高三数学10月月考试题 文 (4)
2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷(含解析)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置2024-2025学年四川省成都市高三上学期10月月考数学质量检测试卷.1. 已知集合{}1,2,4A =,2{N |20}B x x x =Î+-£,则A B =U ( )A. {}2,1,0,1,2,4-- B. {}0,1,2,4C. {}1,2,4 D. {}1【答案】B 【解析】【分析】根据一元二次不等式的解法,求得{}0,1B =,结合集合并集的概念与运算,即可求解.【详解】由不等式220x x +-£,可得(2)(1)0≤x x +-,解得21x -££,所以集合{}{N |21}0,1B x x =Î-££=,又因为{}1,2,4A =,可得{}0,1,2,4A B È=.故选:B.2. 2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则( )A. 盛李豪的平均射击环数超过10.6B. 黄雨婷射击环数的第80百分位数为10.65C. 盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差【答案】C 【解析】【分析】根据图表数据可直接判断选项A ,利用第80百分位数的解法直接判断选项B ,根据图表的分散程度即可判断选项C ,根据极差的求法直接判断选项D.【详解】由题知,盛李豪的射击环数只有两次是10.8环,5次10.6环,其余都是10.6环以下,所以盛李豪平均射击环数低于10.6,故A 错误;由于140.811.2´=,故第80百分位数是从小到大排列的第12个数10.7,故B 错误;由于黄雨婷的射击环数更分散,故标准差更大,故C 正确;黄雨婷射击环数的极差为10.89.7 1.1-=,盛李豪的射击环数极差为10.810.30.5-=,故D 错误.故选:C3. 已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为( )A. b c a >> B. a b c >>C. c b a >> D. a c b>>【答案】A 【解析】【分析】由对数函数的底数小于1得到函数单调递减,判断出b ,c 的大小关系,又判断出b ,c 大于1,a 小于1,从而得出结论.【详解】由于0.6log y x =(0,)+¥单调递减,故0.60.60.6log 0.3log 0.4log 0.61b c =>=>=,又∵0.100.60.61a =<=,∴b c a >>.故选:A.4. 已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是( )A. 22ab cb > B.222a cc a+³C. ||||a b > D. 0ab bc +>【答案】C 【解析】【分析】根据已知等式可确定0,0a c ><,结合不等式性质和作差法依次判断各个选项即可.【详解】由题,0,0a c ><,取1,0,1a b c ===-,则22ab cb =,故A 错误;在2522a c c a +=-,故B 错误;0ab bc +=,故D 错误;因为22()()()0a b a b a b c a b -=+-=-->,所以22a b >,即||||a b >,故C 正确.故选:C.5. “函数2()ln(22)f x x ax =-+的值域为R ”的一个充分不必要条件是( )A. [B. (C. ()-¥+¥U D. )+¥【答案】D 【解析】【分析】根据对数函数的性质,先分析出对数的真数部分能取得所有的正数,然后根据二次函数与其对应二次方程的关系,求出a 的范围即可求解.【详解】因为函数2()ln(22)f x x ax =-+的值域为R ,设222y x ax =-+,则二次函数y 需要取到一切正数,对应于方程2220x ax -+=中,0D ³,即2480a -³,解得a ³或a £,从而)+¥是“函数2()ln(22)f x x ax =-+的值域为R ”的充分不必要条件.故选:D6. 核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过( )年.(lg 20.3010»)A. 155 B. 159C. 162D. 166【答案】B 【解析】【分析】根据题意列出等量关系,借助换底公式和题目给出的参考量得出结果.【详解】设氚含量变成初始量的110000大约需要经过t 年,则1211()210000t =,121log 1210000t =,即48159lg 2t =»年,故选:B.7. 若函数()y f x =的图象如图1所示,则如图2对应的函数可能是( )A. (12)y f x =-B. 1(1)2y f x =-C. (12)y f x =--D. 1(1)2y f x =--【答案】A 【解析】【分析】根据函数定义域求出新函数定义域判断B,D;取特殊值判断C,根据函数平移伸缩变换判断A.【详解】由()y f x =的定义域为(1,)-+¥知,1(1)2y f x =-中111,42x x ->-<,不符合图2,故排除B ,D ;对于C ,当12x =时,(0)0y f =->,不满足图2,故C 错误;将函数()y f x =图关于y 轴对称,得到()y f x =-的图,向右平移1个单位得到(1)y f x =-的图,最后纵坐标不变,横坐标变为原来的一半,得到函数(12)y f x =-的图可能为图2.故选:A.8. 已知函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î,则方程()(3)2f x f x +-=的所有根之和为( )A. 0 B. 3C. 6D. 9【答案】C【解析】的【分析】将方程根的问题转化为函数()y f x =和2(3)y f x =--的图象交点横坐标问题,数形结合即可判断交点个数,再根据对称性求解和即可解答.【详解】方程()(3)2f x f x +-=的根为函数()y f x =和2(3)y f x =--的图象交点横坐标,由函数()11,0,2221,0.x x x f x x ì+>ï=íï-£î得,()31,3,23232,3,x x x y f x x -ì<ï=--=íï-³î如下图所示,两函数图象共有4个交点,且因为()(3)2f x f x +-=,所以函数()y f x =与函数2(3)y f x =--的图象关于点3(,1)2中心对称,故方程()(3)2f x f x +-=的所有根之和为6.故选:C.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分, 部分选对的得部分分,有选错的得0分,.9. 已知函数()f x 的定义域为R ,()()()22f x y f x f y +=+,则( )A. ()00f = B. ()11f =C. ()f x 是奇函数 D. ()f x 在R 上单调递增【答案】AC 【解析】【分析】通过赋值法及特例逐项判断即可.【详解】由()()()22f x y f x f y +=+知,当0x y ==时, ()()030f f =,即()00f =,故A 正确;取()f x x =-,则()f x 满足条件()()()22f x y f x f y +=+,但()11f =-,且()f x 是在R 上单调递减,故B ,D错误;当,x t y t =-=时,()()()2f t f t f t =-+,即()()f t f t -=-,故C 正确.故选:AC.10. 已知复数12,z z 的共轭复数分别为21,z z ,则下列命题为真命题的是( )A. 1212z z z z +=+B. 1212z z z z ×=×C. 若120z z ->,则12z z >D. 若2221212z z z z +=+,则21210z z z z +××=【答案】ABD 【解析】分析】设出1i z a b =+,2i z c d =+,,,,R a b c d Î,结合共轭复数及模长定义与复数运算法则逐项计算可判断A 、B 、D ;举出反例可判断C.【详解】设1i z a b =+,2i z c d =+,且,,,R a b c d Î,则1i z a b =-,2i z c d =-;对A :12i i ()i z z a b c d a c b d +=+++=+++,12()i a c z b d z +=+-+所以12()i a c z b d z -=+++,所以1212z z z z +=+,故A 正确;对B :12i)(i)()i (()z z a b c d ac bd bc ad ++=--+=,12i)(i)()i (()z z a b c d ac bd bc ad --=--+=,故B 正确;对C :当1212i,2i z z =+=时,满足1210z z -=>,但不能得出12z z >,故C 错误;对D :2121212121211221212()()()()z z z z z z z z z z z z z z z z z z +=++=++=+++22121212z z z z z z =+++,故11220z z z z +=,故D 正确.故选:ABD.11. 设函数()()()ln f x x a x b =++,则下面说法正确的是( )A. 当0,1a b ==时,函数()f x 在定义域上仅有一个零点B. 当0,0a b ==时,函数()f x 在(1,)+¥上单调递增C. 若函数()f x 存在极值点,则a b£【D. 若()0f x ³,则22a b +的最小值为12【答案】ABD 【解析】【分析】代入0,1a b ==得到()f x 解析式,结合对数运算可得A 正确;求导分析单调性可得B 正确;当a b £时求导分析,当a b >利用换元法二次求导数分析可得C 错误;由复合函数同增异减得到()f x 的单调性,再结合二次函数取值可得D 正确;【详解】对于A ,当0,1a b ==时,()ln(1)f x x x =+,由()0f x =得,0x =,函数()f x 在定义域上仅有一个零点,故A 正确;对于B ,当0a b ==时,函数()ln f x x x =,当1x >时,()ln 10f x x ¢=+>,故函数()f x 在(1,)+¥上单调递增,故B 正确;对于C ,()ln()ln()1x a a bf x x b x b x b x b+-¢=++=+++++,当a b £时,函数()f x ¢在定义域上单调递增,且当x b ®-时,()f x ¥¢®-,当x ®+¥时,()f x ¥¢®+,此时函数()f x ¢存在零点0x ,即函数()f x 在0(,)b x -上单调递减,在0(,)x +¥上单调递增,故此时函数()f x 存在极值点,当a b >时,设()ln()1a b g x x b x b-=++++,则()2212()()a b x b a g x x b x b x b -+-=-=+++¢,令()0g x ¢=,则2x a b =-,故函数()f x ¢在(,2)b a b --上单调递减,在(2,)a b -+¥上单调递增,故()()2ln()2f x f a b a b ¢³¢-=-+,故当21e b a b <<+时,函数()f x ¢存在零点,函数()f x 存在极值点,综上,当函数()f x 存在极值点时,21eb a b <<+或a b £,故C 错误;对于D ,()()ln 0x a x b ++³恒成立,当()0f x =时,x a =-或1x b =-,当且仅当两个零点重合时, 即1a b -=-,因为y x a =+为增函数,设()()1ln ln 1y x b x a =+=++,则1y 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,所以函数()f x 在(1,)a a ---上单调递减,在(,)a -+¥上单调递增,满足()()ln 0x a x b ++³, 则22212212a b b b +=-+³,当12b =时取“=”,故D 正确,故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数2()23f x x kx =++在[1,2]上单调,则实数k 的取值范围为_____.【答案】8k £-或4k ³-【解析】【分析】运用二次函数的单调性知识,结合对称轴可解.【详解】函数2()23f x x kx =++的对称轴为04k x =-,故当24k -³或14k-£时,函数()f x 在[1,2]上单调,即8k £-或4k ³-,故答案为:8k £-或4k ³-.13.若()y f x =是定义在R 上的奇函数,()(2)f x f x =-,(1)2f =,则(1)(2)(3)(2025)f f f f +++=L ________.【答案】2【解析】【分析】根据题意,推得(4)()f x f x +=,得到()y f x =的周期为4,再求得(1),(2),(3),(4)f f f f 的值,结合周期性,即可求解.【详解】因为函数()y f x =是定义在R 上的奇函数,故()()f x f x -=-,又因为()(2)f x f x =-,所以(2)()f x f x -=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()y f x =的周期为4,由于()y f x =为定义在R 上的奇函数,且(1)2f =,可得(0)0f =,(2)(0)0f f ==,(3)(1)(1)2f f f =-=-=-,所以(1)(2)(3)(4)0f f f f +++=,则(1)(2)(3)(2025)f f f f +++=L 506[(1)(2)(3)(4)](1)2f f f f f ´++++=.故答案为:2.14. 若过点()1,b 作曲线e x y x =的切线有且仅有两条,则b 的取值范围是______.【答案】25[0,e)e ìü-íýîþU 【解析】【分析】由题意,设切点000(,e )xx x ,利用相切性质得到关于0,b x 的关系式0200(1)e xb x x =-+,将切线条数问题转化为关于0x 的方程解的个数问题求解,再分离参数转化为函数2()(1)e x g x x x =-+的图象与直线y b =的交点个数问题,构造函数研究函数的单调性与最值,数形结合求b 的范围即可.【详解】设切点为000(,e )xx x ,()(1)e x f x x ¢=+,故切线方程为00000e (1)e ()x x y x x x x -=+-,将()1,b 代入切线方程得00000e(1)e (1)x x b x x x -=+-,0200(1)e x b x x \=-+,过点()1,b 作曲线e x y x =的切线有且仅有两条,则关于0x 的方程0200(1)e xb x x =-+有两解,可转化为直线y b =与函数2(1)e x y x x =-+的图象有两个交点.令2()(1)e x g x x x =-+,则2()(2)e (1)(2)e x x g x x x x x ¢=--=--+,当2x <-时,()0f x ¢<,()f x 在(),2¥--单调递减;当2<<1x -时,()0f x ¢>,()f x 在()2,1-单调递增;当1x >时,()0f x ¢<,()f x 在(1,+∞)单调递减;故()g x 的单调减区间(,2),(1,)-¥-+¥,增区间是(2,1)-.当x ®-¥时,()0g x ®,当x ®+¥时,()g x ®-¥,且25(1)e,(2)e g g =-=-,当y b =与()y g x =有且仅有两个交点时,25[0,e)e b ìüÎÈ-íýîþ,故答案为:25[0,e)e ìüÈ-íýîþ.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()1ln 1kxf x x -=-为奇函数.(1)求实数k 值;(2)若函数()()2xg x f x m =-+,且()g x 在区间[]2,3上没有零点,求实数m 的取值范围.【答案】(1)1-(2)(,4ln 3)(8ln 2,)m Î-¥--+¥U 【解析】【分析】(1)根据奇函数定义建立方程,解得1k =±,检验即可求解;(2)利用导数研究函数的单调性可知()g x 在[2,3]上单调递减,根据零点的概念建立不等式,解之即可求解.【小问1详解】因为()1ln1kxf x x -=-是奇函数,所以()()f x f x -=-, 即11ln ln ln 1111kx kx x x kx x --+=-=----, 所以1111kx x kxx +=----,故22211k x x -=-,则1k =±,当1k =时,111xx -=--显然不成立;经验证:1k =-符合题意;所以1k =-;【小问2详解】由1()ln21x x g x m x +=-+-,22()2ln 21x g x x ¢=---, 当[2,3]x Î时,()0g x ¢<,故()g x 在[2,3]上单调递减.的的故()[ln 28,ln 34]g x m m Î-+-+.因为()g x 在区间[]2,3上没有零点,所以ln 280m -+>或ln 340m -+<,解得4ln 3m <-或8ln 2m >-,即(,4ln 3)(8ln 2,)m Î-¥--+¥U .16. 已知三棱锥D ABC -,D 在平面ABC 上的射影为ABC V 的重心O ,15AC AB ==,24BC =.(1)证明:BC AD ^;(2)E 为AD 上靠近A 的三等分点,若三棱锥D ABC -的体积为432,求二面角E CO B --的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得AM BC ^、OD ^平面ABC ,根据线面垂直的性质可得OD BC ^,结合线面垂直的判定定理和性质即可证明;(2)建立如图空间直角坐标系,利用三棱锥的体积公式求得12OD =,由空间向量的线性运算求得()4,0,4OE =uuu r,结合空间向量法求解面面角即可.【小问1详解】如图所示,连结AO 并延长交BC 于M ,因为O 为△ABC 的重心,所以M 是BC 的中点,又因为AC AB =,所以由等腰三角形三线合一可得AM BC ^, 因为D 在平面ABC 上的射影为O ,所以OD ^平面ABC , 又ÌBC 平面ABC ,所以OD BC ^,又,,AM OD O AM OD =ÌI 平面AMD ,所以^BC 平面AMD , 又AD Ì平面AMD ,所以BC AD ^,【小问2详解】由(1)知AM BC ^,OD ^面ABC ,过M 作z 轴平行于OD ,则z 轴垂直于面ABC ,如图,以,MA MB 为x 轴,y 轴,建立空间直角坐标系,在ABC V 中,15AC AB ==,24BC =由(1)知,AM BC ^,故9AM ==,得11082ABC S AM BC =×=V , 所以三棱锥A-BCD 的体积为 1110843233ABC S OD OD ×=´´=V ,则12OD =因为O 为△ABC 的重心,故133OM AM ==,则()()()()()0,12,0,0,12,0,3,0,0,9,0,0,3,0,12C B O A D -,()()()6,0,0,6,0,12,3,12,0OA AD OC ==-=--uuu r uuu r uuu r因为E 为AD 上靠近A 的三等分点,所以()12,0,43AE AD ==-uuu r uuu r,故()14,0,43OE OA AD =+=uuu r uuu r uuu r设(),,n x y z =r 为平面ECO 的一个法向量,则4403120n OE x z n OC x y ì×=+=ïí×=--=ïîuuu r r uuu rr ,取4x =,则1,4y z =-=-,故()4,1,4n =--r,易得()0,0,1m =r是平面COB 的一个法向量, 设二面角E CO B --的平面角为q ,则q 为钝角,所以cos cos ,m n m n m n q ×=-=-==r r r rr r 所以二面角E CO B --的余弦值为 【点睛】17. 某小区有3000名居民,想通过验血的方法筛选乙肝病毒携带者,假设携带病毒的人占%a .为减轻工作量,随机地按n 人一组分组,然后将各组n 个人的血样混合在一起化验.若混合血样呈阴性,说明这n 个人全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.(1)若0.2,20,a n ==试估算该小区化验的总次数;(2)若0.9a =,且每人单独化验一次花费10元,n 人混合化验一次花费9n +元,求当n为何值时,每个居民化验的平均费用最少.注:假设每位居民的化验结果呈阴性还是阳性相互独立.当00.01p <<时,(1)1n p np -»-.【答案】(1)270 (2)10【解析】【分析】(1)设每组居民需化验的次数为X ,确定其取值,分别求概率,进而可得期望,即得;(2)设每组n 人总费用为Y 元,结合条件计算,然后表示出结合基本不等式即得.【小问1详解】设每组需要检验的次数为X ,若混合血样为阴性,则1X =,若混合血样呈阳性,则21X =, 所以20(1)(10.002)P X ==-,20(21)1(10.002)P X ==--, 所以202020()1(10.002)21[1(10.002)]2120(10.002)E X =´-+´--=-´-2120(1200.002) 1.8»-´-´=一共有300020150¸=组,故估计该小区化验的总次数是1.8150270´=.【小问2详解】设每组n 人总费用为Y 元,若混合血样呈阴性,则9Y n =+;若混合血样呈阳性,则119Y n =+,故(9)(10.009)n P Y n =+=-,(119)1(10.009)n P Y n =+=--()(9)0.991(119)(10.991)11100.9919n n n E Y n n n n =+×++×-=-´+每位居民的化验费用为()11100.99199911100.9911110(10.009)n n E Y n n n n n n n-´+==-´+»-´-+=911100.091 2.8n n -++³+=元 当且仅当90.09n n=,即10n =时取等号,故10n =时,每个居民化验的平均费用最少.18. 在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+uuu r uuu r uuu r,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22144x y -=(2)不存在直线l 符合题意,理由见解析【解析】【分析】(1)设(),P x y ,则由OP mOA nOB =+uuu r uuu r uuu r,可得x m n =+,y m n =-,再结合1mn =,消去,m n ,即可得曲线C 的标准方程,(2)判断直线l 的斜率存在,设l :()22y k x =-+,设()11,M x y ,()22,N x y ,将直线方程代入曲线C 的方程,化简后利用根与系数的关系,结合中点坐标公式表示出MN 的中点H 的坐标,利用弦长公式表示出MN ,表示出线段MN 的中垂线方程,求出其与与x 轴的交点坐标为4,01k Q k æöç÷+èø,而AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,从而由2222224MNQA QM QH HM QH ==+=+列方程求解即可.【小问1详解】设(),P x y ,则(),OP x y =uuu r,()1,1OA =uuu r ,()1,1OB =-uuu r ,因为OP mOA nOB =+uuu r uuu r uuu r,所以()()()(),1,11,1,x y m n m n m n =+-=+-,所以x m n =+,y m n =-,所以2x y m +=,2x yn -=,又122x y x y mn +-=×=,整理得22144x y -=,即曲线C 的标准方程为22144x y -=;【小问2详解】易知当l 的斜率不存在时,直线l 与曲线C 没有两个交点,所以直线l 的斜率存在,设l :()22y k x =-+,将直线l 与曲线C 联立,得22(2)2144y k x x y =-+ìïí-=ïî,消去y ,整理得()22212(22)4880kxk k x k k ----+-=,因为()()22224(22)4148832(1)0k k kkk k D =----+-=->且210k -¹,所以1k <且1k ¹-,设()11,M x y ,()22,N x y ,则1241k x x k +=+,21224881k k x x k -+=-,所以MN 的中点22,11kH k k æöç÷++èø,且1x M N =-=,将1241k x x k +=+,21224881k k x x k -+=-代入上式,整理得4MN =当0k ¹时,线段MN 的中垂线方程为1l :12214111k y x x k k k k k æö=--+=-+ç÷+++èø,令y =0,解得41k x k =+,即1l 与x 轴的交点坐标为4,01k Q k æöç÷+èø,当k =0时,线段MN 的中垂线为y 轴,与x 轴交于原点,符合Q 点坐标,因为AB 的中垂线为x 轴,所以若A ,B ,M ,N 共圆,则圆心为4,01k Q k æöç÷+èø,所以2222224MNQA QM QH HM QH ==+=+,所以()2222281442211111(1)(1)k k k k k k k k k +-æöæöæö-+=++ç÷ç÷ç÷++++-èøèøèø,整理得32622100k k k -++=,即()22(1)3450k k k +-+=,因为1k <且1k ¹-,所以上述方程无解,即不存在直线l 符合题意.19. 在高等数学中,我们将()y f x =在0x x =处可以用一个多项式函数近似表示,具体形式为:()()()()()()()()()200000002!!n nf x f x f x f x f x x x x x x x n ¢¢=+¢-+-+×××+-+×××(其中()()n f x 表示()f x 的n 次导数*3,N n n ³Î),以上公式我们称为函数()f x 在0x x =处的泰勒展开式.