Maxon 直流电机样本10_EN_EC45
沃伦森电气
![沃伦森电气](https://img.taocdn.com/s3/m/881f4a94d4d8d15abe234e34.png)
沃伦森电气(WARENSEN)系列产品型号查询:低压电容器+电抗器WRS-CR7-10/400V WRS-MKP10/400-3 WRS-CK-10/400-3 WRS-CR7-15/400V WRS-MKP15/400-3 WRS-CK-15/400-3 WRS-CR7-20/400V WRS-MKP20/400-3 WRS-CK-20/400-3 WRS-CR7-25/400V WRS-MKP25/400-3 WRS-CK-25/400-3 WRS-CR7-30/400V WRS-MKP30/400-3 WRS-CK-30/400-3 WRS-CR7-40/400V WRS-MKP40/400-3 WRS-CK-40/400-3 WRS-CR14-10/400V WRS-MKP10/400-3 WRS-CK-10/400-3 WRS-CR14-15/400V WRS-MKP15/400-3 WRS-CK-15/400-3 WRS-CR14-20/400V WRS-MKP20/400-3 WRS-CK-20/400-3 WRS-CR14-25/400V WRS-MKP25/400-3 WRS-CK-25/400-3 WRS-CR14-30/400V WRS-MKP30/400-3 WRS-CK-30/400-3 WRS-CR14-40/400V WRS-MKP40/400-3 WRS-CK-40/400-3 WRS-CK7-100/400VWRS-CK7-60/400VWRS-CK7-40/400V高压电容器WRS-MK10/200H1WRS-MK10/100H1WRS-MK10/60H1WRS-MK10/50H1WRS-MK10/50H3WRS-MK10/100H3WRS-MK10/200H3WRS-MK6/200H1WRS-MK6/100H1WRS-MK6/60H1WRS-MK6/50H1WRS-MK6/50H3WRS-MK6/100H3WRS-MK6/200H3高压电抗器WRS-1CK10/300H3WRS-1CK10/180H3WRS-1CK10/150H3WRS-1CK10/90H3WRS-1CK6/300H3WRS-1CK6/180H3WRS-1CK6/150H3WRS-1CK6/90H3电容+电抗模补偿块产品(晶闸管)WRS-CRT7-30/1-400VWRS-CRT7-60/2-400VWRS-CRT7-60/1-400VWRS-CRT7-90/1-400VWRS-CRT7-60/1-400VWRS-CRT7-90/1-400VWRS-CRT7-60/2-400VWRS-CRT7-60/1-400VWRS-CRT7-90/1-400VWRS-CRT7-60/1-400VWRS-CRT7-90/1-400VWRS-CRT7-60/1-400VWRS-CRT7-90/1-400VWRS-CRT7-90/1-400VWRS-CKT7-240/4-400VWRS-CKT7-360/6-400VWRS-CRT14-30/2-400VWRS-CRT14-30/2-400VWRS-CRT14-30/1-400VWRS-CRT14-30/2-400VWRS-CRT14-60/2-400VWRS-CRT14-60/2-400VWRS-CRT14-60/1-400VWRS-CRT14-60/2-400VWRS-CRT14-60/1-400VWRS-CRT14-60/2-400VWRS-CRT14-90/1-400VWRS-CRT14-60/2-400VWRS-CRT14-60/1-400VWRS-CRT14-90/1-400VWRS-CRT14-60/2-400VWRS-CRT14-60/1-400VWRS-CRT14-90/1-400VWRS-CRT14-60/1-400VWRS-CRT14-90/1-400VWRS-CRT14-60/1-400VWRS-CRT14-90/1-400VWRS-CKT14-240/4-400VWRS-CKT14-360/6-400V电容+电抗补偿模块产品(接触器)WRS-CRS7-30/2-400VWRS-CRS7-30/2-400VWRS-CRS7-30/1-400VWRS-CRS7-60/2-400VWRS-CRS7-60/2-400VWRS-CRS7-60/1-400VWRS-CRS7-60/2-400VWRS-CRS7-60/1-400VWRS-CRS7-60/2-400VWRS-CRS7-90/1-400VWRS-CRS7-60/2-400VWRS-CRS7-60/1-400VWRS-CRS7-90/1-400VWRS-CRS7-60/2-400VWRS-CRS7-60/1-400VWRS-CRS7-60/1-400VWRS-CRS7-90/1-400VWRS-CKS7-240/4-400VWRS-CKS7-360/6-400VWRS-CRS14-30/2-400VWRS-CRS14-30/1-400VWRS-CRS14-60/2-400VWRS-CRS14-60/1-400VWRS-CRS14-60/2-400VWRS-CRS14-60/1-400VWRS-CRS14-60/2-400VWRS-CRS14-90/1-400VWRS-CRS14-60/2-400VWRS-CRS14-60/1-400VWRS-CRS14-60/2-400VWRS-CRS14-60/1-400VWRS-CRS14-90/1-400VWRS-CRS14-90/1-400VWRS-CRS14-60/1-400VWRS-CKS14-240/4-400VWRS-CKS14-360/6-400V纯电容补偿模块产品(晶闸管)WRS-CT7-30/2-400VWRS-CT7-30/1-400VWRS-CT7-60/2-400VWRS-CT7-60/1-400VWRS-CT7-90/1-400VWRS-CT7-100/1-400V纯电容补偿模块产品(接触器)WRS-CS7-30/2-400VWRS-CS7-30/1-400VWRS-CS7-60/1-400V WRS-CS7-90/1-400V WRS-CS7-100/1-400V智能电容器WRS-IC-450/10WRS-IC-450/15WRS-IC-450/20WRS-IC-450/25WRS-IC-450/30WRS-IC-450/40WRS-IC-450/50WRS-IC-450/60WRS-IC-450/70智能电容器(电抗器)WRS-ICR7-480/10WRS-ICR7-480/15WRS-ICR7-480/20WRS-ICR7-480/24WRS-ICR7-480/30WRS-ICR7-480/35WRS-ICR7-480/40WRS-ICR7-480/45WRS-APF模块产品WRS-APF25/400VWRS-APF35/400VWRS-APF50/400VWRS-APF60/400VWRS-APF75/400VWRS-APF100/400VWRS-SVG模块产品WRS-SVG50/400VWRS-SVG100/400V静止无功发生器WRS-SVG WDSVG-12/1000-N WDSVG-12/2000-N磁控式动态补偿滤波装置WMSVC-12/600-600-N WMSVC-12/1000-1000-N WMSVC-12/1200-1200-N WMSVC-12/600-600-W WMSVC-12/1000-1000-W WMSVC-12/1200-1200-W 高压无功补偿装置WMC-12/1000-3N WMC-12/1200-4N WMC-12/1600-4N WMC-12/2000-5N WMC-6/1000-3W WMC-6/1200-4W WMC-6/1600-4W WMC-6/2000-5WWMC-12/180-1N WMC-12/200-1N WMC-12/300-1N WMC-6/180-1N WMC-6/200-1N WMC-6/300-1N高压线路装置WMXC-6/50+100J WMXC-6/100+100J WMXC-6/200+100J WMXC-6/100+200J WMXC-6/100+100 WMXC-12/50+100J WMXC-12/100+100J WMXC-12/200+100J WMXC-12/100+200J WMXC-12/100+100 低压有源滤波装置WUAPF-400/50-2N WUAPF-400/75-2N WUAPF-400/100-3N WUAPF-400/125-3N WUAPF-400/150-3N WUAPF-400/200-4N 低压无功补偿装置WMTC-400/90-4N WMTC-400/120-3N WMTC-400/180-4N WMTC-400/240-4N WMTC-400/300-5N WMTC-400/360-6N WMTC-400/480-6N 低压无源滤波装置WTSF400-100/3-N WTSF400-200/4-N WTSF400-300/5-N低压控制器WRS-DK-12TWRS-DK-21TWRS-DK-12SWRS-DK-21S高压控制器WRS-HK-700智能电容器控制器WRS-IK-200电容器综合保护单元WRS-HB-1000电能质量在线监测装置WRS-600S动态补偿调节开关WRS-TD1永磁式电容投切真空开关WRS-ZNT12/630-Y多功能电力仪表WRS650AA-9K1WRS650AV-9K1WRS650AA-9K4WRS650AV-9K4WRS650-AE-9WRS650E-9SUIWRS650E-9SUIYWRS650E-9S4WRS650E-9SYWRS650Z-9H4WRS650Z-9HYWRS650Z-9FYWRS730E-9S4WRS730AA-9K4WRS730E-9SUIWRS780M(P)M:塑壳P:金属壳导轨式电能表WRSDS11WRSDS111WRSDS111EWRSDS111EFWRSTS333WRSTS333EWRSTS333EF电力监控组态软件WRS-1000综合智能操控装置WRS-910WRS-920WRS-930WRS-940WRS-950导轨式预付费电能表单相:DDS8500Y-BJ三相:DTS8500Y-BJ WRS-DDS580Y-DT WRS-DDS580Y-DK WRS-DDS580Y-DH WRS-DDS580Y-DTP WRS-DDS580Y-DKP WRS-DDS580Y-DHP WRS-DTS580Y-DT WRS-DTS580Y-DK WRS-DTS580Y-DH用电管理系统WRS-A型用电管理系统WRS-B型用电管理系统WRS-C型用电管理系统WRS-D型用电管理系统谐波保护器WRS-BMS100-400V WRS-BMS500-400V WRS-BMS1000-400V WRS-BMS1000E-400V。
美达尔Moeller系列U-PKZ0欠压发电器说明书
![美达尔Moeller系列U-PKZ0欠压发电器说明书](https://img.taocdn.com/s3/m/519e6aced5d8d15abe23482fb4daa58da0111cba.png)
Eaton 073145Eaton Moeller® series U-PKZ0 Undervoltage release PKZ0(4),PKE, AC, 208 V 60 Hz, Screw terminalsEspecificaciones generalesEaton Moeller® series U-PKZ0Accessory Undervoltage Release073145401508073145068 mm90 mm24 mm0.129 kgCECSA File No.: 165628UL 508CSAULUL File No.: E36332CSA-C22.2 No. 14UL Category Control No.: NLRV IEC/EN 60947-4-1CSA Class No.: 3211-05U-PKZ0(208V60HZ)Product Name Catalog NumberEANProduct Length/Depth Product Height Product Width Product Weight Certifications Model CodeScrew connection Can be fitted to left side of the motor protection switchAccessoriesEMERGENCY STOP or EMERGENCY switching-off device inaccordance with IEC/EN 60204 when combined with circuitbreakerMotor safety switchMotor protective circuit-breakerAC-25 °C 55 °C 2 x (0.75 - 2.5) mm² 1 x (0.75 - 2.5) mm²1 x (18 - 14)2 x (18 - 14)42 V 480 V 24 V 250 V 0,7- 0,35 x Uc 0.85 - 1.1 V x Uc 0 V0 V208 VElectric connection type Mounting positionProduct categorySuitable asSuitable forUsed withVoltage typeAmbient operating temperature - minAmbient operating temperature - maxTerminal capacity (solid/flexible with ferrule)Terminal capacity (solid/stranded AWG)Rated operational voltage (Ue) at AC - min Rated operational voltage (Ue) at AC - max Rated operational voltage (Ue) at DC - min Rated operational voltage (Ue) at DC - max Drop-out voltagePick-up voltageRated control supply voltage (Us) at AC, 50 Hz - min Rated control supply voltage (Us) at AC, 50 Hz - max Rated control supply voltage (Us) at AC, 60 Hz - min Rated control supply voltage (Us) at AC, 60 Hz - max208 V0 V0 V5 VA, Pull-in power, Coil in a cold state and 1.0 x Us 5 VA, Pull-in power, Coil in a cold state and 1.0 x Us 3 VA, Coil in a cold state and 1.0 x Us3 VA, Coil in a cold state and 1.0 x Us 0 W0 W0 W0 A0.5 WMeets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Rated control supply voltage (Us) at DC - minRated control supply voltage (Us) at DC - maxNumber of contacts (change-over contacts)Number of contacts (normally closed contacts)Number of contacts (normally open contacts)Power consumption, pick-up, 50 Hz Power consumption, pick-up, 60 Hz Power consumption, sealing, 50 Hz Power consumption, sealing, 60 Hz Equipment heat dissipation, current-dependent PvidHeat dissipation capacity PdissHeat dissipation per pole, current-dependent PvidRated operational current for specified heat dissipation (In) Static heat dissipation, non-current-dependent Pvs10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures10.2.3.2 Verification of resistance of insulating materials to normal heat10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects10.2.4 Resistance to ultra-violet (UV) radiation10.2.5 Lifting10.2.6 Mechanical impactMeets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Is the panel builder's responsibility. The specifications for the switchgear must be observed.Is the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.DA-DC-00004882.pdfDA-DC-00004892.pdfDA-DC-00004886.pdfDA-DC-00004787.pdfDA-DC-00004879.pdfDA-DC-00004911.pdfDA-DC-00004912.pdfDA-DC-00004935.pdfDA-DC-00004910.pdfDA-DC-00004951.pdfDA-DC-00004915.pdfDA-DC-00004921.pdfDA-DC-00004851.pdfDA-DC-00004883.pdfDA-DC-00004878.pdfDA-DC-00004890.pdfDA-DC-00004913.pdfDA-DC-00004962.pdfDA-DC-00004937.pdfDA-DC-00004952.pdfDA-DC-00004960.pdfDA-DC-00004884.pdfDA-DC-00004945.pdfDA-DC-00004880.pdfDA-DC-00004891.pdfDA-DC-00004920.pdfDA-DC-00004961.pdfDA-DC-00004881.pdfDA-DC-00004953.pdfDA-DC-00004944.pdfDA-DC-00004914.pdfeaton-manual-motor-starters-release-u-pkz0-accessory-dimensions.eps eaton-manual-motor-starters-release-u-pkz0-accessory-3d-drawing.eps eaton-manual-motor-starters-shunt-releases-u-pkz0-accessory-3d-drawing.eps10.2.7 Inscriptions10.3 Degree of protection of assemblies10.4 Clearances and creepage distances10.5 Protection against electric shock10.6 Incorporation of switching devices and components10.7 Internal electrical circuits and connections10.8 Connections for external conductors10.9.2 Power-frequency electric strength10.9.3 Impulse withstand voltage10.9.4 Testing of enclosures made of insulating material10.10 Temperature rise10.11 Short-circuit rating10.12 Electromagnetic compatibility10.13 Mechanical functionDeclarations of conformityDibujosEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All Rights Reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaDA-CE-ETN.U-PKZ0(208V60HZ)eaton-manual-motor-starters-undervoltage-u-pkz0-accessory-wiring-diagram.epsDA-DC-00004244.pdf DA-DC-00004232.pdf DA-DC-00004245.pdf DA-DC-00004544.pdf DA-DC-00004601.pdf DA-DC-00004067.pdf DA-DC-00004206.pdf DA-DC-00003914.pdf DA-DC-00004069.pdf DA-DC-00004230.pdf DA-DC-00004109.pdf DA-DC-00004246.pdf DA-DC-00004545.pdf DA-DC-00004108.pdf IL03402034Z DA-CD-a_pkz DA-CS-a_pkzeCAD modelEsquemas eléctricosInformes de certificación Instrucciones de montaje mCAD model。
杭州德易姆电力设备有限公司电子版说明书+(1)
![杭州德易姆电力设备有限公司电子版说明书+(1)](https://img.taocdn.com/s3/m/c677091d6edb6f1aff001f51.png)
DK/DKM 多回转系列 DK/DKM 多回转系列
2 产品特点
1 全中文菜单 高分辨率的点阵式液晶显示,以超大数字实时显示阀门的开度大小,以全中文显示操作菜单,并 根据工作情况实时汉字显示报警信息、工作状态:高亮度LED发光管指示阀门的开、关极限位置。
2 非侵入设计,免开盖调试 DK/DKM多回转系列智能型电动执行器的现场操作采用了非侵入式的双层结构设计。旋钮操作由 磁钢和隔离在机壳内的霍尔传感器来实现。 工作参数设置、系统状态查询均可通过“操作旋纽” 或 “红外设定器”完成,无需打开电气罩,使得环境中的灰尘、潮气等有害物质不能进入执行器 的内部,极大的提高了电气控制部分的可靠性和安全性。
3 箱体双密封,双防护设计 箱体静配合处配有 O 型圈、 动配合处配有骨架油封,箱体达到IP68 的防护等级(常规为IP67, 如需IP68请在订货时说明)。电气接线箱设计采用了双密封结构,即使现场接线期间移去接线端 盖也能起到密封作用,能有效阻止灰尘、潮气等物质对执行器内部元件的损害。防爆型箱体可适 合于IIA、IIB、IIC级 T1-T4 级爆炸性气体环境的1、2区场所等危险作业环境工作。如需防爆功 能,请在订货时说明。
公司秉承“质量第一、信誉第一、用户至上”的宗旨,积极推行并通过了IS09001;2000 质量管理体系认证,并严格按照标准进行生产。所有产品均通过国家权威机构检测并认证,关 键的机械零部件采用国际一流的加工中心制造,所有电路板的焊接均采用进口全自动贴片焊接 设备加工,拥有一批经验丰富、不断追求创新的高素质研发人员,强大的售后服Байду номын сангаас队伍。这些 都为“DEM”这个品牌的质量、性能等提供的强大的支持与保证。
D K / D K M多 回 转 系 列 智 能 型 电 动 执 行 器
ASD-A2样本
![ASD-A2样本](https://img.taocdn.com/s3/m/72983b59e518964bcf847c8b.png)
J : 400V / 3000 r/min K : 400V / 2000 r/min L : 400V / 1500 r/min M : 400V / 1000 r/min
編碼器形式
1 : 增量型 ,20-bit 2 : 增量型 ,17-bit 3:2500 ppr
A : 絕對型, 單圈解析度 : 17-bit 多圈解析度 : 16-bit
4000
3000
2000
1000
0
-1000
-2000
-3000
-4000
-5000
070 10
20
30
40
50
60
70
Time(ms)
Speed
Speed
Delay 1
Time
Time
Speed
Time
上位機送出
軸1
位置脈波命令
軸2
位置脈波參考命令
伺服系統對應參照表
220V 系列
馬達
Motor 系列
型號 ASD-A2-0743ASD-A2-0743ASD-A2-0743ASD-A2-1043ASD-A2-1543ASD-A2-2043ASD-A2-3043ASD-A2-0743ASD-A2-1043ASD-A2-1543ASD-A2-2043ASD-A2-2043ASD-A2-0743ASD-A2-1043ASD-A2-1543ASD-A2-3043ASD-A2-4543ASD-A2-5543ASD-A2-7543ASD-A2-1543-
0.90 1.55 2.60
瞬時最大輸出電流 (A) 2.70 4.65 7.80
5.10
15.30
7.30
13.40 19.40 2.60 7.30 8.30
Powermax45 熔炼机穿刺图表说明书
![Powermax45 熔炼机穿刺图表说明书](https://img.taocdn.com/s3/m/199723c750e79b89680203d8ce2f0066f433646e.png)
