. 对称轴是直线x=-1,最小值是2D. 对称轴是直线x=-1,最大值是23. (2017连云港)已知抛物线y=ax2(a>0)过A(-2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>04. (人教九上41页第6题改编)对于二次函数y=-3x2-12x-3,下面说法错误的是()A. 抛物线的对称轴是x=-2B. x=-2时,函数存在最大值9C. 当x>-2时,y随x增大而减小D. 抛物线与x轴没有交点5. (2017眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax()A. 有最大值a4B. 有最大值-a4C. 有最小值a4D. 有最小值-a46. (2017广州)a≠0,函数y=ax与y=-ax2+a在同一直角坐标系中的大致图象可能是()7. (2017重庆巴蜀月考)已知二次函数y=a2x+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论中正确的是()A. abc>0B. b=2aC. a+c>D. 4a+2b+c>0第7题图第9题图第11题图8. (2017乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m的值是()A. 32B. 2 C.32或 2 D. -32或 29. (2017日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A. ①②③B. ③④⑤C. ①②④D. ①④⑤10. (2017广州)当x=________时,二次函数y=x2-2x+6有最小值________.11. (2017兰州)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则点Q的坐标为________.课时2 抛物线的平移、解析式的确定、与方程(不等式)的关系(建议答题时间:20分钟)1. (2017重庆南开模拟)将二次函数y =(x -1)2+2的图象向左平移2个单位,再向下平移3个单位,则新的二次函数解析式为( )A . y =(x -3)2-1B . y =(x +1)2+5C . y =(x +1)2-1D . y =(x -3)2+52. (2017徐州)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A . b <1且b ≠0B . b >1C . 0<b <1D . b <13. (2017苏州)二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A . x 1=0,x 2=4B . x 1=-2,x 2=6C . x 1=32,x 2=52D . x 1=-4,x 2=04. (2017绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A . b >8B . b >-8C . b ≥8D . b ≥-85. (2017天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )A . y =x 2+2x +1B . y =x 2+2x -1C . y =x 2-2x +1D . y =x 2-2x -16. (2017随州)对于二次函数y =x 2-2mx -3,下列结论错误的是( )A . 它的图象与x 轴有两个交点B . 方程x 2-2mx =3的两根之积为-3C . 它的图象的对称轴在y 轴的右侧D . x <m 时,y 随x 的增大而减小7. (2018原创)在-2,-1,0,1,2五个数字中,任取一个作为a ,使不等式组⎩⎨⎧x +a ≥01-x >x +2无解,且函数y =ax 2+(a +2)x +12a +1的图象与x 轴只有一个交点,那么a 的值为( )A . 0B . 0或-2C . 2或-2D . 0,2或-28. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________.9. 注重开放探究(2017上海)已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是________.(只需写一个)10. (2017武汉)已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是________.11. (2017鄂州)已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y =(x +1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________.12. (2017杭州)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.答案第1课时 二次函数图象与性质,抛物线与系数a 、b 、c 的关系1. A2. B3. C 【解析】画出抛物线y =ax 2(a >0)的草图如解图,根据图象可知,y 1>0,y 2>0,且y 1>y 2.第3题解图4. D 【解析】由y =-3x 2-12x -3=-3(x +2)2+9,可知对称轴是x =-2,选项A 正确;抛物线的开口向下,顶点坐标是(-2,9),当x =-2时,y 存在最大值9,选项B 正确;开口向下,当x >-2时,图象处于对称轴的右边,y 随x 增大而减小,选项C 正确;当y =0时,一元二次方程-3x 2-12x -3=0有实数解,所以抛物线与x 轴有交点,选项D 错误.5. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎨⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-a 4,又∵-1<a <0,∴二次函数y =ax 2-ax 有最大值,且最大值为-a 4.6. D 【解析】如果a >0,则反比例函数y =a x 图象在第一、三象限,二次函数y=-ax 2+a 图象开口向下,排除A ;二次函数图象与y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数y =a x图象在第二、四象限,二次函数y =-ax 2+a 图象开口向上,排除C ;故选D .7. D 【解析】观察函数图象,抛物线开口向下,则a <0.对称轴在y 轴右边,则a 、b 异号,∴b >0.抛物线与y 轴的交点在x 轴上方,则c >0,∴abc <0,选项A 错误;由抛物线的对称轴x =-b 2a =1,∴b =-2a ,选项B 错误;当x =-1时,y =a -b +c <0,∴a +c <b ,选项C 错误;根据对称性可知,当x =2时,y=4a +2b +c >0,选项D 正确.8. D 【解析】因为二次函数的对称轴为x =m ,所以对称轴不确定,因此需要讨论研究x 的范围与对称轴的位置关系,①当m ≥2时,此时-1≤x ≤2落在对称轴的左边,当x =2时y 取得最小值-2,即-2=22-2m ×2,解得m =32<2(舍);②当-1<m <2时,此时在对称轴x =m 处取得最小值-2,即-2=m 2-2m ·m ,解得m =-2或m =2,又-1<m <2,故m =2;③当m ≤-1时,此时-1≤x ≤2落在对称轴的右边,当x =-1时y 取得最小值-2,即-2=(-1)2-2m ×(-1),解得m =-32,综上所述,m =-32或 2.9. C 【解析】∵抛物线与x 轴交于(4,0),对称轴为x =2,∴抛物线与x 轴的另一个交点为(0,0).