当00x =时泰勒展开式也称为麦克劳林公式.比如e x 在0x =处的麦克劳林公式为:22111e 12!3!x n x x x x n =++++++L L !,由此当0x ³时,可以非常容易得到不等式223111e 1,e 1,e 1,226x x x x x x x x x ³+³++³+++L 请利用上述公式和所学知识完成下列问题:(1)写出sin x 在0x =处的泰勒展开式.(2)若30,2x æö"Îç÷èø,sin e 1a xx >+恒成立,求a 的范围;(参考数据5ln 0.92»)(3)估计5ln3的近似值(精确到0.001)【答案】(1)1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ; (2)1a ³; (3)0.511【解析】【分析】(1)求导,根据题意写出sin x 在0x =处的泰勒展开式;(2)结合sin x 在0x =处的泰勒展开式,构造函数证明3310,,sin 26x x x x æö"Î>-ç÷èø,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,求导得到函数单调性,证明出30,,()02x g x æö"Î>ç÷èø,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,满足要求,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不合要求,从而得到答案;(3)求出ln(1)x +和ln(1)x -的泰勒展开式,得到35122ln 2135x x xx x +=+++-L ,令14x =,估计5ln3的近似值.【小问1详解】()sin cos x x ¢=,()cos sin x x ¢=-,()sin cos x x ¢-=-,()cos sin x x ¢-=,其中cos 01,sin 00==,sin x 在0x =处的泰勒展开式为:1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,【小问2详解】因为1352111(1)sin 3!5!(21)!n n x x x x x n --+-=-+++-L L ,由sin x 在0x =处的泰勒展开式,先证3310,,sin 26x x x x æö"Î>-ç÷èø,令3211()sin ,()cos 1,()sin 62f x x x x f x x x f x x x =-+¢=-+¢¢=-,()1cos f x x ¢¢¢=-,易知()0f x ¢¢¢>,所以()f x ¢¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢¢>¢¢=,所以()f x ¢在30,2æöç÷èø上单调递增,所以()(0)0f x f ¢>¢=,所以()f x 在30,2æöç÷èø上单调递增,所以()(0)0f x f >=,再令31()ln(1)6g x x x x =--+,30,2x æöÎç÷èø,易得1(1)(2)2()1x x x g x x --+¢=+,所以()g x 在(0,1)上单调递增,在31,2æöç÷èø上单调递减,而3155(0)0,ln 02162g g æö==->ç÷èø,所以30,,()02x g x æö"Î>ç÷èø恒成立,当1a ³时,31sin sin ln(1)6a x x x x x ³>->+ ,所以sin e 1a x x >+成立,当1a <时,令()sin ln(1)h x a x x =-+,30,2x æöÎç÷èø,易求得(0)10h a ¢=-<,所以必存在一个区间(0,)m ,使得()h x 在(0,)m 上单调递减, 所以(0,)x m Î时,()(0)0h x h <=,不符合题意. 综上所述,1a ³.【小问3详解】因为1154ln ln,1314+=-转化研究1ln 1x x +-的结构,23456ln(1)23456x x x x x x x +=-+-+-+L ,23456ln(1)23456x x x x x x x -=-------L ,两式相减得35122ln 2135x x x x x +=+++-L ,取1,4x =得35512121ln 2((0.5108343454=´+´+´+»L ,所以估计5ln 3的近似值为0.511(精确到0.001).【点睛】麦克劳林展开式常常用于放缩法进行比较大小,常用的麦克劳林展开式如下:()21e 12!!n x n x x x o x n +=+++++L ,()()()352122sin 13!5!21!n n n x x x x x o x n ++=-+-+-++L ,()()()24622cos 112!4!6!2!nn n x x x xx o x n =-+-++-+L ,()()()2311ln 11231n n n x x xx x o x n +++=-+-+-++L ,()2111n n x x x o x x =+++++-L ,()()()221112!nn n x nx x o x -+=+++。
河南省部分名校2024-2025学年高三上学期10月月考数学试卷
河南省部分名校2024-2025学年高三上学期10月月考数学试卷一、单选题1.已知命题():,ln 210xp x ∀∈+>R ,命题:1q x ∃>,sin20253x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.已知全集U =R ,集合{}50,2x A x B x x x ⎧⎫-=<=>⎨⎬⎩⎭,则图中阴影部分表示的集合为( )A .{}25x x <<B .{}25x x ≤<C .{}02x x <<D .{}02x x <≤3.已知点(),27a 在幂函数()()()2,mf x a x a m =-∈R 的图象上,则a m +=( )A .4B .5C .6D .74.已知1012y x <<<<,则下列结论一定正确的是( ) A .122x y <+< B .11y yx x+>+C >D .104xy <<5.已知函数()3124e ,1,32,1x x x f x x ax a x -⎧+<=⎨++≥⎩在R 上单调递增,则实数a 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .4,5⎡⎫+∞⎪⎢⎣⎭C .24,35⎡⎤-⎢⎥⎣⎦D .24,35⎡⎫-⎪⎢⎣⎭6.对数螺线在自然界中广泛存在,比如鹦鹉螺的外壳就是精度很高的对数螺线,向日葵种子的排列方式、松子在松果上的排列方式都和对数螺线高度吻合.已知某种对数螺线的解析式可以用2πe x xρα=表示,其中[)0,0,x α>∈+∞,则( )A .0.055πln1.5e sin 24ρρρ>>B .0.05ln1.55πe sin 24ρρρ>>C .0.055πln1.5e sin 24ρρρ>>D .0.05ln1.55πe sin 24ρρρ>>7.“102a ≤<”是“函数()()23log f x ax x a =++的值域为R ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件8.已知函数()f x 及其导函数f ′ x 的定义域均为R ,若()()()2,f x f x x f x =-+的图象关于直线1x =对称,且()20f =,则201(20)()i f f i ='-=∑( )A .10B .20C .10-D .20-二、多选题9.已知集合{}22350A x x x =∈--<N ,则下列说法正确的是( )A .0A ∈B .1A -∉C .集合A 有15个真子集D .{}0,1,2A ⊆10.已知函数()11ln f x x=+,则下列说法正确的是( ) A .()f x 的图象无对称中心 B .()12f x f x ⎛⎫+= ⎪⎝⎭C .()f x 的图象与()()11ln g x x =---的图象关于原点对称D .()f x 的图象与()1e x h x -=的图象关于直线y x =对称11.记函数()1e xf x x=-的零点为0x ,则下列说法正确的是( )A .00ln 0x x -=B .013,24x ⎛⎫∈ ⎪⎝⎭C .当32x >时,()1f x x >+ D .0x 为函数()1e ln 1xx x g x x +=+的极值点三、填空题 12.函数()()3log 32x f x x +=+的定义域为.13.已知0a b >>,则222a b ab b +-的最小值为.14.若函数()sin f x x ax =+的图象上存在,A B 两点使得()f x 在A 处的切线与在B 处的切线的夹角为π4,则实数a 的取值范围是.四、解答题15.根据指数函数的相关性质解决下面两个问题: (1)已知2332abab⋅>⋅,证明:1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(2)若关于x 的方程24x x t +=有两个不相等的实数根,求实数t 的取值范围. 16.已知正数,a b 满足2(3)102a b ab +-=. (1)求3a b +的取值范围; (2)证明:2296a b +≥.17.已知函数()e sin 1xf x x =--.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)当π,4x ⎡⎫∈-+∞⎪⎢⎣⎭时,比较()f x 与0的大小关系,并说明理由.18.一天中,区域的居民活动类型(工作、学习和休闲)越丰富,活动地点总数越多,区域之间人口流动越频繁,其活力越高.Q 市基于大数据测算城市活力,发现该市一工作日中活力度()M t 与一日中时间t 的关系可以用函数()()()()126,06,56,612,12e ,1224n t M t M t mt m t M t --⎧<<⎪=+-≤≤⎨⎪⋅<≤⎩来刻画,其中(]()()0,24,624t M M ∈=,正午12点时,该市的活力度为20,是该工作日内活力度的最高值.(1)求实数,m n 的值;(2)求Q 市该工作日内活力度不大于10的时长;(3)证明:Q 市该工作日内活力度升高时所对应瞬时变化率的绝对值恒大于活力度降低时所对应瞬时变化率的绝对值(附:ln20.69≈).19.有一种美,叫做对称美,数学中的“对称”体现了数学美,对称性是数学美的最重要的特征.若函数()f x 的图象在其定义域内连续,0x 在()f x 的定义域内且函数()f x 的图象上存在关于直线0x x =对称的两点,则称直线0x x =为函数()f x 图象的一条“准对称轴”.(1)已知二次函数()()20,,f x ax bx c a b c =++≠∈R ,直线0x x =为函数()f x 图象的“准对称轴”,请直接写出0x 的取值;(2)已知三次函数()3(0)g x x mx m =->,证明:当且仅当0x <0x x =为函数()g x 图象的一条“准对称轴”;(3)已知x '为函数()e 2xh x x =-的极值点,判断直线x x '=是否是函数()h x 图象的一条“准对称轴”,并说明理由.。
北京市中学2024-2025学年高三上学期10月月考数学试卷含答案
北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。
四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)
2024-2025学年度高三上期数学10月阶段性测试(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合,则( )A .B .C .D .2.已知复数满足,则( )A .B .C .D .3.已知向量满足,且,则( )A .B .C .D .4.如图为函数在上的图象,则的解析式只可能是( )A .B .C .D .5.已知为奇函数,则曲线在点处的切线方程为( )A .B .C .D .6.在体积为12的三棱锥中,,平面平面,若点都在球的表面上,则球的表面积为( )A .B .C .D .7.若,则的最大值为( )ABCD8.设,则( ){{},21x A x y B y y ====+A B = (]0,1(]1,2[]1,2[]0,2z 23i z z +=+3iz+=12i+12i-2i+2i-,a b 222a b a b -=-= 1b = a b ⋅=1414-1212-()y f x =[]6,6-()f x ())ln cos f x x x=+())lnsin f x x x=+())ln cos f x x x=-())ln sin f x x x=-()()cos f x x a x =+()y f x =()()π,πf ππ0x y +-=ππ0x y -+=π0x y -+=0x y +=A BCD -,AC AD BC BD ⊥⊥ACD ⊥ππ,,34BCD ACD BCD ∠=∠=,,,A B C D O O 12π16π32π48π()()sin cos2sin αβααβ+=-()tan αβ+202420230.2024log 2023,log 2022,log 0.2023a b c ===A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列的公比为,其前项和为,前项积为,并满足条件:,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.透明的盒子中装有大小和质地都相同的编号分别为的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则( )A .事件与事件是互斥事件B .事件与事件是对立事件C .事件与事件是相互独立事件D .事件与事件是互斥事件11.已知,其中,则的取值可以是( )A .eB .C .D .第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若,则______.13.设是数列的前n 项和,点在直线上,则数列的前项和为______.14.已知点是轴上的动点,且满足的外心在轴上的射影为,则点的轨迹方程为______,的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设的内角的对边分别为,且,边上的两条中线相交于点.c a b <<b c a <<b a c <<a b c<<{}n a q n n S n n T 2024120242025202511,1,01a a a a a ->><-20242025S S <202420261a a <2024T {}n T {}n T 1,2,3,41A =2A =3A =1A 2A 1A 3A 1A 3A 23A A 13A A 6ln ,6e n m m a n a =+=+e nm ≠e nm +2e23e24e1sin 3α=-()cos π2α-=n S {}n a ()()*,n n a n ∈N 2y x =1n S ⎧⎫⎨⎬⎩⎭n ()()2,0,1,4,A B M N 、y 4,MN AMN =△P y Q P PQ PB +ABC △,,A B C ,,a b c ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC AC ,AD BE P(1)求;(2)若,求的面积.16.(15分)如图,在三棱锥中,是以为斜边的等腰直角三角形,是边长为2的正三角形,为的中点,为上一点,且平面平面.(1)求证:平面;(2)若平面平面,求平面与平面夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:每天看电子产品的时间近视情况超过一小时一小时内合计近视10人5人15人不近视10人25人35人合计20人30人50人附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828.(1)根据小概率值的独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为,每天看电子产品超过一小时的人数为,求的值.BAC ∠2,cos AD BE DPE ==∠=ABC △D ABC -ABC △AB ABD △E AD F DC BEF ⊥ABD AD ⊥BEF ABC ⊥ABD BEF BCD αx α()()()()22()n ad bc a b c d a c b d χ-=++++0.05α=2χX Y ()P X Y =18.(17分)已知函数.(1)求曲线在处的切线方程;(2)讨论函数的单调性;(3)设函数.证明:存在实数,使得曲线关于直线对称.19.(17分)已知椭圆的对称中心在坐标原点,以坐标轴为对称轴,且经过点和.(1)求椭圆的标准方程;(2)过点作不与坐标轴平行的直线交曲线于两点,过点分别向轴作垂线,垂足分别为点,,直线与直线相交于点.①求证:点在定直线上;②求面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知,,所以;当时,,所以,取,则,所以,即,综上,.二、多项选择题:ABC ACD CD .11.【解】令,则,()()ln 1f x x =+()y f x =3x =()()()F x ax f x a =-∈R ()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭m ()y g x =x m =C )⎛- ⎝C ()2,0M l C ,A B ,A B xDE AE BD P P PAB △0.20240.2024log 0.2023log 0.20241c =>=2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=1,01,01c a b ><<<<2n >()()ln 1ln ln 10n n n +>>->()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦2023n =2lg2022lg2024(lg2023)0⋅-<220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅b a <b ac <<()6ln f x x x =-()661xf x x x-=-='故当时,单调递增,当时,单调递减,,又,不妨设,解法一:记,设,则在上恒成立,所以在上单调递减,所以,则,又因为,且在上单调递减,所以,则,所以.解法二:由,两式相减,可得,令,则;令,则,令,则在上恒成立,所以在上单调递增,因为在上恒成立,所以在上单调递增,则,即,所以.解法三:,两式相减得,,可得,三、填空题: ;3()0,6x ∈()()0,f x f x '>()6,x ∈+∞()()0,f x f x '<()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= e n m ≠06e n m <<<12,e nx m x ==()()()()12,0,6g x f x f x x =--∈()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''()0,6()g x ()0,6()()()()()1260,0,6g x f x f x g x =-->=∈()()()11212f x f x f x ->=()1212,6,x x -∈+∞()f x ()6,+∞1212x x -<1212x x +>e 12n m +>6ln ,66lne e nnm m a n a =+==+e 6ln e n nm m =-e (1)n t t m=>()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---()()()1ln 21,1g t t t t t =+-->()11ln 2ln 1t g t t t t t+=+-=+-'1ln 1(1)y t t t =+->221110t y t t t-=-=>'()1,+∞()g t '()1,+∞()()10g t g ''>=()1,+∞()g t ()1,+∞()()10g t g >=()1ln 21t t t +>-()61ln e 121n t tm t ++=>-6ln ,66lne e nnm m a n a =+==+ e 6lne ln n n mm-=-212121ln ln 2x x x xx x -+<<-e 12n m +>79-1n n +24y x =14.【解】设点,则根据点是的外心,,而,则,所以从而得到点的轨迹为,焦点为由抛物线的定义可知,因为,即,当点在线段上时等号成立.四、解答题:15.【解】(1)因为,所以由正弦定理得,由余弦定理得,又,所以.(2)因为是边上的两条中线与的交点,所以点是的重心.又,所以在中,由余弦定理,所以,又,所以,所以,所以的面积为.()0,M t ()0,4)N t -P AMN V (),2P x t -22||PM PA =2224(2)(2)x x t +=-+-2(2),24t x y t -==-P 24y x =()1,0F 1PF PQ =+4,14PF PB BF PF PB PQ PB +≥=+=++≥3PQ PB +≥P BF ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-222b c a bc +-=2221cos 22b c a BAC bc +-∠==0πBAC <∠<π3BAC ∠=P ,BC AC AD BE P ABC △2,AD BE APB DPE ==∠=∠ABP △22222cos c AB PA PB PA PB APB==+-⋅∠22442433⎛⎫=+-⨯= ⎪⎝⎭2c =π2,3BE BAC =∠=2AE BE ==24b AE ==ABC △1π42sin 23⨯⨯⨯=16.【解】(1)是边长为的正三角形,为的中点,则.且平面平面,平面平面平面,则平面.(2)由于底面为等腰直角三角形,是边长为2正三角形,可取中点,连接,则.且平面平面,且平面平面,则平面.因此两两垂直,可以建立空间直角坐标系.是边长为2的正三角形,则可求得高.底面为等腰直角三角形,求得.可以得到关键点的坐标由第(1)问知道平面的法向量可取.设平面的法向量为,且,则,则,解得.则.则平面与平面17.【解】(1)零假设为:学生患近视与长时间使用电子产品无关.计算可得,,根据小概率值的独立性检验,推断不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为,ABD △2E AD BE AD ⊥BEF ⊥ABD BEF ,ABD BE AD =⊂ABD AD ⊥BEF ABC △ABD △AB O OD ,OD AB OC AB ⊥⊥ABC ⊥ABD ABC ABD AB =OD ⊥ABC ,,OC OA OD O xyz -ABD △OD =ABC △1OC OA OB ===()()()(0,1,0,0,1,0,1,0,0,A B C D -BEF (0,AD =-BCD (),,m x y z = ()(1,1,0,BC CD ==- 0m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩x y x +=⎧⎪⎨-+=⎪⎩)m = cos ,m AD m AD m AD ⋅〈〉===⋅ BEF BCD 0H 220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯0.05α=2χ0H ξ则,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是.(3)依题意,,事件包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是,所以.18.【解】(1)切点为.因为,所以切线的斜率为,所以曲线在处的切线方程为,化简得;(2)由题意可知,则的定义域为,当时,,则在上单调递减;当时,令,即,解得,若;若,则在上单调递减,在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增;()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==6991()()1111110,22245525P X Y P X Y ===⨯====⨯=1X Y ==()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=()3,ln4()11f x x '=+()134k f ='=()y f x =3x =()1ln434y x -=-48ln230x y -+-=()()ln 1F x ax x =-+()F x ()1,-+∞()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++0a ≤()101F x a x '=-<+()F x ()1,-+∞0a >()0F x '=10ax a +-=11x a=-()11111,01a ax a x F x a a x '-+--<≤=-=≤+()111,01ax a x F x a x +--'>=>+()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭0a ≤()F x ()1,-+∞0a >()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭(3)证明:函数,函数的定义域为.若存在,使得曲线关于直线对称,则关于直线对称,所以由.可知曲线关于直线对称.19.【解】(1)设椭圆的方程为,代入已知点的坐标,得:,解得,所以椭圆的标准方程为.(2)如图:①设直线的方程为,并记点,由消去,得,易知,则.由条件,,直线的方程为,直线的方程为()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭()g x ()(),10,-∞-+∞ m ()y g x =x m =()(),10,-∞-+∞ x m =12m =-()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211lnln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+()y g x =12x =-C 221(0,0,)mx ny m n m n +=>>≠312413m n m n +=⎧⎪⎨+=⎪⎩1612m n ⎧=⎪⎪⎨⎪=⎪⎩C 22162x y +=l ()20x my m =+≠()()()112200,,,,,A x y B x y P x y 222,162x my x y =+⎧⎪⎨+=⎪⎩x ()223420m y my ++-=()()222Δ16832410m m m =++=+>12122242,33m y y y y m m --+==++()()12,0,,0D x E x AE ()1212y y x x x x =--BD,联立解得,所以点在定直线上.②,而,所以,则令,则,所以,当且仅当时,等号成立,所以.()2121y y x x x x =--()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++P 3x =0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△121212my y y y =+()121212my y y y =+1211211224PABy y S y y y +=-=-==△t =1t >2122PAB t S t t t==≤=++△t =PAB △。
