2018中考数学不等式与不等式组
中考数学复习专题三-不等式和不等式组(解析版)
中考专题复习知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。
知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
知识点3、不等式的解集在数轴上的表示: (1)x >a :数轴上表示a 的点画成空心圆圈,表示a 的点的右边部分来表示;(2)x <a :数轴上表示a 的点画成空心圆圈,表示a 的点的左边部分来表示;(3)x ≥a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的右边部分来表示;(4)x ≤a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的左边部分来表示。
在数轴上表示大于3的数的点应该是数3所对应点的右边。
画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。
如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取-2左边的点 画实心圆点。
如图所示:总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。
知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。
知识点6、解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。
通过这些步骤可以把一元一次不等式转化为x >a (x ≥a )或x <a (x ≤a )的形式。
知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
知识点8、知识点9、解不等式组:求不等式组解集的过程叫做解不等式组。
知识点10、解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求出这几个不等式解集的公共部分。
中考数学热点题型专练不等式与不等式组含解析
热点06 不等式与不等式组【命题趋势】1.解不等式(组)并在数轴上表示解集.试题难度一般不大,选择题、填空题和解答题中都会出现.2.联系生活实际,用不等式(组)解决实际问题,常与函数、方程结合考查.【满分技巧】一、不等式的性质不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.二、一元一次不等式及其解法(1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.三、一元一次不等式组及其解法解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、一元一次不等式(组)的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”“最多”“不超过”“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【限时检测】(建议用时:30分钟)一、选择题1.如果0a b c ><,,那么下列不等式成立的是 A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选D .2.不等式2x ﹣1>3﹣x 的解集是A .x <43B .x >34C .x >43D .x <34【答案】C【解析】移项得2x +x >3+1,合并同类项得3x >4,系数化为1得x >43. 故选C .3.不等式3(x +1)>2x +1的解集在数轴上表示为A .B .C .D . 【答案】A【解析】去括号得,3x +3>2x +1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选A .4.不等式组2012x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是 A .B .C .D . 【答案】B【解析】2012x x +>⎧⎨-≤⎩①②, 由①得,x >﹣2,由②得,x ≤3,故此不等式组的解集为:﹣2<x ≤3.在数轴上表示为:故选B .5.关于x 的不等式组2150x x m ->⎧⎨-<⎩有三个整数解,则m 的取值范围是 A .67m <≤B .67m <<C .7m ≤D .7m <【答案】A 【解析】2150x x m ->⎧⎨-<⎩①② 由①得:x >3,由②得:x <m ,则不等式组的解集是:3<x <m .不等式组有三个整数解,则整数解是4,5,6.则6<m ≤7.故选A .6.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围 A .a >2B .a ≥2C .a <2D .a ≤2 【答案】C【解析】∵不等式(a ﹣2)x >1的解集为x <12a -,∴a ﹣2<0,∴a 的取值范围为:a <2.故选C . 7.若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是 A .1B .2C .3D .4 【答案】C【解析】解不等式2x -6+m <0,得:解不等式4x -m >0,得:∵不等式组有解,解得m <4,如果m =2,<2,整数解为x =1,有1个; 如果m =0,则不等式组的解集为0<m <3,整数解为x =1,2,有2个;如果m =-1,整数解为x =0,1,2,3,有4个, 故选C .8.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[–2.5]=–3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 A .2个B .3个C .4个D .5个【答案】C 【解析】解方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩可得[][]1,3,x y ⎧=⎪⎨=⎪⎩又∵[a ]表示不大于a 的最大整数,∴1≤x <2,3≤y <4,∴4≤x 2+y <8,∴[x 2+y ]可能的值有4,5,6,7,故选C .9.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A .20B .35C .30D .40【答案】C 【解析】∵990不能被13整除,∴两个部门人数之和:a +b ≥51,(1)若51≤a +b ≤100,则11(a +b )=990得:a +b =90,①由共需支付门票费为1290元可知,11a +13b =1290②解①②得:b =150,a =–60,不符合题意.(2)若a +b ≥100,则9(a +b )=990,得a +b =110③由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100,得11a +13b =1290④,解③④得:a =70人,b =40人故两个部门的人数之差为70–40=30人,故选C .10.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种A .2B .3C .4D .5【答案】B【解析】设搭配A 种造型x 个,则B 种造型为(50﹣x )个.依题意,得: 7040(50)26603080(50)3000x x x x +-≤⎧⎨+-≤⎩,解得:20≤x≤22,∵x是整数,∴x可取20、21、22,∴可设计三种搭配方案:①A种园艺造型20个B种园艺造型30个.②A种园艺造型21个B种园艺造型29个.③A种园艺造型22个B种园艺造型28个.故选B.二、填空题11.不等式2x-3≤3的正整数解是___________.【答案】1、2、3【解析】解不等式2x-3≤3得x≤3,∴正整数解是1、2、3,故答案为:1、2、3.12.不等式组3121230xx+>-⎧⎨-≥⎩的解集为___________.【答案】﹣1<x≤4【解析】解不等式3x+1>﹣2,得:x>﹣1, 解不等式12﹣3x≥0,得:x≤4,则不等式组的解集为﹣1<x≤4,故答案为:﹣1<x≤4.13.解不等式组261,31513.22x xx x⎧+>-⎪⎪⎨⎪+≥-+⎪⎩①②,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________;(Ⅱ)解不等式②,得__________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________.【答案】3x >-;(Ⅱ)2x ≤;(Ⅲ)见解析;(Ⅳ)32x -<≤【解析】(Ⅰ)不等式①移项,得23x +x >1–6;合并同类项,得53x >–5;化系数为1,得x >–3故答案为x >–3.(Ⅱ)不等式②移项,得12x –52x ≥–3–1;合并同类项,得–2x 4≥-;化系数为1,得x 2≤故答案为x 2≤.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)根据数轴上的公共部分可得原不等式组的解集为–3<x 2≤.14.不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是__________.【答案】8≤k <12【解析】﹣4x ﹣k ≤0,﹣4x ≤k ,x ≥4k -, ∵不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2, ∴﹣3<4k -≤﹣2, 解得:8≤k <12,故答案为:8≤k <12.15.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________.【答案】13≤x <15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x <15.故答案为:13≤x <15.三、解答题16.解不等式5132x x -+>-. 【解析】将不等式5132x x -+>-, 两边同乘以2得,x -5+2>2x -6,解得x <3.17.解不等式组: 4(1)273x x x x -<+⎧⎪+⎨>⎪⎩. 【解析】4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②, 解①得:x <2,解②得x <72, 则不等式组的解集为2<x <72. 18.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来. 【解析】31251422x x x x +>⎧⎪⎨+-≥⎪⎩①②,解不等式①,得x >﹣1, 解不等式②,得x ≤3,所以,原不等式组的解集为﹣1<x ≤3,在数轴上表示为:19.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵,由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵,根据题意可得,3020(10)230y y +-≤,1030y ≤,∴3y ≤,∵y 为自然数,∴y =3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵.20.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售额相同,3件甲种商品比2件乙种商品的销售额多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总额不低于5400万元,则至少销售甲种商品多少万件?【解析】(1)设甲种商品的销售单价是x 元,乙种商品的单价为y 元.根据题意得:23321500x y x y =⎧⎨-=⎩. 解得:900600x y =⎧⎨=⎩. 答:甲种商品的销售单价是900元,乙种商品的单价为600元.(2)设销售甲产品a 万件,则销售乙产品(8)a -万件.根据题意得:900600(8)5400a a +-≥.解得:2a ≥.答:至少销售甲产品2万件.21.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.【解析】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,3600360010+=,0.9x x解得,x=40,经检验,x=40是原分式方程的解,∴0.9x=36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m件,则乙种商品购进(80﹣m)件,总利润为w元,w=(80﹣40)m+(70﹣36)(80﹣m)=6m+2720,∵80﹣m≥3m,∴m≤20,∴当m=20时,w取得最大值,此时w=2840,答:该商店获得的最大利润是2840元.。
2018年四川省中考数学真题汇编解析:数与式、方程不等式
2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是( )A .B .C .D .解:∵=3,∴=3,∴x ﹣y=﹣3xy ,则原式====, 故选:D .10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ) A .8% B .9%C .10%D .11%解:设平均每次下调的百分率为x ,由题意,得 6000(1﹣x )2=4860,解得:x 1=0.1,x 2=1.9(舍去). 答:平均每次下调的百分率为10%. 故选:C .二.填空题(共10小题)11.(2018•自贡)分解因式:ax 2+2axy +ay 2= a (x +y )2 . 解:原式=a (x 2+2xy +y 2)…(提取公因式) =a (x +y )2.…(完全平方公式)12.(2018•成都)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B 型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N >0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。
中考数学专题复习 第五章 方程与不等式 第2讲 不等式(组)课件
变式运用►3.[2017·常州中考]某校计划购买一批篮球和足球(zúqiú) ,已知购买2个篮球和1个足球(zúqiú)共需320元,购买3个篮球和2个 足球(zúqiú)共需540元.