Duramax® Machine Torch Cut Charts for the Powermax45®Cut Charts Guide810050Revision0January2018Hypertherm Inc.Etna Road, P.O. Box 5010Hanover, NH 03755 USA603-643-3441 Tel (Main Office)603-643-5352 Fax (All Departments)*******************(MainOfficeEmail)800-643-9878 Tel (Technical Service)********************************(TechnicalServiceEmail)800-737-2978 Tel (Customer Service)*******************************(CustomerServiceEmail)866-643-7711 Tel (Return Materials Authorization)877-371-2876 Fax (Return Materials Authorization)*******************************(RMAemail)Hypertherm México, S.A. de C.V.Avenida Toluca No. 444, Anexo 1,Colonia Olivar de los Padres Delegación Álvaro Obregón México, D.F. C.P. 0178052 55 5681 8109 Tel 52 55 5683 2127 Fax******************************(TechnicalServiceEmail)Hypertherm Plasmatechnik GmbHSophie-Scholl-Platz 563452 Hanau Germany00 800 33 24 97 37 Tel 00 800 49 73 73 29 Fax31 (0) 165 596900 Tel (Technical Service)00 800 4973 7843 Tel (Technical Service)************************************(TechnicalServiceEmail)Hypertherm (Singapore) Pte Ltd.82 Genting Lane Media CentreAnnexe Block #A01-01Singapore 349567, Republic of Singapore 65 6841 2489 Tel 65 6841 2490 Fax*****************************(MarketingEmail)******************************(TechnicalServiceEmail)Hypertherm Japan Ltd.Level 9, Edobori Center Building 2-1-1 Edobori, Nishi-ku Osaka 550-0002 Japan 81 6 6225 1183 Tel 81 6 6225 1184 Fax***************************(MainOfficeEmail)******************************(TechnicalServiceEmail)Hypertherm Europe B.V.Vaartveld 9, 4704 SE Roosendaal, Nederland 31 165 596907 Tel 31 165 596901 Fax31 165 596908 Tel (Marketing)31 (0) 165 596900 Tel (Technical Service)00 800 4973 7843 Tel (Technical Service)************************************(Technical Service Email)Hypertherm (Shanghai) Trading Co., Ltd.B301, 495 ShangZhong Road Shanghai, 200231PR China86-21-80231122 Tel 86-21-80231120 Fax86-21-80231128 Tel (Technical Service)********************************(Technical Service Email)South America & Central America: Hypertherm Brasil Ltda.Rua Bras Cubas, 231 – Jardim Maia Guarulhos, SP – Brasil CEP 07115-03055 11 2409 2636 Tel*************************(TechnicalServiceEmail)Hypertherm Korea Branch#3904. APEC-ro 17. Heaundae-gu. Busan.Korea 4806082 (0)51 747 0358 Tel 82 (0)51 701 0358 Fax******************************(MarketingEmail)******************************(Technical Service Email)Hypertherm Pty LimitedGPO Box 4836Sydney NSW 2001, Australia 61 (0) 437 606 995 Tel 61 7 3219 9010 Fax***********************(MainOfficeEmail)******************************(Technical Service Email)Hypertherm (India) Thermal Cutting Pvt. LtdA-18 / B-1 Extension,Mohan Co-Operative Industrial Estate,Mathura Road, New Delhi 110044, India 91-11-40521201/ 2/ 3 Tel 91-11 40521204 Fax***************************(MainOfficeEmail)******************************(Technical Service Email)1/28/16© 2018 Hypertherm Inc. All rights reserved.Powermax, Duramax, FineCut, and Hypertherm are trademarks of Hypertherm Inc. and may be registered in the United States and/or other countries. All other trademarks are the property of their respective holders.Environmental stewardship is one of Hypertherm’s core values, and it is critical to our success and our customers’ success. We are striving to reduce the environmental impact of everything we do. For more information: /environment.Duramax Machine Torch Cut Charts for the Powermax45Powermax45Cut Charts Guide 8100503Using the cut chartsUse the cut charts in this document:⏹Only for Duramax ® machine torches on the Powermax45⏹As a starting pointAdjust the variables in the cut charts as needed to achieve optimal results for your cutting equipment and environment.The cut charts are based on the latest process development from the Powermax45XP and provide a wider range of material thicknesses than previous 45A cut charts for Duramax torches.If you are using a T45m torch with the Powermax45, use the cut charts in the Powermax45 Operator Manual (805780). For Powermax45XP cut charts, refer to the Powermax45XP Operator Manual (809240). Download the manuals at /docs .Cut charts are provided for each set of mechanized cutting consumables. A consumable diagram with part numbers precedes each cut chart.Cut charts are included for:⏹Cutting mild steel, stainless steel, and aluminum at 45A with air using shielded consumables⏹Cutting mild steel and stainless steel with air using FineCut consumables ⏹Cutting stainless steel at 45A with F5gas using shielded consumablesEach cut chart may contain the following information:⏹Amperage setting –The amperage setting at the top of the page applies to all the settings given on that page. In FineCut ® charts, the amperage setting for each thickness is included in the cut chart.⏹Material Thickness –Thickness of the workpiece (metal plate being cut).⏹Torch-to-Work Distance –For shielded consumables, the distance between the shield and the workpiece during cutting. For unshielded consumables, the distance between the nozzle and the workpiece during cutting. This is also known as cut height.⏹Initial Pierce Height –Distance between the shield (shielded) or the nozzle (unshielded) and the workpiece when the torch is fired, prior to descending to the cut height.⏹Pierce Delay Time –Length of time the triggered torch remains stationary at the pierce height before the torch starts the cutting motion.⏹Best Quality Settings (cut speed and voltage)–Settings that provide the starting point for finding the best cut quality (best angle, least dross, best cut-surface finish). Adjust the speed for your application and table to obtain the desired result.Duramax Machine Torch Cut Charts for the Powermax454810050Cut Charts Guide Powermax45⏹Production Settings (cut speed and voltage)–70% to 80% of the maximum speedratings. These speeds result in the greatest number of cut parts, but not necessarily the best possible cut quality.The arc voltage increases as the consumables wear, so the voltage setting may need to be increased to maintain the correct torch-to-work distance. Some CNCs monitor the arc voltage and adjust the torch lifter automatically.⏹Kerf Width –Width of material removed by the cutting process. The kerf widths were obtained with the “Best Quality” settings and are for reference only. Differences between installations and material composition may cause actual results to vary from those shown.Each cut chart lists hot and cold gas flow rates.⏹Hot flow rate –Plasma is on, the system is operating at running current, and the system is in a steady state at the default system pressure (cutflow, or automatic mode).⏹Cold flow rate –Plasma is off and the system is in a steady state with gas flowing through the torch at the default system pressure (postflow).Hypertherm collected the cut chart data under laboratory test conditions using new consumables.Duramax Machine Torch Cut Charts for the Powermax45Powermax45Cut Charts Guide8100505Duramax Machine Torch Cut Charts for the Powermax456810050Cut Charts Guide Powermax45Mild Steel – 45A – Air – ShieldedMetricMaterial Thickness Torch-to-Work DistanceInitial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage mmmmmm%secondsmm/min voltsmm/min voltsmm21.53.82500.255601287910125 1.433960128559012840.428001283960128 1.560.614301302110127810201331385130 1.7100.8780136920134 1.8121540140690138 1.916Edge Start310146400141 2.120170152240147 2.3251101571451543EnglishMaterial Thickness Torch-to-Work Distance Initial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage inchesinchesinches%secondsin/min voltsin/min voltsinches16GA0.060.152500.12491283201250.05314GA 0.22251283201250.05410GA 0.41291281811280.0573/160.5851291221270.0591/40.648130721270.0613/80.833136381330.0691/21181********.0775/8Edge Start131********.0823/47151101450.0867/8615471510.1031415761540.119Gas flow rate –slpm /scfh151/320Hot (cutflow)184/390Cold (postflow)220817220854(220953 for ohmic sensing)220941220857220842Duramax Machine Torch Cut Charts for the Powermax45Powermax45Cut Charts Guide 8100507Stainless Steel – 45A – Air – ShieldedMetricMaterial Thickness Torch-to-Work DistanceInitial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage mmmmmm%secondsmm/min voltsmm/min voltsmm21.53.82500.1562012678301290.630.2328512947251280.940.419951302960129 1.160.611451311695131 1.288301341100134 1.4100.8605137870137 1.612 4.6300 1.2380141540139 1.816Edge Start240145320142 2.420160149205146 3.1EnglishMaterial Thickness Torch-to-Work Distance Initial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage inchesinchesinches%secondsin/min voltsin/min voltsinches16GA0.060.152500.12371253201280.01714GA 0.22301263201290.02210GA 0.4901301341280.0413/160.563131931300.0441/40.640131591310.0473/80.826137291360.0611/20.18300 1.212142191400.0755/8Edge Start10145131420.0963/4714891450.1167/8515161490.137Gas flow rate –slpm /scfh151/320Hot (cutflow)184/390Cold (postflow)220817220854(220953 for ohmic sensing)220941220857220842Duramax Machine Torch Cut Charts for the Powermax458810050Cut Charts Guide Powermax45Aluminum – 45A – Air – ShieldedMetricMaterial Thickness Torch-to-Work DistanceInitial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage mmmmmm%secondsmm/min voltsmm/min voltsmm21.53.82500.178901219585134 1.330.248501307120129 1.540.43670133565012960.520601393095132 1.680.613301391830136 1.7100.78601421015140 1.912Edge Start6201447451422163601523401482.5EnglishMaterial Thickness Torch-to-Work Distance Initial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage inchesinchesinches%secondsin/min voltsin/min voltsinches1/100.060.152500.22401263201310.0561/80.41701312631280.0603/161201341841300.0611/40.5701371041320.0633/80.736141421390.0731/2Edge Start21145261430.0825/815152141480.1003/4815891530.117Gas flow rate –slpm /scfh151/320Hot (cutflow)184/390Cold (postflow)220817220854(220953 for ohmic sensing)220941220857220842Duramax Machine Torch Cut Charts for the Powermax45Powermax45Cut Charts Guide 8100509Mild Steel – FineCut – Air – Shielded and UnshieldedMetricMaterial ThicknessCurrent Torch-to-Work DistanceInitial Pierce Height Pierce Delay TimeRecommended Kerf Width Cut Speed Voltage mmAmmmm%secondsmm/min voltsmm0.5401.53.82500.08250780.70.68250780.80.18250780.61450.28250780.71.50.4640078 1.22480078 1.330.525007840.6190078EnglishMaterial ThicknessCurrent Torch-to-Work Distance Initial Pierce Height Pierce Delay TimeBest Quality Settings Kerf Width Cut Speed Voltage inchesAinchesinches%secondsin/min voltsinches26GA400.060.152500.0325780.02524GA 325780.02922GA 0.1325780.02420GA 325780.02018GA 450.2325780.04316GA 0.4250780.04614GA 200780.04912GA 0.5120780.05210GA95780.051Gas flow rate –slpm /scfh155/330Hot (cutflow)215/460Cold (postflow)220955 (deflector)220948 (shield)220854220953 (ohmic)220930220947220842Duramax Machine Torch Cut Charts for the Powermax4510810050Cut Charts Guide Powermax45Stainless Steel – FineCut – Air – Shielded and UnshieldedMetricMaterial ThicknessCurrent Torch-to-Work DistanceInitial Pierce Height Pierce Delay TimeRecommended Kerf Width Cut Speed Voltage mmAmmmm%secondsmm/min voltsmm0.5400.52.04000.08250680.60.68250680.50.80.18250681450.28250680.61.50.4615070 1.024*******.5255080 1.440.61050841.5EnglishMaterial ThicknessCurrent Torch-to-Work Distance Initial Pierce Height Pierce Delay TimeBest Quality Settings Kerf Width Cut Speed Voltage inchesAinchesinches%secondsin/min voltsinches26GA400.020.084000.0325680.02424GA 325680.02122GA 0.1325680.01820GA 325680.01718GA 450.2325680.03616GA 0.4240700.03914GA 200700.04012GA 0.5120800.04910GA0.675800.055Gas flow rate –slpm /scfh155/330Hot (cutflow)215/460Cold (postflow)220955 (deflector)220948 (shield)220854220953 (ohmic)220930220947220842Duramax Machine Torch Cut Charts for the Powermax45Powermax45Cut Charts Guide 81005011Mild Steel – FineCut Low Speed – Air – Shielded and UnshieldedMetricMaterial ThicknessCurrent Torch-to-Work DistanceInitial Pierce Height Pierce Delay TimeRecommended Kerf Width Cut Speed Voltage mmAmmmm%secondsmm/min voltsmm0.5301.5 3.82500.03800690.60.63800680.80.13800701*400.23800720.81.5*0.43800752453700760.730.5275078 1.340.61900781.5EnglishMaterial ThicknessCurrent Torch-to-Work Distance Initial Pierce Height Pierce Delay TimeBest Quality Settings Kerf Width Cut Speed Voltage inchesAinchesinches%secondsin/min voltsinches26GA300.060.152500.0150700.02624GA 150680.02422GA 0.1150700.02520GA 1507118GA 400.2150730.03116GA*0.4150750.02914GA*45150760.02712GA 0.5120780.05210GA95780.051Gas flow rate –slpm /scfh155/330Hot (cutflow)215/460Cold (postflow)*Not a dross-free cut.220955 (deflector)220948 (shield)220854220953 (ohmic)220930220947220842Duramax Machine Torch Cut Charts for the Powermax4512810050Cut Charts Guide Powermax45Stainless Steel – FineCut Low Speed – Air – Shielded and UnshieldedMetricMaterial ThicknessCurrent Torch-to-Work DistanceInitial Pierce Height Pierce Delay TimeRecommended Kerf Width Cut Speed Voltage mmAmmmm%secondsmm/min voltsmm0.5300.5 2.04000.03800690.70.63800690.80.13800691400.23800690.61.50.42900690.52275069 1.33450.5255080 1.440.61050801.5EnglishMaterial ThicknessCurrent Torch-to-Work Distance Initial Pierce Height Pierce Delay TimeBest Quality Settings Kerf Width Cut Speed Voltage inchesAinchesinches%secondsin/min voltsinches26GA300.020.084000.0150690.02824GA 1506922GA 0.1150690.02520GA 150690.02318GA 400.21456916GA 0.4115690.02214GA 110690.02112GA 450.5120800.04910GA0.675800.055Gas flow rate –slpm /scfh155/330Hot (cutflow)215/460Cold (postflow)220955 (deflector)220948 (shield)220854220953 (ohmic)220930220947220842Duramax Machine Torch Cut Charts for the Powermax45Powermax45Cut Charts Guide 81005013Stainless Steel – 45A – F5 – ShieldedWhen used with a Powermax system, F5 should be used only to cut stainless steel.For more information on cutting with F5, download the Use F5 to Cut Stainless Steel (809060) Application Note at /docs .F5 is not recommended for thicknesses less than 7mm or 1/4inch or for use with FineCut consumables.MetricMaterial Thickness Torch-to-Work DistanceInitial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage mmmmmm%secondsmm/min voltsmm/min voltsmm81.53.82500.8630150860144 2.110435153525147 2.312Edge Start340156440150 2.5EnglishMaterial Thickness Torch-to-Work Distance Initial Pierce Height Pierce Delay Time Best Quality Settings Production SettingsKerf Width Cut Speed Voltage Cut Speed Voltage inchesinchesinches%secondsin/min voltsin/min voltsinches1/40.060.152500.632147471410.0753/80.8181********.0881/2Edge Start12157161510.101Gas flow rate –slpm /scfh149/315Hot (cutflow)184/390Cold (postflow)220817220854(220953 for ohmic sensing)220941220857220842。
禾川外部轴电机参数及尺寸20210512
