第六章--spss的方差分析

合集下载

SPSS方差分析df

SPSS方差分析df

第六章方差分析第一节Simple Factorial过程6.1.1 主要功能6.1.2 实例操作第二节General Factorial过程6.2.1 主要功能6.2.2 实例操作第三节Multivarite过程6.3.1 主要功能6.3.2 实例操作方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用于:1、均数差别的显著性检验,2、分离各有关因素并估计其对总变异的作用,3、分析因素间的交互作用,4、方差齐性检验。

第一节 Simple Factorial过程6.1.1 主要功能调用此过程可对资料进行方差分析或协方差分析。

在方差分析中可按用户需要作单因素方差分析(其结果将与第五章第四节相同)或多因素方差分析(包括医学中常用的配伍组方差分析);当观察因素中存在有很难或无法人为控制的因素时,则可对之加以指定以便进行协方差分析。

6.1.2 实例操作[例6-1]下表为运动员与大学生的身高(cm)与肺活量(cm3)的数据,考虑到身高与肺活量有关,而一般运动员的身高高于大学生,为进一步分析肺活量的差异是否由于体育锻炼所致,试作控制身高变量的协方差分析。

6.1.2.1 数据准备激活数据管理窗口,定义变量名:组变量为group (运动员=1,大学生=2),身高为x ,肺活量为y ,按顺序输入相应数值,建立数据库,结果见图6.1。

图6.1 原始数据的输入6.1.2.2 统计分析图6.2 协方差分析对话框点击Options...框,弹出Simple Factorial ANOV A:Options 对话框。

系统在协方差分析的方法(Method )上有三种选项: 1、Unique :同时评价所有的效应; 2、Hierarchical :除主效应外,逐一评价各因素的效应; 3、Experimental :评价因素干预之前的主效应。

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。

它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。

在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。

本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。

方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。

方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。

方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。

在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。

在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。

步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。

步骤3:点击“数据视图”页面,输入各组别的数据。

确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。

步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。

步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。

步骤6:点击“选项”按钮,出现选项对话框。

可以选择计算哪些统计量,如均值、标准差、总和平方和等。

步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。

方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。

-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。

-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。

-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。

-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。

《SPSS的方差分析》课件

《SPSS的方差分析》课件
总结词
数据来源与格式
详细描述
介绍如何新建数据文件,以及如何导入不同格式的数据文件,如Excel、CSV等。同时说明数据的基本 格式和要求。
SPSS数据的基本操作与整理
总结词
数据清洗与整理技巧
VS
详细描述
介绍SPSS中常见的数据清洗和整理操作 ,如缺失值处理、异常值检测与处理、数 据排序与分组等。同时提供实际操作案例 和技巧。
03
对于非数值型数据或分类数据,需要进行 转换或处理,较为繁琐。
04
对于大规模数据集,计算量大,需要较长 时间才能得出结果。
方差分析的未来发展方向
结合机器学习算法
01
利用机器学习算法对方差分析进行优化,提高分析的效率和准
确性。
拓展到多因素分析
02
将方差分析拓展到多因素分析领域,对方差分析进行更深入的
06
总结与展望
方差分析的优缺点总结
01
优点
02
适用于多组数据的比较,能够快速准确地判断各组 之间的差异。
03
可用于不同类型的数据,如计数数据、计量数据等 ,具有广泛的适用性。
方差分析的优缺点总结
• 能够考虑多种影响因素,进行多因素分析 。
方差分析的优缺点总结
01
缺点
02
对数据的要求较高,需要满足一定的假设 条件,如正态分布、方差齐性等。
双因素方差分析
总结词
用于比较两个分类变量各自所划分的不同组 之间的总体均值是否存在显著差异。
详细描述
双因素方差分析是单因素方差分析的扩展, 用于比较两个分类变量各自所划分的不同组
之间的总体均值是否存在显著差异。在 SPSS中,可以通过“分析”菜单中的“一 般线性模型”选项进行双因素方差分析。