(1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么 最多可购买多少个足球?
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲,乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多 少万件?
【思路分析】(1)可设甲种商品的销售单价(dānjià)为x元,乙种商品 的销售单价(dānjià)为y元,根据等量关系:①2件甲种商品与3件乙种 商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多 1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲 、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
2021/12/9
第十九页,共二十四页。
4.[2012·泰安,6,3分]将不等式组
的解集在数轴上表示(biǎoshì)出来,正确的是( C )
得分(dé fēn)要领►求不等式组的解集要遵循以下原则:同大取大, 同小取小,小大大小中间找,大大小小解不了.
2021/12/9
第二十页,共二十四页。
命题点2 确定不等式组中字母(zìmǔ)的取值范围
2021/12/9
第十一页,共二十四页。
类型(lèixíng)3 不等式的应用
【例3】[2017·宁波中考]2017年5月14日至15日,“一带一路”国际合作 (hézuò)高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作 (hézuò)协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国 家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比 2件乙种商品的销售收入多1500元.
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
( A)
A.1 B.2 C.3 D.4
3.(2021·金华)一个不等式的解在数轴上表示如图,则这个不等式可以
是
( B)
A.x+2>0 B.x-2<0 C.2x≥4 D. 2-x<0
2x+1≥-3,
4.(2018·毕节)不等式组x<1
的解集在数轴上表示正确的是
( D)
5x+2>3(x-1),
5.不等式组12x-1≤7-32x
14.(2018·三黔模拟)若关于 x 的不等式 3x-m+1>0 的最小整数解为 3,
则 m 的取值范围是_7_≤7≤mm<<1100__.
x-2 x-1
15.(2020 遂宁)若关于 x 的不等式组
4
<x-m≤2-x
则 m 的取值范围是_1_≤1≤mm<44__.
16.(2021·绥化)某学校计划为“建党百年,铭记党史”演讲比赛购买 奖品.已知购买 2 个 A 种奖品和 4 个 B 种奖品共需 100 元;购买 5 个 A 种奖品和 2 个 B 种奖品共需 130 元.学校准备购买 A,B 两种奖品共 20 个,且 A 种奖品的数量不小于 B 种奖品数量的25,则在购买方案中最少费 用是_ 330 __元.
17.阅读下面材料,完成学习任务: 小美和小明特别喜欢钻研数学问题,经常找数学王老师出题目给他们思 考.有一天,王老师交给他们一个问题:求不等式2xx+-31>0 的解集.
1 小美说:2x-1>0 的解集是 x>2,x+3>0 的解集是 x>-3,但要求出 2xx+-31>0 的解集,太难了,我解不出来.
9.(2020·攀枝花)世纪公园的门票是每人 5 元,一次购门票满 40 张, 每张门票可少 1 元.若少于 40 人时,一个团队至少要有__3333_ _人进公
中考数学复习 一元一次不等式(组)及应用
“≠”连接而成的式子.
2.解集:一般地,一个含有未知数的不等式的所有
的解,组成这个不等式的解集.
如果a>b,那么a±c>b±c
3.性质如果a>b,c>0,那么ac>bc或ac>bc
如果a>b,c<0,那么ac
①_<_bc或ac
②_<_bc
第1部分 第二单元 方程(组)与不等式(组)
二、一元一次不等式 一元一次不等式
第二单元 方程(组)与不等式(组)
课时 8 一元一次不等式(组)及应用
CONTENTS
目 录
课前自测 知识梳理 知识过关
第1部分 第二单元 方程(组)与不等式(组)
课前自测
1.已知a>b,则下列不等式中不正确的是( C )
A.4a>4b
B.a+4>b+4
C.-4a>-4b
D.a-4>b-4
第1部分 第二单元 方程(组)与不等式(组)
第1部分 第二单元 方程(组)与不等式(组)
广东中考
1.(2013广东)已知实数a,b,若a>b,则下列结论 正确的是( D )
A.a-5<b-5 B.2+a<2+b C.a3<b3 D.3a>3b
第1部分 第二单元 方程(组)与不等式(组)
2.(2018广东)不等式3x-1≥x+3的解集是( D )
(1)求商场销售A,B两种型号计算器的销售价格分别 是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2 500元的资金购进A,B两种 型号计算器共70台,问最少需要购进A型号的计算器多 少台?
第1部分 第二单元 方程(组)与不等式(组)
解:(1)设 A 种型号计算器的销售价格是 x 元,B 种
2018中考数学题型专项研究12讲:2018中考数学题型专项研究第3讲:不等式(组)的解法
第3讲不等式(组)的解法1.确定不等式的解集并把它表示在数轴上.2.确定不等式组的解集并把它表示在数轴上.3.确定不等式组的特殊解.1.去分母时,容易出现漏项或者是两边所乘的不是最简公分母.2.去括号时,如果括号前是负因数,容易出现部分变号错误.3.移项时,对“被移动的项”理解错误,导致该变号的不变,不该变号的变了号.4.化系数为1时,两边同时除以未知数的系数,容易把该系数写到分子上.5.在不等式两边同时乘上或除以负数时不等号的方向要改变.6.在数轴上表示解集时,要注意有等号的点用实心点,无等号的点用空心圈.7.确定不等式组的解集时对公共部分的表示不合理,规律:大大取大,小小取小,大小小大取中间,大大小小无解了.去分母、去括号、移项、合并同类项、化系数为1、把解集表示在数轴上.近几年直接考查解不等式(组)题目较少,但不等式(组)是解决实际问题的有效工具,所以能够准确解不等式(组)就显得尤为重要.确定不等式组的解集时,先确定每个不等式的解集,再利用数轴寻找它们的公共部分.【典例解析】【例题1】(2017毕节)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【考点】C3:不等式的解集.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【例题2】关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.【例题3】(2017内蒙古赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题4】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.【专项训练】一、选择题:1.(2017湖南株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【考点】C2:不等式的性质.【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.2.(2017浙江湖州)一元一次不等式组的解是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤2【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.2-1-c-n-j-y【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.3.(2017青海西宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣2x+1<3,得:x>﹣1,∴不等式组的解集为﹣1<x≤1,故选:B.4.(2017•益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.错误!未找到引用源。
专题2:方程和不等式(组)常见题型和解题方法(终稿)
2017—2018学年度第二学期初三数学中考复习专题2:方程和不等式(组)常见题型和解题方法一、热点再练:1. 方程36x =的解为 .2. 关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为1,则a +b +c = . 3.方程0532=++px x 的一个根为5,另一个根为______、p =_______.4.如果关于x 的方程(m –2)x 2–2x +1=0有解,则m 的取值范围是_______.5.已知关于x 的方程a (1–x 2)+2bx +c (1+x 2)=0有两个相等的实数根且a 、b 、c 均为正数,以a 、b 、c 为边围成一个三角形,则该三角形是________三角形.6.方程)2()2(2-=-x x 的根是________.方程组⎩⎨⎧=+=-1435y x y x 的解为________. 7.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩有解,则a 的取值范围是________. 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是【 】A .203210x y x y +-=⎧⎨--=⎩, B .2103210x y x y --=⎧⎨--=⎩, C .2103250x y x y --=⎧⎨+-=⎩, D .20210x y x y +-=⎧⎨--=⎩, 9.下列方程中,两实数根之和是2的是【 】A .x 2–2x +5=0B .x 2+2x –5=0C .x 2+2x +5=0D .x 2–2x –5=010.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则 【 】A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩11.已知直线y =2x -b 经过点(-2,0),则关于x 的不等式2x -b ≥0的解集为__________.12.设一元二次方程(x -1)(x -2)=m (m >0)的两根分别为α、β,且a <β,则a ,β满足 【 】A .1<a <β<2B .1<a <2<βC .a <1<β<2D .a <1且β>2(第9题)13.关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩的解是正整数,则整数p 的值为__________. 14.解分式方程225103x x x x-=+-.二、规律剖析例1. 解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.例2.