![禾川外部轴电机参数及尺寸20210512](https://img.taocdn.com/s3/m/06695e0d6fdb6f1aff00bed5b9f3f90f76c64d2b.png)
功率kW 1000额定转速r/min3000最大转速r/min6000额定转矩N·m 3.185最大转矩N·m11.13堵转转矩N·m 3.185额定电流A 3.6转动惯量×10-4kg·m2 2.1驱动电压V380
重量Kg
耐热温度F
瞬时最大电流A11
功率kW2000额定转速r/min3000最大转速r/min5000额定转矩N·m 6.37最大转矩N·m19.1堵转转矩N·m 6.37额定电流A 6.3转动惯量×10-4kg·m2 4.01驱动电压V380
重量Kg
耐热温度F
瞬时最大电流A19
功率kW3000额定转速r/min3000最大转速r/min5000额定转矩N·m9.55最大转矩N·m28.6堵转转矩N·m9.55额定电流A10.5转动惯量×10-4kg·m222驱动电压V380禾川1000W电机
3000w 禾川2000W电机
1000w
2000w
禾川3000W电机
重量Kg
耐热温度F
瞬时最大电流A32
功率kW5000额定转速r/min2000最大转速r/min4000额定转矩N·m23.9最大转矩N·m71.6堵转转矩N·m31额定电流A21转动惯量×10-4kg·m2166.6驱动电压V380
重量Kg
耐热温度F
瞬时最大电流A70禾川5000W电机
5000w。
海特克柱塞马达样本-HA6V
![海特克柱塞马达样本-HA6V](https://img.taocdn.com/s3/m/80aeb90202020740be1e9b95.png)
产品外观及简介
开式回路和闭式回路 规格8 0、10 7、1 6 0 高压范 围 至3 5 M P a
目录
特点…………………………………………………………………………………………………………………………… 147 剖视图………………………………………………………………………………………………………………………… 147 型号说明……………………………………………………………………………………………………………………… 148 技术参数……………………………………………………………………………………………………………………… 149 HD液控 变 量 … … … …… … … … … … … … … … … … ………………………………………………………………………… 150 HA高压 自 动 变 量 … …… … … … … … … … … … … … ………………………………………………………………………… 151 外形尺寸……………………………………………………………………………………………………………………… 152
规格的计算
流量
qv
=
V g·n· ηv —
1000
[L / m i n]
输出转速
N
=
Q·1 0 0 0·ηv —
Vg
[r / m i n]
输出扭矩
M
=
— V g· △p·ηmh
=
1 . 5 9 V g· △p·ηmh —
[N
m]
2π
10
或 M =— K M· △P·ηmh 10
[N m]
输出功率
P=
控 制 起 点 在V gmin 控 制 终 点 在V gmax。
爱森 Moeller 系列 PKZM0 电机保护断路器 产品说明说明书
![爱森 Moeller 系列 PKZM0 电机保护断路器 产品说明说明书](https://img.taocdn.com/s3/m/d8241d0bb207e87101f69e3143323968011cf405.png)
Eaton 039427Eaton Moeller® series PKZM0 Motor-protective circuit-breaker, 3p+1N/O+1N/C, Ir=1.6-2.5A, screw connectionGeneral specificationsEaton Moeller® series PKZM0 Motor-protective circuit-breaker039427401508039427376 mm 93 mm 54 mm 0.326 kgIEC/EN 60947-4-1 VDE 0660CSA-C22.2 No. 60947-4-1-14 UL CE CSAUL Category Control No.: NLRV CSA Class No.: 3211-05 UL 60947-4-1 UL File No.: E36332 IEC/EN 60947 CSA File No.: 165628 UL CSAProduct NameCatalog Number EANProduct Length/Depth Product Height Product Width Product Weight CertificationsTurn buttonPhase-failure sensitivity (according to IEC/EN 60947-4-1, VDE 0660 Part 102)Auxiliary switchMotor protectionPhase failure sensitiveThree-pole ATEX dust-ex-protection, PTB 10, ATEX 3013, Ex II(2) GD100,000 operations100,000 OperationsCan be snapped on to IEC/EN 60715 top-hat rail with 7.5 or15 mm height.40 Operations/hIII3Motor protective circuit breakerFinger and back-of-hand proof, Protection against direct contact when actuated from front (EN 50274)6000 V AC25 g, Mechanical, according to IEC/EN 60068-2-27, Half-sinusoidal shock 10 msBranch circuit: Manual type E if used with terminal, or suitable for group installations, (UL/CSA)Also motors with efficiency class IE3≤ 0.25 %/K, residual error for T > 40°-5 - 40 °C to IEC/EN 60947, VDE 0660-25 - 55 °C, Operating rangeActuator type FeaturesFitted with: Functions Number of poles Explosion safety category for dust Lifespan, electricalLifespan, mechanicalMounting positionOperating frequencyOvervoltage categoryPollution degreeProduct categoryProtectionRated impulse withstand voltage (Uimp) Shock resistanceSuitable forTemperature compensationAltitude Terminal capacity (flexible with ferrule)Max. 2000 m-25 °C55 °C25 °C40 °C40 °C80 °CDamp heat, cyclic, to IEC 60068-2-30 Damp heat, constant, to IEC 60068-2-781 x (0.75 - 1.5) mm²2 x (0.75 - 1.5) mm²1 x (0.75 - 2.5) mm², Control circuit cables2 x (0.75 - 2.5) mm², Control circuit cables18 - 1018 - 1410 mm1 Nm, Screw terminals, Control circuit cables 1.7 Nm, Screw terminals, Main cable50 Hz60 Hz2.5 A0.37 kW0.75 kW690 V690 V2.5 A60 kA DC, up to 250 V DC, Main conducting paths 65 kA, 480 Y/277 V, SCCR (UL/CSA) 0.5 HP 0.17 HPAmbient operating temperature - minAmbient operating temperature - maxAmbient operating temperature (enclosed) - min Ambient operating temperature (enclosed) - max Ambient storage temperature - minAmbient storage temperature - maxClimatic proofing Terminal capacity (solid)Terminal capacity (solid/stranded AWG)Stripping length (main cable)Tightening torqueRated frequency - minRated frequency - maxRated operational current (Ie)Rated operational power at AC-3, 220/230 V, 50 Hz Rated operational power at AC-3, 380/400 V, 50 Hz Rated operational voltage (Ue) - minRated operational voltage (Ue) - maxRated uninterrupted current (Iu)Short-circuit currentShort-circuit current rating (type E)Assigned motor power at 200/208 V, 60 Hz, 3-phase Assigned motor power at 230/240 V, 60 Hz, 1-phaseAccessories required BK25/3-PKZ0-E65 kA, 240 V, SCCR (UL/CSA)50 kA, 600 Y/347 V, SCCR (UL/CSA)± 20% tolerance, Trip blocks38.8 A, Irm, Setting range max.Basic device fixed 15.5 x Iu, Trip Blocks 0.5 HP1 HP 1.5 HPScrew terminals 1.6 A2.5 AOverload trigger: tripping class 10 A5.16 W0 W1.72 W2.5 A0 WMeets the product standard's requirements. Meets the product standard's requirements. Meets the product standard's requirements. Meets the product standard's requirements.Motor Starters in System xStart - brochureSave time and space thanks to the new link module PKZM0-XDM32MEProduct Range Catalog Switching and protecting motorsSwitching and protecting motors - catalogeaton-manual-motor-starters-characteristic-characteristic-curve-008.eps eaton-manual-motor-starters-characteristic-characteristic-curve-009.eps eaton-manual-motor-starters-characteristic-characteristic-curve-010.epsDA-DC-00004921.pdfDA-DC-00004892.pdfeaton-manual-motor-starters-pkz-dimensions-003.epseaton-manual-motor-starters-pkz-dimensions.epseaton-manual-motor-starters-pkz-dimensions-002.epseaton-manual-motor-starters-pkzm0-3d-drawing-008.epseaton-manual-motor-starters-mounting-3d-drawing-002.epseaton-general-ie-ready-dilm-contactor-standards.epsShort-circuit release Assigned motor power at 230/240 V, 60 Hz, 3-phase Assigned motor power at 460/480 V, 60 Hz, 3-phase Assigned motor power at 575/600 V, 60 Hz, 3-phaseConnection Overload release current setting - minOverload release current setting - maxTripping characteristicEquipment heat dissipation, current-dependent PvidHeat dissipation capacity PdissHeat dissipation per pole, current-dependent PvidRated operational current for specified heat dissipation (In) Static heat dissipation, non-current-dependent Pvs10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures10.2.3.2 Verification of resistance of insulating materials to normal heat10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects BrochuresCatalogues Characteristic curve Declarations of conformity DrawingsMeets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Is the panel builder's responsibility. The specifications for the switchgear must be observed.eaton-manual-motor-starters-circuit-breaker-pkzm0-3d-drawing.epsDA-CE-ETN.PKZM0-2,5_NHI11IL03407011ZIL03402034ZWIN-WIN with push-in technologyeaton-motor-protective-circuit-breaker-pkzm0-overload-monitoring-exe-manual-mn03402003z-de-de-en-us.pdfIL122023ZUDA-CS-pkzm0_nhi11DA-CD-pkzm0_nhi1110.2.4 Resistance to ultra-violet (UV) radiation10.2.5 Lifting10.2.6 Mechanical impact10.2.7 Inscriptions10.3 Degree of protection of assemblies10.4 Clearances and creepage distances10.5 Protection against electric shock10.6 Incorporation of switching devices and components 10.7 Internal electrical circuits and connections10.8 Connections for external conductors10.9.2 Power-frequency electric strength10.9.3 Impulse withstand voltage10.9.4 Testing of enclosures made of insulating material 10.10 Temperature rise10.11 Short-circuit rating10.12 Electromagnetic compatibility eCAD model Installation instructions Installation videos Manuals and user guides mCAD modelEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All rights reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaIs the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.10.13 Mechanical function。
纳美电机产品简介说明书
![纳美电机产品简介说明书](https://img.taocdn.com/s3/m/7d748c7ea66e58fafab069dc5022aaea998f41bd.png)
SINGLE PHASE, 56C FRAME, TEFC1/3 HP—2 HP; 2 or 4-Pole High Starting TorquesCapacitor Start / Capacitor Run Design Rolled Steel Construction Removable FeetSINGLE PHASE, COMPRESSOR DUTY, ODP3 HP–5 HP; 2 or 4-Pole High Starting TorqueCapacitor Start / Capacitor Run Design Rolled Steel ConstructionTHREE -PHASE, 56C FRAME, TEFC1/3 HP—3 HP; 2 or 4-Pole High Starting Torque Rolled Steel Construction Removable FeetTHREE -PHASE, TEFC1 HP—10 HP;2 or 4-Pole High Starting Torque Rolled Steel ConstructionTHREE -PHASE, OPEN DRIP PROOF1 HP—20 HP;2 or 4-Pole High Starting Torque Rolled Steel ConstructionWASHDOWN DUTY MOTORS STAINLESS STEEL1/3 HP—20 HP; 2, 4 or 6-Pole C -Flange w/ Feet or Round Body Inverter Duty (20:1 VT; 10:1 CT)CLOSE COUPLED PUMP MOTORS1 HP—75 HP;2 or 4-Pole Totally Enclosed Fan Cooled Inverter Duty (20:1 VT; 10:1 CT)EXPLOSION PROOF MOTORS1—250 HP; 2, 4 or 6-PoleAll Motors Meet or Exceed UL 674 SpecificationAs Required By OSHA For Installation and Use In Hazardous LocationsTotally Enclosed Explosion Proof (TEXP) Inverter Rated (10:1 VT; 5:1 CT)OIL WELL PUMP MOTORS, TEFC2 HP—150 HP; 6 or 8-PoleNEMA Design D; High Slip (5%—8% Slip) Special Purpose Oil Well Pump Motors Inverter Duty (20:1 VT; 10:1 CT)OIL WELL PUMP MOTORS, ODP7.5 HP—100 HP; 6-PoleNEMA Design D; High Slip (5%—8% Slip) Special Purpose Oil Well Pump Motors Inverter Duty (20:1 VT; 10:1 CT)VERTICAL HOLLOW SHAFT PUMP MOTORS10 HP—500 HP; 4-PoleExtra High Thrust / Double Stacked Bearings AvailableInverter Rated (10:1 VT) or Inverter Duty (20:1 VT)ROTARY UNIT MOTOR FOR ROTARY PHASE CONVERTER3 HP—60 HP; 4-PoleFor Use with Rotary Phase Converters To Run Three Phase Equipment From Single Phase PowerTotally Enclosed Fan CooledSHAFT MOUNT REDUCERS & ACCESSORIES2—10 Box SizeGear Ratios: 15:1 or 25:1Screw Conveyor Adaptors Available Repair Kits Also AvailableCONTROLS:Safety/Disconnect Switches Across the Line Starters (ATL) Part Wind Starters (PWS) Soft StartersVFDs (Available in NEMA 3R, 4, 4X and 12)MOTOR SLIDE BASESAvailable 56—505U FrameSingle -Adjusting Screw Type (56—145T Frame) Double -Adjusting Screw Type (182T—505U Frame)GENERAL PURPOSEINVERTER DUTY MOTORS1 HP—300 HP; 2, 4, 6 or 8-Pole NEMA Design BTotally Enclosed Fan Cooled or Open Drip ProofInverter Duty (20:1 VT; 10:1 CT)ALUMINUM FRAMEINVERTER DUTY MOTORS1 HP—10 HP;2 or 4-Pole Totally Enclosed Fan Cooled Inverter Duty (20:1 VT; 10:1 CT)SINGLE PHASE, FARM DUTY, TEFC1/3 HP—10 HP; 2 or 4-Pole High Starting TorquesManual Overload Protection (1/3 HP—5 HP) Capacitor Start / Capacitor Run Design Rolled Steel ConstructionCRUSHER DUTY MOTORS1 HP—600 HP; 4, 6 or 8-Pole NEMA Design CTotally Enclosed Fan CooledInverter Duty (20:1 VT; 10:1 CT) (1 HP—300 HP) Inverter Rated (10:1 VT; 5:1 CT) (250 HP—600 HP)ROUND BODY MOTORS1 HP—30 HP; 4-Pole; 1800 RPM C -Flange without FeetTotally Enclosed Fan Cooled Inverter Duty (20:1 VT; 10:1 CT)SAFETY SWITCHES – HEAVY DUTY30 AMP—1200 AMP 480 VAC / 600 VAC3-Pole / 3-Wire / Non -Fused or Fused NEMA 3R EnclosureVFD–ECONOMY1 HP—800 HP Variable Torque ½ HP—600 HP Constant Torque Siemens Series DriveNon -Combo, Circuit Breaker or Fused NEMA 3R, 4, 4X or 12 EnclosureSOFT STARTERS–CRUSHER/ULTRA20 HP—800 HPSAF MS6 Series DevicesUltra Heavy Duty (500% FLA for 30 Seconds) Full Start -Rated ContactorCircuit Breaker w/ Through Door NEMA 3R or 4/12 EnclosureSOFT STARTERS15 HP—300 HPSiemens 3RW40 Series Device Normal Duty or Heavy Duty Non -Combo or Circuit Breaker NEMA 3R, 4X or 4/12 EnclosurePART WIND STARTERS10 HP—200 HPIEC Rated Contactors Circuit Breaker or Fused NEMA 3R EnclosureACROSS THE LINE START-ERSNEMA 1—NEMA 5NEMA Full Rated ContactorCircuit Breaker or Fused w/ FlangedVFD–STANDARD1 HP—800 HP Variable Torque ½ HP—600 HP Constant Torque Siemens Series Drive Circuit Breaker or FusedNEMA 3R, 4, 4X or 12 EnclosureVFD–POSITIVE DISPLACEMENT PUMP3 HP—600 HPSiemens Series Drive Constant TorqueCircuit Breaker w/ Flanged NEMA 3R EnclosureVFD–IRRIGATION1 HP—800 HPSiemens Series Drive24/7 Programmable & 0—10 Backspin Timer Variable TorqueCircuit Breaker or Fused NEMA 3R EnclosureVFD–SUBMERSIBLE½ HP—200 HPSiemens Series Drive24/7 Programmable & 0—10 Backspin Timer Variable TorqueCircuit Breaker or Fused NEMA 3R EnclosureVFD–WASHDOWN/STAINLESS1 HP—200 HP Variable Torque ½ HP—150 HP Constant Torque Siemens Series Drive Circuit Breaker or Fused NEMA 4X EnclosureVFD–BEAM PUMP1 HP—200 HPSiemens Series Drive ReGen Avoidance Design Constant TorqueCircuit Breaker w/ Flanged NEMA 3R EnclosureCUSTOM PANELSMotor Controls Panel Customization Made EasyNAE Motor Controls offers customers the ability to custom configure and order their control panel to meet their specific needs and have it shipped quickly. All NAE packaged panels are backed by our 2 year warranty and eligible for up to 6 years of protection with the “NO Hassle ” Chassis Exchange program.NO Hassel Bumper to Bumper Chassis Exchange ProgramOptional three (3) year Warranty with Lightning & Surge Protection including NAE ’s “No Hassel ” Chassis Exchange program.Scan or visit our website at to learn more.。
MAXON 电机完全手册(全系列)_MAXON MOTOR 完全手册1
![MAXON 电机完全手册(全系列)_MAXON MOTOR 完全手册1](https://img.taocdn.com/s3/m/368700a5f524ccbff12184a7.png)