山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题
山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题一、单选题1.设集合{}{}21,3,2,1,M a N a =+=,若{}1,4M N =I ,则a =( ) A .2- B .0 C .2 D .2±2.已知复数z 满足23i z z +=+,则3i z +=( ) A .12i + B .12i - C .2i + D .2i -3.在平行四边形ABCD 中,AB a AD b ==u u u r r u u u r r ,,点E 为CD 中点,点F 满足2AF FB=u u u r u u u r ,则EF =u u u r ( )A .16a b -r rB .1233a b +r rC .1233a b --r rD .1233a b -+r r 4.已知0,0a b >>,则“2a b +>”是“222a b +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC V 中,内角,,A B C 的对边分别为,,a b c,已知a ()(()sin sin sin sin A B b c B C -=+,则ABC V 外接圆的半径为( ) A .1 BC .2 D6.某农业研究所对玉米幼穗的叶龄指数R 与可见叶片数x 进行分析研究,其关系可以用函数15e ax R =(a 为常数)表示.若玉米幼穗在伸长期可见叶片为7片,叶龄指数为30,则当玉米幼穗在四分体形成期叶龄指数为82.5时,可见叶片数约为( )(参考数据:ln20.7≈,ln5.5 1.7≈)A .15B .16C .17D .187.函数3214,0,()3cos ,0,x ax a x f x ax x x ⎧+-+>⎪=⎨⎪+≤⎩在R 上单调,则a 的取值范围是( )A .[1,3)B .(1,3]C .[]1,3D .(1,3)8.已知函数()()sin f x x ωθ=+π20,||ωθ⎛⎫< ⎪>⎝⎭,(0)f =,函数()f x 在区间2π,36π⎛⎫- ⎪⎝⎭上单调递增,在区间5π0,6⎛⎫ ⎪⎝⎭上恰有1个零点,则ω的取值范围是( ) A .4,25⎛⎤ ⎥⎝⎦B .45,54⎛⎤ ⎥⎝⎦C .4,15⎛⎤ ⎥⎝⎦D .5,24⎛⎤ ⎥⎝⎦二、多选题9.下列选项正确的是( )A .命题“0x ∃>,210x x ++≥”的否定是0x ∀≤,210x x ++<B .满足{}{}11,2,3M ⊆⊆的集合M 的个数为4C .已知lg3x =,lg5y =,则lg 452x y =+D .已知正方形OABC 的边长为1,则()()5OA OB CA CB +⋅+=u u u r u u u r u u u r u u u r 10.已知函数π()sin 33f x x ⎛⎫=+ ⎪⎝⎭,下列说法正确的是( ) A .()f x 的最小正周期为2π3B .点π,06⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心C .若()(R)f x a a =∈在ππ,189x ⎡⎤∈-⎢⎥⎣⎦1a ≤<D .若()f x 的导函数为()f x ',则函数()()y f x f x =+'11.已知函数()e ,R x f x ax x =+∈,则( )A .当0a >时,函数()f x 在R 上一定单调递增B .当3a =-时,函数()f x 有两个零点C .当0a <时,方程()1f x a=一定有解 D .当0a =时,()ln 2f x x ->在()0,∞+上恒成立三、填空题12.已知函数()()121x f x a a =-∈-R 为奇函数,则实数a 的值为. 13.已知π02βα<<<,()4cos 5αβ-=,1cos cos 2αβ=,则11tan tan αβ-=.14.已知函数()3,01,ln ,1,x x f x x x ≤≤⎧=⎨>⎩若存在实数12,x x 满足120x x ≤<,且()()12f x f x =,则216x x -的取值范围为.四、解答题15.如图,在四边形ABCD 中,2AB =,AC =AD =2π3CAD CBA ∠∠==.(1)求cos BCA ∠;(2)求BD .16.已知函数32()31f x x x ax =-+-.(1)若()f x 的图缘在点00(,())x f x 处的切线经过点(0,0),求0x ;(2)12,x x 为()f x 的极值点,若()()122f x f x +>-,求实数a 的取值范围.17.已知函数2()2sin cos f x x x x =+R x ∈,且将函数()f x 的图象向左平移π(0)2ϕϕ<<个单位长度得到函数()g x 的图象.(1)求()f x 的最小正周期和单调递增区间;(2)若函数()g x 是奇函数,求ϕ的值;(3)若1cos 3ϕ=,当x θ=时函数()g x 取得最大值,求π12f θ⎛⎫+ ⎪⎝⎭的值. 18.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+. (1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC V 的周长;(3)当ABC V 内切圆半径为1时,求ABC V 面积的最小值. 19.已知函数()e ,()ln (,)x f x a g x x b a b ==+∈R .(1)当1b =时,()()f x g x ≥恒成立,求实数a 的取值范围;(2)已知直线12l l 、是曲线()y g x =的两条切线,且直线12 l l 、的斜率之积为1.(i )记0x 为直线12 l l 、交点的横坐标,求证:01x <; (ii )若12 l l 、也与曲线()y f x =相切,求,a b 的关系式并求出b 的取值范围.。
上海市七宝中学2024-2025学年高三上学期10月月考数学试题
上海市七宝中学2024-2025学年高三上学期10月月考数学试题一、填空题1.已知{|31},{1,0,1}A x x B =->=-,则A B =I .2.已知1sin 5α=,则3πcos 2α⎛⎫+= ⎪⎝⎭. 3.已知幂函数()()257m f x m m x =-+的图象关于y 轴对称,则实数m 的值是.4.记n S 为等差数列{}n a 的前n 项和,若25348,211a a a a +=+=,则9S =.5.不等式304x x -≤+的解集是. 6.已知i 为虚数单位,3i +是实系数一元二次方程20x px q ++=的一个虚根,则p q +=.7.已知随机变量X 的分布列为:011123x p ⎛⎫ ⎪ ⎪ ⎪⎝⎭,若()23E X =,且32Y X =-,则()D Y =. 8.设函数()22x x f x -=-,则使得2()(23)0f x f x +-<成立的x 的解集..是. 9.已知函数πsin(2)6y x m =--在π[0,]2上有两个零点,则m 的取值范围为. 10.已知集合{}2017,Z M x x x =≤∈,集合P 是集合M 的三元子集,叫{,,}P a b c M =⊆,P中的元素a ,b ,c 满足1122a b c a c b⎧+=⎪⎨⎪+=⎩,则符合要求的集合P 有个数是.11.如图,某城市公园内有一矩形空地ABCD ,300m AB =,180m =AD ,现规划在边AB ,CD ,DA 上分别取点E ,F ,G ,且满足AE EF =,FG GA =,在EAG △内建造喷泉瀑布,在EFG V 内种植花奔,其余区域铺设草坪,并修建栈道EG 作为观光路线(不考虑宽度),则当sin ∠=AEG 时,栈道EG 最短.12.对于一个有穷正整数数列Q ,设其各项为1a ,2a ,...,m a ,各项和为()S Q ,集合(){,|,1}j i i j a a i j m >≤<≤中元素的个数为()T Q ,对所有满足()100S Q =的数列Q,则()T Q 的最大值为.二、单选题13.已知集合{}1,1,2,3A =-,集合{}2|,B y y x x A ==∈,则集合B 的子集个数为( )A .7B .8C .16D .3214.记ABC V 的三个内角,,A B C 的对边分别为,,a b c ,若135,,32A B B C A C c a b μμ⎡⎤+=∈⎢⎥⎣⎦u u u r u u u r u u u r ,则c o s B 的取值范围为( )A .1,12⎡⎤⎢⎥⎣⎦B .15,68⎡⎤⎢⎥⎣⎦C .15,28⎡⎤⎢⎥⎣⎦D .1,16⎡⎤⎢⎥⎣⎦15.已知α,β均为锐角,()sin 2sin cos αβαβ=+,则tan α取得最大值时,()tan αβ+的值为( )ABC .2D .116.已知函数()f x 的定义域为R ,定义集合()()(){}000|,,M x x x f x f x =∈∈-∞>R ,在使得[]1,1M =-的所有()f x 中,下列成立的是( )A .存在()f x ,使得()f x 是偶函数B .存在()f x ,使得()f x 在R 上单调递减C .存在()f x ,使得()f x 在1x =-处取极大值D .存在()f x ,使得()f x 的最小值是()2f三、解答题17.如图,已知四棱锥P ABCD -的底面ABCD 是边长为6的正方形,侧面PCD ⊥底面,5ABCD PC PD ==,点,E G 分别是,DC DP 的中点,点F 在棱AB 上且3AF FB =.(1)求证:FG ∥平面BPE ;(2)求直线FG 与平面PBC 所成的角的正弦值.18.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,已知2cos sin a c b C C +=.(1)求角B ;(2)若3b =,求ABC V 周长的最大值.19.在经济学中,函数()f x 的边际函数()(1)()Mf x f x f x =+-,某公司每月最多生产10台光刻机的某种设备,生产x 台(*1,N x x ≥∈)这种设备的收入函数为()221640R x x x =++(单位千万元),其成本函数为()4010C x x x=+(单位千万元).(以下问题请注意定义域) (1)求收入函数()R x 的最小值;(2)求成本函数()C x 的边际函数()MC x 的最大值;(3)求生产x 台光刻机的这种设备的的利润()z x 的最小值. 20.已知双曲线2222:1x y C a b-=(0a >,0b >)的一条渐近线的倾斜角为π3,C 的右焦点F到该渐近线的距离为(1)求C 的方程;(2)若过F 的直线与C 的左、右支分别交于点A ,B ,与圆222:O x y a +=交于与A ,B 不重合的M ,N 两点.(ⅰ)求直线AB 斜率的取值范围;(ⅱ)求AB MN ⋅的取值范围.21.函数()f x 的定义域为R ,若()f x 满足对任意12,x x ∈R ,当12x x M -∈时,都有()()12f x f x M -∈,则称()f x 是M 连续的.(1)请写出一个函数()f x 是{}1连续的,并判断()f x 是否是{}n 连续的()*n ∈N ,说明理由;(2)证明:若()f x 是[]2,3连续的,则()f x 是{}2连续且是{}3连续的;(3)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,()3112f x ax bx =++,其中,a b ∈Z ,且()f x 是[]2,3连续的,求,a b 的值.。
河北省石家庄一中2024-2025学年高三上学期10月月考数学试题
河北省石家庄一中2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{0,2,5}M =,集合{}*N 05N x x =∈≤<∣,则M N =I ( ) A .{}0,2,5 B .{}0,2 C .{}2,5 D .{}22.若53i1iz +=+,则z =( ) A .4i + B .4i -C .11i 22+D .11i 22-3.已知21,e e u r u u r 是单位向量,1212e e ⋅=-u r u u r ,则122e e +u r u u r 与2e u u r 的夹角为( )A .π6B .π4C .π3D .2π34.艳阳高照的夏天,“小神童”是孩子们喜爱的冰淇淋之一.一个“小神童”近似为一个圆锥,若该圆锥的侧面展开的扇形面积是底面圆面积的2倍,圆锥的母线长为12cm ,则该圆锥的体积为( )A.3cm B .3124πcm C.3cm D .3168πcm5.已知数列{}{}n n a b ,均为等差数列,其前n 项和分别为n n S T ,,满足(23)(31)n n n S n T +=-,则789610a a a b b ++=+( )A .2B .3C .5D .66.已知双曲线C :22221()00a x y a bb >-=>,,圆221:(2)4O x y -+=与圆222:(1)1O x y +-=的公共弦所在的直线是C 的一条渐近线,则C 的离心率为( )AB .2C D7.已知函数()()sin f x x ωϕ=+()0ω>,若()0f =,π5π36f f⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则ω的最小值为( ) A .3B .1C .67D .238.已知函数1()ln f x x t x x ⎛⎫=-- ⎪⎝⎭有三个零点,则t 的取值范围是( )A .()1,0-B .10,4⎛⎫ ⎪⎝⎭C .()1,2D .10,2⎛⎫⎪⎝⎭二、多选题9.下列说法正确的是( )A .随机变量()~3,1X N ,且(24)0.6827P X ≤≤=,则(4)0.15865P x >=B .随机变量Y 服从两点分布,且1()3E Y =,则(3)2D Y =C .对a ,b 两个变量进行相关性检验,得到相关系数为0.8728-,对m ,n 两个变量进行相关性检验,得到相关系数为0.8278,则a 与b 负相关,m 与n 正相关,其中m 与n 的相关性更强D .在6(12)y +的展开式中,偶数项系数的二项式系数和为3210.已知定义在R 上的连续函数()f x 满足,x y ∀∈R ,()()()()f x y f x y f x f y ++-=,()10f =,当[)0,1x ∈时,()0f x >恒成立,则下列说法正确的是( )A .()01f =B .()f x 是偶函数C .13f ⎛⎫= ⎪⎝⎭D .()f x 的图象关于2x =对称11.已知在正方体1111ABCD A B C D -中,12AA =,点M 为11A D 的中点,点P 为正方形1111D C B A 内一点(包含边界),且//BP 平面1AB M ,球O 为正方体1111ABCD A B C D -的内切球,下列说法正确的是( )A.球O 的体积为4π3B .点P 的轨迹长度为C .异面直线1CC 与BP 所成角的余弦值取值范围为⎣⎦D .三棱锥11M AA B -外接球与球O 内切三、填空题12.如图,一只蚂蚁位于点M 处,去搬运位于N 处的糖块,M N →的最短路线有条.13.函数11()ln e e 432x x xf x x x--=+--+-,若实数m 满足()()322f m f m +-<-,则m 的取值范围为.14.已知抛物线2:4C y x =的焦点为F ,点M (异于原点O )在抛物线上,过M 作C 的切线l ,ON l ⊥,垂足为N ,直线MF 与直线ON 交于点A ,点(0,2)B ,则||AB 的最小值是.四、解答题15.在锐角ABC V 中,a ,b ,c 分别是角A ,B ,C 的对边,tan (2)tan c B a c C =-. (1)求B ;(2)若b =ABC V 的面积S 取值范围.16.如图,在三棱柱111ABC A B C -中,四边形11AA B B 是矩形,122BB BC AB ===,1160BCC AC ∠=︒,(1)求证:1B C ⊥平面1ABC ;(2)求平面1AB C 与平面11A BC 所成角的余弦值.17.已知焦距为2222:1(0)x y C a b a b+=>>的右焦点为F ,右顶点为A ,过F 作直线l 与椭圆C 交于B 、D 两点(异于点A ),当BD x ⊥轴时,||1BD =. (1)求椭圆C 的方程;(2)证明:BAD ∠是钝角.18.已知函数()e x f x x a =+的最小值是12e -,()e 1x g x =-.(1)求a 的值;(2)当(0,)x ∈+∞时,()()f x kg x >恒成立,求整数k 的最大值.19.若数集{}()1212,,0,,3n n A a a a a a a n =≤<<<≥L L 中任意两个元素i a 和)1(j a i j n ≤≤≤的和j i a a +或差j i a a -,至少有一个属于该数集,我们就将这种数集称为“T 数集”. (1)判断数集{}1,2,3,4,6M =是否为“T 数集”;(2)已知数集{}()1212,,0,,3n n A a a a a a a n =≤<<<≥L L 是“T 数集”,证明: ①10a =; ②122n n na a a a +++=L . (3)已知数集{}()1212,,0,,3n n A a a a a a a n =≤<<<≥L L 是“T 数集”,现给数集A 添加()*N ,2k k k ∈≥个元素:1n a +,L ,()1n k n k n n a a a a +++>>>L ,若数集A 仍是“T 数集”,证明:212211n k i i i a a a +-=+<⋅∑.。
2024-2025学年北京市海淀区高三上学期10月月考数学试题及答案
数学试题2024.10.06本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分)1. 设集合{}21,3M m m =--,若3M -∈,则实数m =( )A. 0B. 1- C. 0或1- D. 0或12. 记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A. 25n a n =- B. 310n a n =- C. 228n S n n=- D. 2122n S n n =-3. 已知 1.50.31.50.3,log 0.3, 1.5a b c ===,则( )A. a b c << B. b a c <<C. a c b<< D. b c a<<4. 设()()1i 21i z -=+,则z =( )A.B. 1C.D. 25. 下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是( )A. y =B. 21y x =C. lg y x =D. 332x xy --=6. 已知向量()3,4a = ,()1,0b = ,c a tb =+ ,若,,a c b c = 则实数t =( )A. 6- B. 5- C. 5D. 67. 函数()()()cos sin f x x a x b =+++,则( )A. 若0a b +=,则()f x 为奇函数 B. 若π2a b +=,则()f x 为偶函数C. 若π2b a -=,则()f x 偶函数 D. 若πa b -=,则()f x 为奇函数8. 已知函数()0x f x x <=≥⎪⎩,若对任意的1x ≤有()()20f x m f x ++>恒成立,则实数m 的取值为范围是( )A. (),1∞-- B. (],1-∞- C. (),2-∞- D. (],2-∞-9. 已知a 、b 、e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b满足2430b e b -⋅+=,则a b - 的最小值是A1-B.1+ C. 2D. 2-10.已知函数()f x k =+,若存在区间[,]a b ,使得函数()f x 在区间[,]a b 上的值域为[1,1]a b ++则实数k 的取值范围为( )A. (1,)-+∞ B. (1,0]- C. 1,4⎛⎫-+∞ ⎪⎝⎭D. 1,04⎛⎤- ⎥⎝⎦第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 已知角α的终边与单位圆交于点1,2⎛⎫⎪⎝⎭y P ,则πsin 2α⎛⎫+= ⎪⎝⎭__________.12. 记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.13. 若命题“对任意2R,20x ax x a ∈++≥为假命题的a 的取值范围是______14. 若函数()()cos sin 0f x A x x A =->最大值为2,则A =________,()f x 的一个对称中心为_______15. 对于函数()y f x =,若在其定义域内存在0x ,使得()001x f x =成立,则称函数()f x 具有性质P .(1)下列函数中具有性质P 的有___________.①()2f x x =-+②()[]()sin 0,2πf x x x =∈③()1f x x x=+,(x ∈(0,+∞))④()()ln 1f x x =+(2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是___________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC V中,sin A B =,b =.再从条件①,条件②、条件③这三个条件中选择一个作.的为已知,使ABC V 存在且唯一确定,并解决下面的问题:(1)求角B 的大小;(2)求ABC V 的面积.条件①:4c =;条件②:222b a c -=;条件③:cos sin a B b A =.17. 已知n S 是等差数列{a n }的前n 项和,51120S a ==,数列{b n }是公比大于1的等比数列,且236b b =,4212b b -=.(1)求数列{a n }和{b n }的通项公式;(2)设nn nS c b =,求使n c 取得最大值时n 的值.18. 已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.19. 1.已知函数()21exax x f x +-=,0a ≥.(1)讨论函数()f x 的单调性;(2)当0a >时,求证:函数()f x 在区间()0,1上有且仅有一个零点.20. 已知函数()e sin 2xf x x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在区间[1,1]-上的最大值;(3)设实数a 使得()e xf x x a +>对R x ∈恒成立,写出a 最大整数值,并说明理由.21. 已知数列{a n }记集合()(){}*1,,,1,,i i j T S i j S i j a a a i j i j +==+++≤<∈N (1)对于数列{a n }:1,2,3,列出集合T 的所有元素;(2)若2n a n =是否存在*,i j ∈N ,使得(),1024S i j =?若存在,求出一组符合条件,i j ;若不存在,说明理由;(3)若22n a n =-把集合T 中的元素从小到大排列,得到的新数列为12:,,,,.m B b b b 若的的b m ≤0202,求m 的最大值数学试题2024.10.06本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分)1. 设集合{}21,3M m m =--,若3M -∈,则实数m =( )A. 0B. 1- C. 0或1- D. 0或1【答案】C 【解析】【分析】根据元素与集合的关系,分别讨论213-=-m 和33m -=-两种情况,求解m 并检验集合的互异性,可得到答案.【详解】设集合{}21,3M m m =--,若3M -∈,3M -∈ ,213m ∴-=-或33m -=-,当213-=-m 时,1m =-,此时{}3,4M =--;当33m -=-时,0m =,此时{}3,1M =--;所以1m =-或0.故选:C2. 记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A. 25n a n =- B. 310n a n =- C. 228n S n n=- D. 2122n S n n =-【答案】A 【解析】【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.3. 