已知关于x 的分式方程111x k k x x +-=+-的解为负数,求k 的取值范围.例3. 已知关于x 的一元二次方程mx 2-(3m +1)x +2m +2=0的两实根为x 1,x 2.(1)请用含m 的代数式表示x 1,x 2;(2)且n =x 2-x 1-1,求在直角坐标系xOy 中动点P (m ,n )所形成的曲线解析式.三、变式训练1. 若关于x 的不等式组10,233544(1)3x x x a x a+⎧+>⎪⎨⎪++>++⎩恰有三个整数解,求实数a 的取值范围.2. 若关于x 的分式方程121m x -=-的解为正数,则m 的取值范围是 .3.已知关于x 的一元二次方程2(41)330mx m x m -+++=的两个实数根分别为1x ,2x ,212n x x =--,设点A (1,a ),B (b ,2)两点在动点P (m ,n )所形成的曲线上,求直线AB 的解析式.四、分层作业1.一元二次方程(2x -1)2=(3-x )2的解是 .2. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是【 】A .m ≥2B .m ≤2C .m >2D .m <23. 甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.4. 设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β= . 5. 下列关于x 的方程有实数根的是【 】A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=06.若关于x 的一元二次方程x 2+x +m =0有两个相等的实数根,则m = .7.下列一元二次方程两实数根和为-4的是【 】A .x 2+2x -4=0B .x 2-4x +4=0C .x 2+4x +10=0D .x 2+4x -5=08.已知关于x 的一元二次方程x 2+x +m =0的一个实数根为1,那么它的另一个实数根是【 】A .-2B .0C .1D .29.若关于x 的一元一次不等式组10,0x x a -<⎧⎨->⎩无解,则a 的取值范围是( ) A .a ≥1 B .a >1C .a ≤-1D .a <-1 10.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A .―3<b <―2B .―3<b ≤―2C .―3≤b ≤―2D .―3≤b <―211.求不等式组364,213(1)x x x x --⎧⎨+>-⎩≥的解集,并写出它的整数解.12.已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.13. 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?14. 关于x的一元二次方程ax2-3x+1=0的两个不相等的实数根都在0和1之间(不包括0和1),求a的取值范围.★15.已知a-b=2,ab+2b-c2+2c=0,当b≥0,-2≤c<1时,求整数a的值.★16.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.。
2018年江苏省常州市中考数学试题含答案解析(Word版)
2018年江苏省常州市中考数学试题含答案解析(Word版)A. 85B.87C. 107D.54(第8题)二、填空题(本大题共10小题,每小题2分,共20分.)9. 计算:=--1|3|10. 化简:=---ba b b a a 11. 分解因式:=+-3632x x12. 已知点)1,2(-P ,则点P 关于x 轴对称的点的坐标是 13. 地球与月球的平均距离大约384000km ,用科学计数法表示这个距离为 km14. 中华文化源远流长,下图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是(第14题) (第15题) (第16题) (第18题)15. 如图,在□ABCD 中,070=∠A ,DC=DB ,则=∠CDB .16. 如图,ABC ∆是⊙O 的内接三角形,060=∠BAC ,»BC的长是34π,则⊙O 的半径是 .17. 下面是按一定规律排列的代数式:2a ,2a ,2a ,2a ,…则第8个代数式是 .18. 如图,在ABC ∆纸板中,AC=4,BC=2,AB=5,P 是AC 上一点,过点P 沿直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP 长的取值范围是 . 三、解答题(本大题共10小题,共84分.)19.(6分)计算:0030sin 4)21(4|1|+----20.(8分)解方程组和不等式组:⎩⎨⎧-=+=-13732)1(y x y x ⎩⎨⎧-≥+≥-x x x 2062)2(21.(8分)如图,把ABC∆.∆沿BC翻折得DBC(1)连接AD,则BC与AD的位置关系是(2)不在原图中添加字母和线段,只加一个条件使四边形ABCD是平行四边形,写出添加的条件,并说明理由.第21题)22.(8分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(第22题)(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(第23题) (1)搅均后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率;(2)搅均后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8分)如图,已知点A 在反比例函数)0(4>=x xy 的图像上,过点A 作x AC ⊥轴,垂足是C ,AC=OC.一次函数b kx y +=的图像经过点A ,与y 轴的正半轴交于点B.(1)求点A 的坐标;(2)若四边形ABOC 的面积是3,求一次函数b kx y +=的表达式.第24题)25.(8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得,,006030=∠=∠DBA CAB 求该段运河的河宽(即CH 的长).第25题)26.(10分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为ax 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组。
宁夏2018年中考数学试题(word版含答案解析)
一、选择题<下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1、<2018•宁夏)计算a2+3a2的结果是< )A、3a2B、4a2C、3a4D、4a4考点:合并同类项。
分析:本题考查整式的加法运算,实质上就是合并同类项,根据运算法则计算即可.解答:解:a2+3a2=4a2.故选B.点评:整式的加减运算实际上就是合并同类项,这是各地中考的常考点.2、<2018•宁夏)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是< )b5E2RGbCAPA、2B、4C、2D、4考点:矩形的性质;等边三角形的判定与性质。
分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD中,AO=AC,DO=BD,AC=BD,∴AO=DO,又∵∠AOD=60°,∴∠ADB=60°,∴∠ABD=30°,∴=tan30°,即=,∴AB=2.故选C.点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.3、<2018•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是< )p1EanqFDPwA、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.DXDiTa9E3d解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.RTCrpUDGiT 4、<2018•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是< )5PCzVD7HxAA、B、C、D、考点:由实际问题抽象出二元一次方程组。
中考数学专题训练之不等式与不等式组(01)
中考数学专题训练之不等式与不等式组(01)一.选择题(共10小题)1.如果a 、b 为有理数,且a 、b 两数的和小于a 与b 的差,则( )A .a 、b 同号B .a 、b 异号C .a 、b 为负数D .b 为负数2.某商店的老板销售一种商品,他要以不低于进价130%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价( ),可以买到这件商品.A .80元B .100元C .120元D .160元3.下列四个不等式:(1)ac >bc ;(2)2a >2b ;(3)ac 2>bc 2;(4)a b >1,一定能推出a>b 的有( )A .1个B .2个C .3个D .4个4.某种药品说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是x ~ymg ,则x ,y 的值分别为( )用法用量:口服,每天30〜60mg ,分2〜3次服用.规格:□□□□□□贮藏:□□□□□□A .x =15,y =30B .x =10,y =20C .x =15,y =20D .x =10,y =305.网课期间,琪琪同学花整数元购买了一个手机支架,让同学们猜价格.甲说:“至少20元”,乙说“至多18元”,丙说:“至多15元”.琪琪说:“你们都猜错了.”则这个支架的价格为( )A .15元B .18元C .19元D .20元6.若关于x 的方程4(2﹣x )+x =ax 的解为正整数,且关于x 的不等式组{x−16+2>2x a −x ≤0有解,则满足条件的所有整数a 的值之和是( )A .3B .0C .﹣2D .﹣37.已知集合A ={x |x <a },B ={x |1≤x ≤2},且A ∪B =A ,则实数a 的取值范围是( )A .a ≤2B .a <2C .a ≥2D .a >28.若数m 使关于x 的不等式组{5(x −m)≤0x+23−x 2>1的解集为x <﹣2,且使关y 的方程32m −6=4y +m 2的解为负整数,则符合条件的所有整数m 的和为( ) A .1 B .2 C .5 D .09.不等式﹣3(x +1)>﹣6的解集表示在数轴上正确的是( )A .B .C .D .10.如图,学校要在领奖台上铺红地毯,地毯每平米40元,至少花多少钱才能铺满整个领奖台( )A .1200元B .1320元C .1440元D .1560元二.填空题(共10小题)11.一个数位大于等于4的多位数,如果其末三位数与末三位数以前的数之差(大数减小数)能被13整除,则这个多位数一定能被13整除;则672906 (能或不能)被13整除.若一个五位数S ,其前两位数为A =46+n ,后三位数为B =320+10m +n (0≤m ≤7,0≤n ≤9且为整数).