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Alphacool NexXxoS XT45 全铜1260mm超新星放大器说明书
![Alphacool NexXxoS XT45 全铜1260mm超新星放大器说明书](https://img.taocdn.com/s3/m/07464f4ca9114431b90d6c85ec3a87c240288af0.png)
What is it?Alphacool NexXxoS XT45 Full Copper 1260mmSuperNova RadiatorHighlightsBig, Bigger, SuperNova!40 x 40 x 45 cm of pure cooling surface for nine 140mm or four 200 mm fans. No other Alphacool radia-tor offers as much surface area in a single product.- solid copper radiator - large cooling surface - detachable mounting frameArticle textAlphacool is an internationally renowned company in the field of water cooling solutions for both indust-rial and home users. To ensure that customers receive the best products available, Alphacool is constantly developing new products and making improvements to existing products.Big, Bigger, SuperNova!40 x 40 x 45 cm of pure cooling surface for nine 140mm or four 200 mm fans. No other Alphacool radia-tor offers as much surface area in a single product.Make No Compromises, Use Copper.As usual, Alphacool also uses pure copper for the NexXxoS 1260 SuperNova Radiator. The end cham-bers, water channels and cooling fins are all made of copper and are a unique selling point worldwide. As a result, Alphacool radiators have been among the most popular and best on the market for many years, providing the perfect foundation for every water cooling system.Full Cooling CapacityTo maximize the performance of a radiator, Alphacool reaches deep into its bag of tricks. Copper is the starting point. With a thermal conductivity of 400 W/(mK) for copper compared to 236 W/(mK) for alu-minium, the winner is clear. Alongside this is the special fin density. Alphacool is one of the oldest compa-nies in the field of water cooling and has carried out countless laboratory tests. The result, especially for such large radiators, is a fin spacing of 11 FPI. This means that the air flow is almost unobstructed as the air can pass through even without high pressure. However, the cooling capacity does not suffer from this, on the contrary. To use the airflow optimally, all cooling fins have small serrations. These are tiny flaps that guide the airflow in the desired direction and increase the surface area. In the case of radiators, they are barely 1 mm high, but still provide controlled air turbulence to increase cooling capacity and minimise airflow noise.Which fans?The 1260 SuperNova Radiator offers for four 200 mm fans with a hole spacing of 154 mm on one side. On the opposite side, up to nine classic 140 mm fans can be mounted on another mounting plate. If you want to operate the radiator passively, you can remove both mounting plates. This will ensure you do not to obstruct the natural airflow. Of course, the mounting plates for both types of fans can also be inter-changed. This gives you more freedom when mounting the fans.Connection optionsThe Alphacool NexXxoS SuperNova Radiator offers two G1/4" threads for IN and OUT. A further G1/4" thread on the back of the radiator serves as a fill port. Alternatively, a temperature sensor or a drain port can also be attached here.The king on the rads! No other radiator in Alphacool's portfolio can match the performance of the Su-perNova radiator. With four 200mm or a whopping nine 140 mm fans and a pure cooling surface of 40 x 40 cm, it really does live up to the SuperNova name.。
maxon 电机 escon module 50 4 ec-s 使用说明书
![maxon 电机 escon module 50 4 ec-s 使用说明书](https://img.taocdn.com/s3/m/0a7413ffc67da26925c52cc58bd63186bceb92a5.png)
ESCON Module 50/4 EC-S 伺服控制器 | P/N 446925使用说明书CCMC | 出版日期 2021-08 | 文件编号 rel9031使用说明书目录ESCON Module 50/4 EC-S 使用说明书A-2CCMC | 2021-08 | rel90311概述51.1关于本说明书. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2设备介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3安全规程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82技术规格92.1技术数据. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2标准. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123设置133.1适用的一般规定. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2起动方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.3电源的设计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.4接口. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.5电位器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.6状态显示. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254接线275母板设计指南(MOTHERBOARD DESIGN GUIDE)295.1对其他供应商组件的要求. . . . . . . . . . . . . . . . . . . . . . . . 295.2设计指令. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325.3THT Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325.4接口配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325.5技术数据. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.6尺寸图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33目录请首先认真阅读下文本说明供有资质的专业技术人员阅读参考。
Maxon-DC motor-EC motor-麦克逊直流,交流电动机
![Maxon-DC motor-EC motor-麦克逊直流,交流电动机](https://img.taocdn.com/s3/m/9d7cc46ab84ae45c3b358c75.png)
maxon DC motor and maxon EC motor Key informationThe motor as an energy converterThe electrical motor converts electrical power P el (current I and voltage U) into mechanical power P mech (speed n and torque M). The losses that arise are divided into frictional losses, attributable to P mech and in Joule power losses P J of the winding (resistance R). Iron losses do not occur in the coreless maxon DC motors. In maxon EC motors, they are treated formally like an additional friction torque. The power balance can therefore be formulated as:The detailed result is as followsElectromechanical motor constantsThe geometric arrangement of the magnetic circuit and winding defi nes in detail how the motor converts the electrical input power (current, voltage) into mechanical output power (speed, torque). Two important characte-ristic values of this energy conversion are the speed constant k n and the torque constant k M . The speed constant combines the speed n with the voltage induced in the winding U ind (=EMF). U ind is proportional to the speed; the following applies:Similarly, the torque constant links the mechanical torque M with the electrical current I .The main point of this proportionality is that torque and current are equivalent for the maxon motor.The current axis in the motor diagrams is therefore shown as parallel to the torque axis as well.See also: Technology – short and to the point, explanation of the motorMotor diagramsA diagram can be drawn for every maxon DC and EC motor, from whichkey motor data can be taken. Although tolerances and temperature infl uences are not taken into consideration, the values are suffi cient for a fi rst estimation in most applications. In the diagram, speed n , current I ,power output P 2 and efficiency η are applied as a function of torque M at constant voltage U .Speed-torque lineThis curve describes the mechanical behavior of the motor at a constant voltage U :– Speed decreases linearly with increasing torque.– The faster the motor turns, the less torque it can provide.The curve can be described with the help of the two end points, no-load speed n 0 and stall torque M H (cf. lines 2 and 7 in the motor data).DC motors can be operated at any voltage. No-load speed and stalltorque change proportionally to the applied voltage. This is equivalent to a parallel shift of the speed-torque line in the diagram. Between the no-load speed and voltage, the following proportionality applies in good approxi-mationwhere k n is the speed constant (line 13 of the motor data).Independent of the voltage, the speed-torque line is described most prac-tically by the slope or gradient of the curve (line 14 of the motor data).m a x o n m oThe speed-torque gradient is one of the most informative pieces of data and allows direct comparison between different motors. The smaller the speed-torque gradient, the less sensitive the speed reacts to torque (load) changes and the stronger the motor. With the maxon motor, the speed-torque gradient within the winding series of a motor type (i.e. on one catalog page) remains practically constant.Current gradientThe equivalence of current to torque is shown by an axis parallel to the torque: more current fl owing through the motor produces more torque. The current scale is determined by the two points no-load current I 0 and starting current I A (lines 3 and 8 of motor data).The no-load current is equivalent to the friction torque M R , that describes the internal friction in the bearings and commutation system.In the maxon EC motor, there are strong, speed dependent iron losses in the stator iron stack instead of friction losses in the commutation system. The motors develop the highest torque when starting. It is many times greater than the normal operating torque, so the current uptake is the greatest as well.The following applies for the stall torque M H and starting current I AEffi ciency curve The effi ciency η describes the relationship of mechanical power delivered to electrical power consumed.One can see that at constant applied voltage U and due to the proportio-nality of torque and current, the effi ciency increases with increasing speed (decreasing torque). At low torques, friction losses become increasingly signifi cant and effi ciency rapidly approaches zero. Maximum effi ciency (line 9 of motor data) is calculated using the starting current and no-load current and is dependent on voltage.A rule of thumb is that maximum effi ciency occurs at roughly one seventh of the stall torque. This means that maximum effi ciency and maximum output power do not occur at the same torque.Rated working pointThe rated working point is an ideal working point for the motor and derives from operation at nominal voltage U N (line 1 of motor data) and nominal current I N (line 6). The nominal torque M N produced (line 5) in this working point follows from the equivalence of torque and current, and nominal speed n N (line 4) is reached in line with the speed gradient. The choice of nominal voltage follows from considerations of where the maximum no-load speed should be. The nominal current derives from the motor‘sthermally maximum permissible continuous current.Motor diagrams, operating rangesThe catalogue contains a diagram of every maxon DC and EC motor type that shows the operating ranges of the different winding types using a typical motor.Permanent operating rangeThe two criteria “maximum continuous torque” and “maximum permis- si-ble speed” limit the continuous operating range. Operating points within this range are not critical thermally and do not generally cause increased wear of the commutation system.Short-term operating rangeThe motor may only be loaded with the maximum continuous currentfor thermal reasons. However, temporary higher currents (torques) are allowed. As long as the winding temperature is below the critical value, the winding will not be damaged. Phases with increased currents are time li-mited. A measure of how long the temporary overload can last is provided by the thermal time constant of the winding (line 19 of the motor data). The magnitude of the times with overload ranges from several secondsfor the smallest motors (6 mm to 13 mm diameter) up to roughly one minute for the largest (60 mm to 90 mm diameter). The calculation of the exact overload time is heavily dependent on the motor current and the rotor’s starting temperature.Maximum continuous current, maximum continuous torqueThe Jule power losses heat up the winding. The heat produced must be able to dissipate and the maximum rotor temperature (line 22 of the motor data) should not be exceeded. This results in a maximum continuouscurrent Icont , at which the maximum winding temperature is attained understandard conditions (25°C ambient temperature, no heat dissipation via the fl ange, free air circulation). Higher motor currents cause excessive winding temperatures.The nominal current is selected so that it corresponds to this maximum permissible constant current. It depends heavily on the winding. These thin wire windings have lower nominal current levels than thick ones. With very low resistive windings, the brush system‘s capacity can further limit the permissible constant current. With graphite brush motors, friction losses increase sharply at higher speeds. With EC motors, eddy current losses increase in the return as speed increases and produce additional heat. The maximum permissible continuous current decreases at faster speeds accordingly. The nominal torque allocated to the nominal current is almost constant within a motor type‘s winding range and represents a characteristic size of the motor type.The maximum permissible speedfor DC motors is primarily limited by the commutation system. The commutator and brushes wear more rapidly at very high speeds.The reasons are:– Increased mechanical wear because of the large traveled path of the commutator– Increased electro-erosion because of brush vibration and spark formation.A further reason for limiting the speed is the rotor’s residual mechanical imbalance which shortens the service life of