已知 1.50.31.50.3,log 0.3, 1.5a b c ===,则( )A. a b c << B. b a c <<C. a c b << D. b c a<<【答案】B 【解析】【分析】根据指对数的性质,分别求三个数的范围,再比较大小.【详解】由条件可知,()1.50.30,1a =∈, 1.5log 0.30b =<,0.31.51>,所以b a c <<.故选:B4. 设()()1i 21i z -=+,则z =( )A.B. 1C.D. 2【答案】D 【解析】【分析】利用复数除法法则计算出()21i 2i 1iz +==-,求出模长.【详解】()()22221i 21i 12i i 2i 1i 1iz ++===++=--,故2z =.故选:D5. 下列函数中,既是偶函数又是区间(0,)+∞上的增函数的是( )A. y =B. 21y x =C lg y x= D. 332x xy --=【答案】C 【解析】【分析】根据幂函数和指对函数的奇偶性和单调性,逐一检验选项,得出答案.【详解】选项A,y =(0,)+∞上的增函数,错误;.选项B ,21y x =是偶函数,是区间(0,)+∞上的减函数,错误;选项C ,lg y x =是偶函数,是区间(0,)+∞上的增函数,正确;选项D ,332x xy --=是奇函数,是区间(0,)+∞上的增函数,错误;故选:C6. 已知向量()3,4a = ,()1,0b = ,c a tb =+ ,若,,a c b c = 则实数t =( )A. 6-B. 5- C. 5D. 6【答案】C 【解析】【分析】由向量坐标的运算求出向量c的坐标,再根据,,a c b c = ,利用向量夹角余弦公式列方程,求出实数t 的值.【详解】由()3,4a = ,()1,0b = ,则()3,4c a tb t =+=+,又,,a c b c = ,则cos ,cos ,a c b c =,则a c b c a c b c ⋅⋅=⋅⋅ ,即a b a bc c⋅⋅=,31t+=,解得5t =,故选:C.7. 函数()()()cos sin f x x a x b =+++,则( )A. 若0a b +=,则()f x 为奇函数 B. 若π2a b +=,则()f x 为偶函数C. 若π2b a -=,则()f x 为偶函数 D. 若πa b -=,则()f x 为奇函数【答案】B 【解析】【分析】根据选项中,a b 的关系,代入()f x 的解析式,对AD 用特值说明()f x 不是奇函数,对BC 用奇偶性的定义验证即可.【详解】()f x 的定义域为R ,对A :若0a b +=,()()()cos sin f x x a x a =++-,若()f x 为奇函数,则()00f =,而()0cos sin 0f a a =-=不恒成立,故()f x 不是奇函数;对B :若π2a b +=,()()()()πcos sin cos cos 2f x x a x a x a x a ⎛⎫=+++-=++- ⎪⎝⎭,()()()()()cos cos cos cos ()f x x a x a x a x a f x -=-++--=-++=,故()f x 偶函数,B 正确;对C :若π2b a -=,()()()πcos sin 2cos 2f x x a x a x a ⎛⎫=++++=+ ⎪⎝⎭,()()2cos ()f x x a f x -=-+≠,故()f x 不是偶函数,故C 错误;对D :若πa b -=,()()()()()cos πsin cos sin f x x b x b x b x b =++++=-+++,若()f x 为奇函数,则()00f =,而()0cos sin 0f b b =-+=不恒成立,故()f x 不是奇函数;故选:B8. 已知函数()0x f x x <=≥⎪⎩,若对任意的1x ≤有()()20f x m f x ++>恒成立,则实数m 的取值范围是( )A. (),1∞-- B. (],1-∞- C. (),2-∞- D. (],2-∞-【答案】A 【解析】【分析】根据奇函数的定义证明()f x 为奇函数,再判断函数的单调性,利用函数的性质化简不等式可得m 的取值范围.【详解】当0x <时,0x ->,()f x =()()f x f x -==-,当0x >时,0x -<,()f x =()()f x f x -==-,当0x =时,()00f =,所以对任意的R x ∈,()()f x f x -=-,函数()f x 为奇函数,又当0x >时,()f x =为单调递减函数,所以函数()f x 在(),-∞+∞上为单调递减函数,所以不等式()()20f x m f x ++>可化为()()2f x m f x +>-,为所以2x m x +<-,所以x m <-,由已知对任意的1x ≤有x m <-恒成立,所以1m <-,即1m <-,故m 的取值范围是(),1∞--.故选:A.9. 已知a 、b 、e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b满足2430b e b -⋅+= ,则a b - 的最小值是A.1B.1+ C. 2D. 2-【答案】A 【解析】【分析】先确定向量a、b所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【详解】设()()(),,1,0,,a x y e b m n ===r r r,则由π,3a e =r r得πcos ,3a e e x y a ⋅=⋅=∴=r r r r ,由2430b e b -⋅+=r r r 得()2222430,21,m n m m n +-+=-+=因此,a b -r r 的最小值为圆心()2,0到直线y =11.选A.【点睛】以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10.已知函数()f x k =+,若存在区间[,]a b ,使得函数()f x 在区间[,]a b 上的值域为[1,1]a b ++则实数k 的取值范围为( )A. (1,)-+∞ B. (1,0]- C. 1,4⎛⎫-+∞ ⎪⎝⎭D. 1,04⎛⎤- ⎥⎝⎦【答案】D 【解析】【分析】根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即得1010a kb k ⎧+--=⎪⎨+--=⎪⎩方程20x x k --=的两个不同非负实根,由根与系数的关系即可求出.【详解】根据函数的单调性可知,()()11f a a f b b ⎧=+⎪⎨=+⎪⎩,即可得到1010a kb k ⎧+--=⎪⎨+-=⎪⎩,20x x k --=两个不同非负实根,所以1400k k ∆=+>⎧⎪=-≥,解得104k -<≤.故选:D .【点睛】关键点睛:利用函数的单调性以及一元二次方程的根与系数的关系是解决本题的关键.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 已知角α的终边与单位圆交于点1,2⎛⎫⎪⎝⎭y P ,则πsin 2α⎛⎫+= ⎪⎝⎭__________.【答案】12##0.5【解析】【分析】由三角函数定义得到1cos 2α=,再由诱导公式求出答案.【详解】由三角函数定义得1cos 2α=,由诱导公式得1cos 2πsin 2αα⎛⎫= ⎪⎭=+⎝.故答案为:1212. 记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.【答案】63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和的公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.13. 若命题“对任意2R,20x ax x a ∈++≥为假命题的a 的取值范围是______【答案】1a <【解析】【分析】写出全称量词命题的否定,2R,20x ax x a ∃∈++<为真命题,分0a =,0a <和0a >三种情况,得到不等式,求出答案.【详解】由题意得2R,20x ax x a ∃∈++<为真命题,当0a =时,不等式为20x <,有解,满足要求,当0a ≠时,若0a <,此时220ax x a ++<必有解,满足要求,若0a >,则2440a ∆=->,解得01a <<,综上,a 的取值范围为1a <.故答案为:1a <14. 若函数()()cos sin 0f x A x x A =->的最大值为2,则A =________,()f x 的一个对称中心为_______【答案】 ①. ②. π,03⎛⎫⎪⎝⎭(答案不唯一)【解析】【分析】根据辅助角公式对函数()f x 进行化简,再根据最大值求出A ,最后利用余弦型函数求出对称中心.【详解】由()cos sin f x A x x x ϕ=-=+(),其中1tan A ϕ=,又函数()f x 的最大值为22=,又0A >,则A =,tan ϕ=,不妨取π6ϕ=,故()π2cos 6f x x ⎛⎫=+ ⎪⎝⎭,则()f x 的对称中心满足πππ62x k +=+,k ∈Z ,解得ππ3x k =+,k ∈Z ,即()f x 的对称中心为ππ,03k ⎛⎫+ ⎪⎝⎭,k ∈Z ,则()f x 的一个对称中心可为:π,03⎛⎫⎪⎝⎭,π,03⎛⎫ ⎪⎝⎭(答案不唯一)15. 对于函数()y f x =,若在其定义域内存在0x ,使得()001x f x =成立,则称函数()f x 具有性质P .(1)下列函数中具有性质P 的有___________.①()2f x x =-+②()[]()sin 0,2πf x x x =∈③()1f x x x=+,(x ∈(0,+∞))④()()ln 1f x x =+(2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是___________.【答案】①. ①②④ ②. 0a >或a e ≤-.【解析】【分析】(1)令12x x -=,由0∆=,可判断;由sin x =1x 有解,可判断是否具有性质P ;令1+x x=1x ,此方程无解,由此可判断;由()1ln 1,x x y y =+=两图象在()1,-+∞有交点可判断;(2)问题转化为方程1ln x x a =有根,令()ln g x x x =,求导函数,分析导函数的符号,得所令函数的单调性及最值,由此可求得实数a 的取值范围.【详解】解:(1)在0x ≠时, ()1f x x =有解,即函数具有性质P ,令12x x-= ,即2210x -+-=,∵880∆=-=,故方程有一个非0实根,故()2f x x =-+ 具有性质P ;()()sin ]02[f x x x π=∈,的图象与1y x=有交点,故sin x =1x有解,故()()sin ]02[f x x x π=∈,具有性质P ;令1+x x =1x ,此方程无解,故()1f x x x=+,(x ∈(0,+∞))不具有性质P ;令()1ln 1x x +=,则由()1ln 1,x x y y =+=两图象在()1,-+∞有交点,所以()1ln 1x x +=有根,所以()()ln 1f x x =+具有性质P ;综上所述,具有性质P 的函数有:①②④;(2)()ln f x a x =具有性质P ,显然0a ≠,方程1ln x x a =有根,令()ln g x x x =,则()'ln +1g x x =,令()'ln +10g x x ==,解得1=x e ,当11x e -<<时,()'0g x <,所以()g x 在11e ⎛⎫- ⎪⎝⎭,上单调递减,当1>x e 时,()'>0g x ,所以()g x 在1e ⎛⎫+∞ ⎪⎝⎭,上单调递增,所以()1111ln g x g e e e e⎛⎫≥==- ⎪⎝⎭,所以()ln g x x x =的值域[1e -,+∞),∴11a e ≥-,解之可得:0a >或a e ≤-.故答案为:①②④;0a >或a e ≤-.【点睛】方法点评:解决本题的关键是审清题意,把方程的解转化为两个图象有交点,本题考查的是方程的根,新定义,函数的值域,是方程和函数的综合应用,难度比较大.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC V 中,sin A B =,b =.再从条件①,条件②、条件③这三个条件中选择一个作为已知,使ABC V 存在且唯一确定,并解决下面的问题:(1)求角B 的大小;(2)求ABC V 的面积.条件①:4c =;条件②:222b a c -=;条件③:cos sin a B b A =.【答案】(1)选②或③,4B π=; (2)ABC V 的面积为1.【解析】【分析】(1)选①,利用三边关系可判断ABC V 不存在;选②:利用余弦定理可求得角B 的值;选③:利用正弦定理可求得tan B 的值,结合角B 的取值范围可求得角B 的值;(2)利用余弦定理可求得c 的值,再利用三角形的面积公式可求得ABC V 的面积.【小问1详解】解:因为sin A B =,b =,则2a ==.选①:因为4c =,则a b c +<,则ABC V 不存在;选②:因为222b a c -=,则222a c b +-=,由余弦定理可得222cos 2a c b B ac +-==,()0,B π∈ ,则4B π=;选③:cos sin a B b A = ,则sin cos sin sin A B A B =,A 、()0,B π∈,则sin 0A >,sin cos 0B B =>,故tan 1B =,从而4B π=.【小问2详解】解:因为4B π=,2a =,b =,由余弦定理可得2222cos b a c ac B =+-,即220c -+=,解得c =,因此,11sin 2122ABC S ac B ==⨯=△.17. 已知n S 是等差数列{a n }的前n 项和,51120S a ==,数列{b n }是公比大于1的等比数列,且236b b =,4212b b -=.(1)求数列{a n }和{b n }的通项公式;(2)设n n nS c b =,求使n c 取得最大值时n 的值.【答案】(1)22n a n =-,2n n b =(2)3或4【解析】【分析】(1)根据等差数列的通项及前n 项和公式求出首项与公差,即可求出数列{a n }的通项公式,再求出数列{b n }的首项与公比,即可得{b n }的通项公式;(2)先求出{}n c 的通项,再利用作差法判断数列的单调性,根据单调性即可得出答案.【小问1详解】设等差数列{a n }的公差为d ,则511115452021020S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩,解得10,2a d ==,所以22n a n =-,设等比数列{b n }的公比为()1q q >,则()2251131112b q b q b q b q ⎧=⎪⎨-=⎪⎩,解得122b q =⎧⎨=⎩,所以2n n b =;【小问2详解】由(1)得()()2212n n n S n n -==-,则()12n n nn n n S c b -==,()()2111113222n n n n n n n n n n n c c ++++---=-=,当1,2n =时,11230,n n c c c c c +-><<,当3n =时,1340,n n c c c c +-==,当4n ≥时,1450,n n n c c c c c +->> ,所以当3n =或4时,n c 取得最大值.18. 已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.【答案】(1)π,()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)[]0,3【解析】【分析】(1)化简函数()π3sin 26f x x ⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)根据题意转化为方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,以π26x -为整体,结合正弦函数图象运算求解.【小问1详解】对于函数π313()6cos sin 6cos cos 6222f x x x x x x ⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭()231cos 231π3sin cos 3cos 2332cos 23sin 222226x f x x x x x x x x ⎫+⎛⎫=-+-⨯+=-=-⎪ ⎪⎪⎝⎭⎭,所以函数()f x 的最小正周期为2ππ2T ==,令πππ2π22π,Z 262k x k k -+£-£+Î,则ππππ,Z 63k x k k -+££+Î,∴函数()f x 单调递增区间为()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】令()0y f x a =-=,即π3sin 206x a ⎛⎫--= ⎪⎝⎭,则πsin 263a x ⎛⎫-= ⎪⎝⎭,∵()y f x a =-在π5π,1212x ⎡⎤∈⎢⎥⎣⎦存在零点,则方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,若π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,则π2π20,63x ⎡⎤-∈⎢⎥⎣⎦,可得πsin 2[0,1]6x ⎛⎫-∈ ⎪⎝⎭,∴013a ≤≤,得03a ≤≤故实数a 的取值范围是[]0,3.的19. 1.已知函数()21ex ax x f x +-=,0a ≥.(1)讨论函数()f x 的单调性;(2)当0a >时,求证:函数()f x 在区间()0,1上有且仅有一个零点.【答案】(1)当0a =时,()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-;当0a >时,()f x 的单调递减区间为1,a ⎛⎫-∞-⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭. (2)证明过程见解析【解析】【分析】(1)求出导数,然后通过对a 分情况讨论,研究导数的符号研究函数的单调性;(2)结合第一问的结果,判断出函数在()0,1上的单调性,然后结合端点处的函数值的符合证明【小问1详解】()()()12e x ax xf x -+-'==,当0a =时,()()2e x x f x --'=,由()0f x '>得:2x <,由()0f x '<,得:2x >,故此时()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-当0a >时,令()()()120g x ax x =-+-=得:x =−1a <0或2x =由()0g x >得:12x a-<<,此时()0f x '>由()0g x <得:1x a <-或2x >,此时()0f x '<故此时()f x 的单调递减区间为1,a ⎛⎫-∞- ⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭综上:当0a =时,()f x 的单调递减区间为()2,∞+,单调递增区间为(),2∞-;当0a >时,()f x 的单调递减区间为1,a ⎛⎫-∞-⎪⎝⎭,()2,∞+,单调递增区间为1,2a ⎛⎫- ⎪⎝⎭.【小问2详解】由(1)可知,当0a >时,()f x 的单调递增区间为1,2a ⎛⎫- ⎪⎝⎭,而()1,20,1a ⎛-⊂⎫ ⎪⎝⎭,所以()f x 在()0,1上单调递增,又()010f =-<,()10ea f =>所以()()010f f ⋅<,由零点存在性定理可得::函数()f x 在区间()0,1上有且仅有一个零点20. 已知函数()e sin 2xf x x x =-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在区间[1,1]-上的最大值;(3)设实数a 使得()e xf x x a +>对R x ∈恒成立,写出a 的最大整数值,并说明理由.【答案】(1)y x =-(2)()max sin12ef x =- (3)2-,理由见解析【解析】【分析】(1)求出函数在0x =处的导数,即切线斜率,求出(0)f ,即可得出切线方程;(2)求出函数在区间[1,1]-上的单调性,求出最值即可;(3)将不等式等价转化为sin e x x a x <-在R x ∈上恒成立.构造函数()sin e xx x x ϕ=-,利用导数求出函数的单调性和最小值,进而得证.【小问1详解】因为()e sin 2x f x x x =-,所以()()e sin cos 2x f x x x =+-',则(0)1f '=-,又(0)0f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.【小问2详解】令()()()esin cos 2x g x f x x x +'==-,则()2e cos x g x x '=,当[1,1]x ∈-时,()0g x '>,()g x 在[1,1]-上单调递增.因为(0)10g =-<,()()1e sin1cos120g =+->,所以0(0,1)x ∃∈,使得0()0g x =.所以当0(1,)x x ∈-时,()0f x '<,()f x 单调递减;当0(,1)x x ∈时,()0f x '>,()f x 单调递增,又()1esin12e 21f =-<-<,()sin1121e f -=->,所以()()max sin112ef x f =-=-.【小问3详解】满足条件的a 的最大整数值为2-.理由如下:不等式()e x f x x a +>恒成立等价于sin e xx a x <-恒成立.令()sin e x x x x ϕ=-,当0x ≤时,0e xx -≥,所以()1x ϕ>-恒成立.当0x >时,令()e x x h x =-,()0h x <,()1ex x h x '-=,()h x '与()h x 的情况如下:所以()()min 11eh x h ==-,当x 趋近正无穷大时,()0h x <,且()h x 无限趋近于0,所以()h x 的值域为1,0e ⎡⎫-⎪⎢⎣⎭,因为sin [1,1]x ∈-,所以()ϕx 的最小值小于1-且大于2-.所以a 的最大整数值为2-.21. 已知数列{a n }记集合()(){}*1,,,1,,i i j T S i j S i j a a a i j i j +==+++≤<∈N(1)对于数列{a n }:1,2,3,列出集合T 的所有元素;(2)若2n a n =是否存在*,i j ∈N ,使得(),1024S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若22n a n =-把集合T 中的元素从小到大排列,得到的新数列为12:,,,,.m B b b b 若2020m b ≤,求m 的最大值.【答案】(1){}3,5,6T =;(2)不存在,理由见解析;(3)1001.【解析】【分析】(1)根据题目给出的集合T 的定义求解即可;(2)假设存在*,i j ∈N ,使得(),1024S i j =,则有()()()1102422121i i j a a a i i j j i i j +=+++=++++=-++ ,则i j +与j i -奇偶性相同,所以i j +与1j i -+奇偶性不同,进行分析即可得解;(3)由22n a n =-,根据题意给出的集合T 新定义可对()()()()22221212j i j i j i j i -+--+=+--+进行计算分析,讨论元素的奇偶情况,即可得出答案.【小问1详解】由题意可得123a a +=,1236a a a ++=,235a a +=,所以{}3,5,6T =.【小问2详解】假设存在*,i j ∈N ,使得(),1024S i j =,则有()()()1102422121i i j a a a i i j j i i j +=+++=++++=-++ ,由于i j +与j i -奇偶性相同,所以i j +与1j i -+奇偶性不同,又因为3,12i j j i +≥-+≥,所以1024必有大于等于3的奇数因子,这与1024无1以外的奇数因子矛盾.故不存在*,i j ∈N ,使得(),1024S i j =成立.小问3详解】由题意得()()()()22221212j i j i j i j i -+--+=+--+,当2j =,1i =时,12b =,除2j =,1i =外22j i +-≥,12j i -+≥,【其中2j i +-与1j i -+一奇一偶,则n b 能拆成奇数与偶数之乘积,在正偶数中,只有2n 无法拆成一个大于2的奇数与一个不小于2的偶数之乘积,又T 中的元素均为偶数,故{}**2,2,k T n n n k =∈≠∈N N ,故2至2024偶数中除去4,8,16,32,64,128,256,512,1024,2020910012m ∴=-=,故m 的最大值为1001.【点睛】关键点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及运算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。
湖北省襄阳市2024-2025学年高三上学期10月月考数学试题含答案