现将五位数S 的后两位数放在最左边得到一个新的五位数S 1,再交换S 1百位上的数字与十位上的数字后得到S 2,S 2能被13整除,则满足条件的最大五位数与最小五位数的差为 .12.设[x ]表示不超过x 的最大整数{例如:[3]=3,[﹣5]=﹣5,[2.5]=2,[﹣2.7]=﹣3}请你认真理解[x ]的意义,当0<a <1,若[a +180]+[a +280]+…+[a +7880]+[a +7980]=32,则[10a ]的值为 .13.点A 在数轴上的位置如图所示,机器人从点A 的位置开始移动.第1次,机器人向左移动2个单位长度,描述这一变化的算式为:1﹣2,则此时机器人在数轴上的位置表示的数是 ;第2次,机器人向右移动3个单位长度,第3次,机器人向左移动4个单位长度,第4次,机器人向右移动5个单位长度,…,以此类推,至少移动 次后,机器人在数轴上的位置表示的数的绝对值比6大.14.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .15.若关于x 的不等式组{4−2x >03(x −m)≥5+x只有3个整数解,则m 的取值范围是 .16.若关于x 的一元一次不等式组{4k +1>4(x +14)5x−34≤x +1的解集是x <k ,且关于y 的方程2(y ﹣3)=k ﹣4y +5有正整数解,则符合条件的所有整数k 的和为 .17.关于x 的分式方程ax−9x−2+1=32−x 的解为正数,且关于y 的不等式组{12y −1≤13y −238y +7>a −y 恰好有三个整数解,则所有满足条件的整数a 的值之和为 .18.若关于x 的一元一次不等式组{x −2a >03−2x >x −6无解,则a 的取值范围是 .19.若关于x 的一元一次方程ax−12=7有正整数解,且使关于x 的不等式组{2x −a ≥0x−22<x+13至少有4个整数解,求出满足条件的整数a 的所有值的积为 .20.已知不等式(2a ﹣4)x <4﹣2a 的解集为x <﹣1,则a 的取值范围是 .三.解答题(共5小题)21.某汽车有油和电两种驱动方式,两种驱动方式不能同时使用,该汽车从A 地行驶至B 地,全程用油驱动需96元油费,全程用电驱动需16元电费,已知每行驶1千米,用油比用电的费用多0.8元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)从A 地行驶至B 地,若用油和用电的总费用不超过39元,则至少需用电行驶多少千米?22.若A 、B 两点在数轴上分别表示数a 、b ,则A 、B 两点间的距离等于|a ﹣b |.(1)|x﹣2|=1可理解为数轴上表示x的点到表示2的点的距离等于1,则x=;(2)同理|x﹣2|+|x﹣5|可理解为数轴上表示x的点到表示2、5的点的距离之和;借助数轴(如图1)不难发现,当表示x的点在A的左侧时,|x﹣2|+|x﹣5|大于3,当表示x的点在A、B之间时,|x﹣2|+|x﹣5|等于3,当表示x的点在B的右侧时,|x﹣2|+|x﹣5|大于3;综上,当x满足时,|x﹣2|+|x﹣5|有(填“最大”或“最小”)值3;(3)如图2所示,某公共汽车运营线路上依次有A1,A2,A3三个汽车站,现要在路旁修建一个加油站M,使得三个汽车站到加油站M的路程总和最小,加油站M建在何处最好;(4)如果公共汽车运营线路上依次有A1,A2,A3,…,A n共n个汽车站,为使得n个汽车站到加油站M的路程总和最小,加油站M建在何处最好.23.对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4=;√2⊕(√2−1)=.(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.24.某商家销售A,B两种果苗,进货单价分别为70元,50元,下表是近两天的销售情况.销售量/棵销售收入/元A果苗B果苗第一天43625第二天55875(1)求A,B两种果苗的销售单价;(2)若该商家购进这两种果苗总计50棵,购进费用不超过2900元,则最多购进A种果苗多少棵?(3)某天商家销售A,B两种果苗,要使获得的总利润是900元,求这一天共有几种销售方案.25.为加强校园阳光体育活动,某中学计划购进一批篮球和排球,经过调查得知每个篮球的价格比每个排球的价格贵40元,买5个篮球和10个排球共用1100元.(1)求每个篮球和排球的价格分别是多少?(2)某学校需购进篮球和排球共120个,总费用不超过9000元,但不低于8900元,问有几种购买方案?最低费用是多少?。
2018年内蒙古包头市中考数学试卷(含解析)
2018年内蒙古省包头市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018内蒙古包头,1,3分)计算34---的结果是( )A .-1B .-5C .1D .5【答案】B【解析】原式=-2-3=-5,故选择B . 【知识点】实数的运算2.(2018内蒙古包头,2,3分)如图1,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )【答案】C【解析】主视图是指从正面看到的图形,由已知条件可知,主视图有两列,每列小正方形数目分别是2、2,故选择C .【知识点】几何体的三视图3.(2018内蒙古包头,3,3分) 函数11-=x y 中,自变量x 的取值范围是( )A .x ≠1B .x >0C .x ≥1D .x >1【答案】D【解析】根据函数有意义,则分母不能为0,根号下的数必须非负得:x -1>0,所以x >1,故选择D .【知识点】函数自变量的取值范围4.(2018内蒙古包头,4,3分) 下列事件中,属于不可能事件的是( )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形【答案】C 【解析】根据定义可知:A 、B 都属于随机事件;C 属于不可能事件;D 属于确定必然事件.故选择C .【知识点】事件的分类及概念5.(2018内蒙古包头,5,3分)如果y a x 12+与12-b y x 是同类项,那么ba 的值是( ) A .21 B .23 C .1 D .3【答案】A【解析】根据同类项的特征可得⎩⎨⎧=-=+1121b a ,解得⎩⎨⎧==21b a,∴21=b a .故选择A . 【知识点】同类项的概念6.(2018内蒙古包头,6,3分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )A .4,1B .4,2C .5,1D .5,2【答案】B【解析】因为4出现了3次,次数最多,故众数是4;又∵4865544431=+++++++=x , ∴282)46(2)45(2)45(2)44(2)44(2)44(2)43(2)41(2=-+-+-+-+-+-+-+-=S . 故选择B .【知识点】众数、方差7.(2018内蒙古包头,7,3分)如图2,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是 ( )A .32π- B .62π- C .34π- D .64π-【答案】A【解析】作AM ⊥BC 于点M ,∵∠ABC =30°∴AM =21AB =1 3236022301421ππ-=⨯-⨯⨯=-∆=ABD S ABC S S 扇形阴影面积故选择A .【知识点】扇形面积的计算;三角形面积的计算;含有30°角的直角三角形的性质8.(2018内蒙古包头,8,3分)如图3,在△ABC 中,AB =AC , △ADE 的顶点D 、E分别在BC 、AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =145°,则∠EDC 的度数为( )A .17.5°B .12.5°C .12°D .10°【答案】D【思路分析】由∠C +∠BAC =145°得知∠B =35°;由AB =AC 得知∠B =∠C =35°;由等腰直角三角形的性质可得∠AED =45°,又∵∠AED =∠EDC +∠C ,∴∠EDC =45°-35°=10°.【知识点】等腰三角形的性质;等腰直角三角形的性质;三角形内角和;三角形外角的性质9.(2018内蒙古包头,9,3分)已知关于x 的一元二次方程0222=-++m x x 有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为 ( )A .6B .5C .4D .3【答案】B【思路分析】根据方程有两个实数根,得出根的判别式的值大于或等于0列出关于m 的不等式,求出不等式的解集得到m 的取值范围;找出m 范围中的正整数解确定出m 的值,经检验即可得到满足题意的m 的值.【解题过程】根据题意得:△=4-4(m -2)≥0,解得m ≤3;由m 为正整数,得m =1或2或3, 利用求根公式表示出方程的解为m m x -±-=-±-=312)3(42, ∵方程的解为整数。
中考数学真题分项详解(不等式与不等式组)
中考数学真题分项详解(不等式与不等式组)一、单选题1.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( )A .a >3B .a <3C .a≥3D .a≤32.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .1313x x -<⎧⎨+<⎩B .1313x x -<⎧⎨+>⎩C .1313x x ->⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩3.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤75.不等式组2131532123(1)152(1)x x x x x -+⎧-≤-⎪⎨⎪-+>--⎩的解集为( )A .102x -<< B .102x -<≤ C .102x -≤< D .102x -≤≤ 6.不等式组13293x x -<-⎧⎨+≥⎩的解集是( )A .33x -≤<B .2x >-C .32x -≤<-D .3x ≤-7.已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定8.不等式组24339x x x x <+⎧⎨+≥+⎩的解集在数轴上用阴影表示正确的是( )A .B .C .D .二、填空题9.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是____.10.对非负实数x “四舍五入”到个位的值记为()x ,即当n 为非负整数时,若0.50.5n x n -≤<+,则()x n =.如()1.341=,()4.865=.若()0.516x -=,则实数x 的取值范围是__________.11.关于x 的不等式组2450x x >⎧⎨-≤⎩的解集是___________.12.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x≤4,则不等式ax+b <0的解集为____.三、解答题13. 2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式; (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式,并判断第几天的利润最大; (3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为______.14.