the bearings. Higher speedsthan the limit speed nmax (line 23) are possible, however, they are “paid for”by a reduced service life expectancy. The maximum permissible speed for the EC motor is calculated based on service life considerations of the ball bearings (at least 20000 hours) at the maximum residual imbalance and bearing load.Maximum winding temperatureThe motor current causes the winding to heat up due to the winding’s re-sistance. To prevent the motor from overheating, this heat must dissipate to the environment via the stator. The coreless winding is the thermally critical point. The maximum rotor temperature must not be exceeded, even temporarily. With graphite brush motors and EC motors which tend to have higher current loads, the maximum rotor temperature is 125°C (in individual cases up to 155°C). Motors with precious metal commutators only allow lower current loads, so that the rotor temperatures must not exceed 85°C. Favourable mounting conditions, such as good air circulati-on or cooling plates, can signifi cantly lower temperatures.nmaxon fl at motorMultipole EC motors, such as maxon fl at motors, require a greater number of commutation steps for a motor revolution (6 x number of pole pairs). Due to the wound stator teeth they have a higher terminal inductance than motors with an ironless winding. As a result at higher speed, the current cannot develop fully during the correspondingly short commutation inter-vals. Therefore, the apparent torque produced is lower. Current is also fed back into the controller‘s power stage.As a result, motor behaviour deviates from the ideal linear speed-torque gradient. The apparent speed-torque gradient depends on voltage and speed: The gradient is steeper at higher speeds.Mostly, fl at motors are operated in the continuous operation range where the achievable speed-torque gradient at nominal voltage can be appro-ximated by a straight line between no-load speed and nominal working point. The achievable speed-torque gradient is approximately.AccelerationIn accordance with the electrical boundary conditions (power supply, control, battery), a distinction is principally made between two different starting processes:– Start at constant voltage (without current limitation)– Start at constant current (with current limitation)Start under constant currentA current limit always means that the motor can only deliver a limited torque. In the speed-torque diagram, the speed increases on a vertical line with a constant torque. Acceleration is also constant, thus simplifying the calculation. Start at constant current is usually found in applications with servo amplifi ers, where acceleration torques are limited by the amplifi er‘s peak current.– Angular acceleration α (in rad / s2) at constant current I or constant torque M with an additional load of inertia JL:– Run-up time Δt (in ms) at a speed change Δn with an additional load inertia JL:(all variables in units according to the catalog)TolerancesTolerances must be considered in critical ranges. The possible deviations of the mechanical dimensions can be found in the overview drawings. The motor data are average values: the adjacent diagram shows the effect of tolerances on the curve characteristics. They are mainly caused by differences in the magnetic fi eld strength and in wire resistance, and not so much by mechanical infl uences. The changes are heavily exaggerated in the diagram and are simplifi ed to improve understanding. It is clear, however, that in the motor’s actual operating range, the tolerance range is more limited than at start or at no-load. Our computer sheets contain all detailed specifi cations.CalibratingThe tolerances can be limited by controlled de-magnetization of the motors. Motor data can be accurately specifi ed down to 1 to 3%.However, the motor characteristic values lie in the lower portion of the standard tolerance range.Thermal behaviorThe Joule power losses P J in the winding determine heating of the motor. This heat energy must be dissipated via the surfaces of the winding and motor. The increase ΔT W of the winding temperature T W with regard to the ambient temperature arises from heat losses P J and thermal resistances R th1 and R th2.Here, thermal resistance R th1 relates to the heat transfer between the win-ding and the stator (magnetic return and magnet), whereas R th2 describesthe heat transfer from the housing to the environment. Mounting themotor on a heat dissipating chassis noticeably lowers thermal resistance R th2. The values specifi ed in the data sheets for thermal resistances and the maximum continuous current were determined in a series of tests, in which the motor was end-mounted onto a vertical plastic plate. The mo-difi ed thermal resistance R th2 that occurs in a particular application must be determined using original installation and ambient conditions. Thermal resistance R th2 on motors with metal fl anges decreases by up to 50% if the motor is coupled to a good heat-conducting (e.g. metallic) retainer. The heating runs at different rates for the winding and stator due to the different masses. After switching on the current, the winding heats up fi rst (with time constants from several seconds to half a minute). The stator reacts much slower, with time constants ranging from 1 to 30 minutes depending on motor size. A thermal balance is gradually established. The temperature difference of the winding compared to the ambient tempe-rature can be determined with the value of the current I (or in intermittent operation with the effective value of the current I = I RMS ).Here, electrical resistance R must be applied at the actual ambient temperature.Infl uence of temperatureAn increased motor temperature affects winding resistance and ma-gnetic characteristic values.Winding resistance increases linearly according to the thermal resistance coeffi cient for copper:Example: a winding temperature of 75°C causes the winding resist- ance to increase by nearly 20%.The magnet becomes weaker at higher temperatures. The reduction is 1 to 10% at 75°C depending on the magnet material.The most important consequence of increased motor temperature is that the speed curve becomes steeper which reduces the stall torque. The changed stall torque can be calculated in fi rst approximation from the voltage and increased winding resistance.m a x o n m o t o rU,nExample for motor/gear selectionA drive should move cyclically in accordance with the following speed diagram.The inertia of load J L to be accelerated is 130000 gcm 2. The constant friction torque is 300 mNm. The motor is to be driven with the linear 4-Q servo amplifi er from maxon (LSC). The power supply delivers max.5 A and 24 V .Calculation of load dataThe torque required for acceleration and braking are calculated as follows (motor and gearhead inertia omitted):Together with the friction torque, the following torques result for the different phases of motion.– Acceleration phase (duration 0.5 s) 463 mNm – Constant speed (duration 2 s) 300 mNm – Braking (friction brakes with 300 mNm) (duration 0.5 s) 137 mNm – Standstill (duration 0.7 s) 0 mNm Peak torque occurs during acceleration.The RMS determined torque of the entire work cycle isThe maximum speed (60 rpm) occurs at the end of the acceleration phase at maximum torque (463 mNm). Thus, the peak mechanical power is:Regulated servo drivesIn work cycles, all operating points must lie beneath the curve at a ma-ximum voltage U max . Mathematically, this means that the following must apply for all operating points (n B , M B ):When using servo amplifi ers, a voltage drop occurs at the power stage, so that the effective voltage applied to the motor is lower. This must be taken into consideration when determining the maximum supply voltage U max . It is recommended that a regulating reserve of some 20% be included, so that regulation is even ensured with an unfavorable tolerance situation of motor, load, amplifi er and supply voltage. Finally, the average current load and peak current are calculated ensuring that the servo amplifi er used can deliver these currents. In some cases, a higher resistance winding must be selected, so that the currents are lower. However, the required voltage is then increased.Physical variables and their units SI Catalog i Gear reduction* I Motor current A A, mAI AStarting current* A A, mA I 0 No-load current* A mA I RMS RMS determined current A A, mA I N Nominal current* A A, mAJ RMoment of inertia of the rotor* kgm 2 gcm 2 J L Moment of inertia of the load kgm 2 gcm 2k M Torque constant* Nm/A mNm/A k n Speed constant* rpm/V M (Motor) torque Nm mNmM BOperating torque Nm mNm M H Stall torque* Nm mNm M mot Motor torque Nm mNm M R Moment of friction Nm mNmM RMSRMS determined torque Nm mNm M N Nominaltorque Nm mNm M N,G Max. torque of gear* Nm Nm n Speed rpm n B Operating speed rpmn maxLimit speed of motor* rpm n max,GLimit speed of gear* rpm n mot Motor speed rpm n 0 No-load speed* rpmP elElectrical power W W P JJoule power loss W W P mech Mechanical power W W R Terminal resistance Ω ΩR 25 Resistance at 25°C* Ω Ω R T Resistance at temperature T Ω ΩR th1Heat resistance winding housing* K/W R th2 Heat resistance housing/air* K/W t Time s s T Temperature K °CT maxMax. winding temperature* K °C T U Ambienttemperature K °C T W Winding temperature K °C U Motor voltage V V U ind Induced voltage (EMF) V VU maxMax. supplied voltage V V U N Nominal voltage* V V αCu Resistance coeffi cient of Cu αmax Maximum angle acceleration rad/s 2Δn/ΔM Curve gradient* rpm/mNm ΔT W T emperature difference winding/ambient K K Δt Run up time s ms η (Motor) effi ciency %ηG (Gear) effi ciency* %ηm ax Maximum effi ciency* %τm Mechanical time constant* s ms τS Therm. time constant of the stator* s s τW Therm. time constant of the winding* s s(*Specified in the motor or gear data)m a x o n m o t orGear selectionA gear is required with a maximum continuous torque of at least 0.28 Nm and an intermittent torque of at least 0.46 Nm. This requirement is fulfi lled, for example, by a planetary gear with 22 mm diameter (metal version).The recommended input speed of 6000 rpm allows a maximum reduction of:We select the three-stage gear with the next smallst reduction of 84 : 1 (stock program). Effi ciency is max. 59%.Motor type selectionSpeed and torque are calculated to the motor shaftThe possible motors, which match the selected gears in accordance with the maxon modular system, are summarized in the table opposite. The table only contains motors with graphite commutation which are better suited to start/stop operation.Selection falls on an A-max 22, 6 W, which demonstrates a suffi ciently high continuous torque. The motor should have a torque reserve so that it can even function with a somewhat unfavorable gear effi ciency. The additional torque requirement during acceleration can easily be delivered by the motor. The temporary peak torque is not even twice as high as the continuous torque of the motor.Selection of the windingThe motor type A-max 22, 6 W has an average speed-torque gradient of some 450 rpm/mNm. However, it should be noted that the two lowest resistance windings have a somewhat steeper gradient. The desired no-load speed is calculated as follows:The extreme working point should of course be used in the calculation (max. speed and max. torque), since the speed-torque line of the winding must run above all working points in the speed / torque diagram.This target no-load speed must be achieved with the maximum voltage U = 19 V supplied by the control (LSC), (voltage drop of the power amplifi er of the LSC 5 V), which defi nes the minimum target speed constant k n, theor of the motor.Based on the calculation, motor 110162 is chosen which corresponds to the winding with the next highest speed constant (689 rpm/V) and has a second shaft end for mounting the encoder. The winding’s higher speed constant compared to the target value means that the motor runs faster than required at 19 V which, however, can be compensated for by the controller. This selection also ensures that there is a speed regulating reserve of more than 20%. Thus, even unfavorable tolerances are not a problem.The torque constant of this winding is 13.9 mNm/A. The maximum torque corresponds to a peak current of:This current is lower than the maximum current (2 A) of the controller (LSC).Therefore, a gear motor combination has been found that fulfi lls therequirements (torque and speed) and can be operated with the controller provided.。
洪湖电机手册
![洪湖电机手册](https://img.taocdn.com/s3/m/8430b2bdf524ccbff1218441.png)
无锡市红湖磁电机厂是一家集研发、制造、营销为一体的企业,专业生产各类直流电机、无刷直流电机、交流电机、行星减速电机、蜗轮蜗杆直流减速电机、同步电机等。
我厂全面实施ISO9001国际质量标准。
产品质量达到国际先进水平,具备年产各种电机360万台的能力,产品大部分供应给国内著名企业,并出口美国、欧洲、中东等地区;广泛应用于金融业设备、太阳能跟踪装置、户外广告、物流传输系统、机械设备、医疗设备、空气净化器、水泵、食品机械、点胶机、精密仪器等应用性领域。
我厂秉承着“以人才为根本、以市场为导向、以精湛技术为手段、以先进设备为基础”的发展观,竭诚为国内外新老客户提供优质的红湖电机。