故①正确;∵抛物线经过原点,∴c =0.∵抛物线的对称轴为x =2,即-b 2a =2,∴4a +b =0,∴4a +b +c =0,故②正确;当x =-1时,抛物线的函数图象在x 轴上方,∴a (-1)2+(-1)b +c >0,即a -b +c >0,故③错误;∵c =0,4a +b =0,∴抛物线的解析式为y =-b 4x 2+bx =-b 4(x -2)2+b ,∴抛物线的顶点坐标为(2,b ),故④正确;由图象可知,抛物线开口向上,对称轴为x =2,当x <2时,y 随x 的增大而减小.故⑤错误.综上所述,①②④正确.10. 1,5 11.(-2,0)第2课时 抛物线的平移、解析式的确定、与方程(不等式)的关系1. C2. A3. A 【解析】∵二次函数y =ax 2+1的图象经过点(-2,0),∴代入得a (-2)2+1=0,解得a =-14,∴所求方程为-14(x -2)2+1=0,解方程得x 1=0,x 2=4.4. D 【解析】将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的函数为y =(x -3)2-1,与一次函数联立得⎩⎨⎧y =(x -3)2-1y =2x +b ,整理得x 2-8x +8-b =0,∵两个函数图象有公共点,∴方程x 2-8x +8-b =0有解,则(-8)2-4(8-b )≥0,解得b ≥-8.5. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得,x 1=1,x 2=3,∴A (1,0),B (3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使点B 平移后的对应点落在y 轴上,需向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.6. C 【解析】∵Δ=(-2m )2-4×1×(-3)=4m 2+12>0,∴图象与x 轴有两个交点,A 正确;令y =0得:x 2-2mx -3=0,方程的解即抛物线与x 轴交点的横坐标,由A 知图象与x 轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为c a =-31=-3,B 正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m 2=m ,∵m 的值不能确定,故对称轴是否在y 轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴的左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确,故选C .7. B 【解析】解不等式x +a ≥0得x ≥-a ,解不等式1-x >x +2得x <-12,因为不等式组无解,故-a ≥-12,解得a ≤12;当a ≠0时,b 2-4ac =(a +2)2-4a (12a +1)=0,解得a =2或-2,当a =0时,函数是一次函数,图象与x 轴有一个交点,所以当a =0,2或-2时,图象与x 轴只有一个交点,但a ≤12,∴a =0或-2.8. m >9 9. y =x 2-1(答案不唯一)10. 13<a <12或3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x+a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a ,0),即m =1a 或m =-a ,又∵2<m <3,则13<a <12或-3<a <-2.11. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8.12. 解:(1)由题意知(1+a )(1-a -1)=-2,即a (a +1)=2,∵y 1=x 2-x -a (a +1),∴y1=x2-x-2;(2)由题意知,函数y1的图象与x轴交于点(-a,0)和(a+1,0),当y2的图象过点(-a,0)时,得-a2+b=0;当y2的图象过点(a+1,0)时,得a2+a+b=0;(3)由题意知,函数y1的图象的对称轴为直线x=12,所以点Q(1,n)与点(0,n)关于直线x=12对称.因为函数y1的图象开口向上,所以当m<n时,0<x0<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数2y ax bx c =++图象的位置与abc 的关系归纳:二次函数2y ax bx c =++的对称轴为________,顶点坐标为______________(1)a 的符号由 决定: ①开口方向向 ⇔ a 0;②开口方向向 ⇔ a 0.(2)b 的符号由 决定;①对称轴在y 轴的左侧 ⇔b a 、 ;②对称轴在y 轴的右侧 ⇔b a 、 ;③对称轴是y 轴 ⇔b 0.④由对称轴公式x=,可确定2a+b 的符号.(3)c 的符号由 决定:①抛物线与y 轴交于正半轴 ⇔c 0;②抛物线与y 轴交于负半轴⇔c 0;③抛物线过原点 ⇔c 0. (4)ac b 42-的符号由 决定:①抛物线与x 轴有 交点⇔ b 2-4ac 0;②抛物线与x 轴有 交点⇔ b 2-4ac 0;③抛物线与x 轴有 交点⇔ b 2-4ac 0;(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号.【典型例题】已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列4个结论中:①abc>0;②b<a+c ;③4a+2b+c>0;④b 2-4ac>0;⑤b=2a.正确的是 (填序号)【课后作业】1.根据图象填空,:(1)a 0 ,b 0 ,c 0, abc 0.(2)b 2-4ac 0(3)c b a ++ 0;c b a +- 0;(4)当0>x 时,y 的取值范围是 ;当0>y 时,x 的取值范围是 . 2.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 轴的正半轴,与x 轴有两个交点,则下列结论正确的是( ).A.a ﹥0,bc ﹥0;B.a ﹤0,bc ﹤0;C. a ﹤0, bc ﹥0;D.a ﹥0, bc ﹤0xy y=ax 2+bx+c -1O 1x y x=10-1xy O 21213.已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( )A 、ac <0B 、a-b+c >0C 、b=-4aD 、关于x 的方程ax 2+bx+c=0的根是x 1=-1,x 2=54、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0; ②abc >0;③8a+c >0; ④9a+3b+c <0其中,正确结论的个数是( )A 、1B 、2C 、3D 、45.