为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A地240吨,B地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(0m15<≤且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.15.先化简,再求值2211121aa a a-⎛⎫-÷⎪++⎝⎭:其中a是不等式组22213a aa a-≥-⎧⎨-<+⎩①②的最小整数解;16.某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?17.红光中学学生乘汽车从学校去研学旅行基地,以75千米/小时的平均速度,用时2小时到达,由于天气原因,原路返回时汽车平均速度控制在不低于50千米/小时且不高于60千米/小时的范围内,这样需要用t小时到达,求t的取值范围.18.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?19.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援.”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x 千克,付款y 元,y 与x 之间的函数关系如图所示.(1)直接写出当050x ≤≤和50x >时,y 与x 之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的则进量,才能使经销商付款总金额w (元)最少?(3)若甲,乙两种水果的销售价格分別为40元/千克和36元/千克,经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a 千克,且销售完a 千克水果获得的利润不少于1650元,求a 的最小值.20.某年5月,我国南方某省A 、B 两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C 、D 获知A 、B 两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C 市有救灾物资240吨,D 市有救灾物资260吨,现将这些救灾物资全部调往A 、B 两市.已知从C 市运往A 、B 两市的费用分别为每吨20元和25元,从D 市运往往A 、B 两市的费用别为每吨15元和30元,设从D 市运往B 市的救灾物资为x 吨. (1)请填写下表(2)设C 、D 两市的总运费为w 元,求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.21.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.22.解不等式组1(1)222323x x x ⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和.23. “绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理A 、B 两种型号的净水器,每台A 型净水器比每台B 型净水器进价多200元,用5万元购进A 型净水器与用4.5万元购进B 型净水器的数量相等. (1)求每台A 型、B 型净水器的进价各是多少元;(2)槐荫公司计划购进A 、B 两种型号的净水器共50台进行试销,其中A 型净水器为x 台,购买资金不超过9.8万元.试销时A 型净水器每台售价2500元,B 型净水器每台售价2180元.槐荫公司决定从销售A 型净水器的利润中按每台捐献(7080)a a <<元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W ,求W 的最大值.24.解不等式组1021320xxx-⎧≤+⎪⎨⎪-<⎩,并把它的解集在数轴上表示出来.25.(2018·湖北省武汉市中考真题)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.26.求满足不等式组()328131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.27.若点P的坐标为1,293xx-⎛⎫-⎪⎝⎭,其中x满足不等式组5102(1)131722x xx x-≥+⎧⎪⎨-≤-⎪⎩,求点P所在的象限.28.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?29.某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?30.襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.。
中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题
不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。
中考数学复习之不等式与不等式组
中考数学复习之不等式与不等式组一.选择题(共5小题)1.已知x<y,则下列不等式一定成立的是()A.x﹣5>y﹣5B.﹣2x>﹣2y C.a2x<a2y D.2.在数轴上表示不等式组的解集,正确的是()A.B.C.D.3.若定义一种新的取整符号[],即[x]表示不小于x的最小整数.例如:[2.4]=3,[﹣2.9]=﹣2.则下列结论正确的是()①[﹣3.5]+[2]=﹣1;②[x]+[﹣x]=0;③方程[x]﹣x=的解有无数多个;④当﹣1≤x<1时,则[x﹣1]+[x+1]的值为0、1或﹣2;⑤若[x+3]=2,则x的取值范围﹣2<x≤﹣1.A.①②③B.①③④C.①③⑤D.①④⑤4.我们规定:[m]表示不超过m的最大整数,例如:[3.1]=3,[−3.1]=−4,则关于x和y的二元一次方程组的解为()A.B.C.D.5.若整数a使关于x的方程的解为非负数,且使关于y的不等式组的解集为y<−2,则符合条件的所有整数a的和为()A.20B.21C.27D.28二.填空题(共9小题)6.不等式组的所有整数解的和为.7.有若干糖果要分给小朋友,若每人分3个,则余8个;每人分5个,则最后一个小朋友能分到糖果但个数不足3个,则共有个小朋友.8.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm,已知以后此树树围平均每年增长3cm,若生长x年后此树树围超过90cm,则x满足的不等式为.9.用不等式表示:“x的2倍与1的差小于3”是.10.若不等式组的解集中共有3个整数解,则a的取值范围是.11.“x的2倍与y的和不大于2”用不等式可表示为.12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>94”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是.13.现定义一种新的运算:a*b=a2﹣2b,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x≥0的解集为.14.关于x的不等式组整数解有2个,则a的取值范围是.三.解答题(共6小题)15.(1)解不等式;(2)解不等式组:,并把它的解集在数轴上表示出来.16.某班计划购买两种毕业纪念册,已知购买4本手绘纪念册和1本图片纪念册共需190元,购买2本手绘纪念册和5本图片纪念册共需230元.(1)每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共50本,总费用不超过1900元,则最少要购买图片纪念册多少本?17.解不等式组,并写出不等式组的整数解.18.求不等式组:的整数解.19.计算:(1);(2)解不等式组:.20.(1)解方程组:;(2)解不等式组:.。
北京市2018年中考数学试题(含答案)
2018年北京市高级中等学校招生考试数学试卷姓名 准考证号 考场号 座位号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。
1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o60,则该正多边形的内角和为(A )o360 (B )o540 (C )o720 (D )o9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。
下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。
中考数学不等式和不等式组30题专练
中考数学不等式和不等式组30题专练方程和不等式1. 解不等式,并用数轴表示解集:x≤12. 解不等式,并用数轴表示解集:x≤73. 解不等式,并用数轴表示解集:x≤34. 解不等式,并用数轴表示解集:x≤85. 解不等式,并用数轴表示解集:x≤56. 解不等式,并用数轴表示解集:x≤47. 解不等式,并用数轴表示解集:3x+8x-1-5(−4x+7)≤42+−2(−3x+3)≤68. 解不等式,并用数轴表示解集:−6x-x+57-7(−2x+4)≤49. 解不等式,并用数轴表示解集:−6x+2x+5510. 解不等式,并用数轴表示解集:6x-x+21+2x+8≤211. 解不等式,并用数轴表示解集:−3x+−5x-63-−1(−2x-4)≤112. 解不等式,并用数轴表示解集:3x+−5x-16+8(−5x+4)≤813. 解不等式,并用数轴表示解集:−1x+−8x-34-−4(3x+8)≤714. 解不等式,并用数轴表示解集:−7x+7x-31-2(4x+1)≤515. 解不等式,并用数轴表示解集:−7x+8x+27-8(8x-2)≤116. 解不等式,并用数轴表示解集:x+7x-12+6(−1x+4)≤517. 解不等式,并用数轴表示解集:−63x+−75x-31-−5(72x-5)≤1-(7x+5)+32x+2118. 解不等式,并用数轴表示解集:18x+−16x+73-76(−67x-8)≤7+(77x+1)+−6x+4519. 解不等式,并用数轴表示解集:18x+−83x-22+−83(−65x+4)≤2+(−36x+3)+−27x+3420. 解不等式,并用数轴表示解集:−54x+75x+85-−17(82x-5)≤5-(−76x-2)+−46x+6121. 解不等式,并用数轴表示解集:−84x+−84x-32-24(83x-6)≤7-(7x+4)-−87x-7222. 解不等式,并用数轴表示解集:24x-−75x-17+−85(−2x+1)≤3-(16x+3)-−42x+4523. 解不等式,并用数轴表示解集:−1x+23x-85+45(2x-3)≤8-(66x+2)-74x+5724. 解不等式,并用数轴表示解集:−17x+−32x+43+52(46x+4)≤3+(−45x+7)-76x+3525. 解不等式,并用数轴表示解集:86x+−16x-28+−85(−88x+3)≤7+(−23x+8)-33x-5626. 解不等式,并用数轴表示解集:−88x-−6x+71+28(−64x+6)≤3-(53x+7)+−23x-6427. 