SPSS的方差分析PPT课件

SPSS的方差分析PPT课件

SST SSA SSE
(xij x)2
i1 j1
组间偏差平方和
k
SSA ni (xi x)2 i 1
自由度=k-1
组内偏差平方和
k ni
SSE
(xij xi )2
i1 j1
自由度=n-k
组间均方和组内均方: MSA SSA , k 1
MSE SSE nk
量的不同水平。
3
单因素方差分析
4
单因素方差分析的基本思想
研究一个控制变量的不同水平是否对观测 变量产生了显著影响。由于仅研究单个因 素对观测变量的影响,因此称为单因素方 差分析。
明确观测变量和控制变量 剖析观测变量的方差 比较观测变量总离差平方和和各部分的比例
5
有关公式
总偏差平方和
k ni
不同品牌的彩电在5个地区的销售量数据
地区因素
地区1 地区2 地区3 地区4
365
350
343
340
345
368
363
330
358
323
353
343
288
280
298
260
地区5 323 333 308 298
13
2020/1/11
14
数据结构
15
分析步骤
(提出假设)
提出假设
对行因素提出的假设为
16
分析步骤
(构造检验的统计量)
计算平方和(SS)
总误差平方和
行因素误差平方和
k r
SST
xij x 2
i1 j1
kr
SSR xi. x 2 i1 j 1

spss多因素方差分析

spss多因素方差分析

表一给出了各水平结合下数据的正态分布检
验,通过S-W方法,得出p>0.05,接受虚无假 设,因此数据均服从正态分布。
步骤三:定义被试内因素
Analyze→General Linear Model→Repeated Measures

将因素A、B、C选入对话框,并且定义水平数目, 单击Add完成。
素的某个水平上的变异。 当然研究者也可以研究在 例如教学方法A与教学态度 B水平上, 之间存在显著的交互 A1 B1、B2之间 作用,研究者可以检验在 B1 水平上,A1、A2之间 的差异,即可称之为 B在A1 水平上的简单效应。 的差异,即可称为 A在 B1 水平上的简单效应。 以及在 A2水平上B1、 B2 之间的差异。即可称之为 B 以及在 B2水平上A1、A2之间的差异,即可称之为 在A2水平上的简单效应。 A在B2水平上的简单效应。 简单效应检验,实际上是把其中一个自变量固定 在某一个特定的水平上,考察另一个自变量对因 变量的影响。究竟将哪个自变量固定,视研究者 兴趣而定。
单击Define设置有关参数:将自变量的8个
水平结合置入“Within-Subjects Variables”列表框中
步骤四:事后多重比较设定
Repeated Measures→ Options
将A、B、C三个变 量从左侧移入右侧 Display Means For框中,选中 compare main effects,选择一种 事后比较方法。

球形检验(mauchly’s test of sphericity)
球形检验是对同一个体多次测量之间是否存
在相关性进行的检验。如果球形检验达到显 著性水平,即多次测量之间存在相关性,说 明球形假设不能满足,这时进行标准一元方 差分析就不可以,需要依据备选方差分析结 果(推荐采用Greenhouse-Geisser)

SPSS实验报告

SPSS实验报告

第六章方差分析一实验目的1.理解方差分析的概念、原理及作用;2.掌握用 SPSS 进行单因素、双因素及协方差分析的方法;3.结合参考资料了解方差分析的其它方法及作用。

二方差分析的原理方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作w SS ,组内自由度w df ;(2)实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差的总平方和表示,记作b SS ,组间自由度b df 。

三实验过程1. 某农场为了比较4种不同品种的小麦产量的差异,选择土壤条件基本相同的土地,分成16块,将每一个品种在4块试验田上试种,测得小表亩产量(kg)的数据如表6.17所示(数据文件为data6-4.sav),试问不同品种的小麦的平均产量在显著性水平0.05和0.01下有无显著性差异。