直流有刷电机说明 有刷电机命名规则:A57ZYN30B123451.A B C为同一机座号,不同的槽型或者不同的内径的派生2.电机机座号,以电机直径或者电机边长命名3.主要区别电机转子磁瓦结构的不同Ⅰ.ZYN代表转子为烧结稀土永磁;电机单位体积出力大Ⅱ.ZYT代表转子为铁氧体永磁;电机静止力矩小4.30代表定子叠厚5.A B C为电机型号的派生有刷电机模型:有刷电机截面图:Page1用途:户外广告、医疗设备、物流传输、 机械设备、太阳能跟踪装置、金融行业、精密设备等等30ZYN直流电机技术参数:电机型号MODEL 电压 VOLTAGE 空载数据 No load 负载数据 Rated load 转矩 N.m TORQUE 功率W Power 长度 mm Length 电流A CURRENT 转速rpm SPEED 电流A CURRENT 转速rpmSPEED30ZYN001(018)12≤0.133700±8%≤0.73000±8%0.015 5 5730ZYN002(018)24≤0.073700±8%≤0.353000±8%0.015 5 5730ZYN030(030)24≤0.154400±8%≤0.83700±8%0.02510 69注:以上表中所列仅为代表性产品:具体外形、性能参数可根据客户要求定制。
PMV45EN中文资料
![PMV45EN中文资料](https://img.taocdn.com/s3/m/387c2b29af45b307e8719719.png)
PMV45ENµTrenchMOS™ enhanced logic level FETRev. 01 — 15 January 2003Product dataM3D0881.Product profile1.1DescriptionN-channel enhancement mode field-effect transistor in a plastic package using TrenchMOS™ technology.Product availability:PMV45EN in SOT23.1.2Features1.3Applications1.4Quick reference data2.Pinning informations Surface mount packages Fast switching.s Battery managements High speed switch.s V DS ≤30V s I D ≤5.4As P tot ≤2Ws R DSon ≤42m ΩTable 1:Pinning - SOT23 simplified outline and symbol Pin Description Simplified outlineSymbol1gate (g)SOT232source (s)3drain (d)MSB003Top view123sdgMBB0763.Limiting valuesTable 2:Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134).Symbol Parameter Conditions Min Max Unit V DS drain-source voltage (DC)25°C≤T j≤150°C-30VV DGR drain-gate voltage (DC)25°C≤T j≤150°C; R GS=20kΩ-30VV GS gate-source voltage (DC)-±20VI D drain current (DC)T sp=25°C; V GS=10V;Figure2 and3- 5.4AT sp=100°C; V GS=10V;Figure2- 3.4AI DM peak drain current T sp=25°C; pulsed; t p≤10µs;Figure3-21.6AP tot total power dissipation T sp=25°C;Figure1-2W T stg storage temperature−55+150°C T j junction temperature−55+150°C Source-drain diodeI S source (diode forward) current (DC)T sp=25°C- 1.7AI SM peak source (diode forward) current T sp=25°C; pulsed; t p≤10µs- 6.9AFig 1.Normalized total power dissipation as afunction of solder point temperature.Fig 2.Normalized continuous drain current as afunction of solder point temperature.T sp =25°C; I DM is single pulse; V GS =10VFig 3.Safe operating area; continuous and peak drain currents as a function of drain-source voltage.03aa1704080120050100150200(%)T sp (°C)P der 03aa2504080120050100150200T sp (°C)I der (%)P der P totP tot 25C °()-----------------------100%×=I der I DI D 25C °()-------------------100%×=03al0210-210-111010210-11 10102V DS (V)I D (A)DC10 ms Limit R DSon = V DS /I D1 ms t p = 10 µs 100 ms100 µs4.Thermal characteristics4.1Transient thermal impedanceTable 3:Thermal characteristicsSymbol ParameterConditionsMin Typ Max Unit R th(j-sp)thermal resistance from junction to solder point Figure 4--60K/WFig 4.Transient thermal impedance from junction to solder point as a function of pulse duration.03ak6811010210-410-310-210-1110t p (s)Z th(j-sp) (K/W)single pulseδ = 0.50.20.10.050.02t pt p TPtTδ =5.CharacteristicsTable 4:CharacteristicsT j=25°C unless otherwise specified.Symbol Parameter Conditions Min Typ Max Unit Static characteristicsV(BR)DSS drain-source breakdown voltage I D=250µA; V GS=0VT j=25°C30--VT j=−55°C27--VV GS(th)gate-source threshold voltage I D=1mA; V DS=V GS;Figure9T j=25°C1 1.52VT j=150°C0.6--VT j=−55°C-- 2.2VI DSS drain-source leakage current V DS=30V; V GS=0VT j=25°C--1µAT j=150°C--100µA I GSS gate-source leakage current V GS=±20V; V DS=0V-10100nA R DSon drain-source on-state resistance V GS=10V; I D=2A;Figure7and8T j=25°C-3542mΩT j=150°C-59.571.4mΩV GS=4.5V; I D=1.5A;Figure7and8-4554mΩDynamic characteristicsQ g(tot)total gate charge I D=3A; V DD=15V; V GS=10V;Figure13-9.4-nC Q gs gate-source charge- 1.2-nC Q gd gate-drain (Miller) charge- 1.9-nC C iss input capacitance V GS=0V; V DS= 30V; f=1MHz;Figure11-350-pF C oss output capacitance-70-pF C rss reverse transfer capacitance-50-pF t d(on)turn-on delay time V DD=15V; R L=15Ω; V GS=10V; R G=6Ω-5-ns t r rise time-7-ns t d(off)turn-off delay time-16-ns t f fall time- 5.5-ns Source-drain diodeV SD source-drain (diode forward) voltage I S=1.5A; V GS=0V;Figure12-0.79 1.2VT j =25°C T j =25°C and 175°C; V DS >I D ×R DSonFig 5.Output characteristics: drain current as afunction of drain-source voltage;typical values.Fig 6.Transfer characteristics: drain current as afunction of gate-source voltage; typical values.T j =25°CFig 7.Drain-source on-state resistance as a functionof drain current; typical values.Fig 8.Normalized drain source on-state resistancefactor as a function of junction temperature.03al03012300.10.20.30.40.5V DS (V)I D (A)10 V 4.5 V V GS = 2.2 V2.6 V2.4 V2.9 V3.1 V 03ak720123123V GS (V)I D (A)V DS > I D x R DSon T j = 150 °C25 °C03al040501001502000123I D (A)R DSon (m Ω)T j = 25 °CV GS = 2.7 V2.9 V3.1 V4.5 V 10 V03al0000.61.21.8-6060120180T j (°C)aa R DSonR DSon 25°C ()-----------------------------=I D =1mA; V DS =V GS T j =25°C; V DS =5VFig 9.Gate-source threshold voltage as a function ofjunction temperature.Fig 10.Sub-threshold drain current as a function ofgate-source voltage.V GS =0V; f =1MHzFig 11.Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values.03aa3300.511.522.5-6060120180T j (°C)V GS(th)(V)maxtypmin03aa3610-610-510-410-310-210-10123V GS (V)I D (A)maxtypmin03ak741010210310-11 10102V DS (V)C (pF)C issC oss C rssT j =25o C and 150o C; V GS =0V I D =3A; V DD =15VFig 12.Source (diode forward) current as a function ofsource-drain (diode forward) voltage; typical values.Fig 13.Gate-source voltage as a function of gatecharge; typical values.03ak7301230.30.60.91.2V SD (V)I S (A)T j = 25 °C150 °CV GS = 0 V03ak7502468100246810Q G (nC)V GS (V)I D = 3 A T j = 25 °C V DD = 15 V6.Package outlineFig 14.SOT23.UNIT A 1max.b p c D E e 1H E L p Q w v REFERENCESOUTLINE VERSION EUROPEAN PROJECTIONISSUE DATE 97-02-2899-09-13IECJEDEC EIAJmm0.10.480.380.150.093.02.81.41.20.95e 1.92.52.10.550.450.10.2DIMENSIONS (mm are the original dimensions)0.450.15SOT23TO-236ABb pD e 1eAA 1L pQdetail XH EE w M v M ABAB 01 2 mmscaleA 1.10.9cX123Plastic surface mounted package; 3 leadsSOT237.Revision historyTable 5:Revision historyRev Date CPCN Description0120030115-Product data (9397 750 10894)9397 750 10894© Koninklijke Philips Electronics N.V . 2003. All rights reserved.Product data Rev. 01 — 15 January 200311 of 12Contact informationFor additional information, please visit .For sales office addresses, send e-mail to:sales.addresses@ .Fax: +31 40 27 248258.Data sheet status[1]Please consult the most recently issued data sheet before initiating or completing a design.[2]The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL .[3]For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.9.DefinitionsShort-form specification —The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device.These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.10.DisclaimersLife support —These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductorscustomers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.Right to make changes —Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’),relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes noresponsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to theseproducts,and makes no representations or warranties that these products are free from patent,copyright,or mask work right infringement,unless otherwise specified.11.TrademarksTrenchMOS —is a trademark of Koninklijke Philips Electronics N.V .Level Data sheet status [1]Product status [2][3]DefinitionI Objective data Development This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.IIPreliminary dataQualificationThis data sheet contains data from the preliminary specification.Supplementary data will be published at a later date.Philips Semiconductors reserves the right to change the specification without notice,in order to improve the design and supply the best possible product.III Product data ProductionThis data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design,manufacturing and supply.Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).© Koninklijke Philips Electronics N.V .2003.Printed in The NetherlandsAll rights are reserved.Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.The information presented in this document does not form part of any quotation or contract,is believed to be accurate and reliable and may be changed without notice.No liability will be accepted by the publisher for any consequence of its use.Publication thereof does not convey nor imply any license under patent-or other industrial or intellectual property rights.Date of release: 15 January 2003Document order number: 9397 750 10894Contents1Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4Quick reference data. . . . . . . . . . . . . . . . . . . . . 12Pinning information. . . . . . . . . . . . . . . . . . . . . . 13Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 24Thermal characteristics. . . . . . . . . . . . . . . . . . . 44.1T ransient thermal impedance . . . . . . . . . . . . . . 45Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 56Package outline . . . . . . . . . . . . . . . . . . . . . . . . . 97Revision history. . . . . . . . . . . . . . . . . . . . . . . . 108Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 119Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11。
西门子直流电机样本
![西门子直流电机样本](https://img.taocdn.com/s3/m/327b74695acfa1c7aa00cc4e.png)
DC Motors1GG7, 1GH7, 1HS7 and 1HQ7sSupplement DA 12 × July 2001DC MotorsOrder No.:German:E20002-K4012-A101-A2English:E20002-K4012-A101-A2-7600DA 12DC MotorsDA 12 Supplement1GG7, 1GH7, 1HS7 and 1HQ7July 2001Order No.:German:E86060-K5112-E101-A1English:E86060-K5112-E101-A1-7600DC DrivesPreferred Series up to 500 kW Order No.:German:E20002-K4012-A111-A2English:E20002-K4012-A111-A2-7600DA 12.1SIMOREG Chassis ConvertersOrder No.:German:E20002-K4021-A101-A3English:E20002-K4021-A101-A3-7600DA 21Spare Parts for SIMOREG Chassis Converters Order No.:German:E20002-K4021-A900-A4English:E20002-K4021-A900-A4-7600DA 21 ESIMOREG Converter Cabinet Units Order No.:German:E20002-K4022-A101-A3English:E20002-K4022-A101-A3-7600DA 22Automation and DrivesOrder No.:German:E86060-D4001-A100-B5Eng l ish: E86060-D4001-A110-B4-7600CA 01InternetVisit the Automation and Drives Group in the Internet under the following address:http://www.siemens.de/automationCatalogs of the Automation and Drives Group (A&D)Automation & Drives Catalog Interactive catalogs on CD-ROM•Components for Automation & Drives CA 01•Electrical Installation Technology ET 01Analysis SystemsGas Analysis Equipment for the Process Industry PA 10 Process Analysis, Components for Sample Preparation PA 11 SIPAN Liquid Analysis PA 20Drive SystemsVariable-Speed DrivesDC Motors DA 12 DC Drives Preferred Series up to 500 kW DA 12.1 DC Drives Preferred Series 215 kW to 1500 kW DA 12.2 SIMOREG Chassis Converters DA 21 SIMOREG Converter Cabinet Units DA 22 SIMOVERT PM Modular Converter Systems DA 45 SIEMOSYN Motors DA 48 MICROMASTER 420/440 Inverters DA 51.2 COMBIMASTER 411/MICROMASTER 411DA 51.3 SIMOVERT A Current-Source DC Link Converters DA 62 SIMOVERT MV Medium-Voltage Drives DA 63 MICROMASTER, MIDIMASTER DA 64 Low-Voltage Motors for Variable-Speed Drives DA 65.3 SIMOVERT MASTERDRIVES Vector Control DA 65.10 SIMOVERT MASTERDRIVES Motion Control DA 65.11 SIMADYN D Control System DA 99 Automation Systems for Machine Tools SIMODRIVE NC 60•AC Main Spindle Motors 1FE1, 1PH2, 1PH3, 1PH4,1PH7•AC Servomotors 1FK6, 1FT5, 1FT6•AC Linear motors 1FN1, 1FN3•Converter System SIMODRIVE 611•Converter Systems SIMODRIVE POSMO A/CD/CA/SILow-Voltage Three-Phase-Motors•Project Manual M 10•Squirrel-Cage Motors, Totally Enclosed, Fan-Cooled M 11 Drive and Control Components for Hoisting Equipment HE 1 Automation Systems for Machine ToolsSINUMERIK & SIMODRIVE NC 60 Cables, Connectors and System Components NC Z Human Machine Interface Products/SystemsSIMATIC HMIST 80SIMATIC Industrial Automation SystemsSIMATIC PCS Process Control System ST 45 SIMATIC S5/PC/505 Automation Systems ST 50 Components for Totally Integrated Automation ST 70 Supplementary Components ST 71 SIMATIC PCS 7 Process Control System ST PCS 7 Electrical Installation TechnologyProtective Switching and Fuse SystemsBuilding Management Systems with instabus EIBI 2.1Program Overview Modular Devices I 2.11 STAB Wall-Mounting Distribution Boards I 2.31 SIKUS Floor-Mounting Distribution Boards I 2.328PU Busway System I 2.36Systems Engineering Catalog Power supplies SITOP power KT 10.1 System cables SIMATIC TOP connect KT 10.2 MOBY Identification Systems KT 21 Industrial Microcomputers SICOMP KT 51 Printers and Monitors for Automation and Drives KT 61 Cabinet Packaging System for SIMATIC PCS 7KT 71Industrial Communication and Field Devices IK PILow-Voltage Controls and DistributionLow-Voltage Controlgear, Switchgear and Systems NS K Communication-Capable SIRIUS NET Controlgear,Controlgear, SIGUARD Safety Systems,Control and Signalling Devices, Switchgear,Transformers and DC Power Supplies,Main- and EMERGENCY-STOP Switches,Control Switches, Terminal BlocksSIGNUM Metallic 3SB3Products and Systemsfor Low-Voltage Power DistributionNS PS SENTRON WL NS WLTELEPERM M Process Control SystemAS 235, AS 235H and AS 235K automation systems PLT 111AS 388/TM and AS 488/TM automation systems PLT 112OS 525 operating and monitoring system PLT 122 Operating and monitoring with WinCC/TM PLT 123CS 275 bus system PLT 130Process EngineeringField Instruments for Process AutomationMeasuring Instruments for Pressure,Differential Pressure, Flow, Level and Temperature,Positioners and Liquid MetersFI 01SITRANS LR FI 01 SIWAREX Weighing Systems KT 30 Process Recorders and Accessories MP 20 SIPART, Controllers and Software MP 31Vacuum Pumps/CompressorsOil-Free Vacuum Pumps, Compressors (Blowers),Radial Blowers, Liquid PumpsPVPumpsVacuum Pumps and Compressors, System ELMO-F Cat. Sheets PF Vacuum Pumps and Compressors, System ELMO-G Cat. Sheets PGSIPOS Electric ActuatorsElectric Rotary, Linear and Part-turn Actuators MP 35 Electric Rotary Actuators for Nuclear Plants MP 35.1/.2System SolutionsApplications, Products and Services for Industry SL 01 Automation Solutions in the Plastic Industry•with SIMATIC S7SL 10•with SIMATIC S5ST 58A&D/U3/En 18.04.01Siemens AGAutomation and Drives GroupLarge Drives DivisionP.O. Box 47 43, 90025 NurembergFederal Republic of Germanyhttp://www.siemens.de/automation/ldSiemens Aktiengesellschaft Order No. E86060-K5112-E101-A1-7600sDC Drives DC Motors 1GG7, 1GH7, 1HS7 and 1HQ7 Supplement DA 12 · July 2001DC Motors 1GG7, 1GH7, 1HS7, 1HQ7Supplement DA 12 July 2001IntroductionTechnical FeaturesSelection and Ordering Data Engineering Instructionss32145Dimension DrawingsAppendixAPlease note:The technical data is provided for general information only.When mounting, operating and servicing the equipment, the Instruction Manuals and the information provided on the products themselves must be observed.We reserve the right to revise technical data, selection and ordering data (Order Nos.), accessories and the availability.All of the dimensions in this Catalog are in mm.