襄阳2025届高三上学期10月月考数学试卷(答案在最后)命题人:一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =()A.{}2,0,1,2,4- B.{}2,0,2,4- C.{}0,2,4 D.{}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2.设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >求出相应的a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >,即>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >”的充分不必要条件.故选:A3.已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为()A.1B.12C.1或12-D.1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4.已知3322x y x y ---<-,则下列结论中正确的是()A.()ln 10y x -+>B.ln0yx> C.ln 0y x +> D.ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=,故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5.从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为()A.126个B.112个C.98个D.84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6.若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是()A.78a =B.135********a a a a a +++⋅⋅⋅+=C.754S =D.24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为()A.13B.23C.33D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF ,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B ,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a +=,即2a =,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B ,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知: 䁕2a =,2bcm+=;即2c c-=+3c=,所以椭圆C的离心率3cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8.圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A.[)1,+∞ B.[)2,+∞C.)∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率.()P A ,()()0,1P B ∈,则下列说法正确的是()A.若A ,B 互斥,则()()()P A B P A P B ⋃=+B.若()()()P AB P A P B =,则A ,B 相互独立C .若A ,B 互斥,则A ,B 相互独立D.若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,对于选项B ,由相互独立事件的概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10.已知函数()sin sin cos 2f x x x x =-,则()A.()f x 的图象关于点(π,0)对称B.()f x 的值域为[1,2]-C.若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D.若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61ii ax=∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得3sin 2x =-,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11.在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是()A .对任意三点,,A B C ,都有()()(),,,d C A d C B d A B +≥;B.已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C.到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D.定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M a b{}max ,x a y b =--,若y b x a -≥-,y b =-,两边平方整理得x a =;此时所求轨迹为x a =(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b =(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12.若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】 【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13.已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14.数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC的面积为4,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为233y x =±,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设 , ,则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-,则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mmm-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17.如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量,则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z=1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n∴︒==11132=,解得1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x yz =,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨=+=⎪⎩ ,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18.已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点 h 处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn +++-+++->∈N .【答案】(1)0y =(2)[)1,+∞(3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln xx xλ≥+,求出函数()212ln x g x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,h t ,则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点 h 处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数 在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以 在 ∞上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19.已知整数4n ,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n 的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.(2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列䁕 的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列 的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。
北京市顺义区第一中学2024-2025学年高三上学期10月月考数学试题(含答案)
顺义一中2024-2025学年度第一学期高三年级10月考试数学试卷本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回。
一、单选题:本题共10小题,共40分。
在每小题给出的选项中,只有一项是符合题目要求的.1.已知全集,集合,则( )A. B. C. D.2.设复数,则复数在复平面内对应的点的坐标是( )A. B. C. D.3.设且,则“”是“”成立的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知平面向量,满足,,且,则( )A.12B.4C.D.25.若,则( )A. B. C. D.6.已知函数的部分图象如图所示,则的值是( )B.1C. D.7.在中,若,,,则的面积是( )A.1 B.{2,1,0,1,2,3}U =--{|||2}A x Z x =∈<U A =ð{1,0,1}-{2,2,3}-{2,1,2}--{2,0,3}-3i z =-i z ⋅(1,3)-(3,1)-(1,3)(3,1)R x ∈0x ≠1x >12x x+>a r b r||2a =r ||1b =r 1a b ⋅=r r |2|a b +=r r 01a <<1132a a<23a a<11log log 23aa >sin cos a a>π()2sin()0,||2f x x ⎛⎫=+><⎪⎝⎭ωϕωϕ(π)f -1-ABC △4c =1b a -=1cos 4C =ABC △348.已知函数,则不等式的解集是( )A. B.C. D.9.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是( )A. B. C. D.10.八卦是中国传统文化中的一部分,八个方位分别象征天、地、风、雷、水、火、山、泽八种自然现象、八卦模型如图1所示,其平面图形为正八边形,如图2所示,点为该正八边形的中心,设,下列结论中正确的个数是()图1 图2①②;③在上的投影向量为(其中为与同向的单位向量);④若点为正八边形边上的一个动点,则的最大值为4.A.4B.3C.2D.1二、填空题:本题共5小题,每小题5分,共25分.11.函数的定义域是______.12.设等差数列的前的和为,若,则______.13.在中,点,满足,,若,则______,2()3log 2(1)f xx x =--()0f x >(0,4)(,1)(4,)-∞+∞U (1,4)(0,1)(4,)+∞U R [0,)+∞R a +∈()313log log f a f a ⎛⎫+≤ ⎪⎝⎭2(2)f a 1,99⎡⎤⎢⎥⎣⎦1,9⎛⎤-∞ ⎥⎝⎦1,22⎡⎤⎢⎥⎣⎦10,[9,)9⎛⎤+∞ ⎥⎝⎦U O ||1OA =u u rOB OB ⋅=u u u r u u u r||||OA OC DH -=u u r u u u r u u u r OA u u r OD u u u r r e r OD u u u r P AP AB ⋅u u u r u u u r1()lg 1f x x x =+-{}n a n n S 972S =249a a a ++=ABC △M N 2AM MC =u u u r u u u r BN NC =u u u r u u u rMN xAB y AC =+u u u r u u u r u u u r x =______.14.已知函数,若将其图象向右平移个单位长度后所得的图象关于原点对称,则的最小值为______.15.已知函数给出下列四个结论:①当时,存在唯一的零点;②当时,存在最小值;③当时,对任意,,;④的零点个数为,则函数的值域为;其中所有正确结论的序号是______.三、解答题(本大题共6小题,共85.0分。
广东省兴宁市第一中学2024-2025学年高三上学期10月月考数学试题(含解析)
象向左平移 π 个单位长度得到函数 g x 的图象,则下列说法正确的是( )
6
A. π 2
B. 2
C. g x 在0, π 内的零点个数为 2
D. g x 的图象关于直线 x π 对称
12
10.函数 f x b x a2 x b 的图象可以是( )
A.
B.
C.
D.
11.已知 x , y 为正实数, x y 2 ,则( )
D.
1 256
,
e
3 e
二、选择题:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项符 合题目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
9.已知函数 f x sin x 0, π 是奇函数,且 f x 的最小正周期为 π ,将 y f x 的图
5 πr3 5 3
8
8.D【详解】当 a
1时,
f
x
loga x
在
0,
1 2
上单调递增,
f
x
loga
1 2
0
,而
x3
0 ,不符合题
意,
因此 0
a
1,当
x
0,
1 2
时,
f
x
x3
loga x
x3
0
,
函数
y
loga
x
,
y
x3
在
0,
1 2
上都递减,则函数
h
x
loga
x
x3
在
0,
1 2
上递减,
D
正确.故选;BCD
10.BC【详解】由函数解析式可知, a 是不变号零点, b 是变号零点,
四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)
成都市实验外国语学校高三10月月考数学试题总分:150考试时间:120分钟一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“,使”的否定是( )A .,使B .不存在,使C .,D .,2.已知等差数列的前项和为,若,且,则( )A .60B .72C .120D .1443.若,则( )A .3B .4C .9D .164,侧面展开图的扇形圆心角为的圆锥侧面积为( )A .B .C .D .5.小王每次通过英语听力测试的概率是,且每次通过英语听力测试相互独立,他连续测试3次,那么其中恰有1次通过的概率是( )A .B .C .D .6.已知,是方程的两个根,则( )A .B .C .D .7.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域5米深处的光强是海面光强的,则该海域消光系数的值约为(参考数据:,)()A .0.2B .0.18C .0.1D .0.148.已知函数,方程有四个不同根,,,,且满足,则的取值范围是( )x ∃∈R 210x x +-=x ∃∈R 210x x +-≠x ∈R 210x x +-=x ∀∉R 210x x +-≠x ∀∈R 210x x +-≠{}n a n n S 21024a a +=36a =8S =24log log 2m n +=2m n =2π39π6π23292273949tan 23︒tan 37︒2230x mx +-=m =--0eKDD I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<221323432x x x x x x +-A .B .C .D .二、多选题:本题共3小题,共18分。
江苏省扬州市高邮市2024-2025学年高三上学期10月月考数学试题(含答案)
2024-2025学年第一学期高三年级10月学情调研测试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,若,则实数的值为( )A. B. C.12D.62.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.关于实数的不等式的解集是或,则关于的不等式的解集是(A. B.C. D.4.若,则点位于( )A.第一象限 B.第二象限C.第三象限D.第四象限5.若函数在上单调递增,则实数的取值范围是( )A. B. C. D.6.将函数的图象向左平移个单位,所得的函数图象关于对称,则()A. B. C. D.7.如图,在四边形中,的面积为3,{}{}21,2,3,4,70U Mx x x p ==-+=∣{}U 1,2M =ðp 6-12-,a b ∈R 1122log log a b >22a b <x 20x bx c ++>{2xx <-∣5}x >x 210cx bx ++>)11,,25∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭11,,52∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭11,25⎛⎫- ⎪⎝⎭11,52⎛⎫- ⎪⎝⎭ππ24α-<<-()sin cos ,tan sin P αααα+-()11,2,2x a x x f x xa x -⎧+-≥⎪=⎨⎪<⎩R a ()0,1(]1,2(]1,4[]2,4()()sin 2(0π)f x x ϕϕ=+<<π6π6x =ϕ=π6π32π35π6ABCD ,cos AB AD B ACB BC ACD ∠⊥===V则长为( )8.已知函数的定义域均是满足,,则下列结论中正确的是( )A.为奇函数B.为偶函数C.D.二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列各结论正确的是()A.“”是“”的充要条件B.命题“,有”的否定是“,使”的最小值为2D.若,则10.某物理量的测量结果服从正态分布,下列选项中正确的是( )A.越大,该物理量在一次测量中在的概率越大B.该物理量在一次测量中小于10的概率等于0.5C.该物理量在一次测量中小于9.98与大于10.02的概率相等D.该物理量在一次测量中落在与落在的概率相等11.已知函数,有下列四个结论,其中正确的结论为()A.的图像关于轴对称CD ()(),f x g x (),f x R ()()()()40,021f x f x g g ++-===()()()()g x y g x y g x f y ++-=()f x ()g x ()()11g x g x --=-+()()11g x g x -=+0x y≥0xy ≥0x ∀>20x x +>0x ∃>20x x +≤+0,0a b m <<<a a m b b m+>+()210,N σσ()9.8,10.2()9.8,10.2()9.9,10.3()cos2cos f x x x =+()f x yB.不是的一个周期C.在区间上单调递减D.当时,的值域为三、填空题:本大题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.若命题“”是假命题,则实数的取值范围是__________.13.已知__________.14.若对一切恒成立,则的最大值为__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知(1)化简;(2)若,求的值.16.(15分)已知三棱锥底面,点是的中点,点为线段上一动点,点在线段上.(1)若平面,求证:为的中点;(2)若为的中点,求直线与平面所成角的余弦值.17.(15分)在每年的1月份到7月份,某品牌空调销售商发现:“每月销售量(单位:台)”与“当年π()f x ()f x π,π2⎡⎤⎢⎥⎣⎦π0,2x ⎡⎤∈⎢⎥⎣⎦()f x 2⎤⎥⎦2,20x x x a ∀∈-+>R a πsin sin 3αα⎛⎫++= ⎪⎝⎭πsin 26α⎛⎫-= ⎪⎝⎭ln 2ax x b ≥+()0,x ∞∈+b a()()()23ππsin cos tan π22πsin πcos 2f αααααα⎛⎫⎛⎫-+⋅-⋅-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()fα()2f α=3cos2sin2αα-,A BCD AD -⊥,,4,2BCD BC CD AD BC CD ⊥===P AD Q BC M DQ PM ∥ABC M DQ Q BC DQ ABC的月份”线性相关.根据统计得下表:月份123456销量101931455568(1)根据往年的统计得,当年的月份与销量满足回归方程.请预测当年7月份该品牌的空调可以销售多少台?(2)该销售商从当年的前6个月中随机选取2个月,记为销量不低于前6个月的月平均销量的月份数,求的分布列和数学期望18.(17分)已知锐角的内角,所对的边分别为,满足.(1)求角的大小;(2)若,求面积的取值范围.19.(17分)已知函数.(1)讨论在区间上的单调性;(2)若在上有两个极值点.①求实数的取值范围:②求证:.xy x y ˆ10yx t =+X X ABC V A B C 、、a b c 、、1cos c A b A=B 2b =ABC V ()()2e 23x f x x a x a ⎡⎤=-+++⎣⎦()f x R ()f x ()0,312,x x a ()()2124e f x f x <2024—2025学年第一学期高三年级10月学情调研测试参考答案1.C2.A3.C4.C5.B6.D7.B8.D9.BD 10.BC 11.ABD12. 13.14.13.(1).(2)由(1)得,所以14.(1)连结因为平面平面,平面平面,所以,又因为是的中点,所以是中点.(2)方法一:因为底面,如图建立坐标系,则,可得,,设平面的法向量为,则,令,则,可得,(],1∞-19-12()()()()2cos sin tan tan sin sin f ααααααα-⋅⋅==--⋅-tan 2α=-()22223cos sin 2sin cos 3cos2sin2sin cos αααααααα--⋅-=+2233tan 2tan 31241tan 141ααα---+===-++AQPM∥,ABC PM ⊂ADQ ADQ ⋂ABC AQ =PM ∥AQ P AD M DQ AD ⊥,BCD BC CD ⊥()()()()2,0,0,0,2,0,2,0,4,0,1,0D B A Q ()2,1,0DQ =- ()()2,0,4,0,2,0CA CB == ABC (),,n x y z = 24020n CA x z n CB y ⎧⋅=+=⎪⎨⋅==⎪⎩ 0,20y x z ∴=+=1z =0,2y x ==-()2,0,1n =-,设直线与平面所成角为,又则.因此直线与平面所成角的余弦值为.方法二:过点作交于,连接,因为底面底面,则,且平面,则平面,由平面,可得,且,平面,所以平面,可知即为直线与平面所成角.在中,,则,所以,又则.所以直线与平面所成角的余弦值为.17.解:(1),,又回归直线过样本中心点,所以,得,4cos ,5DQ n DQ n DQ n⋅<>=== DQ ABC 4,sin cos ,5DQ n θθ∴=<>= π0,2θ⎡⎤∈⎢⎥⎣⎦3cos 5θ=DQ ABC 35D DN AC ⊥AC N QN AD ⊥,BCD BC ⊂BCD AD BC ⊥,,,BC CD AD CD D AD CD ⊥⋂=⊂ACD BC ⊥ACD DN ⊂ACD BC DN ⊥AC BC C ⋂=,AC BC ⊂ABC DN ⊥ABC DQN ∠DQ ABC Rt ACD V 2,4CD AD ==AC =DN =DQ QN ==3cos 5QN DQN QD ∠==DQ ABC 35123456 3.56x +++++==101931455568386y +++++==()x y 3810 3.5t =⨯+3t =所以,当时,,所以预测当年7月份该品牌的空调可以销售73台;(2)因为,所以销量不低于前6个月的月平均销量的月份数为,所以所以所以的分布列为:012故数学期望18.(1)由,得,即根据正弦定理,得.因为,所以,即因为,所以,所以,又则.(2)在中由正弦定理得:所以,ˆ103yx =+7x =ˆ73y =38y =4,5,60,1,2X =()()()21123333222666C C C C 1310,1,2C 5C 5C 5P X P X P X ⋅=========X XP 153515()1310121555E X =⨯+⨯+⨯=1cos c A b A =1cos c b A =sin cos c A b A =+sin sin sin cos C B A B A =+()()sin sin πsin C A B A B ⎡⎤=-+=+⎣⎦sin cos cos sin sin sin cos A B A B B A B A +=+sin cos sin A B B A=()0,πA ∈sin 0A ≠tan B =()0,πB ∈π6B =ABC V sin sin sin a b c A B C ==4sin ,4sin a A c C ==215πsin 4sin sin 4sin sin 2sin cos 26ABC S ac B A C A A A A A ⎛⎫===-=+ ⎪⎝⎭V πsin22sin 23A A A ⎛⎫=+=- ⎪⎝⎭因为为锐角三角形,所以,即.所以,所以所以即面积的取值范围为19.(1)当,即时,恒成立,则在上单调递增;当,即或时,令,得或令综上所述:当时,单调递增区间是,无单调递减区间;当或时,的单调递增区间是和单调减区间是(2)①因为在有两个极值点,所以在有两个不等零点,所以解得,所以实数的取值范围为②由①知.所以同理.ABC V π025ππ062A A ⎧<<⎪⎪⎨⎪<-<⎪⎩ππ32A <<ππ2π2,333A ⎛⎫-∈ ⎪⎝⎭πsin 23A ⎤⎛⎫-∈⎥ ⎪⎝⎭⎦(2ABC S ∈+V ABC V (2+()()2e 1,x f x x ax x '-=+∈R 2Δ40a =-≤22a -≤≤()0f x '≥()f x R 2Δ40a =->2a <-2a >()0f x '>x <x >()0f x '<x <<22a -≤≤()f x (),∞∞-+2a <-2a >()f x ∞⎛- ⎝∞⎫+⎪⎪⎭()f x ()0,312,x x ()21g x x ax =-+()0,312,x x ()()2Δ4003201031030a a g g a ⎧=->⎪⎪<<⎪⎨⎪=>⎪=->⎪⎩1023a <<a 102,3⎛⎫ ⎪⎝⎭1212,1x x a x x +==()()()()1112111111e 23e 123e 22x x x f x x a x a ax a x a x a ⎡⎤⎡⎤=-+++=--+++=-++⎣⎦⎣⎦()()222e 22x f x x a =-++所以.设所以,所以函数在区间上单调递减,所以,所以()()()()()()1212121212221e 2222e 422(2)x x x x f x f x x a x a x x a x x a ++⎡⎤⎣⎦=-++-++=-++++()()22e 422(2)e 8a a a a a a ⎡⎤=-+++=-⎣⎦()()210e 8,2,3x h x x x ⎛⎫=-∈ ⎪⎝⎭()()()e 420x h x x x =-+-<'()h x 102,3⎛⎫ ⎪⎝⎭()()224e h x h <=()()2124e f x f x <。