(数据来源:《SPSS实用统计分析》郝黎仁,中国水利水电出版社)表6.17实验步骤:第1步分析:由于有一个因素(小麦),而且是4种饲料。

故不能用独立样本T 检验(仅适用两组数据),这里可用单因素方差分析;第2步数据的组织:分成两列,一列是试验田的产量(output),另一列是小麦品种(breed)(A、B、C、D);第3步方差相等的齐性检验:由于方差分析的前提是各个水平下(这里是不同品种的小麦产量)的总体服从方差相等的正态分布。

其中正态分布的要求并不是很严格,但对于方差相等的要求是比较严格的。

因此必须对方差相等的前提进行检验。

从SPSS的数据管理窗口中选择analyze—compare means—One-Way ANOVA,将小麦产量(output)选入dependent list框中,将品种(breed)选入factor框中,点开Options,选中Homogeneity of variance test(方差齐性检验),点开post hoc multiple comparisons,将significance level的值在两次实验时分别设置为0.01和0.05。

SPSS操作方差分析

SPSS操作方差分析
步骤二: 选“Post hoc
test”
勾选多重比较 的方法
(如LSD、 duncan法
确定显著性水 平
continue
实例-多重比较
Post Hoc Test
方差分析步骤
方差分析的思路: 将全部观测值的总变异按影响结果的诸因素分
解为相应的若干部分变异,构造出反映各部分变 异作用的统计量,在此基础上,构建假设检验统 计量,以实现对总体参数的推断。
方差相等时可选 择的比较方法
方差不等时可选 择的比较方法
用t检验完成各组 均值的配对比较
与对照组的 配对比较
• LSD(最小显著差异法):用 t检验完成各组均值间的配对 比较。 在变异和自由度的计算上利用了整个样本信息。对 多重比较误差率不进行调整;(此法最敏感)
• Bonferroni(修正最小显著差异法) :用 t检验完成各组均 值间的配对比较,但通过设置每个检验的误差率来控制整 个误差;(应用较多)
• Gabriet(盖比理法):用正态标准系数进行配对比较,在单元 数较大时,这种方法较自由;
• Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。 使用贝耶斯接近;
• Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照 组的均值,默认的对照组是最后一组;选定此方法后,激活 下面的Control Catetory参数框,展开小菜单,选择对照组
149.0
185.3
224.6
143.1
162.7
182.8
220.4
128.9
143.8
188.5
212.3
135.7
153.5
198.6
实例-单因素方差分析

第六章 SPSS方差分析讲解

第六章 SPSS方差分析讲解
原假设分别为: 不同广告形式没有对销售额产生显著影响 不同地区的销售额没有显著差异
SPSS单因素方差分析的基本操作步骤: (1)选择菜单:【分析】-【比较均值】-【单因素ANOVA】 (2)选择观测变量到【因变量列表】 (3)选择控制变量到【因子】(自变量)。
ANOVA(广告形式对销售额的单因素的方差分析结果)
43.4732
61.3689 53.7135 57.7044 57.5944 57.2863 44.0597
61.0268
78.1311 80.2865 70.5456 76.4056 81.2137 63.6903
40.00
51.00 42.00 52.00 50.00 44.00 37.00
70.00
常用的几个检验统计量 (1)LSD方法(Least Significant Difference) LSD方法称为最小显著性差异法。其字面就体现了其检 验敏感性高的特点,即水平间的均值只要存在一定程度的微 小差异就可能被检验出来。它利用全部观测变量值,而非仅 使用某两组的数据。 LSD方法使用于各总体方差相等的情况,但它并没有对 范一类错误的概率问题加以有效控制。 (2)Bonferroni方法 Bonferroni方法与LSD方法基本相同。不同的是Bonferroni对 范一类错误的概率进行了控制。
如果控制变量各水平下的观测变量总体的分布出现了显著 差异,则认为观测变量值发生了明显的波动,意味着控制变 量的不同水平对观测变量产生了显著影响;反之,如果控制 变量值没有发生明显波动,意味着控制变量的不同水平对观 测变量没有产生显著影响。
方差分析对观测变量各总体的分布还有以下两个基本假设前提: 观测变量各总体应服从正态分布。(不是非常严格)