已知反比例函数xk y =的图象在二、四象限,则二次函数222k x kx y +-=的图象大致为( )A6、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是( )A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >07、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是( )A 、ac <0B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是x1=-1,x2=38、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A 、a >0B 、b <0C 、c <0D 、a+b+c >09、小明从图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0<c ;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( ) y O x y Ox y O x yO xB .C .D .A.2个B.3个 C.4个 D.5个10、已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤11、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、412、已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小13、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、414、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4 15.二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A. 1个B.2个C. 3个D.4个16、如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个17.函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 418.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④19、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个20、已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=—4aD、关于x的方程ax2+bx+c=0的根是x1=—1,x2=521、已知二次函数y=ax²+bx+c(a≠0)的图象如图所示,则下列结论:0 1 1- 2- 2 x y ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程ax ²+bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有( )A 、②③B 、②④C 、①③D 、①④22、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( )个.A 、1B 、2C 、3D 、423、二次函数y=-x 2+bx+c 的图象如图所示,下列几个结论:①对称轴为x=2;②当y ≤0时,x <0或x >4;③函数解析式为y=-x (x-4);④当x ≤0时,y 随x 的增大而增大.其中正确的结论有( )A 、①②③④B 、①②③C 、①③④D 、①③24、如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b 2>4ac ;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是( )A . 1个B . 2个C . 3个D .4个 25、如图,抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与 y 轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x >3时,y <0;②3a+b >0;③﹣1≤a ≤﹣;④≤n ≤4.其中正确的是( )A . ①②B . ③④C . ①③D . ①③④26、已知二次函数y=ax 2+bx+c (a >0)的图象与x 轴交于点(﹣1,0),(x 1,0), 且1<x 1<2,下列结论正确的个数为( )①b <0;②c <0;③a+c <0;④4a ﹣2b+c >0.A . 1个B . 2个C . 3个D . 4个27、如图所示,二次函数2(0)y ax bx c a =++≠的图象经过点(12)-,,且与x 轴交点的横坐标分别为12x x ,,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1a <-;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个28、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②b <a+c ;③2a+b=0;④a+b >m (am+b )(m ≠1的实数).其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个29、如图,抛物线y=ax 2+bx+c 的对称轴是x=1,下列结论:①b <0;②(a+c )2>b2;③2a+b-c>0;④3b<2c.其中正确的结论有________(填上正确结论的序号).30、已知:二次函数y=ax²+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b <0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A、①⑤B、①②⑤C、②⑤D、①③④31、二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).32、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(x1,0),-3<x1<-2,对称轴为x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④a-b>m(ma+b)(m≠-1的实数);⑤3b+2c>0.其中正确的结论有()A.2个B.3个C.4个D.5个33、已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个数有()A.1个B.2个C.3个D.4个34.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正确结论是.。

相关文档
最新文档