© Siemens AG 2001Siemens Supplement DA 12 · July 20011/111/2Applications1/4Recommendations for Drive Selection 1/5Overview of Motor Types and Rated Data 1/6DiagramsSiemens Supplement DA 12 · July 2001DC Motors1IntroductionSiemens DC drives distinguish themselves as follows:•Their excellent steady-state and dynamic control response •Their wide range with high control precision•The high efficiency of the complete drive system.The modular DC motors from Siemens are well-proven in combination with driveconverters as variable-speed drives in almost all sectors of industry.This secures competitivestrengths and efficiency for our customers – within Germany and internationally.For example •In mining•In rolling mills•In the printing industry •In the textile and man-made fiber industries •For cranes•In basic industrySIMOREG drive converters.Our DC drives are the optimum solution, no matter which functions have to be fulfilled in drive, power or process engineering.DC MotorsIntroduction1Siemens Supplement DA 12 · July 20011/3Siemens Supplement DA 12 · July 2001DC Motors1IntroductionDetermine the required product profile :Supply voltage DutyDegree of protection Speed range OutputType of construction 3-ph 400, 500 or 690 V ,50/60 Hz1 quadrant/4 quadrant IP ............ n =............rpm P = ............ kWIMPage 2/2 and 3/2 onwardsInstallation conditionsAmbient temperature 40 °C Site altitude1000 mAmbient temperature > 40 °C Site altitude > 1000 m Determining the factors for output and speed changePage 4/2Determine therated armature voltageSupply configuration Duty 3 AC 50/60 Hz 400 V 1Q 3 AC 50/60 Hz 400 V 4Q 3 AC 50/60 Hz 500 V 1Q 3 AC 50/60 Hz 500 V 4Q 3 AC 50/60 Hz 690 V 1Q 3 AC 50/60 Hz 690 V4QRated armature voltage 470 V DC 420 V DC 600 V DC 520 V DC 810 V DC 720 V DCDetermine the Motor Order No.Determine the motor Order No.in accordance with the"Selection and Ordering Data"Pages 3/2 to 3/35Adapt the speed if necessary n = n Nn < n NSpeed adapted via armature control U a = U an · n / n N P = P N · n / n Nn > n NSpeed adapted via field weakening U a = constant P = constantComplete the motor Order No.Options and short codes for special featuresPages 3/39 to 3/41Select the SIMOREG drive converter and the supply componentsFor Order No. of the drive converter and the supply components,see Catalogs DA 21 and DA 22These❝Recommendations for drive selection ❞guide you step-by-step through this CatalogSiemens Supplement DA 12 · July 20011/5DC Motors1Introduction1/6Siemens Supplement DA 12 · July 2001DC Motors1Introduction$1 . . 351%1 . . 352&1 . . 353(1 . . 354)1 . . 355*1 . . 401+1 . . 402,1 . . 403-1 . . 404.1 . . 405/1 . . 45101 . . 45211 . . 45321 . . 45431 . . 455Siemens Supplement DA 12 · July 20012/122/2Standard versions 2/3Mechanical designs 2/3StandardsSiemens Supplement DA 12 · July 2001DC Motors 1GG7, 1GH7, 1HS7, 1HQ72Technical FeaturesTechnical design formotors of Series1G . 7The internally cooled,separately ventilated DC motors 1G . 7 and 1H . 7are fully laminated and compensated. They represent the optimum solution for every drive application as a result of theirmodular design regarding terminal box and separately-driven fan mounting.Standard Type Description Design All IM B3Degree of protection1GG71GH71HS71HQ7IP 23IP 23IP 54IP 54Cooling type1GH71GG71HS71HQ7IC 17IC 06IC W37 A86IC A06 A66Terminal boxPosition Alignment Cable entry All All All RightCable entry from below UndrilledCoolingSep. ventilated Sep. ventilated Closed-circuit coolingClosed-circuit cooling 1GG71GH71HS71HQ7Separately driven fan, top, NDE ExternalAir-to-water heat exchanger, top Air-to-air heat exchanger, top StatorDesign FeaturesAll All RectangularNo housing, fully laminated Duct connection 1GH7On one side, NDE right Paint finish All RAL 7016BearingsAllRoller bearing with regreasing device Vibration severity grade All NShaft end All With keyway acc. to DIN 6885, Sheet 1Balancing All Half-key balancing Field control range All 1.15 x n N Excitation Type VoltageAll All External 310 VWinding type All With compensation winding Number of polesAll4-poleFor design variants and accessories, see Options, Pages 3/39 to 3/41.Siemens Supplement DA 12 · July 2001DC Motors 1GG7, 1GH7, 1HS7, 1HQ72Technical FeaturesPractically spark-freecommutation when fed from drive converters is achieved as a result of the optimum motor design, even in the overload range. This results in extremely long brush lifetimes.Even critical applications can be handled by selecting suitable brush materials.The noise levels of the motors are determined in accordance with DIN EN 21 680 and they lie far below the values permitted according to DIN EN 60 034-9. This is achieved as a result of the mechanical design and by optimizing the magnetic circuit and the separately-driven fan.Noise levels can be provided on request.The motor bearings are provided with regreasing devices.The locating bearing is at the non drive end.The motors comply with all of the relevant standards and specifications, see adjacent table.As a result of the fact that in many countries the national regulations have beencompletely harmonized with the international IEC 60 034-1 recommendation, there are no longer any differences with respect to cooling medium temperatures, insulation classes and maximum temperature rises.Brush materials, commutation Noise levelsBearingsStandards, specifications, requirements TitleDIN/ENIECGeneral specifications for rotating, electrical machinesDIN EN 60 034-1IEC 60 034-1,IEC 60 085Terminal designations and direction of rotation for electrical machines DIN VDE 0530, Part 8IEC 60 034-8Types of construction DIN EN 60 034-7IEC 60 034-7Built-in thermal protection –IEC 60 034-11Cooling types forrotating electrical machinesDIN EN 60 034-6IEC 60 034-6Degrees of protection of rotating electrical machines DIN EN 60 034-5IEC 60034-5Vibration severity ofrotating electrical machines DIN EN 60 034-14IEC 60 034-14Cylindrical shaft ends for electrical machines DIN 748-3IEC 60 072Noise limit values ofrotating electrical machinesDIN EN 60 034-9IEC 60 034-9DC Motors 1GG7, 1GH7, 1HS7, 1HQ7 Technical Features2Siemens Supplement DA 12 · July 2001Siemens Supplement DA 12 · July 20013/13Ordering DataDC Motors 1GG7, 1GH7, 1HS73/2•Rated supply voltage 3-ph. 400 V AC Rated armature voltage 420 V DC,4 quadrant operation3/5•Rated supply voltage 3-ph. 400 V AC Rated armature voltage 470 V DC,1 quadrant operation3/8•Rated supply voltage 3-ph. 500 V AC Rated armature voltage 520 V DC,4 quadrant operation3/11•Rated supply voltage 3-ph. 500 V AC Rated armature voltage 600 V DC,1 quadrant operation3/14•Rated supply voltage 3-ph. 690 V AC Rated armature voltage 720 V DC,4 quadrant operation3/17•Rated supply voltage 3-ph. 690 V AC Rated armature voltage 810 V DC,1 quadrant operation DC Motors 1HQ73/19•Rated supply voltage 3-ph. 400 V AC Rated armature voltage 420 V DC,4 quadrant operation3/22•Rated supply voltage 3-ph. 400 V AC Rated armature voltage 470 V DC,1 quadrant operation3/25•Rated supply voltage 3-ph. 500 V AC Rated armature voltage 520 V DC,4 quadrant operation3/28•Rated supply voltage 3-ph. 500 V AC Rated armature voltage 600 V DC,1 quadrant operation3/31•Rated supply voltage 3-ph. 690 V AC Rated armature voltage 720 V DC,4 quadrant operation3/34•Rated supply voltage 3-ph. 690 V AC Rated armature voltage 810 V DC,1 quadrant operation3/36Supplementary data for selection 3/39Options3Selection and Ordering DataOutputrangeRatedoutputRated speed Order No.Rated torque Max. fieldweakening speedRated current EfficiencyPNnNMnnFmaxINh kW kW rpm Nm rpm A% 197103 1 . . 7 455-5NA . . -1VV11827041259578204138 1 . . 7 454-5NA . . -1VV11411555059580206173 1 . . 7 453-5NA . . -1VV11137069058583208210 1 . . 7 452-5NA . . -1VV1946084058084210254 1 . . 7 451-5NA . . -1VV17895102058085226119 1 . . 7 455-5NB . . -1VV11813547665581230171 1 . . 7 405-5NA . . -1VV11285051064083232158 1 . . 7 454-5NB . . -1VV11402563065083235225 1 . . 7 404-5NA . . -1VV1997068064085236275 1 . . 7 355-5NA . . -1VV1820071064086236238 1 . . 7 452-5NB . . -1VV1947095064086236196 1 . . 7 453-5NB . . -1VV11150078565085238344 1 . . 7 354-5NA . . -1VV16610103063587238288 1 . . 7 451-5NB . . -1VV17890115064087240416 1 . . 7 353-5NA . . -1VV15510125063588240335 1 . . 7 402-5NA . . -1VV16850100064087240284 1 . . 7 403-5NA . . -1VV1810085064586242492 1 . . 7 352-5NA . . -1VV14700148063589242412 1 . . 7 401-5NA . . -1VV15600124064088244580 1 . . 7 351-5NA . . -1VV14000174063590258134 1 . . 7 455-5NC . . -1VV11840053573582262196 1 . . 7 405-5NB . . -1VV11277059071585264178 1 . . 7 454-5NC . . -1VV11416571073084266322 1 . . 7 451-5NC . . -1VV17865129071088266268 1 . . 7 452-5NC . . -1VV19515107071587266256 1 . . 7 404-5NB . . -1VV1993077071587266220 1 . . 7 453-5NC . . -1VV11149588072586268392 1 . . 7 354-5NB . . -1VV16530118071088268314 1 . . 7 355-5NB . . -1VV1815094572586270320 1 . . 7 403-5NB . . -1VV1806096071588272565 1 . . 7 352-5NB . . -1VV14590169071589272475 1 . . 7 353-5NB . . -1VV15470143071589272380 1 . . 7 402-5NB . . -1VV16850114071589274660 1 . . 7 351-5NB . . -1VV13960183071590274468 1 . . 7 401-5NB . . -1VV15600140071589290151 1 . . 7 455-5ND . . -1VV11834060581583298200 1 . . 7 454-5ND . . -1VV11416080082085300224 1 . . 7 405-5NC . . -1VV11279067081086302350 1 . . 7 355-5NC . . -1VV18240105080088304438 1 . . 7 354-5NC . . -1VV16630131080089304364 1 . . 7 451-5ND . . -1VV18000131081088304302 1 . . 7 452-5ND . . -1VV19645119081588304292 1 . . 7 404-5NC . . -1VV1995088080588304248 1 . . 7 453-5ND . . -1VV11166099082587 225250300Separate ventilation usingStand., radially-mounted, sep.-driven fan G GSeparately-mounted, sep.-driven fan G HMounted air-to-water heat exchanger H SExciting voltage180 V1200 V (Order No. + Short Code L5A)9310 V4360 V7Type of constructionIM B30IM B 35 (on request)Field weakeningThe order numbers for themotors are applicable for fieldweakening speeds nFto 1.15 ·nN. For higher field weakeningspeeds, additional short codesare necessary, i.e. "C05"for nF> 1.15 ·nNto 1.7 ·nNand "C06" for nF> 1.7 ·nN.The motors can be operated atrated output PNup to the fieldweakening speed nFmax.Forhigher speeds, the output mustbe reduced.DC Motors 1GG7, 1GH7, 1HS7Siemens Supplement DA 12 · July 20013Selection and Ordering DataSiemens Supplement DA 12 · July 2001DC Motors 1GG7, 1GH7, 1HS7Output range Rated output Rated speed Order No.Rated torque Max. fieldweakening speed Rated current Efficiency P N n N M n n Fmax I N h kWkW rpm Nm rpm A %306530 1 . . 7 353-5NC . . -1VV15510154080090308735 1 . . 7 351-5NC . . -1VV14000181080091308625 1 . . 7 352-5NC . . -1VV14710167080090308432 1 . . 7 402-5NC . . -1VV16800130080589310530 1 . . 7 401-5NC . . -1VV15600160080590310364 1 . . 7 403-5NC . . -1VV18130109081589338177 1 . . 7 455-5NE . . -1VV11824072092086340252 1 . . 7 405-5ND . . -1VV11289076090588344835 1 . . 7 351-5ND . . -1VV13940182089091344500 1 . . 7 354-5ND . . -1VV16570135090090345328 1 . . 7 404-5ND . . -1VV11005098090589345232 1 . . 7 454-5NE . . -1VV11414093092588346605 1 . . 7 353-5ND . . -1VV15460151090090346400 1 . . 7 355-5ND . . -1VV18260117091589348710 1 . . 7 352-5ND . . -1VV14680164090091348484 1 . . 7 402-5ND . . -1VV16850146090091348406 1 . . 7 403-5ND . . -1VV18190122090490350590 1 . . 