第六章SPSS的方差分析-精品文档

第六章SPSS的方差分析-精品文档

多因素方差分析的基本思想
SPSS
概念
多因素方差分析用来研究两个及两个以 上控制变量是否对观测变量产生显著影响。 它不仅能分析多个因素对观测变量的独立 影响,更能够分析多个控制因素的交互作 用能否对观测变量的分布产生显著影响, 进而找到有利于观测变量的最优组合。
基本思想 SPSS
确定观测变量和若干个控制变量 剖析观测变量的方差 比较观测变量总离差平方和和各部分所占
S-N-K方法 SPSS
• 用于进行所有各组均值间的配对比较,且 用于水平观测值个数相等的情况。用逐步 过程进行其次子集的均值配对比较。在该 过程中各组均值按从小到大的顺序排列, 最先比较最极端的差异。
方差不相等时的一些多重比较方法
SPSS
• Tamhane,sT2方法:表示用T检验进行配 对比较检验
对销售额有显著差异。
SPSS
方法二 分析
比较均值
均值
SPSS
SPSS
SPSS
单因素 方差分 析一定 要选上
SPSS
单因素方差分析的进一步分析
SPSS
进一步 分析
SPSS
方差相等时的一些多重比较方法
SPSS
LSD方法
即最小显著性差异法。用T检验完成组间成对 均值的比较。检验的敏感度较高,即使是 各个水平间的均值存在细微差别也有可能 被检验出来,但此方法对第一类弃真错误 不进行控制和调整
i1 j1 k1
S S T S S A S S B S S C S S A B S S B C S S A B C S S E
多因素方差分析的数学模型
SPSS
• 设控制变量A有k个水平,B有r个水平,每 个交叉水平下均有l个样本,则在控制变量

SPSS_第6章 方差分析

SPSS_第6章 方差分析

-12.3756
15.7090
-31.0423
-2.9577
-15.7090
12.3756
-32.7090
-4.6244
2.9577
31.0423
4.6244
32.7090
40
结果2
英语
Subset for alpha = .05
Student-Newman-Keul sa
g rou p 2 1 3 Si g.
Std. Deviation 13.70280 12.42176 6.96898 13.79175
Std. Error 5.59414 5.07116 2.84507 3.25075
95% Confidence Interval for M ea n
Lower Bound Upper Bound
58.7865
75 70
74
80 72
72
77 66
68
68 72
71
75 70
71
75 70
Xt =72
4
从上表可知,三种不同实验教材的教学效果不完全 一致,表现在三个不同实验处理组的平均数之间存 在差异;同时,同一实验组内部的5名样本的反应变 量也存在差异。
5
我们可以将三个实验组的所有15名样本分数的差异 分为两部分:实验组间的差异(称为组间差异)和 实验组内的差异(称为组内差异)。
18.66667* 6.58815
*. The mean difference is significant at the .05 level.
Si g. .804 .021 .804 .013 .021 .013
95% Confidence Interval

第6章spss方差分析(共39张PPT)