解不等式,并用数轴表示解集:−33m-−17m-24-−46(76m+8)≥5-(72m+6)-57m+3328. 解不等式,并用数轴表示解集:−74m+−43m+68+85(26m+5)≥2-(−88m-3)-12m-1629. 解不等式,并用数轴表示解集:−57m+−27m-51+−44(68m-3)≥4-(−82m-7)+26m+3330. 解不等式,并用数轴表示解集:33m+25m+22+2(73m-5)≥1-(−73m-2)+−13m-28----答案----方程和不等式1. 解不等式,并用数轴表示解集:x≤1化简:x+−1≤0解:x≤12. 解不等式,并用数轴表示解集:x≤7化简:x+−7≤0解:x≤73. 解不等式,并用数轴表示解集:x≤3化简:x+−3≤0解:x≤34. 解不等式,并用数轴表示解集:x≤8化简:x+−8≤0解:x≤85. 解不等式,并用数轴表示解集:x≤5化简:x+−5≤0解:x≤56. 解不等式,并用数轴表示解集:x≤4化简:x+−4≤0解:x≤47. 解不等式,并用数轴表示解集:3x+8x-1-5(−4x+7)≤42化简:27x+−792≤0解:x≤79548. 解不等式,并用数轴表示解集:−6x-x+57+−2(−3x+3)≤6化简:−17x+−897≤0解:x≥−899. 解不等式,并用数轴表示解集:−6x+2x+55-7(−2x+4)≤4化简:425x+−31≤0解:x≤1554210. 解不等式,并用数轴表示解集:6x-x+21+2x+8≤2化简:7x+4≤0解:x≤−4711. 解不等式,并用数轴表示解集:−3x+−5x-63-−1(−2x-4)≤1化简:−203x+−7≤0解:x≥−212012. 解不等式,并用数轴表示解集:3x+−5x-16+8(−5x+4)≤8化简:−2276x+1436≤0解:x≥14322713. 解不等式,并用数轴表示解集:−1x+−8x-34-−4(3x+8)≤7化简:9x+974≤0解:x≤−973614. 解不等式,并用数轴表示解集:−7x+7x-31-2(4x+1)≤5化简:−8x+−10≤0解:x≥−5415. 解不等式,并用数轴表示解集:−7x+8x+27-8(8x-2)≤1化简:−4897x+1077≤0解:x≥10748916. 解不等式,并用数轴表示解集:x+7x-12+6(−1x+4)≤5化简:−32x+372≤0解:x≥37317. 解不等式,并用数轴表示解集:−63x+−75x-31-−5(72x-5)≤1-(7x+5)+32x+21化简:985x+−26≤0解:x≤654918. 解不等式,并用数轴表示解集:18x+−16x+73-76(−67x-8)≤7+(77x+1)+−6x+45化简:457360x+4315≤0解:x≤−103245719. 解不等式,并用数轴表示解集:18x+−83x-22+−83(−65x+4)≤2+(−36x+3)+−27x+34化简:2153840x+−20912≤0解:x≤14630215320. 解不等式,并用数轴表示解集:−54x+75x+85-−17(82x-5)≤5-(−76x-2)+−46x+61化简:−629700x+−42435≤0解:x≥−848062921. 解不等式,并用数轴表示解集:−84x+−84x-32-24(83x-6)≤7-(7x+4)-−87x-72化简:4421x+−5≤0解:x≤1054422. 解不等式,并用数轴表示解集:24x-−75x-17+−85(−2x+1)≤3-(16x+3)-−42x+45化简:113x+−2335≤0解:x≤6938523. 解不等式,并用数轴表示解集:−1x+23x-85+45(2x-3)≤8-(66x+2)-74x+57化简:11960x+−657≤0解:x≤390083324. 解不等式,并用数轴表示解集:−17x+−32x+43+52(46x+4)≤3+(−45x+7)-76x+35化简:7235x+2915≤0解:x≤−20321625. 解不等式,并用数轴表示解集:86x+−16x-28+−85(−88x+3)≤7+(−23x+8)-33x-56化简:899240x+−125360≤0解:x≤501289926. 解不等式,并用数轴表示解集:−88x-−6x+71+28(−64x+6)≤3-(53x+7)+−23x-64化简:15524x≤0解:x≤027. 解不等式,并用数轴表示解集:−33m-−17m-24-−46(76m+8)≥5-(72m+6)-57m+33化简:895252m+476≥0解:m≥−197489528. 解不等式,并用数轴表示解集:−74m+−43m+68+85(26m+5)≥2-(−88m-3)-12m-16化简:−2310m+4312≥0解:m≤21513829. 解不等式,并用数轴表示解集:−57m+−27m-51+−44(68m-3)≥4-(−82m-7)+26m+33化简:−21136m+−14≥0解:m≤−50421130. 解不等式,并用数轴表示解集:33m+25m+22+2(73m-5)≥1-(−73m-2)+−13m-28化简:14340m+−474≥0解:m≥470143。
2018年江苏省徐州市中考数学试题及参考答案案
徐州市2018年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2018江苏徐州中考,1,3分,★☆☆)4的相反数是()A.14B.-14C.4 D.-42.(2018江苏徐州中考,2,3分,★☆☆)下列计算正确的是()A.2a2-a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a63.(2018江苏徐州中考,3,3分,★☆☆)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2018江苏徐州中考,4,3分,★☆☆)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(2018江苏徐州中考,5,3分,★☆☆)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于12B.等于12C.大于12D.无法确定6.(2018江苏徐州中考,6,3分,★★☆)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13 35 29 23关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(2018江苏徐州中考,7,3分,★★☆)如图,在平面直角坐标系中,函数y=kx与y=-2x的图像交于A,B两点,过A作y轴的垂线,交函数y=4x的图像于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.88.(2018江苏徐州中考,8,3分)若函数y=kx+b的图像如图所示,则关于x的不等式kx+2b <0的解集为()A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(2018江苏徐州中考,9,3分,★☆☆)五边形的内角和是__________°.10.(2018江苏徐州中考,10,3分,★☆☆)我国自主研发的某型号手机处理器采用10nm 工艺,已知1nm=0.000 000 001m,则10nm用科学记数法可表示为____________m.11.(2018江苏徐州中考,11,3分,★☆☆)化简:32|=__________.12.(2018江苏徐州中考,12,32x-x的取值范围是___________.13.(2018江苏徐州中考,13,3分,★★☆)若2m+n=4,则代数式6-2m-n的值为_________.14.(2018江苏徐州中考,14,3分,★☆☆)若菱形两条对角线的长分别是6cm和8cm,则其面积为___________cm2.15.(2018江苏徐州中考,15,3分,★★☆)如图,Rt△ABC中,∠ABC=90°,D为AC 的中点,若∠C=55°,则∠ABD=__________°.16.(2018江苏徐州中考,16,3分,★★☆)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为__________.17.(2018江苏徐州中考,17,3分,★★★)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多___________个.(用含n的代数式表示)18.(2018江苏徐州中考,18,3分,★★★)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为___________.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(2018江苏徐州中考,19,10分,★★☆)计算:(1)-12+20180-(12)-138;(2)22a ba b--÷22a ba b+-.20.(2018江苏徐州中考,20,10分,★★☆)(1)解方程:2x2-x-1=0;(2)解不等式组:428,11.36x xx x-⎧⎪-+⎨≤⎪⎩>21.(2018江苏徐州中考,21,7分,★★☆)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于_________;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(2018江苏徐州中考,22,7分,★★☆)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表A 0≤m≤2520B 26≤m≤100 aC 101≤m≤20050D m≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为_________,a=__________;(2)在扇形统计图中,“A”对应扇形的圆心角为_________°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(2018江苏徐州中考,23,8分,★★☆)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(2018江苏徐州中考,24,8分,★★☆)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A 车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(2018江苏徐州中考,25,8分,★★☆)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.26.(2018江苏徐州中考,26,8分,★★☆)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(2018江苏徐州中考,27,10分,★★★)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(2018江苏徐州中考,28,10分,★★★)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B 在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.