2024-2025学年辽宁省实验中学高三上学期10月月考数学试题及答案
辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 若,则是的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2. 若,则()A. B. C. D.3. 已知函数在上单调递增,则的取值范围是()A. B. C. D.4. 在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A. 当时,是直角三角形B. 当时,是锐角三角形C. 当时,是钝角三角形D. 当时,是钝角三角形5. 耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C. π D.6. 已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.7. 已知正数,满足,则下列说法不正确的是()A. B.C D.8. 设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
全部选对得6分,选对但不全的得部分分,有选错的得0分。
9. 下列函数在其定义域上既是奇函数又是增函数的是()A. B.C. D.10. 函数,(,)部分图象如图所示,下列说法正确的是()A. 函数解析式为B. 函数的单调增区间为C. 函数的图象关于点对称D. 为了得到函数的图象,只需将函数向右平移个单位长度11. 已知函数,若有6个不同的零点分别为,且,则下列说法正确的是()A. 当时,B. 的取值范围为C. 当时,取值范围为D. 当时,的取值范围为三、填空题:本大题共3小题,每小题5分,共15分.12. 已知,则用表示为______.13. 已知,则的最小值为______.14. 在锐角中,角的对边分别为,的面积为,满足,若,则的最小值为______.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢跳绳有关联?(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).附:,其中.0.10.050.012.7063.841 6.635若,则,16. 已知函数.(1)若在R上单调递减,求a的取值范围;(2)若,判断是否有最大值,若有,求出最大值;若没有,请说明理由.17. 已知数列的前n项和为,数列满足,.(1)证明等差数列;(2)是否存在常数a、b,使得对一切正整数n都有成立.若存在,求出a、b的值;若不存在,说明理由.18. 在中,设角A,B,C所对的边分别是a,b,c,且满足.(1)求角B;(2)若,求面积的最大值;(3)求的取值范围.19. 已知集合是具有下列性质的函数的全体,存在有序实数对,使对定义域内任意实数都成立.(1)判断函数,是否属于集合,并说明理由;(2)若函数(,、为常数)具有反函数,且存在实数对使,求实数、满足的关系式;(3)若定义域为的函数,存在满足条件的实数对和,当时,值域为,求当时函数的值域.辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 若,则是的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要【答案】A【解析】【分析】根据指、对数函数单调性解不等式,再根据包含关系分析充分、必要条件.【详解】对于,则,解得;对于,则,解得;因为是的真子集,所以是的充分不必要条件.故选:A.2. 若,则()A. B. C. D.【答案】C【解析】【分析】先由条件得到,化弦为切,代入求出答案.【详解】因为,所以,所以.故选:C3. 已知函数在上单调递增,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】根据在上恒大于0,且单调递增,可求的取值范围.【详解】因为函数在上单调递增,所以在上单调递增,所以.且在恒大于0,所以或.综上可知:.故选:B4. 在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A. 当时,是直角三角形B. 当时,是锐角三角形C. 当时,是钝角三角形D. 当时,是钝角三角形【答案】D【解析】【分析】由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】对于选项,当时,,根据正弦定理不妨设,,,显然是直角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,显然是等腰三角形,,说明为锐角,故是锐角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,可得,说明为钝角,故是钝角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,此时,不等构成三角形,故命题错误.故选:D.5. 耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C. π D.【答案】D【解析】【分析】根据题意,结合余弦型函数的性质进行求解即可.【详解】由于抵消噪音,所以振幅没有改变,即,所以,要想抵消噪音,需要主动降噪芯片生成的声波曲线是,即,因为,所以令,即,故选:D.6. 已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得的取值范围.【详解】依题意,是偶函数,且在区间单调递减,公众号:高中试卷君由得,所以,所以或,所以或,所以的取值范围是.故选:D7. 已知正数,满足,则下列说法不正确的是()A. B.C. D.【答案】C【解析】【分析】令,则,对于A,直接代入利用对数的运算性质计算判断,对于B,结合对数函数的单调性分析判断,对于C,利用作差法分析判断,对于D,对化简变形,结合幂的运算性质及不等式的性质分析判断.【详解】令,则,对于A,,所以A正确,对于B,因为在上递增,且,所以,即,即,所以,所以B正确,对于C,因为,所以,所以C错误,对于D,,因为,所以,所以,所以,因为,所以,所以,所以,所以,所以D正确,故选:C8. 设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.【答案】A【解析】【分析】先令得,并得到,从小到大将的正根写出,因为,所以,从而分情况,得到不等式,求出答案.【详解】令得,因为,所以,令,解得或,从小到大将的正根写出如下:,,,,,……,因为,所以,当,即时,,解得,此时无解,当,即时,,解得,此时无解,当,即时,,解得,故,当,即时,,解得,故,当时,,此时在上至少有两个不同零点,综上,的取值范围是.故选:A【点睛】方法点睛:在三角函数图象与性质中,对整个图象性质影响最大,因为可改变函数的单调区间,极值个数和零点个数,求解的取值范围是经常考察的内容,综合性较强,除掌握三角函数图象和性质,还要准确发掘题干中的隐含条件,找到切入点,数形结合求出相关性质,如最小正周期,零点个数,极值点个数等,此部分题目还常常和导函数,去绝对值等相结合考查综合能力.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
安徽省合肥市2024-2025学年高三上学期10月月考试题 数学含答案
合肥2025届高三10月段考试卷数学(答案在最后)考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分)1.已知集合{A x x =<,1ln 3B x x ⎧⎫=<⎨⎬⎩⎭,则A B = ()A .{x x <B .{x x <C .{0x x <<D .{0x x <<2.设a ,b 均为单位向量,则“55a b a b -=+”是“a b ⊥ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知数列{}n a 满足()111n n a a +-=,若11a =-,则10a =()A .2B .-2C .-1D .124.已知实数a ,b ,c 满足0a b c <<<,则下列不等式中成立的是()A .11a b b a+>+B .22a b aa b b+<+C .a b b c a c<--D .ac bc>5.已知a ∈R ,2sin cos 2αα+=,则tan 2α=()A .43B .34C .43-D .34-6.10名环卫工人在一段直线公路一侧植树,每人植一棵,相邻两棵树相距15米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从(1)到(10)依次编号,为使每名环卫工人从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A .(1)和(10)B .(4)和(5)C .(5)和(6)D .(4)和(6)7.设0.1e1a =-,111b =,ln1.1c =,则()A .b c a <<B .c b a<<C .a b c<<D .a c b<<8.定义在R 上的奇函数()f x ,且对任意实数x 都有()302f x f x ⎛⎫--+=⎪⎝⎭,()12024e f =.若()()0f x f x '+->,则不等式()11ex f x +>的解集是()A .()3,+∞B .(),3-∞C .()1,+∞D .(),1-∞二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分)9.已知O 为坐标原点,点()1cos1,sin1P ,()2cos 2,sin 2P -,()3cos 3,sin 3P ,()1,0Q ,则()A .12OP OP = B .12QP QP =C .312OQ OP OP OP ⋅=⋅ D .123OQ OP OP OP ⋅=⋅ 10.三次函数()32f x x ax =++叙述正确的是()A .当1a =时,函数()f x 无极值点B .函数()f x 的图象关于点()0,2中心对称C .过点()0,2的切线有两条D .当a <-3时,函数()f x 有3个零点11.已知()2sin 2f x x =+,对任意的π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()123f x f x α=+成立,则下列选项中,α可能的值是()A .3π4B .4π7C .6π7D .8π7三、填空题(本大题共3小题,每小题5分,共15分)12.已知复数1+与3i 在复平面内用向量OA 和OB 表示(其中i 是虚数单位,O 为坐标原点),则OA与OB夹角为______.13.函数2x y m m =-+在(],2-∞上的最大值为4,则m 的取值范围是______.14.设a 、b 、[]0,1c ∈,则M =+______.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,cos sin 0a C C b c --=.(1)求角A ;(2)已知8b =,从下列三个条件中选择一个作为已知,使得ABC △存在,并求出ABC △的面积.条件①:2cos 3B =-;条件②:7a =;条件③:AC .(注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.)16.(15分)某地区上年度天然气价格为2.8元/3m ,年用气量为3m a .本年度计划将天然气单价下调到2.55元/3m 至2.75元/3m 之间.经调查测算,用户期望天然气单价为2.4元/3m ,下调单价后新增用气量和实际单价与用户的期望单价的差成反比(比例系数为k ).已知天然气的成本价为2.3元/3m .(1)写出本年度天然气价格下调后燃气公司的收益y (单位:元)关于实际单价x (单位:元/3m )的函数解析式;(收益=实际用气量×(实际单价-成本价))(2)设0.2k a =,当天然气单价最低定为多少时,仍可保证燃气公司的收益比上年度至少增加20%?17.(15分)已知函数()824x x xa f x a +⋅=⋅(a 为常数,且0a ≠,a ∈R ),且()f x 是奇函数.(1)求a 的值;(2)若[]1,2x ∀∈,都有()()20f x mf x -≥成立,求实数m 的取值范围.18.(17分)已知函数()()2ln f x x x =-(1)讨论函数()f x 的单调性;(2)求函数()f x 在()()22e ,ef 处切线方程;(3)若()f x m =有两解1x ,2x ,且12x x <,求证:2122e e x x <+<.19.(17分)(1)若干个正整数之和等于20,求这些正整数乘积的最大值.(2)①已知12,,,n a a a ⋅⋅⋅,都是正数,求证:12n a a a n++⋅⋅⋅+≥;②若干个正实数之和等于20,求这些正实数乘积的最大值.合肥2025届高三10月段考试卷·数学参考答案、提示及评分细则题号1234567891011答案DCCBBCACACABDAC一、单选题(本大题共8小题,每小题5分,共40分)1.【答案】D【解析】131ln 0e 3x x <⇒<<,∵23e 2<,∴661132e 2⎛⎫⎛⎫<⇒< ⎪ ⎪⎝⎭⎝⎭.故选D .2.【答案】C【解析】∵“55a b a b -=+ ”,∴平方得222225102510a b a b a b a b +-⋅=++⋅,即200a b ⋅= ,则0a b ⋅= ,即a b ⊥,反之也成立.故选C .3.【答案】C 【解析】因为111n n a a +=-,11a =-,所以212a =,32a =,41a =-,所以数列{}n a 的周期为3,所以101a =-.故选C .4.【答案】B【解析】对于A ,因为0a b <<,所以11a b >,所以11a b b a+<+,故A 错误;对于B ,因为0a b <<,所以()()()()222220222a b b a a b a b a b a a b b a b b a b b+-++--==<+++,故B 正确;对于C ,当2a =-,1b =-,1c =时,13b a c =-,1a b c =-,b aa cb c<--,故C 错误;对于D ,因为a b <,0c >,所以ac bc <,故D 错误.故选B .5.【答案】B【解析】102sin cos 2αα+=,则()252sin cos 2αα+=,即2254sin 4sin cos cos 2αααα++=,可得224tan 4tan 15tan 12ααα++=+,解得tan 3α=-或13.那么22tan 3tan 21tan 4ααα==-.故选B .6.【答案】C【解析】设树苗可以放置的两个最佳坑位的编号为x ,则各位同学从各自树坑前来领取树苗所走的路程总和为:1152151015S x x x =-⨯+-⨯+⋅⋅⋅+-⨯.若S 取最小值,则函数()()()()22222221210101101210y x x x x x =-+-+⋅⋅⋅+-=-+++⋅⋅⋅+也取最小值,由二次函数的性质,可得函数()2222101101210y x x =-+++⋅⋅⋅+的对称轴为 5.5x =,又∵x 为正整数,故5x =或6.故选C 7.【答案】A【解析】构造函数()1ln f x x x =+,0x >,则()211f x x x'=-,0x >,当()0f x '=时,1x =,01x <<时,()0f x '<,()f x 单调递减;1x >时,()0f x '>,()f x 单调递增.∴()f x 在1x =处取最小值()11f =,∴1ln 1x x>-,(0x >且1x ≠),∴101ln1.111111>-=,∴c b >;构造函数()1e 1ln x g x x -=--,1x >,()11ex g x x-'=-,∵1x >,1e1x ->,11x<,∴()0g x '>,()g x 在()1,+∞上递增,∴()()10g x g >=,∴ 1.11e 1ln1.1-->,即0.1e 1ln1.1->,∴a c >.故选A .8.【答案】C【解析】因为()f x 是奇函数,所以()f x '是偶函数,因为()()0f x f x '+->,所以()()0f x f x '+>,令()()e x g x f x =,()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,()g x 在R 上单调递增.又因为()302f x f x ⎛⎫--+=⎪⎝⎭且()f x 是奇函数,所以()f x 的周期为3,()12024e f =,则()12ef =,所以()212e e e g =⨯=,则不等式()()()()111e 1e 12ex x f x f x g x g ++>⇒+>⇒+>,因为()g x 在R 上单调递增,所以12x +>,即1x >.故选C .二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AC【解析】∵()1cos1,sin1P ,()2cos 2,sin 2P -,()()()3cos 12,sin 12P ++,()1,0Q ,∴()1cos1,sin1OP = ,()2cos 2,sin 2OP =- ,()()()3cos 12,sin 12OP =++ ,()1,0OQ = ,()1cos11,sin1QP =- ,()2cos 21,sin 2QP =-- ,易知121OP OP == ,故A 正确;∵1QP = ,2QP = 12QP QP ≠ ,故B 错误;()3cos 12cos1cos 2sin1sin 2OQ OP ⋅=+=- ,12cos1cos 2sin1sin 2OP OP ⋅=-,∴312OQ OP OP OP ⋅=⋅ ,故C 正确;1cos1OQ OP ⋅= ,23cos 2cos 3sin 2sin 3cos 5cos1OP OP ⋅=-=≠,故D 错误.故选AC .10.【答案】ABD【解析】对于A :1a =,()32f x x x =++,()2310f x x '=+>,()f x 单调递增,无极值点,故A 正确;对于B :因为()()4f x f x +-=,所以函数()f x 的图象关于点()0,2中心对称,故B 正确;对于C :设切点()()1,x f x ,则切线方程为()()()111y f x f x x x '-=-,因为过点()0,2,所以()()()112f x f x x '-=-,331111223x ax x ax ---=--,解得10x =,即只有一个切点,即只有一条切线,故C 错误;对于D :()23f x x a '=+,当3a <-时,()0f x '=,x =,当,x ⎛∈-∞ ⎝时,()0f x '>,()f x 单调递增,当x ⎛∈ ⎝时,()0f x '<,()f x 单调递减,当x ⎫∈+∞⎪⎪⎭时,()0f x '>,()f x 单调递增,()f x 有极大值为20f ⎛=> ⎝,所以若函数()f x 有3个零点,()f x有极小值为20f =<,得到3a <-,故D 正确.故选ABD .11.【答案】AC【解析】∵π0,2x ⎡⎤∈⎢⎥⎣⎦,∴[]1sin 0,1x ∈,∴()[]12,4f x ∈,∵对任意的1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎣⎦,使得()()123f x f x a =+成立,∴()2min 23f x α+≤,()2max 43f x α+≥,∴()2sin 2f x x =+,∴()2min 2sin 3x α+≤-,()2max 1sin 3x α+≥-,sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上单调递减.在3π,2π2⎡⎤⎢⎥⎣⎦上单调递增.当3π4α=时,23π5π,44x α⎡⎤+∈⎢⎥⎣⎦,()2max 3π1sin sin043x α+=>>-,()2min 5π2sin sin42x α+==-23<-,故A 正确,当4π7α=时,24π15π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 15π7π12sin sin sin 14623x α+=>=->-,故B 错误,当6π7α=时,26π19π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 6π1sin sin073x α+=>>-,()2min 19πsin sin14x α+=<4π2sin 323=-<-,故C 正确,当8π7α=时,28π23π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 8π9π1sin sin sin 783x α+=<=-.故错误.故选AC .三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】π6【解析】由题知(OA = ,()0,3OB =,cos ,2OA OB OA OB OA OB⋅==⋅,∴π6AOB ∠=.故本题答案为π6.13.【答案】(],2-∞【解析】当0m ≤时,函数2x y m m =-+的图象是由2xy =向上平移m 个单位后,再向下平移m 个单位,函数图象还是2xy =的图象,满足题意,当02m <≤时,函数2x y m m =-+图象是由2xy =向下平移m 个单位后,再把x 轴下方的图象对称到上方,再向上平移m 个单位,根据图象可知02m <≤满足题意,2m >时不合题意.故本题答案为(],2-∞.14.23【解析】不妨设01a b c ≤≤≤≤,则3M b a c b c a =---,()622b a c b a c b c a --≤-+-=-∴32323M b a c b c a c a =----+,当且仅当b a c b -=-,0a =,1c =,即0a =,12b =,1c =时,等号成立.23+.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解析】(1)因为cos 3sin 0a C a C b c +--=,由正弦定理得sin cos 3sin sin sin 0A C A C B C +--=.即:()sin cos 3sin sin sin 0A C A C A C C +-+-=,()3sin cos sin sin 0sin 0A C A C C C --=>3cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭,因为0πA <<,所以ππ66A -=,得π3A =;(2)选条件②:7a =.在ABC △中,由余弦定理得:2222cos a b c bc A =+-,即222π7816cos3c c =+-⋅.整理得28150c c -+=,解得3c =或5c =.当3c =时,ABC △的面积为:1sin 632ABC S bc A ==△,当c=5时,ABC △的面积为:1sin 1032ABC S bc A ==△选条件③:AC,设AC边中点为M,连接BM,则BM=,4AM=,在ABM△中,由余弦定理得2222cosBM AB AM AB AM A=+-⋅⋅,即2π21168cos3AB AB=+-⋅.整理得2450AB AB--=,解得5AB=或1AB=-(舍).所以ABC△的面积为1sin2ABCS AB AC A=⋅⋅=△.16.【解析】(1)()2.32.4ky a xx⎛⎫=+-⎪-⎝⎭,[]2.55,2.75x∈;(2)由题意可知要同时满足以下条件:()()[]0.2 2.3 1.2 2.8 2.32.42.55,2.75a a x axx⎧⎛⎫+-≥-⎪⎪-⎝⎭⎨⎪∈⎩,∴2.6 2.75x≤≤,即单价最低定为2.6元/3m.17.【解析】(1)()1122xxf xa=⨯+,因为()f x是奇函数,所以()()f x f x-=-,所以11112222x xx xa a⎛⎫⨯+=-⨯+⎪⎝⎭,所以111202xxa⎛⎫⎛⎫++=⎪⎪⎝⎭⎝⎭,所以110a+=,1a=-;(2)因为()122xxf x=-,[]1,2x∈,所以22112222x xx xm⎛⎫-≥-⎪⎝⎭,所以122xxm≥+,[]1,2x∈,令2xt=,[]1,2x∈,[]2,4t∈,由于1y tt=+在[]2,4单调递增,所以117444m≥+=.18.【解析】(1)()f x的定义域为()0,+∞,()1lnf x x'=-,当()0f x'=时,ex=,当()0,ex∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,故()f x 在区间()0,e 内为增函数,在区间()e,+∞为减函数;(2)()2e 0f =,()22e 1ln e 1f '=-=-,所以()()22e ,ef 处切线方程为:()()201e y x -=--,即2e 0x y +-=;(3)先证122e x x +>,由(1)可知:2120e e x x <<<<,要证12212e 2e x x x x +>⇔>-,也就是要证:()()()()21112e 2e f x f x f x f x <-⇔<-,令()()()2e g x f x f x =--,()0,e x ∈,则()()()2ln 2e 2ln e 2e e 0g x x x '=--≥--=,所以()g x 在区间()0,e 内单调递增,()()e 0g x g <=,即122e x x +>,再证212e x x +<,由(2)可知曲线()f x 在点()2e ,0处的切线方程为()2e x x ϕ=-,令()()()()()222ln e 3ln e m x f x x x x x x x x ϕ=-=---+=--,()2ln m x x '=-,∴()m x 在e x =处取得极大值为0,故当()0,e x ∈时,()()f x x ϕ<,()()12m f x f x ==,则()()2222e m f x x x ϕ=<=-,即22e m x +<,又10e x <<,()()111111112ln 1ln m f x x x x x x x x ==-=+->,∴2122e x x m x +<+<.19.【解析】(1)将20分成正整数1,,n x x ⋅⋅⋅之和,即120n x x =+⋅⋅⋅+,假定乘积1n p x x =⋅⋅⋅已经最大.若11x =,则将1x 与2x 合并为一个数1221x x x +=+,其和不变,乘积由122x x x =增加到21x +,说明原来的p 不是最大,不满足假设,故2i x ≥,同理()21,2,,i x i n ≥=⋅⋅⋅.将每个大于2的22i i x x =+-拆成2,2i x -之和,和不变,乘积()224i i i x x x -≤⇒≤.故所有的i x 只能取2,3,4之一,而42222=⨯=+,所以将i x 取2和3即可.如果2的个数≥3,将3个2换成两个3,这时和不变,乘积则由8变成9,故在p 中2的个数不超过2个.那只能是202333333=++++++,最大乘积为6321458⨯=;(2)①证明:先证:1ex x -≥.令()1e x f x x -=-,则()1e 1x f x -'=-,()10f '=,且()()10f x f ≥=,1-≥1,2,,i n =⋅⋅⋅,1111⋅⋅⋅⋅⋅≥,1n ≥0n ≥,∴12n a a a n++⋅⋅⋅+≥②让n 固定,设n 个正实数1,,n x x ⋅⋅⋅之和为20,120n x x n n +⋅⋅⋅+≤=,1220nn p x x x n ⎛⎫=⋅⋅⋅≤ ⎪⎝⎭,要是20nn ⎛⎫ ⎪⎝⎭最大,20ln nn ⎛⎫⎪⎝⎭最大即可,令()()20ln ln 20ln tg t t t t ⎛⎫==- ⎪⎝⎭,其中*t ∈N ,()20ln ln e g t t '=-,∴7t ≤时,()g t 单调递增,8t ≥时,()g t 单调递减,而()()()()87787ln 207ln 78ln 208ln 8ln 8ln 7200g g -=---=-⨯>,所以这些正实数乘积的最大值为7207⎛⎫⎪⎝⎭.。