第6章spss方差分析(共39张PPT)
“Separate Lines”框中。
因sp为he当ric一ity个)I因n,变c否l量则u被应d重校e复正i测n。量te几r次c,ep从t而i同n一m个体o的d几e次l 观-在察结模果间型存在中相关包,这括样就截不满距足独。立若性的能要求确,但定要求回满足协方差矩阵的球形性( 归线不通过原点,则不选此项。 01,说明模型有统计学意义。
控制因素,可多 个
随机因素,不是 必需
协变量-用于去除该变量对因变量 的影响 ,协方差分析用
5
异方差时,将选入变量用加权最小二乘 法估计模型参数,协方差分析用
【Model按钮】:
Full factorial 全模型,包括所有因素的主效应、交互效应、协变 量主效应等。是系统默认的模型。
Custom 自定义模型。用户可以选择实验中感兴趣的效应 。
6
Factors&covariate-框中所列出的是主对话框中所选的因素:包 括固定因素(标F)、随机因素(标R)、协变量因素(标C) 。本例中只含有固定因素。
Build terms:针对所选因素选择不同的效应。 Interaction 指定任意的交互效应; Main effects 指定主效应; All 2-way 指定所有2维交互效应; All 3-way 指定所有3维交互效应; All 4-way 指定所有4维交互效应 All 5-way 指定所有5维交互效应。
Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方 和。
Total 是偏差平方和,在数值上等于截距+主效应+交互效应+误差
偏差平方和。 Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏 差平方和之总和。
22

SPSS第6单元多因素方差分析

SPSS第6单元多因素方差分析

数学 99.00 88.00 99.00 89.00 94.00 90.00 79.00 56.00 89.00 99.00 70.00 89.00 55.00 50.00 67.00 67.00 56.00 56.00
组别 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1
SPSS应用
图5-9 “Univariate: Options”对话框 (一)
SPSS应用
图5-10 “Univariate:
Post Hoc Multiple Comparisons for Observed Means”对话框
SPSS应用
SPSS应用
图5-11 “Univariate:Model”对话框
SPSS应用
图5-12 “Univariate:Profile Plots”对话框
SPSS应用
图5-13 “Univariate:Contrasts”对话框
5.3.3 结果和讨论
SPSS应用
(1)SPSS输出结果文件中的第一部分如 下两表所示。
SPSS应用
(2)输出的结果文件中第二部分如下表所示
SPSS应用
多因素方差分析(Univariate)是检验两 个或两个以上因素变量(自变量)的不同水平 是否给一个(或几个相互独立的)因变量造成 了显著的差异或变化的分析方法。
SPSS应用
多因素方差分析包含一个因变量,至少两个 自变量(因素)每个因素把被试区分为至少 两个实验水平,因变量必须是连续型变量。 多因素设计的方差分析过程通常分两步,首 先对因素主效应和交互效应进行综合检验,如 果效应显著,然后再作进一步检验。
性别 male female male male female male male female male male female male female male female male female male

SPSS操作—方差分析

SPSS操作—方差分析

SPSS操作—方差分析
一、概念
方差分析(ANOVA)法是统计学中一种用于检验三个或以上水平的均数差异的统计方法。

方差分析从表面上看是利用方差的大小,在一定的概率和显著水平下,比较多组数据的均值差异,确定数据的显著性。

一般来说,它用来检验有多自变量时的均数差异,其中包括一个或多个因素,每个因素又有两个或者多个水平。

二、SPSS操作步骤
1、打开SPSS软件,点击“文件”,选择“新建”,在弹出的界面中选择“数据集”,点击“确定”,新建一个数据集。

2、将所要分析的数据输入到数据集中,在“变量视图”中定义响应变量和自变量,并设置其变量类型,完成数据的输入。

3、点击“分析”,选择“统计”,在弹出的界面中选择“参数检验”,点击“F检验”,然后在窗口中选择因变量和自变量,完成基本的参数设置,点击“确定”,弹出方差分析窗口,点击“确定”,即可开始运行方差分析。