徐州市2018年初中学业水平考试数学试题答案全解全析1.答案:D解析:4与-4只有符号不同,故4的相反数是-4.故选D.考查内容:相反数.命题意图:本题考查学生对相反数的识记,难度较小.2.答案:D解析:2a2-a2=(2-1)a2=a2≠1,故A错误;(ab)2=a2b2≠ab2,故B错误;a2与a3不是同类项,不能合并,故C错误;(a2)3=a2×3=a6,故D正确.故选D.考查内容:整式的加减;幂的乘方;积的乘方.命题意图:本题考查学生对整式运算的掌握,难度较小.3.答案:A解析:A既是轴对称图形,又是中心对称图形;B不是轴对称图形,是中心对称图形;C是轴对称图形,不是中心对称图形;D是轴对称图形,不是中心对称图形.故选A.考查内容:中心对称图形;轴对称图形.命题意图:本题考查学生对中心对称图形与轴对称图形的识记,难度较小.4.答案:A解析:从左边看底层有2个小正方形,最上面的一层左边有1个小正方形.故选A.考查内容:三视图.命题意图:本题考查学生对三视图的掌握,难度较小.5.答案:B解析:每次抛掷硬币都有两种可能:正面向上、反面向上,正面向上的概率是12.故选B.考查内容:概率的简单应用与计算.命题意图:此题主要考查学生对概率计算的掌握,难度较小.6.答案:B解析:在这组数据中,1出现了35次,故其众数是1册;将这组数据按从小到大排列后,第50、51个数的平均数是2,故其中位数是2册;这组数据的极差:3-0=3册;这组数据的平均数是(0×13+1×35+2×29+3×23)÷100=1.62册.故选B.考查内容:极差;众数;中位数;平均数.命题意图:本题考查学生对统计数据的计算,难度中等.7.答案:C解析:∵正比例函数y=kx与反比例函数y=-2x的交点关于原点对称,∴设A点坐标为(x,-2x),则B点坐标为(-x,2x),C(-2x,-2x),∴S△ABC=12×(-2x-x)•(-2x-2x)=12×(-3x)•(-4x)=6.故选C.一题多解:连接OC.由y=kx与y=-2x的图像都是中心对称图形可知,点A和点B关于原点对称,∴OA=OB.∵点A在反比例函数y=-2x的图像上,点C在反比例函数y=4x的图像上,且AC⊥y轴,∴S△AOC=12×2+12×4=3,∴S△ABC=2S△AOC=6.故选C.考查内容:反比例函数;正比例函数;轴对称的性质;全等三角形的性质与判定.命题意图:本题主要考查学生对函数图像对称的掌握,难度中等.8.答案:D解析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=-3k,∴不等式为kx-6k<0,解得x>6.故选D.考查内容:一次函数;一元一次不等式.命题意图:本题主要考查学生掌握一次函数的图像与性质及解一元一次不等式的能力,难度中等.9.答案:540解析:(5-2)•180°=540°.考查内容:多边形的内角和.命题意图:本题考查学生多边形的内角和的掌握,难度较小.10.答案:1×10-8(或10-8)解析:10nm=10×0.000 000 001m=1×101×10-9m=1×10-8m.考查内容:科学记数法.命题意图:本题考查学生对科学记数法的掌握,难度较小.11.答案:23解析:32<0,∴32|=23.考查内容:绝对值;实数的大小比较.命题意图:本题主要考查学生对绝对值的掌握,难度较小.12.答案:x≥2解析:由题意,得x-2≥0,解得x≥2.考查内容:二次根式有意义的条件.命题意图:本题主要考查学生对二次根式有意义的条件的理解,难度较小.13.答案:2解析:∵2m+n=4,∴6-2m-n=6-(2m+n)=6-4=2.考查内容:代数式求值;整体代入.命题意图:本题主要考查学生代数式求值的能力,难度中等.14.答案:24解析:12×6×8=24(cm2).考查内容:菱形面积.命题意图:本题主要考查学生对菱形的性质及面积计算方法的掌握,难度较小.15.答案:35解析:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠DBC=∠C=55°,∴∠ABD=90°-55°=35°.考查内容:直角三角形的性质;等腰三角形的性质;三角形内角和定理.命题意图:本题主要考查学生对直角三角形性质的掌握,难度中等.16.答案:2解析:扇形的弧长=1206180π⨯=4π,∴圆锥的底面半径为4π÷2π=2.考查内容:扇形的弧长公式;圆锥的侧面展开图;圆的周长公式.命题意图:本题主要考查学生对圆锥的有关运算的掌握,难度中等.17.答案:4n+3解析:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,……,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.考查内容:几何图形的变化规律.命题意图:本题考查学生几何图形变化规律的掌握,难度较大.18.答案:4解析:如图1,连接AQ ,AP .∵AB 是直径,∴∠APB=90°.∵BP•BQ=AB 2,∴BP AB =ABBQ.又∵∠ABP=∠QBA ,∴△ABP ∽△QBA ,∴∠QAB=∠APB=90°,∴QA 始终与AB 垂直.如图2,连接OC .∵C 为半圆AB 的中点,∴OC 是△ABQ 的中位线,∴AQ=2OC=4,∴点Q 运动路径长为4.图1 图2考查内容:相似三角形的判定和性质;三角形中位线的性质定理;圆的性质. 命题意图:本题主要考查学生对相似三角形的判定和性质的掌握,难度较大. 19.解析:(1)原式=-1+1-2+2=0; (2)原式=()()a b a b a b+--·2()a b a b-+=2a -2b .考查内容:有理数的乘方;0次幂;立方根;分式的化简.命题意图:本题考查学生对有理数的运算法则和及分式运算的灵活应用,难度中等. 20.解析:(1)这里a=2,b=-1,c=-1, ∴b²-4ac=1-4×2×(-1)=9>0, ∴x=194=134±, ∴x 1=-12,x 2=1. (2)∵解不等式428x x ->,得x >-4. 解不等式1136x x -+≤,得x≤3. ∴不等式组的解集为-4<x≤3.考查内容:解一元二次方程;解一元一次不等式组.命题意图:本题考查学生解一元二次方程和解一元一次不等式组的能力,难度中等. 21.解析:(1)13.(2)画树状图:或列表如下:红球白球1 白球2 红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2∴共有6种等可能的结果数,含有红球的有4种情况,∴P(摸到红球)=46=23.答:从中同时摸出2个球,摸到红球的概率是23.考查内容:列举法求概率.命题意图:本题考查用列表法与画树状图求概率,难度中等.22.解析:(1)200 64解法提示:∵“C”有50人,占样本的25%,∴样本=50÷25%=200(人).∵“B”占样本的32%,∴a=200×32%=64(人).(2)36°解法提示:“A”对应的扇形的圆心角=20200×360°=36°.(3)∵D类66人,总共200人,∴全校学生中家庭藏书200本以上的人数为:2000×66200=660(人).答:全校学生中家庭藏书200本以上的人数为660人.考查内容:统计表;扇形统计图.命题意图:本题考查统计表和扇形统计图的综合运用.难度中等.23.解析:(1)证明:∵四边形CEFG是正方形,∴CE=EF ,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°, ∴∠FEH=∠DCE . 在△FEH 和△ECD 中,,,,EF CE FEH DCE FHE D =⎧⎪∠=∠⎨⎪∠=∠⎩∴△FEH ≌△ECD (AAS ), ∴FH=ED .(2)设AE=a ,则ED=FH=4-a , ∴S △AEF =12AE•FH=12a (4-a )=-12(a -2)2+2, ∴当AE=2时,△AEF 的面积最大.考查内容:正方形的性质;矩形的性质;全等三角形的判定和性质;三角形的面积. 命题意图:本题考查学生对正方形、矩形、全等三角形等知识的掌握,难度中等. 24.解析:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意,得700t -7001.4t=80, 解这个方程,得t=2.5.经检验,t=2.5是原方程的解,且符合题意, ∴1.4t=3.5.答:A 车行驶的时间为2.5小时,B 车行驶的时间为3.5小时. 考查内容:分式方程的应用.命题意图:本题考查分式方程的应用,难度中等. 25.解析:(1)相切.理由如下: 连接OD .∵BD 是∠ABC 的平分线, ∴∠CBD=∠ABD . 又∵OD=OB , ∴∠ODB=∠ABD , ∴∠ODB=∠CBD ,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切.(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴AD的长为:603 180π⨯⨯=π.考查内容:圆的切线的判定;等腰三角形的性质;圆周角定理.命题意图:本题主要考查与圆的切线的判定,难度中等偏上.26.解析:(1)如图,过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°.由题意可知,设AB=x,在Rt△PCE中,tan32.3°=PEx,∴PE=x•tan32.3°.同理可得:在Rt△PDF中,tan55.7°=PFx,∴PF=x•tan55.7°,由PF-PE=EF=CD=42,可得x•tan55.7°-x•tan32.3°=42,解得:x=50,∴楼间距AB=50m.(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90-31.5=58.5m,由于2号楼每层3m,可知点C位于20层.归纳总结:锐角三角函数的实际问题,有图的要先将题干中的已知量在图中表示出来,再根据以下方法和步骤解决:根据题目中的已知条件,将实际问题抽象为解直角三角形的数学问题,画出平面几何图形,弄清已知条件中各量之间的关系;若三角形是直角三角形,根据边角关系进行计算,若三角形不是直角三角形,可通过添加辅助线构造直角三角形来解决.解直角三角形的实际应用问题关键是要根据实际情况建立数学模型,正确画出图形找准三角形.考查内容:解直角三角形的应用.命题意图:本题考查学生解直角三角形的应用能力,难度中等偏上.27.解析:(1)∵y=-x2+6x-5=-(x-3)2+4,∴顶点P(3,4),令x=0得到y=-5,∴C(0,-5).(2)令y=0,x2-6x+5=0,解得x=1或5,∴A(1,0),B(5,0).设直线PC的解析式为y=kx+b,则有5, 34,bk b=-⎧⎨+=⎩解得3,5. kb=⎧⎨=-⎩∴直线PC的解析式为y=3x-5.设直线PC与x轴相交于点D,可求得D(53,0).设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0).直线PE的解析式为y=-6x+22,∴Q(92,-5),直线PE′的解析式为y=-65x+385,∴Q′(212,-5).综上所述,满足条件的点Q(92,-5),Q′(212,-5).