2025届湖南省部分学校高三上学期10月月考数学试题(含答案)
2025届高三10月联考数学本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前、考生务必将自己的姓名、准考证号填写在本试卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后、再选涂其他答案:回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后、将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知集合,.若,则( )A. B. 0 C. 1 D. 22. 已知a ,,则“”是“”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知是关于的方程的一个虚根,则( )A. B. 2C. D. 14. 设是锐角,,则( )A.B.C.D.5. 已知函数,在上单调递增,则的取值范围是( )A. B. C. D. 6. 已知点,,.动点满足,则的最大值为( )A. B. C. 30D. 31.{|ln ||0}A x x ==2{,}B m m =B A ⊆m =1-b ∈R 22a b >e e a b >i(,)a b a b +∈R x 220()x x c c ++=∈R a =2-1-θππcos cos tan 44θθθ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭tan θ=11-()2,0e ,0x x ax x f x ax x ⎧-+<=⎨-≥⎩R a [1,)+∞[0,1][1,1]-(,1]-∞(1,1)A -(1,1)B -(3,3)C P 222||||||70PA PB PC ++=PA PB ⋅17. 存在函数满足:对任意都有( )A. B. C. D. 8. 已知,是双曲线的左、右顶点,为双曲线上一点,且若,则的面积为( )A. B. C. D. 二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分.9. 已知函数,则( )A. ,为奇函数B. 当时,单调递增C. ,使得恰有一个极值点D. 当时,存在三个零点10. 已知正项等比数列的前项积为,且是互不相等的正整数,则( )A. 若,则 B. 若,则C. 若,则 D. 若,则11. 如图,正方体中,为棱的中点,为平面上的动点,设直线与底面所成的角为,直线EP 与底面所成的角为,平面与底面的夹角为,平面与底面的夹角为,则( )A. 若,则点在圆上B. 若,则点在双曲线上C. 若,则点在抛物线上D. 若,则点在直线上三、填空题:本题共3小题,每小题5分,共15分.()f x R x ∈()||3ex f x=()31f x x x =+()22f x x x+=()cos 2cos f x x=A B 22:1189x y C -=P tan APB ∠=PAB3()f x x ax =-a ∀∈R ()f x 0a <()f x a ∃∈R ()f x 0a >()f x {}n a n n T ,,m n p 2m n p +=2m n p a a a =2m n p a a a =2m n p +=mn T T =1m n T +=1m nT +=m nT T =1111ABCD ABC D -E 1BB P ABCD 1A P ABCD αABCD β11PA D ABCD γ11PC D ABCD θαβ=P γθ=P αθ=P βθ=P12. 设向量,,则,则__________.13. 已知,,,且恒成立,则的取值范围是__________.14. 已知函数在上单调递减,则最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在中,a ,b ,c 分别是内角A ,B ,C 的对边,且.(1)若,求;(2)若,求的面积的最大值.16. 如图,,分别为椭圆的左、右顶点,为第一象限上一点,且,过点的直线与有唯一的公共点.(1)求的方程;(2)过原点作直线的平行线与椭圆C 交于M ,N 两点,证明:P ,M ,,N四点共圆,并求该圆的标准方程.17. 如图,四棱锥的底面为正方形,E ,F 分别为PA ,PC 的中点,且平面平面.(1)证明:;(2)若,当四棱锥体积最大时,求平面与平面的夹角的余弦值.的的(1,2)a = (2,3)b = ()a b b λ+⊥λ=x y 0a >248y a x x xy++≥a ()2cos sin 2f x x x =⋅[],a b b a -ABC V 2225b c a +=sin B C =cos A 8AB AC ⋅=ABC V 1A 2A 22:143x y C +=P C 2PO PA =P l C P l O l 1A P ABCD -ABCD PBD ⊥BEF PA PC =PB =P ABCD -PAB BEF18. 若数列共有项,都有,其中为常数,则称数列是一个项数为的“对数等和数列”,其中称为“对数等和常数”.已知数列是一个项数为的对数等和数列,对数等和常数为.(1)若,,,求的值;(2)定义数列满足:,,2,3,…,m(i )证明:数列是一个项数为对数等和数列;(ii )已知数列是首项为1024,公比为的等比数列,若,求的值.19. 已知函数(,且).(1)当时,证明:为增函数;(2)若存在两个极值点,.(i )求的取值范围;(ii )设的极大值为,求的取值范围..的{}n c ()*,3m m m ∈≥N ()*,i i i m ∀∈≤N 1ln ln m ii c c R +-+=R {}n c m R {}n a m R 9m =11a =54a =9a {}n b 1im ii a b a +-=1i ={}n b m {}n b 140R =1mi i ia =∑()log xa f x a x =0a >1a ≠e a =()f x ()f x 1x 2x a ()f x M M2025届高三10月联考数学本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前、考生务必将自己的姓名、准考证号填写在本试卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后、再选涂其他答案:回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后、将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】A二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分.【9题答案】【10题答案】【答案】ACD 【11题答案】【答案】AC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】##四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1 (2)3【16题答案】【答案】(1) (2)证明见解析,【17题答案】【答案】(1)证明见解析 (2【18题答案】【答案】(1)(2)(i )证明见解析;(ii )138-[)4,+∞2π32π3122y x =-+2211965168256x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭916a =2048132【答案】(1)证明见解析(2)(i );(ii )()ee ,a ∈+∞(1,0)-。
江苏省盐城中学2024-2025学年高三上学期10月月考数学试题
江苏省盐城中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}3,2,1,0,1,2,3U =---,{}1,0,1A =-,{}1,2B =,则()U A B ⋃=ð( ) A .{}2,3- B .{}3,2,3- C .{}3,2,3-- D .{}3,2,1,0,2,3---2.若复数z 满足1ii z-=,则z =( )AB .2C D .13.“213x -≥”是“201x x -≥+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.在ABC V 中,2,CD DB AE ED ==u u u r u u u r u u u r u u u r ,则CE =u u u r( )A .1163AB AC -u u ur u u u rB .1263AB AC -u u ur u u u rC .1536AB AC -u u ur u u u rD .1133AB AC -u u ur u u u r5.在一个空旷的房间中大声讲话会产生回音,这种现象叫做“混响”.用声强的大小来度量声音的强弱,假设讲话瞬间发出声音的声强为0W ,则经过t 秒后这段声音的声强变为()0e tW t W τ-=(τ为常数).把混响时间()R T 定义为声音的声强衰减到讲话之初的610-倍所需时间,则R T 约为( )(参考数据ln 20.7≈,ln5 1.6≈) A .4.2τB .9.6τC .13.8τD .23τ6.化简cos20sin30cos40sin40cos60-=o o oo o( )A .1BC .2D 7.已知数列{}n a 的各项均为正数,且11a =,对于任意的*n ∈N ,均有121n n a a +=+,()22log 11n n b a =+-.若在数列{}n b 中去掉{}n a 的项,余下的项组成数列{}n c ,则1220c c c +++=L ( )A .599B .569C .554D .5688.已知函数11()221xf x =-+,()f x '是()f x 的导函数,则下列结论正确的是( ) A .()()0f x f x --= B .()0f x '<C .若120x x <<,则()()1221x f x x f x >D .若120x x <<,则()()()1212f x f x f x x +>+二、多选题9.下列命题中,正确的是( )A .在ABC V 中,若cos cos a A bB =,则ABC V 必是等腰直角三角形 B .在锐角ABC V 中,不等式sin cos A B >恒成立 C .在ABC V 中,若A B >,则sin sin A B >D .在ABC V 中,若260,B b ac =︒=,则ABC V 必是等边三角形 10.已知0,0,2a b a b >>+=,则( )A .1≥abB .222a bb a +≥ C .145aa b+≥ D .224a b ab ++<11.已知函数()2ln 11f x x x =---,则下列结论正确的是( ) A .若0a b <<,则()()f a f b < B .()()20242025log 2025log 20240f f +=C .若()()()e 1,0,1,0,e 1b b f a b a b +=-∈∈+∞-,则e 1b a =D .若()1,2,a ∈则()()1f a f a ->三、填空题12.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若sin :sin :sin 2:3:4A B C =,则sin C =. 13.已知函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭,()f x '为()f x 的导函数,()f x '在π0,2⎡⎤⎢⎥⎣⎦上单调递减,则正实数ω的取值范围为.14.已知函数32()f x x ax bx c =+++恰有两个零点12,x x 和一个极大值点()0102x x x x <<,且102,,x x x 成等比数列.若()0()f x f x >的解集为(5,)+∞,则0x =.四、解答题15.已知函数()ππsin 2cos cos 2cos 022f x x x ϕϕϕ⎛⎫⎛⎫=-+<< ⎪⎪⎝⎭⎝⎭,对x ∀∈R ,有()π3f x f ⎛⎫≤ ⎪⎝⎭. (1)求ϕ的值及()f x 的单调递增区间; (2)若()00π10,,43x f x ⎡⎤∈=⎢⎥⎣⎦时,求0sin 2x .16.已知数列{}n a 的前n 项和为n S ,1112,34n n n a S S a ++=+=-. (1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个实数,使这n +2个数依次组成公差为dn 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和Tn17.在ABC V 中,AC =,且BC 边上的中线AD 长为1. (1)若5π6BAC ∠=,求BC 的长; (2)若2ABC DAC ∠=∠,求BC 的长. 18.设函数()e ,()ln x f x g x x ==.(1)已知e ln x kx x ≥≥对任意(0,)x ∈+∞恒成立,求实数k 的取值范围; (2)已知直线l 与曲线(),()f x g x 分别切于点()()()()1122,,,x f x x g x ,其中1>0x . ①求证:212e e x --<<;②已知()21e 0xx x x λ-++≤对任意[)1,x x ∞∈+恒成立,求λ的最大值.19.若数列 a n 的各项均为正数,且对任意的相邻三项11t t t a a a -+,,,都满足211t t t a a a -+≤,则称该数列为“对数性凸数列”,若对任意的相邻三项11t t t a a a -+,,,都满足112t t t a a a -++≤则称该数列为“凸数列”.(1)已知正项数列{}n c 是一个“凸数列”,且e n c na =,(其中e 为自然常数,*N n ∈),证明:数列 a n 是一个“对数性凸数列”;(2)若关于x 的函数231423()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 是一个“对数性凸数列”;(3)设正项数列01,,,n a a a L 是一个“对数性凸数列”证明:110101111111n n n n i j i j i j i j a a a a n n n n --====⎛⎫⎛⎫⎛⎫⎛⎫≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑.。
黑龙江省2024-2025学年高三上学期10月月考试题 数学含答案
黑龙江省2024-2025学年高三学年上学期第二次月考数学试题(答案在最后)考试时间:120分钟总分:150分命题人:高三数学备课组一、单项选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合要求)1.若集合},{0|23A x mx m =->∈R ,其中2A ∈且1A ∉,则实数m 的取值范围是()A.33,42⎛⎤⎥⎝⎦B.33,42⎡⎫⎪⎢⎣⎭C.33,42⎛⎫⎪⎝⎭D.33,42⎡⎤⎢⎥⎣⎦2.“5π12α=”是“223cos sin 2αα-=-”的()A.充要条件B.既不充分又不必要条件C.必要不充分条件D.充分不必要条件3.已知复数z 满足()()22i 1i z -=+,则复数z 的共轭复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.若正数a b ,满足1232ab a b =++,则ab 的最小值为()A.3B.6C.9D.125.已知函数=的定义域为,且−=,若函数=的图象与函数()2log 22x xy -=+的图象有交点,且交点个数为奇数,则()0f =()A .1- B.0C.1D.26.在ABC V 中,6BC =,4AB =,π2CBA ∠=,设点D 为AC 的中点,E 在BC 上,且0AE BD ⋅= ,则BC AE ⋅= ()A.16B.12C.8D.4-7.已知函数()445sin cos 8f x x x ωω=+-在π0,4⎛⎤⎥⎝⎦上有且仅有两个零点,则ω的取值范围是()A.48,33⎛⎤ ⎥⎝⎦B.48,33⎡⎫⎪⎢⎣⎭C.81633⎛⎤ ⎥⎝⎦, D.816,33⎡⎫⎪⎢⎣⎭8.在ABC V 中,内角,,A B C 所对的边分别为,,.a b c 已知222π,24,3A b c ABC =+= 的外接圆半径R D =是边AC 的中点,则BD 长为()A.1+ B. C.D.二、多项选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有错选得0分)9.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()A.该图像向右平移π6个单位长度可得3sin2y x =的图象B.函数=的图像关于点π,06⎛⎫-⎪⎝⎭对称C.函数=的图像关于直线5π12x =-对称D.函数=在2ππ,36⎡⎤--⎢⎥⎣⎦上单调递减10.已知a ,b ,c是平面上的三个非零向量,那么()A.若()()a b c b c a ⋅=⋅,则a c∥ B.若a b a b +=-,则0a b ⋅= C.若a b a b ==+ ,则a 与a b - 的夹角为π3D.若a b a c ⋅=⋅r r r r,则b ,c 在a 方向上的投影向量相同11.定义在R 上的函数()f x 满足()()()()()322,6,12f x f x f f x f x f ⎛⎫++=+=-=⎪⎝⎭,则()A.()f x 是周期函数B.()20240f =C.()f x 的图象关于直线()21x k k =-∈Z 对称D.20241120242k k f k =⎛⎫-= ⎪⎝⎭∑三、填空题(共3小题,每小题5分,共15分)12.已知πsin 63x ⎛⎫+= ⎪⎝⎭,则ππcos 2cos 233πcos 2sin cos 3x x x x x⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭________.13.若数列{}n a 满足211111n na a a +==-,,则985a =__________.14.已知函数()f x 及其导函数′的定义域均为ππ,22⎛⎫-⎪⎝⎭,且()f x 为偶函数,若0x ≥时,()()tan f x f x x '≥,且π23f ⎛⎫= ⎪⎝⎭,则不等式()1cos f x x <的解集为__________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知12cos sin 2sin sin BC A B=+.(1)求C ;(2)若32a b c +=且3a =,求ABC V 的外接圆半径.16.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c,设向量π2π(2sin ),(cos ,cos sin ),(),,63m A A A n A A A f A m n A ⎡⎤=+=-=⋅∈⎢⎥⎣⎦.(1)求函数(A)f 的最小值;(2)若6()0,sin 2f A a B C ==+=,求ABC V 的面积.17.已知锐角ABC V 的三个内角,,A B C ,所对的边为,,a b c ,()()()cos cos cos cos sin sin A B A B C C A +-=-.(1)求角B 的大小;(2)求222a cb +的取值范围.18.已知函数()()()22ln 1f x ax a x x a =-+++∈R .(1)当1a =时,求()f x 的极值;(2)若()12,0,x x ∀∈+∞,当12x x ≠时,()()12122f x f x x x ->--恒成立,求a 的取值范围.19.已知函数()log a axf x x =.(1)当e a =时,设()()e 1F x x f x -=,求在1x =处的切线方程;(2)当2a =时,求()f x 的单调区间;(3)若曲线=与直线21y a=有且仅有两个交点,求a 的取值范围.黑龙江省2024-2025学年高三学年上学期第二次月考数学试题考试时间:120分钟总分:150分命题人:高三数学备课组一、单项选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合要求)【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D二、多项选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有错选得0分)【9题答案】【答案】ABC【10题答案】【答案】ABD【11题答案】【答案】ABC三、填空题(共3小题,每小题5分,共15分)【12题答案】【答案】-【13题答案】【答案】1011【14题答案】【答案】ππ,33⎛⎫-⎪⎝⎭四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)【15题答案】【答案】(1)2π3C =(2)3【16题答案】【答案】(1)−2(2)ABC S =!【17题答案】【答案】(1)π4(2)(3,2【18题答案】【答案】(1)()f x 的极大值为1ln24--,()f x 的极小值为1-.(2)[0,8].【19题答案】【答案】(1)1y x =-(2)增区间为(,减区间为)∞+(3)()()1,e e,∞⋃+。
北京市2025届高三上学期10月月考数学试题含答案