7 401-5ND . . -1VV15650160090091350418 1 . . 7 451-5NE . . -1VV17995132091090350348 1 . . 7 452-5NE . . -1VV19635120092090350288 1 . . 7 453-5NE . . -1VV111605108092589375675 1 . . 7 401-5NE . . -1VV15300164096092382555 1 . . 7 402-5NE . . -1VV16850146098591382464 1 . . 7 403-5NE . . -1VV17860133099091382288 1 . . 7 405-5NE . . -1VV112670860101088384375 1 . . 7 404-5NE . . -1VV197801130101090394960 1 . . 7 351-5NE . . -1VV139201760101092395462 1 . . 7 355-5NE . . -1VV181701140103090396575 1 . . 7 354-5NE . . -1VV165801310102091398695 1 . . 7 353-5NE . . -1VV154701460102092400820 1 . . 7 352-5NE . . -1VV146601590102092408215 1 . . 7 455-5NF . . -1VV118125790109088415282 1 . . 7 454-5NF . . -1VV114005935109089420505 1 . . 7 451-5NF . . -1VV179601290108092420418 1 . . 7 452-5NF . . -1VV195751180108591420348 1 . . 7 453-5NF . . -1VV11152510501095904341060 1 . . 7 351-5NF . . -1VV139001780110093440640 1 . . 7 354-5NF . . -1VV165701320113092440510 1 . . 7 355-5NF . . -1VV182401150114091440326 1 . . 7 405-5NF . . -1VV112900960115090444770 1 . . 7 353-5NF . . -1VV155101470114092445910 1 . . 7 352-5NF . . -1VV146701600114092445424 1 . . 7 404-5NF . . -1VV11003011401150914487651 . . 7 401-5NF . . -1VV156001570114092325350400Separate ventilation usingStand., radially-mounted, sep.-driven fan G G Separately-mounted, sep.-driven fan G H Mounted air-to-water heat exchangerH SExciting voltage180 V1200 V (Order No. + Short Code L5A )9310 V 4360 V7Type of constructionIM B3IM B 35 (on request)Field weakeningThe order numbers for the motors are applicable for field weakening speeds n F to 1.15 · n N . For higher field weakening speeds, additional short codes are necessary, i.e. "C05" for n F > 1.15 · n N to 1.7 · n N and "C06" for n F > 1.7 · n N .The motors can be operated at rated output P N up to the field weakening speed n Fmax. For higher speeds, the output must be reduced.3OutputrangeRatedoutputRated speed Order No.Rated torque Max. fieldweakening speedRated current EfficiencyPNnNMnnFmaxINhkW kW rpm Nm rpm A% 450625 1 . . 7 402-5NF . . -1VV169001410115092450524 1 . . 7 403-5NF . . -1VV1820012801160914881210 1 . . 7 351-5NG . . -1VV138501*********492870 1 . . 7 401-5NG . . -1VV154001*********495375 1 . . 7 405-5NG . . -1VV112610*********498485 1 . . 7 404-5NG . . -1VV198101170128092500610 1 . . 7 451-5NG . . -1VV178001040127093500600 1 . . 7 403-5NG . . -1VV179701310127092500585 1 . . 7 355-5NG . . -1VV1816011501290925051030 1 . . 7 352-5NG . . -1VV146801*********505880 1 . . 7 353-5NG . . -1VV154701*********505735 1 . . 7 354-5NG . . -1VV165601320128093505715 1 . . 7 402-5NG . . -1VV167501430128093505510 1 . . 7 452-5NG . . -1VV194751150129092505264 1 . . 7 455-5NG . . -1VV118270755133090510424 1 . . 7 453-5NG . . -1VV1115151020131092510344 1 . . 7 454-5NG . . -1VV1141609001320915151370 1 . . 7 351-5NH . . -1VV135901*********5451170 1 . . 7 352-5NH . . -1VV144501650138094550665 1 . . 7 355-5NH . . -1VV179001170140093555995 1 . . 7 353-5NH . . -1VV153401490140093555975 1 . . 7 401-5NH . . -1VV154501550140094555830 1 . . 7 354-5NH . . -1VV164101340141093555420 1 . . 7 405-5NH . . -1VV1126209401420925651600 1 . . 7 351-5NJ . . -1VV133702100142094565800 1 . . 7 402-5NH . . -1VV167501390143093565545 1 . . 7 404-5NH . . -1VV199101120144092570672 1 . . 7 403-5NH . . -1VV1810012501440936051360 1 . . 7 352-5NJ . . -1VV142501880152094605765 1 . . 7 451-5NH . . -1VV175451270153093615640 1 . . 7 452-5NH . . -1VV192051150156093625965 1 . . 7 354-5NJ . . -1VV161701540158093625775 1 . . 7 355-5NJ . . -1VV177001340158093625530 1 . . 7 453-5NH . . -1VV1112601020159593625430 1 . . 7 454-5NH . . -1VV113870895160092625330 1 . . 7 455-5NH . . -1VV1180907501620916301190 1 . . 7 401-5NJ . . -1VV1505017801580946301160 1 . . 7 353-5NJ . . -1VV151901680168094655980 1 . . 7 402-5NJ . . -1VV164001580164094670822 1 . . 7 403-5NJ . . -1VV177801430169094670520 1 . . 7 405-5NJ . . -1VV1123001090170092675670 1 . . 7 404-5NJ . . -1VV196201270171093680880 1 . . 7 451-5NJ . . -1VV173951290170594685730 1 . . 7 452-5NJ . . -1VV189351170172594685610 1 . . 7 453-5NJ . . -1VV1107251060173094695382 1 . . 7 455-5NJ . . -1VV117370770178092705496 1 . . 7 454-5NJ . . -1VV113570905179093 450550600700Separate ventilation usingStand., radially-mounted, sep.-driven fan G GSeparately-mounted, sep.-driven fan G HMounted air-to-water heat exchanger H SExciting voltage180 V1200 V (Order No. + Short Code L5A)9310 V4360 V7Type of constructionField weakeningThe order numbers for themotors are applicable for fieldweakening speeds nFto 1.15 ·nN. For higher field weakeningspeeds, additional short codesare necessary, i.e. "C05"for nF> 1.15 ·nNto 1.7 ·nNand "C06" for nF> 1.7 ·nN.The motors can be operated atrated output PNup to the fieldweakening speed nFmax.Forhigher speeds, the output mustbe reduced.3Output range Rated output Rated speed Order No.Rated torque Max. fieldweakening speed Rated current Efficiency P N n N M n n Fmax I N h kWkW rpm Nm rpm A %226119 1 . . 7 455-5NA . . -1WV11813547659080232158 1 . . 7 454-5NA . . -1WV11402563058583236197 1 . . 7 453-5NA . . -1WV11144079058584238290 1 . . 7 451-5NA . . -1WV17865116057586238240 1 . . 7 452-5NA . . -1WV1951096058585260195 1 . . 7 405-5NA . . -1WV11273059063585260136 1 . . 7 455-5NB . . -1WV11826054566082265180 1 . . 7 454-5NB . . -1WV11406072065585266256 1 . . 7 404-5NA . . -1WV1993077064087268312 1 . . 7 355-5NA . . -1WV1820094064087268326 1 . . 7 451-5NB . . -1WV17850130063588268270 1 . . 7 452-5NB . . -1WV19480108064087268224 1 . . 7 453-5NB . . -1WV11147589565086270390 1 . . 7 354-5NA . . -1WV16610117063589270380 1 . . 7 402-5NA . . -1WV16800114063589270322 1 . . 7 403-5NA . . -1WV1803097064088272555 1 . . 7 352-5NA . . -1WV14680167063590272472 1 . . 7 353-5NA . . -1WV15500142063589272466 1 . . 7 401-5NA . . -1WV15600140063589274655 1 . . 7 351-5NA . . -1WV13990184063590294153 1 . . 7 455-5NC . . -1WV11835061073584300224 1 . . 7 405-5NB . . -1WV11279067072086300202 1 . . 7 454-5NC . . -1WV11418581073086302355 1 . . 7 355-5NB . . -1WV18120107072088302292 1 . . 7 404-5NB . . -1WV1988088071588302365 1 . . 7 451-5NC . . -1WV17900134071089302302 1 . . 7 452-5NC . . -1WV19520121071588302250 1 . . 7 453-5NC . . -1WV111535100072587304445 1 . . 7 354-5NB . . -1WV16520134071589306540 1 . . 7 353-5NB . . -1WV15420155071590306430 1 . . 7 402-5NB . . -1WV16800129071090306362 1 . . 7 403-5NB . . -1WV18070109071589308635 1 . . 7 352-5NB . . -1WV14630169071590308530 1 . . 7 401-5NB . . -1WV15550159071590310745 1 . . 7 351-5NB . . -1WV13970182072091330173 1 . . 7 455-5ND . . -1WV11824069081585338254 1 . . 7 405-5NC . . -1WV11271076080588338228 1 . . 7 454-5ND . . -1WV11409591082087342496 1 . . 7 354-5NC . . -1WV16590138079590342398 1 . . 7 355-5NC . . -1WV18210120080089344330 1 . . 7 404-5NC . . -1WV1995099080589344412 1 . . 7 451-5ND . . -1WV17995131081090344342 1 . . 7 452-5ND . . -1WV19635119081589345600 1 . . 7 353-5NC . . -1WV15490154080091345282 1 . . 7 453-5ND . . -1WV111685106082588346705 1 . . 7 352-5NC . . -1WV14690168080091348830 1 . . 7 351-5NC . . -1WV140001820800923484881 . . 7 402-5NC . . -1WV16800146080590250300Separate ventilation usingStand., radially-mounted, sep.-driven fan G G Separately-mounted, sep.-driven fan G H Mounted air-to-water heat exchangerH SExciting voltage180 V1200 V (Order No. + Short Code L5A )9310 V 4360 V7Type of constructionIM B3Field weakeningThe order numbers for the motors are applicable for field weakening speeds n F to 1.15 · n N . For higher field weakening speeds, additional short codes are necessary, i.e. "C05" for n F > 1.15 · n N to 1.7 · n N and "C06" for n F > 1.7 · n N .The motors can be operated at rated output P N up to the field weakening speed n Fmax. For higher speeds, the output must be reduced.3OutputrangeRatedoutputRated speed Order No.Rated torque Max. fieldweakening speedRated current EfficiencyPNnNMnnFmaxINhkW kW rpm Nm rpm A% 350600 1 . . 7 401-5NC . . -1WV15550160080591350412 1 . . 7 403-5NC . . -1WV18130124081590384202 1 . . 7 455-5NE . . -1WV11815080592087385370 1 . . 7 404-5ND . . -1WV19950111089590385285 1 . . 7 405-5ND . . -1WV11290086090589388940 1 . . 7 351-5ND . . -1WV13940181089092388565 1 . . 7 354-5ND . . -1WV16560136090091390680 1 . . 7 353-5ND . . -1WV15480151090091390264 1 . . 7 454-5NE . . -1WV11411095092089392805 1 . . 7 352-5ND . . -1WV14650164090092392452 1 . . 7 355-5ND . . -1WV18280117091590392545 1 . . 7 402-5ND . . -1WV16850145090091392460 1 . . 7 403-5ND . . -1WV18160133090291394665 1 . . 7 401-5ND . . -1WV15650160090092394472 1 . . 7 451-5NE . . -1WV17955132091091395392 1 . . 7 452-5NE . . -1WV19600120091591396326 1 . . 7 453-5NE . . -1WV111600108092590422760 1 . . 7 401-5NE . . -1WV15300164096092430625 1 . . 7 402-5NE . . -1WV16850146098592432524 1 . . 7 403-5NE . . -1WV17890132099091432424 1 . . 7 404-5NE . . -1WV197401170100091432326 1 . . 7 405-5NE . . -1WV112660*********4421080 1 . . 7 351-5NE . . -1WV139101*********446650 1 . . 7 354-5NE . . -1WV165501310102092446520 1 . . 7 355-5NE . . -1WV181901140103091448785 1 . . 7 353-5NE . . -1WV154501*********450920 1 . . 7 352-5NE . . -1WV146701*********464244 1 . . 7 455-5NF . . -1WV118160*********470318 1 . . 7 454-5NF . . -1WV114025*********472570 1 . . 7 451-5NF . . -1WV179351290108092474392 1 . . 7 453-5NF . . -1WV1115201050109591475472 1 . . 7 452-5NF . . -1WV1961011801090924861200 1 . . 7 351-5NF . . -1WV138701*********495575 1 . . 7 355-5NF . . -1WV182201140115092496720 1 . . 7 354-5NF . . -1WV165801320113092498870 1 . . 7 353-5NF . . -1WV154601*********498368 1 . . 7 405-5NF . . -1WV112920*********5001020 1 . . 7 352-5NF . . -1WV146801*********500478 1 . . 7 404-5NF . . -1WV199901150115091505860 1 . . 7 401-5NF . . -1WV156001*********505705 1 . . 7 402-5NF . . -1WV168501410115092510592 1 . . 7 403-5NF . . -1WV1824012701160925401360 1 . . 7 351-5NG . . -1WV137901*********545980 1 . . 7 401-5NG . . -1WV153001********* 350400500Separate ventilation usingStand., radially-mounted, sep.-driven fan G GSeparately mounted, sep.-driven fan G HMounted air-to-water heat exchanger H SExciting voltage180 V1200 V (Order No. + Short Code L5A)9310 V4360 V7Type of constructionField weakeningThe order numbers for themotors are applicable for fieldweakening speeds nFto 1.15 ·nN. For higher field weakeningspeeds, additional short codesare necessary, i.e. "C05"for nF> 1.15 ·nNto 1.7 ·nNand "C06" for nF> 1.7 ·nN.The motors can be operated atrated output PNup to the fieldweakening speed nFmax.Forhigher speeds, the output mustbe reduced.。
西门子伺服电机简明样本2013
![西门子伺服电机简明样本2013](https://img.taocdn.com/s3/m/245a2e43fe4733687e21aa57.png)
西门子提供免费的、功能强大的产品图纸工具软件 CAD-Creator。通过 CAD-Creator 软件可以生成电机及驱动、控制系统的 2 维尺寸 图和 3 维立体示意图。 下载网址 :/download/searchResult.aspx?searchText=cad+creator
依靠完善的产品规格体系、创新的模块化设计和上述的丰富可选项,您可以根据实际使用的需求,选择到犹如定制化的最适合电机 产品。您还可以借助西门子选型工具 Sizer 和图纸工具 CAD-Creator 来进行辅助选择,上述软件均免费使用。
请注意 :并非所电机都覆盖所有上文所述可选项。具体的使用需求可咨询西门子当地销售工程师或使用西门子标准选型大全(PM 21) 来进行更精确的选择。
10.0 15.0 18.0 3.7 5.4 8.0 6.5 6.5 2.6 3.0 4.3 5.0 0.9 2.0
15.0 4.7 6.0 8.7 10.0 1.5
堵转 转矩
M0 Nm
3.0 6.0 8.5 11.0 12.0 16.0 20.0 18.0 27.0 36.0 48.0 3.0 6.0 8.5 11.0 8.0 12.0 16.0 20.0 18.0 27.0 36.0 48.0 6.0 8.5 11.0 8.0 12.0 16.0 0.18 0.35 0.85 1.15 1.6 1.6 3.0
OMRON SYSDRIVE RX系列 说明书
![OMRON SYSDRIVE RX系列 说明书](https://img.taocdn.com/s3/m/c71eec44336c1eb91a375d76.png)
警告内容
ॅ䰽Ӯ᳝ফӸˈ㾺⬉ⱘॅ䰽DŽ
gᅝ㺙ǃ䖤㸠ࠡˈ䇋ࡵᖙ䯙䇏Փ⫼䇈ᯢкDŽ g䗮⬉Ёঞߛᮁ⬉⑤ৢ10ߚ䩳ˈݙ䇋࣓ᠧᓔ㸼䴶ⱘ㔽DŽ
8
开封时的确认
开封时的确认
●产品的确认
当变频器 SYSDRIVE 3G3RX 送达时,请先确认是否是您所订购的货物。 如遇所送达货物与您订购货物不一致时,请尽快与供应商取得联系。
200807S01
ྚ啭㞾ࡼ࣪˄Ё˅㒳䕪䲚ಶ 㓪ো
催ࡳ㛑ൟ䗮⫼ব乥఼
SYSDRIVE
SBCE-C-347A
RX㋏߫
前言
前言
非常感谢您选购通用变频器 3G3RX 系列,本使用说明书记述了变频器 3G3RX 系列本体的安装、配 线和运行的参数设定方法,以及检查和维修方法。 请将本使用说明书交于操作或维护人员保管。 请保管于易取处,以便于将来的参考。 本使用说明书尽可能详尽的记述产品的规格、功能及相互关系。未描述的内容可以理解为不能。 阅读对象 本说明书提供给: 具有电工专业知识的人员 (合格的电气工程师或同等专业) ,并负责以下: 引进控制设备的人员; 设计控制系统的人员; 安装或连接控制设备的人员; 现场管理人员;
⊼ᛣ
不要直接将电阻与端子 (+1, P/+2, N/-)连接。 否则可能引起轻度起火,发热,导致设备破损。 请在外部设置紧急停止装置,以便能及时停止运行、切断电源。 另外,请务必确认紧急停止装置的动作,避免轻度伤害的发生。 ※保持制动器并非为确保安全的停止装置 再生制动单元 / 制动电阻产生的热量,可能引起中度烫伤。 请务必使用指定的制动单元 / 制动电阻,并务必在制动电阻上设置用于监控异常发热的热敏继电器。 另外,请务必设置时序,当制动单元 / 制动电阻出现异常发热时可以立即切断变频器电源。 产品内部有高压部分,短路会导致产品损坏以及其他物品损坏。 在设置及布线时,可以通过设置外盖等,防止切割粉屑及导线碎屑等金属进入产品内部。 通电中以及电源切断后短时间内请勿接触变频器散热片,制动电阻和电动机。 否则由于高温,可能发生烫伤。 负载的布线短路可能引起物品损坏。 作为安全对策,请在变频器电源侧设置与变频器功率相当的布线用断路器 (MCCB)等。 请不要进行任何拆解、改造。 否则可能因触电等导致重伤。
Maxon 直流电机样本10_EN_EC60
![Maxon 直流电机样本10_EN_EC60](https://img.taocdn.com/s3/m/95996826453610661ed9f4c1.png)
maxon EC motor
M 1:4
Stock program Standard program Special program (on request)
Order Number
167132 Motor Data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Values at nominal voltage Nominal voltage V No load speed rpm No load current mA Nominal speed rpm Nominal torque (max. continuous torque) mNm Nominal current (max. continuous current) A Stall torque mNm Starting current A Max. efficiency % Characteristics Terminal resistance phase to phase W Terminal inductance phase to phase mH Torque constant mNm / A Speed constant rpm / V Speed / torque gradient rpm / mNm Mechanical time constant ms Rotor inertia gcm2 48.0 5370 733 4960 747 9.38 11800 139 86 0.345 0.273 84.9 113 0.457 3.98 831
May 2010 edition / subject to change