归纳总结:存在性问题是指在一定条件下探索发现某种数学关系是否存在的一类问题,解决此类问题的方法是:(1)对问题的结论作出肯定存在性的假设;(2)按题设条件和数学定理、性质等进行推理、计算;(3)若推出合理的结论,则说明假设成立,若推出不合理的结论或与已知、已证明的结论相矛盾,则假设不成立.考查内容:二次函数的性质;待定系数法;转化的思想;分类讨论.命题意图:本题是一道关于二次函数的综合题,主要考查学生应用二次函数解答问题的能力,难度较大.28.解析:(1)由题意可知BF=FM,则CF+FM=4,设CF=x,FM=4-x.在Rt△CFM中,CM=2,由勾股定理可得FM2=CF2+CM2,即(4-x)2=x2+22,解得x=32,即CF=32.(2)①△PFM的形状是等腰直角三角形,不会发生变化.理由如下:设PC与FM相交于O点,由折叠的性质可得,∠PMF=∠B=45°,∵CD是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC.由∠EMC=∠AEM+∠A可得∠AEM=∠CMF,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=45°,∴△MPC∽△OFC,∴MPOF=MCOC,由POPM=OMMC和MPOF=MCOC可得OMPO=OCOF.∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=45°,∴△PFM是等腰直角三角形.②由①知△PFM是等腰直角三角形,设FM=y,由勾股定理可得,PF=PM=22y,∴△PFM的周长为(1+2)y,∵2<y<4,∴△PFM的周长满足:2+22<(1+2)y<4+42.考查内容:折叠的性质;等腰直角三角形的性质和判定;翻折变换;相似三角形的判定和性质;勾股定理.命题意图:本题是有关三角形综合题,主要考查学生综合应用三角形的相关知识解答问题的能力,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学不等式与不等式组一.选择题(共22小题)1.(2018•衢州)不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣1【分析】根据一元一次不等式的解法即可求出答案.【解答】解:3x≥3x≥1故选:A.2.(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.3.(2018•广安)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.4.(2018•襄阳)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x,得:x>,解不等式x+2<4x﹣1,得:x>1,则不等式组的解集为x>1,故选:B.5.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.【分析】根据不等式解集的表示方法,可得答案.【解答】解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.6.(2018•衡阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式得到x>﹣1和x≤3,从而得到不等式组的解集为﹣1<x≤3,然后利用此解集对各选项进行判断.【解答】解:,解①得x>﹣1,解②得x≤3,所以不等式组的解集为﹣1<x≤3.故选:C.7.(2018•聊城)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.8.(2018•滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.9.(2018•荆门)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m 的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.10.(2018•临沂)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的正整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.11.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.12.(2018•广西)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;故选:B.13.(2018•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.14.(2018•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k) D.f(k)=0或1【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确;故选:C.15.(2018•嘉兴)不等式1﹣x≥2的解在数轴上表示正确的是()A.B.C.D.【分析】先求出已知不等式的解集,然后表示在数轴上即可.【解答】解:不等式1﹣x≥2,解得:x≤﹣1,表示在数轴上,如图所示:故选:A.16.(2018•湘西州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先定界点,再定方向即可得.【解答】解:不等式组的解集在数轴上表示如下:故选:C.17.(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.18.(2018•宿迁)若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.19.(2018•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0【分析】首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.【解答】解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.20.(2018•娄底)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.21.(2018•长春)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.22.(2018•台湾)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),解得:x>133,∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.二.填空题(共7小题)23.(2018•黔南州)不等式组的解集是x<3 .【分析】首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.【解答】解:由(1)x<4,由(2)x<3,所以x<3.24.(2018•安顺)不等式组的所有整数解的积为0 .【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.25.(2018•扬州)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.26.(2018•包头)不等式组的非负整数解有 4 个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.27.(2018•温州)不等式组的解是x>4 .【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,解①得x>2,解②得x>4.故不等式组的解集是x>4.故答案为:x>4.28.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5529.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1 .【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.三.解答题(共13小题)30.(2018•威海)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.31.(2018•常德)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.32.(2018•南京)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在 B .A.点A的左边 B.线段AB上 C.点B的右边【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.33.(2018•自贡)解不等式组:,并在数轴上表示其解集.【分析】分别解不等式①、②求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.【解答】解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.34.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.35.(2018•黄石)解不等式组,并求出不等式组的整数解之和.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.【解答】解:解不等式(x+1)≤2,得:x≤3,解不等式≥,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.36.(2018•南通模拟)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.37.(2018•哈尔滨)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A 型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.38.(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.39.(2018•苏州)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A 型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.40.(2018•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.41.(2018•广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8﹣5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.42.(2018•湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.。