北京市2024-2025学年高三上学期10月月考数学试题(答案在最后)(清华附中朝阳望京学校)2024.10.10姓名____________一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{}0U x x =>,集合{}23A x x =≤≤,则U A =ð()A.(][)0,23,+∞B.()()0,23,+∞ C.(][),23,-∞⋃+∞ D.()(),23,-∞⋃+∞【答案】B 【解析】【分析】由补集定义可直接求得结果.【详解】()0,U =+∞ ,[]2,3A =,()()0,23,U A ∴=+∞ ð.故选:B.2.若等差数列{}n a 和等比数列{}n b 满足11a b =,222a b ==,48a =,则{}n b 的公比为()A.2B.2- C.4D.4-【答案】B 【解析】【分析】根据等差数列的基本量运算可得111a b ==-,然后利用等比数列的概念结合条件即得.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则242822a a d d +=+==,所以3d =,∴22123b a a ===+,111a b ==-,所以212b q b ==-.故选:B.3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称.若3sin 5α=,则cos β=()A.45-B.45C.35-D.35【答案】D 【解析】【分析】根据对称关系可得()22k k παβπ+=+∈Z ,利用诱导公式可求得结果.【详解】y x = 的倾斜角为4π,α\与β满足()22242k k k ππαβππ+=⨯+=+∈Z ,3cos cos 2cos sin 225k ππβπααα⎛⎫⎛⎫∴=+-=-==⎪ ⎪⎝⎭⎝⎭.故选:D.4.若点()1,1M 为圆22:40C x y x +-=的弦AB 的中点,则直线AB 的方程是()A.20x y --=B.20x y +-=C.0x y -=D.0x y +=【答案】C 【解析】【分析】由垂径定理可知MC AB ⊥,求出直线AB 的斜率,利用点斜式可得出直线AB 的方程.【详解】圆C 的标准方程方程为()2224x y -+=,()221214-+< ,即点M 在圆C 内,圆心()2,0C ,10112MC k -==--,由垂径定理可知MC AB ⊥,则1AB k =,故直线AB 的方程为11y x -=-,即0x y -=.故选:C.5.已知D 是边长为2的正△ABC 边BC 上的动点,则AB AD ⋅的取值范围是()A.B.2]C.[0,2]D.[2,4]【答案】D 【解析】【分析】根据向量数量积的几何意义可得||cos [1,2]AD DAB ∠∈ ,再由||||cos AD AB D A A B AD B =∠⋅即可求范围.【详解】由D 在边BC 上运动,且△ABC 为边长为2的正三角形,所以03DAB π≤∠≤,则[]cos 1,2AB DAB ∠∈ ,由||||cos [2,4]AD AB D D B A A A B =∠⋅∈.故选:D6.若0a b >>,则①11b a >;②11a ab b +>+>的序号是()A.①②B.①③C.②③D.①②③【答案】A 【解析】【分析】对①,由a b >两边同除ab 化简即可判断;对②,由a b >得a ab b ab +>+,两边同除()1b b +化简即可判断;>>【详解】对①,0a b a b ab ab>>⇒>,即11b a >,①对;对②,由()()011a b a ab b ab a b b a >>⇒+>+⇒+>+,则()()()()111111a b b a a a b b b b b b +++>⇒>+++,②对;对③,由>,>,与0a b >>矛盾,③错;故选:A7.若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A.1m < B.1m ≤ C.1m > D.1m ≥【答案】B 【解析】【分析】不等式能成立,等价于方程有实数解,用判别式计算求参数即可.【详解】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.8.“1a =”是“函数()22x x af x a+=-具有奇偶性”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性的定义,及奇偶性的定义求参数a ,判断题设条件间的关系即可.【详解】当1a =时21()21x x f x +=-,则定义域为{|0}x x ≠,211221()()211221x x x x xx f x f x --+++-===-=----,故()f x 为奇函数,充分性成立;若2()2x x af x a+=-具有奇偶性,当()f x 为偶函数,则212()()212x x x xa a f x f x a a --++⋅-===--⋅,所以212212x xx xa a a a ++⋅=--⋅恒成立,可得0a =;当()f x 为奇函数,则212()()212x x x xa a f x f x a a --++⋅-===---⋅,所以212212x xx xa a a a ++⋅-=--⋅恒成立,可得1a =或=−1;所以必要性不成立;综上,“1a =”是“函数()22x x af x a+=-具有奇偶性”的充分而不必要条件.故选:A9.已知函数()32x x f x =-,则()A.()f x 在R 上单调递增B.对R,()1x f x ∀∈>-恒成立C.不存在正实数a ,使得函数()xf x y a=为奇函数D.方程()f x x =只有一个解【答案】B【分析】对()f x 求导,研究()f x '在0x ≥、0x <上的符号,结合指数幂的性质判断()f x '零点的存在性,进而确定单调性区间、最小值,进而判断A 、B 的正误;利用奇偶性定义求参数a 判断C ;由(0)0f =、(1)1f =即可排除D.【详解】由3ln 3ln 22[(ln 3ln ()322]2x x x xf x =-'=-,而20x >,当0x ≥时()0f x '>,即(0,)+∞上()f x 递增,且(30)2x x f x =->恒成立;而0x <,令()0f x '=,可得3ln 2()2ln 3x=,所以00x x ∃=<使03ln 2(2ln 3x =,综上,0(,)x -∞上()0f x '<,()f x 递减;0(,)x +∞上()0f x '>,()f x 递增;故在R 上不单调递增,A 错误;所以0x x =时,有最小值0000002()323()3ln 3[1]3(1)ln 2x x x x xf x ===---,而0031x <<,ln 310ln 2<-,所以0ln 3ln 4111ln 2()ln 2f x >-->=-,故R,()1x f x ∀∈>-恒成立,B 正确;令()()x f x y g x a ==为奇函数且0a >,则3232()()x x x x x xg x g x a a ------==-=-恒成立,所以6(23)23x x x x x xxaa --=恒成立,则a =满足要求,C 错误;显然000)20(3f -==,故0x =为一个解,且(1)321f =-=,即1x =为另一个解,显然不止有一个解,D 错误.故选:B【点睛】关键点点睛:A 、B 判断注意分类讨论()f x '的符号,结合指数幂的性质确定导函数的零点位置,C 、D 应用奇偶性定义得到等式恒成立求参、特殊值法直接确定()f x x =的解.10.如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为()A. B.C. D.【答案】C 【解析】【分析】根据速度差函数的定义,分[0,6],[6,10],[10,12],[12,15]x x x x ∈∈∈∈四种情况,分别求得函数解析式,从而得到函数图像.【详解】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =;当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =;当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =,结合选项C 满足“速度差函数”解析式,故选:C.二、填空题共5小题,每小题5分,共25分.11.函数()1ln 1f x x x =+-的定义域是____________.【答案】()()0,11+,⋃∞.【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,10x x -≠⎧⎨>⎩故答案为:()()0,11,+∞ .【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12.直线:1l x y +=截圆22220x y x y +--=的弦长=___________.【答案】【解析】【分析】由圆的弦长与半径、弦心距的关系,求直线l 被圆C 截得的弦长.【详解】线l 的方程为10x y +-=,圆心(1,1)C 到直线l 的距离2d ==.∴此时直线l 被圆C 截得的弦长为=..13.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点,平面AEF 与平面PBC ____________(填“垂直”或“不垂直”);AEF △的面积的最大值为_____________.【答案】①.垂直②.【解析】【分析】根据线面垂直的的性质定理,判定定理,可证AE ⊥平面PBC ,根据面面垂直的判定定理,即可得证.分析可得,当点F 位于点C 时,面积最大,代入数据,即可得答案.【详解】因为PA ⊥底面ABCD ,⊂BC 平面ABCD ,所以PA BC ⊥,又底面ABCD 为正方形,所以AB BC ⊥,又AB PA A = ,,AB PA ⊂平面PAB ,所以⊥BC 平面PAB ,因为AE ⊂平面PAB ,所以BC AE ⊥,又2PA AB ==,所以PAB 为等腰直角三角形,且E 为线段PB 的中点,所以AE PB ⊥,又BC PB B ⋂=,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥与平面PBC .因为AE ⊥平面PBC ,EF ⊂平面PBC ,所以AE EF ⊥,所以当EF 最大时,AEF △的面积的最大,当F 位于点C 时,EF 最大且EF ==,所以AEF △的面积的最大为12⨯⨯=.14.设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为__________.②若()f x 有最小值,则实数a 的取值范围是__________.【答案】①.2-②.1a ≤-【解析】【分析】对①,分别计算出每段的范围或最小值即可得;对②,由指数函数在开区间内没有最小值,可得存在最小值则最小值一定在x a ≥段,结合二次函数的性质即可得.【详解】①当2a =-时,()221,22,2x x f x x x ⎧-<-=⎨-≥-⎩,则当2x <-时,()3211,4xf x ⎛⎫=-∈--⎪⎝⎭,当2x ≥-时,()222f x x =-≥-,故()f x 的最小值为2-;②由()221,,x x a f x x a x a⎧-<=⎨+≥⎩,则当x a <时,()()211,21x af x =-∈--,由()f x 有最小值,故当x a ≥时,()f x 的最小值小于等于1-,则当1a ≤-且x a ≥时,有()min 1f x a =≤-,符合要求;当1>-a 时,21y x a a =+≥>-,故不符合要求,故舍去.综上所述,1a ≤-.故答案为:2-;1a ≤-.15.设数列{}n a 的前n 项和为n S ,10a >,21(R)n n n a a a λλ+-=∈.给出下列四个结论:①{}n a 是递增数列;②{}R,n a λ∀∈都不是等差数列;③当1λ=时,1a 是{}n a 中的最小项;④当14λ≥时,20232022S >.其中所有正确结论的序号是____________.【答案】③④【解析】【分析】利用特殊数列排除①②,当0λ≠时显然有0n a ≠,对数列递推关系变形得到1n n na a a λ+=+,再判断③④即可.【详解】当数列{}n a 为常数列时,210n n n a a a +-=,{}n a 不是递增数列,是公差为0的等差数列,①②错误;当1λ=时,211n n na a a +-=,显然有0n a ≠,所以11n n na a a +=+,又因为10a >,所以由递推关系得0n a >,所以110n n na a a +-=>,故数列{}n a 是递增数列,1a 是{}n a 中的最小项,③正确;当14λ≥时,由③得0n a >,所以由基本不等式得11n n n a a a λ+=+≥=≥,当且仅当n na a λ=时等号成立,所以2320232022a a a ++⋅⋅⋅+≥,所以20232022S >,④正确.故选:③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,角,,A B C 所对的边分别为,,,a b c 已知222b c a bc +=+.(1)求A 的大小;(2)如果cos 2B b ==,求ABC V 的面积.【答案】(1)3π;(2)2【解析】【分析】(1)利用余弦定理的变形:222cos 2b c a A bc+-=即可求解.(2)利用正弦定理求出3a =,再根据三角形的内角和性质以及两角和的正弦公式求出sin C ,由三角形的面积公式即可求解.【详解】(1)222b c a bc +=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大石桥2016-2017学年度上学期10月月考高三数学(文科)试卷时间:120分钟 满分:150分一、选择题(每题5分,共60分)1.设{}{}2,,x y y B x x y x A R U -=====,则=)(B CA U ( )A .∅B .RC .{}0>x xD .{}02.若复数z 满足(33+i )z=3i (i 为虚数单位),则z 的共轭复数为( )A .i 2323-B .i 2323+C .i 4343- D .i 4343+ 3.“(,)2πθπ∈”是“sin cos 0θθ->”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.若函数())32(log 24++=x mx x f 的最小值为0,则m 的值为 ( ) A .31 B .21 C .3 D .2 5.设3log 6a =,5log 10b =,7log 14c =,则( )A .a b c >>B .b c a >>C .a c b >>D .c b a >>6.已知幂函数()y f x =的图象经过点1(4,)2,且(1)(102)f a f a +<-,则实数a 的取值范围是( ) A .(1,5)- B .(,3)-∞ C .(3,)+∞ D .(3,5)7.在数列{}n a 中,1112,1n n na a a a ++=-=-,则2016a =( ) A .-2 B .13- C.12 D .3 8.为了得到函数)32sin(π+=x y 的图象,只需把函数x y 2sin =的图象上所有的点( ) A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度 C .向左平行移动6π个单位长度 D .向右平行移动6π个单位长度9.已知不等式组⎪⎩⎪⎨⎧≤-≥-≥+224x y x y x 表示的平面区域为D ,点)0,1(),0,0(A O ,若点M 是D 上的动点,则OM 的最小值是( ) A .10103 B .55 C .22 D .1010 10.已知点P 是圆:224x y +=上的动点,点A ,B ,C 是以坐标原点为圆心的单位圆上的动点,且C 0AB⋅B =,则C PA +PB +P 的最小值为( )A .5B .6C .7D .811.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项之积为n T ,并且满足条件:11a >,201620171a a >,20162017101a a -<-,下列结论中正确的是( ) A .0q < B .2016201810a a -> C .2016T 是数列{}n T 中的最大值 D .20162017S S >12.已知函数()()22,0ln 1,0x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x mx ≥,则m 的取值范围是( ) A .(],0-∞ B .(],1-∞ C .[]2,1- D .[]2,0-二、填空题(每题5分,共20分)13.已知函数()4ln f x x x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为____________.14.函数()2sin()(0,||)2f x x πωϕωϕ=+><的图象如图所示,则ω= ,ϕ= .15.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为________米.16.已知数列{}n a 是各项均不为零的等差数列,n S 为其前n 项和,且()*21n n a S n N -=∈.若不等式8n n a nλ+≤对任意*n N ∈恒成立,则实数λ的最大值为_____________. 三、解答题(共70分,要规范书写)17.(12分)已知向量1sin ,2m A ⎛⎫= ⎪⎝⎭与()3,sin 3cos n A A =+共线,其中A 是ABC ∆的内角. (1)求角A 的大小 ;(2)若2BC =,求ABC ∆的面积S 的最大值,并判断S 取得最大值时ABC ∆的形状.18.(12分)已知数列{}n a 满足12a =,2*112()()n n n a a n N n ++=⋅∈ (1)求证:数列2n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求其通项公式; (2)设223log ()26n n a b n=-,求数列{ }n b 的前n 项和n T ; 19.(12分)如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点,E为BC 的中点.(1)求证:BD⊥平面AB 1E ;(2)求三棱锥C -ABD 的体积.20.(12分)从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm 到195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160;第二组[)160,165;…;第八组[]190,195.如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高在180cm 以上(含180cm )的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x y 、, 求满足“5x y -≤”的事件的概率.21.(12分)已知函数()(1)1x f x x e =-+,3211()32g x ax x =+. (1)求()f x 的单调区间及最小值;(2)若在区间[0,)+∞上不等式()()f x g x ≥恒成立,求实数a 的取值范围.二选一:22.(10分)已知曲线C 在直角坐标系xOy 下的参数方程为⎪⎩⎪⎨⎧=+=θθsin 3cos 31y x (θ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)直线l 的极坐标方程是33)6cos(=-πθρ,射线OT :)(03>=ρπθ与曲线C 交于A 点,与直线l 交于B 点,求线段AB 的长.23.(10分)选修4-5:不等式选讲已知()1f x x x a =-++,()22g a a a =--. (1)当3a =,解关于x 的不等式()()2f x g a >+;(2)当[),1x a ∈-时恒有()()f x g a ≤,求实数a 的取值范围.高三数学(文科)10月月考参考答案一、选择题(每题5分,共60分) 1-5 CCABA 6-10 DDCDA 12.D二、填空题(每题5分,共20分)13.043=-+y x 14.2;6π 15.31400 16.9 三、解答题(共70分)17.(12分)解:(1)因为//m n ,∴()1sin sin 3cos 32A A A +=⨯, ∴23sin 3sin cos 2A A A +=,∴31sin 2cos 2122A A -=,∴sin 216A π⎛⎫-= ⎪⎝⎭, 又∵()0,A π∈,∴112,666A πππ⎛⎫-∈- ⎪⎝⎭,∴262A ππ-=.∴3A π=. (2)由余弦定理得224b c bc =+-,13sin 24ABC S bc A bc ∆==, 而2222244b c bc bc b c bc ⎫+≥⇒≤⎬=+-⎭(当且仅当“b c =”时等号成立), ∴343ABC S ∆≤⨯=,当ABC ∆的面积取最大值时,b c =, 又3A π=,故此时ABC ∆为等边三角形.18.(12分)解:(1)12a =,2*112(1)()n n a a n N n+=+⋅∈ 1222(1)n n a a n n +∴=⋅+,*n N ∈2{}n a n ∴为等比数列 121222221n n n n n a a a n n -∴=⋅=∴=⋅ (2)2223log ()263log 226326n n n a b n n=-=-=- ,123b ∴=- 当8n ≤时,3260n b n =-<,当9n ≥时, 3260n b n =->。
设数列{}n b 的前n 项和为n S ,则当8n ≤时,121212()()()()n n n n n T b b b b b b b b b S =++⋅⋅⋅+=-+-+⋅⋅⋅-=-++⋅⋅⋅=-所以,21()(23326)493222n n b b n n n n T +⋅-+--=-=-= 当9n ≥时128912891289888()()()()()()2n nn n n n T b b b b b b b b b b b b b b b S S S S S =++⋅⋅⋅++⋅⋅⋅=-+-+⋅⋅⋅-++⋅⋅⋅+=-++⋅⋅⋅+++⋅⋅⋅+=-+-=-所以,2118()()8(23326)34940022002222n n b b n b b n n n n T +⋅+⨯-+-⋅-+=-⋅=+= 综上,22493 (8)2349400 (9)2n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪≥⎪⎩ 19.(12分) 解:(1)∵棱柱ABC -A 1B 1C 1是正三棱柱,且E 为BC 的中点,∴平面ABC⊥平面BCC 1B 1,又AE⊥BC 且AE ⊂平面ABC,∴AE⊥平面BCC 1B 1 而D 为CC 1中点,且BD ⊂平面BCC 1B 1∴ AE⊥BD由棱长全相等知Rt△BCD≌Rt△B 1BE,即111+=+90CBD B EB BB E B EB ∠∠∠∠=︒,故BD⊥B 1E, 又AE ⋂B 1E =E ,∴BD⊥平面AB 1E(2)C ABD A CBD V V --= 1113213332BCD S AE ∆=⋅=⨯⨯⨯⨯=20.(12分) 解:(1)由频率分布直方图得:前五组频率为()0.0080.0160.040.040.0650.82++++⨯=, 后三组频率为10.820.18-=,人数为0.18509⨯=,∴这所学校高三年级全体男生身高在180cm 以上(含180cm )的人数为8000.18144⨯=............................... (2)由频率分布直方图得第八组频率为0.00850.04⨯=,人数为0.04502⨯=,设第六组人数为m ,则第七组人数为927m m --=-,又()227m m +=-,解得4m =,所以第六组人数为4,第七组人数为3,频率分别等于06.0,08.0,频率组距分别等于012.0,016.0.其完整的频率分布直方图如图,…(3)由(2)知身高在[)180185,内的人数为4,设为a b c d 、、、,身高在[]190,195内的人数为2,设为A B 、,若[),180,185x y ∈时,有ab ac ad bc bd cd 、、、、、共6种情况;若[],190,195x y ∈时,有AB 共1种情况;若,x y 分别在[)180,185和[]190,195内时,有aA bA cA dA aB bB cB dB 、、、、、、、,共8种情况.所以基本事件总数为61815++=,….事件“5x y -≤”所包含的基本事件个数有617+=, ∴()7515P x y -≤=.… 21.(12分)解:(1)由x xe x f =)(/,当()0,∞-∈x 时,0)(/<x f ,()x f 是减函数, 当()∞+∈,0x 时,0)(/>x f ,()x f 是增函数, ()x f 的最小值为()00=f ,所以()x f 的增区间为()∞+,0,减区间为()0,∞-,最小值为0. (2)设函数()()()=-=x g x f x h 1)1(+-x e x ⎪⎭⎫ ⎝⎛+-232131x ax ,[)+∞∈,0x , 则()()[]1+-='ax e x x h x 因为[)+∞∈,0x ,所以()1+-ax e x 的符号就是()x h '的符号.设()()1+-=ax e x x ϕ,[)+∞∈,0x ,则()a e x x-='ϕ, 因为[)+∞∈,0x ,所以1≥x e ,①当1≤a 时,()0≥-='a e x xϕ,()x ϕ在[)+∞,0上是增函数,又()00=ϕ,所以()0≥x ϕ, ()0≥'x h ,()x h 在[)+∞,0上是增函数,又()00=h ,所以()0≥x h ,故1≤a 合乎题意②当1>a 时,由()0=-='a e x xϕ得0ln >=a x ,在区间[)a ln ,0上,()0<'x ϕ,()x ϕ是减函数,所 以 在区间()a ln ,0内,()0<x ϕ,所以()0<'x h ,()x h 在()a ln ,0上是减函数,()0<x h ,故1>a 不合题意综上所述,所求的实数a 的取值范围为(]1,∞-22.(10分)(1)02cos 22=--θρρ;(2)4解:(1)曲线C 的普通方程为3)1(22=+-y x ,又θρcos =x ,θρsin =y ,∴曲线C 的极坐标方程为02cos 22=--θρρ.(2)由2020302cos 222=⇒=--⇒⎪⎩⎪⎨⎧>==--ρρρρπθθρρ)(, 故射线OT 与曲线C 的交点A 的极坐标为)3,2(π;由60333)6cos(=⇒⎪⎪⎩⎪⎪⎨⎧>==-ρρπθπθρ)(,故射线OT 与直线l 的交点B 的极坐标为)3,6(π. ∴4||||=-=A B AB ρρ.23.(10分)解:(1)3a =时,()13f x x x =-++,()34g =. ∴()()2f x g a >+化为136x x -++>解之得:4x <-或2x >∴所求不等式解集为:()(),42,-∞-+∞. (2)[),1x a ∈-,∴()1f x a =+.∴()()22122303f x g a a a a a a a ≤⇔+≤--⇔--≥⇔≥或1a ≤- 又1a -<,∴1a >-综上,实数a 的取值范围为:[)3,+∞.。