4、方差分析运行完毕后,在输出窗口中可以看到结果,包括方差分析汇总表和方差分析的结果等信息。

5、方差分析的结果主要包括拟合度指数、F值、绝对值、样本量、概率值、单组比较、多组比较等内容,在这里。

《SPSS数据分析教程》——方差分析课件

《SPSS数据分析教程》——方差分析课件
《SPSS数据分析教程》——方差分析
同质子集
Tukey B两两比较输出的结果,它把在5%的显著性 水平下没有区别的总体放在同一列,作为同类子集。 这里,培训2天和培训3天没有显著区别,它们作为 一类。而培训1天单独作为1类。
《SPSS数据分析教程》——方差分析
轮廓图
轮廓图为各个总体的均值的折线图,从中可以直观 的看出各个总体均值的趋势。
《SPSS数据分析教程》——方差分析
方差分析的术语
n 试验中的实验结果是需要分析的变量,称为响应变量, 或者因变量。方差分析的因变量必须为尺度类型的数 据(即连续数据)。
n 影响试验结果的因素即为影响响应变量的变量,称为 自变量或者因子。根据试验中这些因素的处理方式, 因素可以分为控制因素、随机因素和协变量。
n 误差之间相互独立,并且也独立于模型中的其 他变量。一般好的试验设计都可以避免违反该 条件。
n 不同处理的误差为常数。 n 误差服从均值为0的正态分布。
《SPSS数据分析教程》——方差分析
举例
n 一家连锁零售商店对它们客户的购买习惯进行 了一项调查,它记录了客户性别,购买模式、 上一个月的购买金额等信息。该商店需要了解 在控制客户性别的条件下,是否客户购买的频 率和花费的金额有关系,以此来决定是否采取 相应的促销活动。
《SPSS数据分析教程》——方差分析
n 打开数据文件grocery_1month.sav。 n 选择【分析】→【一般线性模型】→【单变量】
《SPSS数据分析教程》——方差分析
绘制选项
把style选入水平轴,gender选入单图,然后点击 “添加”。再把style和gender互相交换,选入不同 的框中,单击“添加”。
《SPSS数据分析教程》——方差分析
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章spss的方差分析
1、入户推销有五种方法。

某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。

从应聘人员中尚无推销经验的人员中随机挑选一部分人,并随机地将他们分为五个组,每组用一种推销方法培训。

一段时期后得到他们在一个月内的推销额,如下表所示:
1)请利用单因素方差分析方法分析这五种推销方式是否存在显著差异。

2)绘制各组的均值对比图,并利用LSD方法进行多重比较检验。

原假设:这五种推销方式是否存在显著差异。

步骤:建立SPSS数据→分析→比较均值→单因素→因变量导入销售额→变量导入方式→选项→选择方差同质性检验、均值图→选择LSD方法检验→确定
表6-1
方差齐性检验
销售额
Levene 统计量df1 df2 显著性
2.048 4 30 .113
表6-2
分析:sig值为0.00<0.05,故拒绝原假设,认为这五种销售方式中存在显著差异。

(2)多重比较:
分析:有表6-3可以看出,多重比较中sig值均小于0,05,所以拒绝原假设,认为五种推销方法存在显著差异均值图也可以看出均值对比图的曲折比较大,进一步验证了结论。

2、为研究某种降血压药的适用特点,在五类具有不同临床特征的高血压患者中随机挑选了若干志愿者进行对比试验,并获得了服用该降压药后的血压变化数据。

现对该数据进行单因素方差分析,所得部分分析结果如下表所示。

1)请根据表格数据说明以上分析是否满足方差分析的前提要求,为什么?
2)请填写表中空缺部分的数据结果,并说明该降压药对不同组患者的降压效果是否存在显著差异。

3)如果该降压药对不同组患者的降压效果存在显著差异,那么该降压药更适合哪组患者?1)图表中可以看出,在方差齐性检验中,sig值为0.001,小于0.05,故拒绝原假设,所以方差不齐。

2)表中空缺补充:
ANOVA
销售量
平方和df 均方 F 显著性
组间1104.128 4 276.032 11.403 .000
组内1524.990 6324.206
总数2629.118 67
分析:对数据进行检验中,sig值为0.000,小于0.05,故拒绝原假设,SUOYI 降压药对不同患者的降压效果有显著影响。

