九年级数学二次根式2
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。
【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
九年级数学二次根式知识点
九年级数学二次根式知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!九年级数学二次根式知识点提高数学考试成绩诀窍方法之一是,在考试前进行高水平高效率的复习,花时间去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。
初三数学二次根式知识点学习讲解
初三数学二次根式一、学习目标1.二次根式的定义、最简二次根式、同类二次根式;2.二次根式的运算。
二、知识点讲解二次根式定义一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
注意被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的判断方法根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
性质1. 任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在。
2. 零的平方根是零;3. 负数的平方根也有两个,它们是共轭的。
如负数a的平方根是±i。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示。
6. 当a≥0时,()22;()2与2中a取值范围是整个复平面。
7. ()2=a任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。
8. 逆用可将根号外的非负因式移到括号内。
算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。
负数没有算术平方根,0的算术平方根为0。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
有理化因式注意①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式;④一个二次根式可以与几个二次根式互为有理化因式。
分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
分母有理化即将分母从非有理数转化为有理数的过程最简二次根式①被开方数的因数是整数或字母,因式是整式;②被开方数中不含有可化为平方数或平方式的因数或因式。
九年级数学上册 第三章 二次根式教学案 苏教版
A B C第三章 二次根式教学案 苏教版3.1 二次根式教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a ≥0时,()2a = a ;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
教学重点:二次根式的概念以及二次根式的基本性质 教学难点:经历知识产生的过程,探索新知识. 教学过程: 一、预习( 一).知识回顾1.什么叫平方根? 什么叫算术平方根? 2. 计算:的平方根是 .(2)如图,在R ∆t ABC 中,AB=50m,BC=a m,则AC= m. (3)圆的面积为S,则圆的半径是 .(4)正方形的面积为3-b ,则边长为 .3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗? 得出:二次根式的定义.______________________________________________________ 二、例题讲解例1:说一说,下列各式是二次根式吗?(1)32 (2)6 (3)12- (4))0(≤-m m(5)x xy (、y 异号) (6)12+a (7)35例2:a 取何值时,下列二次根式有意义.(1)1+a (3) a 101- (2) a211- (4)2)1(-a (5)2x -练一练:书P59、1 三、二次根式性质的探索:1、二次根式性质的探索:22= ,即(4)2= ; 32= ,即(9)2= ;……观察上述等式的两边,你得到什么启示?得出二次根式的性质1: 揭示:当a ≥0时,()2a = a 。
2、例3、计算:(1)2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)(4=0,求x,y 的值。
(5)已知:3+,求y x 的值3、练习. (1)=2)32((2)2)32(-= 四、课堂小结 引导学生总结1、二次根式?你们能举出几个例子吗?2、a ≥0时,()2a = ?五、课堂检测 一、填空题。
初中数学知识点二次根式:二次根式的运算
初中数学知识点——二次根式:二次根式的运算二次根式的运算1.积的算术平方根的性质:(a≥0,b≥0)积的算术平方根等于每个因式的算术平方根的积2.乘法法则:(a≥0,b≥0)二次根式的乘法运算法则:两个二次根式相乘,等于把被开方数相乘,根指数不变。
3、商的算数平方根的性质=(a≥0,b0)4、除法法则(a≥0,b0)二次根式的除法运算法则:两个二次根式相除,等于把被开方数相除,根指数不变。
5、有理化因式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做互为有理化因式。
如:的有理化因式为;的有理化因式也是的有理化因式为;6、同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
7、合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
8、合并同类二次根式方法:二次根式的系数相加减,二次根式的被开放数及指数不变。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
初中数学华东师大九年级上册第21章 二次根式华师大版九上2 二次根式的意义 教案
【教学方法】启发式
实施教学过程设计
【教学过程】复习提问:
1、什么叫代数式?举出代数式的例子。
2、 是一个数吗?是一个有理数?是一个实数?
【新课讲解】
在前一章中,我们已经遇到过 , , 这样的式子,知道符号“ ”叫做二次根号,二次根号下的数叫做被开方数。因为在实数范围内,负数没有平方根。所以被开方数只能是正数或0,也就是说,被开方数只能是非负数。
科目
数学
年级
班级
时间
课题:二次根式的意义
教学目标
1、使学生通过本章的引言了解学习的必要性,了解二次根式的概念,能根据二次根式的概念,求出二次根号下的一次式中字母的取值范围。
教材分析
【教学重点】会求出二次根号下的一次式中字母的取值范围。
【教学难点】理解二次根式的概念。
一般的,式子 ( a≥0 )叫做二次根式。
由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须被开方数大于等于0。
从形式上看,二次根式必须具备以下两个条件:
( 1 )必须有二次根号;
( 2 )被开方数不能小于0。
例1:x是怎样的实数时,式子 在实数范围内有意义?
解:由x-2≥0,得x≥2
当x≥2时,式子 在实数范围内有意义。
课堂练习:第5页练习1、2、3
补充例题:
例:x是怎样的实数时,下列各式实数范围内有意义?
( 1 ) ( 2 )
解:( 1 )由 ≥0,解得:x取任意实数
∴当x取任意实数时,二次根式 在实数范围内都有意义。
( 2 )由x-1≥0,且x-1≠0解得:x>1
∴当x>1时,二次根式 在实数范围内都有意义。
课堂练习:
取什么实数时,下列各式有意义.
九年级上册数学《二次根式》知识点整理
九年级上册数学《二次根式》知识点整理二次根式本节研究指导:在研究二次根式时,我们不仅要研究它的概念,还要巩固平方根的知识。
这样有助于我们系统性研究,把零散的知识整合起来。
在本节中,我们需要掌握二次根式的有意义条件。
知识要点:1、二次根式的概念:形如a(a≥0)的式子叫做二次根式。
需要注意的是,被开方数可以是数、单项式、多项式、分式等代数式。
但是,a≥0是二次根式的前提条件。
例如,5、x2+1都是二次根式,而-5、-x2都不是二次根式。
2、取值范围:1)二次根式有意义的条件:由二次根式的意义可知,当a≥0时,a有意义,是二次根式。
因此,只要被开方数大于或等于零,就可以使二次根式有意义。
2)二次根式无意义的条件:由于负数没有算术平方根,所以当a<0时,a没有意义。
3、二次根式a(a≥0)的非负性:a(a≥0)表示a的算术平方根,也就是说,a(a≥0)是一个非负数,即a≥0.由于正数的算术平方根是正数,负数的算术平方根是不存在的,因此非负数的算术平方根也是非负数。
这个性质类似于绝对值、偶次方的性质,在解答题目时应用较多。
例如,如果a+b=0,则a=0,b=0;如果a-b=0,则a=0,b=0;如果a×b=0,则a=0,b=0.4、二次根式(a)的性质:a)=a(a≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
需要注意的是,这个性质公式(a)=a(a≥0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:如果a≥0,则a=(a)。
例如,2=(2),1=(1)。
5、二次根式的性质:a(a≥0)a2=a=___(a<0)描述为:一个数的平方的算术平方根等于这个数的绝对值。
需要注意的是:1)化简a2时,一定要弄明白被开方数的底数a是正数还是负数。
如果是正数或0,则等于a本身,即a2=a=a(a≥0);如果a是负数,则等于a的相反数-a,即2≈1.414,3≈1.732,5≈2.236,7≈2.646.2)a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义。
初中数学知识点二次根式:二次根式
初中数学知识点二次根式:二次根式1.二次根式:一样地,式子叫做二次根式。
注意:(1)若那个条件不成立,则不是二次根式;(2)是一个重要的非负数,即a≥0.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;二次根式的乘法法则:(a≥0,b≥0)。
二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小。
商的算术平方根:=(a≥0,b0),商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式运算的最后结果必须化为最简二次根式。
10.同类二次根式:几个二次根式化成最简二次根式后,假如被开方数相同,这几个二次根式叫做同类二次根式。
12.二次根式的混合运算:教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,往常学过的,在有理数范畴内的一切公式和运算律在二次根式的混合运算中都适用;要练说,得练听。
华师版九年级上册数学第21章 二次根式 二次根式
2
a
是先开方后平方;③运算结果不同:a=2 |a|= Nhomakorabea2
a
联系:与均为a非a负 0数 ,,且当2a≥0时,
a
a
0
,
a a.
2
a2 a
a2
2
a2 a
感悟新知
知3-练
1.若实数 a,b 满足|a+1|+ b-2=0,则 a+b= ____1____.