3)由多重检验可以看出,第1组和2组,第2组和5组,第1组和5组之间差异不显著,其他组差异较显著。

所以该降压药更适合于三组和四组。

3、为研究某商品在不同地区和不同日期的销售差异性,调查收集以下日平均销售量数据。

1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。

2)利用多因素方差分析,分析不同地区和不同日期对该商品的销售是否产生了显著影响3)地区和日期是否对该商品的销售产生了交互影响。

若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。

1)组织SPSS数据文件:
2)原假设:日期与地区与销售额无显著影响
分析→般线性模型→单变量→因变量导入销售额→固定因子导入地区和日期→两两比较中的比较量→确定
主体间效应的检验
因变量:销售额
源III 型平方和df 均方 F Sig.
校正模型 6.185E7 8 7731481.481 8.350 .000 截距8.445E8 1 8.445E8 912.040 .000
地区2296296.296 2 1148148.148 1.240 .313
日期2740740.741 2 1370370.370 1.480 .254
地区 * 日期 5.681E7 4 1.420E7 15.340 .000 误差 1.667E7 18 925925.926
总计9.230E8 27
校正的总计7.852E7 26
a. R 方 = .788(调整 R 方 = .693)
分析:由上表可以看出,地区sig值为0.313,,大于0.05,接受原假设,认为地区对销售额的影响不显著;日期sig值为0.254,大于0.05,接受原假设,认为日期对销售额的影响不显著;
3)原假设:地区*日期对销售额影响不显著。

由2)表中数据可以看出,日期和地区对销售额影响的sig值为0.00,小于0.05,故否定原假设,认为地区*日期对销售额的影响显著。

4、下面的表格记录了某公司采用新、旧两种培训方式对新员工进行培训前后的工作能力评分增加情况的数据。

现需要比较这两种培训方式的效果有无差别,考虑到加盟公司时间可能也是影响因素,将加盟时间按月进行了纪录。

1)请选择适当的数据组织方式将以上数据录入到SPSS资料编辑窗口,变量名保持不变,并定义各变量的变量值标签,变量Method的变量值标签(1为旧方法,2为新方法)。

2)按不同的培训方法计算加盟时间、评分增加量的平均数。

3)在剔除加盟时间影响的前提下,分析两种培训方式的效果有无差别,并说明理由。

1)数据组织方法如下图:
2)步骤:数据→转置→month,score add转置→转换→计算变量→统计量,选择均值→目标变量内输入方法1的均值→在数字表达式内填入MEAN→确定
描述统计量
N 极小值极大值均值标准差时间9 1.0 5.5 3.500 1.5411
增长量9 8.0 13.0 10.611 1.6729 有效的 N (列表状态)9
描述统计量
N 极小值极大值均值标准差时间9 .5 7.0 4.000 2.0917
增长量9 9.0 16.0 12.556 2.6034
描述统计量
N 极小值极大值均值标准差时间9 1.0 5.5 3.500 1.5411
增长量9 8.0 13.0 10.611 1.6729 有效的 N (列表状态)9
3)原假设:两种培训方式效果无显著差别
步骤:分析→般线性模型→因变量导入score add→固定因子中导入month→确定
主体间效应的检验
因变量:Scoreadd
源III 型平方
和df 均方 F Sig.
校正模型17.014a 1 17.014 3.553 .078
截距2415.125 1 2415.125 504.392 .000
Method 17.014 1 17.014 3.553 .078
误差76.611 16 4.788
总计2508.750 18
校正的总计93.625 17
a. R 方 = .182(调整 R 方 = .131)
分析:由上表可以看出,在剔除加盟时间影响下的sig检验值为0.034,小于0.05,故拒绝原假设,认为两种培训方式效果有显著差别.。

相关文档
最新文档