课堂小结
2
a
a2
a2
课后作业
作业1 必做:请完成教材课后习题 补充:
∴x>.
1
3x 7 7
3
1 3x
7
0,
3x 7 0,
知2-练
感悟新知
(3)欲使有x意义2 ,5 x
则必有 ∴2≤x≤5.
x 2 0, 5 x 0,
(4)欲使有意义,
则必有∴x≥-x 4且4 x≠2. x2
x 4 0,
x
2
0,
知2-练
感悟新知
方法归纳: 求含有字母的式子有意义的字母取值范围的方法:
感悟新知
知2-练
1.式子 x-1在实数范围内有意义,则 x 的取值
范围是( C )
A.x>0
B.x≥-1
C.x≥1
D.x≤1
感悟新知
知2-练
2.已知 y= x-4+ 4-x+3,则xy的值为( C )
A.43
B.-43
C.34
D.-34
感悟新知
知识点 3 二次根式的性质:( a)2 a, a2 a
达到一定的速度,这个速度称为第一宇宙速度.计算第一 宇宙速度的公式是:
其中g为重力加速度,R为地v 球半gR径, .
九年级上册数学书答案苏科版
三一文库()/初中三年级〔九年级上册数学书答案苏科版〕
导语:数学是研究数量结构、变化、以及空间模型等概念的
科学.它是物理、化学等学科的基础,而且与我们的生活息
息相关.所以说,学好数学对于我们每个同学来说都是非常
重要的.以下是整理的九年级上册数学书答案苏科版,希望
对大家有帮助。
第二十一章二次根式§21.1二次根式(一)一、1.C2.D3.D
二、1.,92.,3.4.1三、1.50m2.(1)(2)>-1(3)
(4)§21.1二次根式(二)一、1.C2.B3.D4.D二、1.,
2.13.;三、1.或-32.(1);(2)5;(3);(4);
(5);(6);3.原式=§21.2二次根式的乘除(一)一、1.C2.
D3.B二、1.<2.(为整数)3.12s4.三、1.(1)(2)
(3)(4)–1082.10cm23、cm§21.2二次根式的乘除(二)
一、1.C2.C3.D二、1.>32.3.(1);(2);4.6三、
1.(1)(2)(3)52.(1)(2)(3)3.,因此是倍.§21.2
二次根式的乘除(三)一、1.D2.A3.B二、1.2.,,3.14.
第1页共2页
三、1.(1)(2)102.3.(,0)(0,);§21.3二次根式的加
减(一)一、1.C2.A3.C二、1.(答案不,如:、)2.<<
3.1三、1.(1)(2)(3)2(4)2.§21.3二次根式
的加减(二)一、1.A2.A3.B4.A二、1.12.,3.三、1.(1)
(2)(3)4(4)22.因为>45所以王师傅的钢材不够用.
22。
华师大版九年级数学上册课本教材电子书第二十二章+二十三章
第22章二次根式 (2)§22.1二次根式 (3)阅读材料 (5)§22.2 二次根式的乘除法 (5)1.二次根式的乘法 (5)2.积的算术平方根 (6)3.二次根式的除法 (7)§22.3 二次根式的加减法 (9)小结 (12)复习题 (12)第22章二次根式人造地球卫星要冲出地球,围绕地球运行,发射时必须达到一定的速度,这个速度称为第一宇宙速度.计算第一宇宙速度的公式是υ,=gR其中g为重力加速度,R为地球半径.§22.1 二次根式在第12章我们学习了平方根和算术平方根的意义,引进了一个记号a .回顾当a 是正数时,a 表示a 的算术平方根,即正数a 的正的平方根.当a 是零时,a 等于0,它表示零的平方根,也叫做零的算术平方根.当a 是负数时,a 没有意义.概括a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有:(1)a ≥0(a ≥0);(2)2)(a =a (a ≥0). 形如a (a ≥0)的式子叫做二次根式.注意 在二次根式a 中,字母a 必须满足a ≥0,即被开方数必须是非负数.例x 是怎样的实数时,二次根式1-x 有意义? 分析要使二次根式有意义,必须且只须被开方数是非负数. 解 被开方数x-1≥0,即x ≥1.所以,当x ≥1时,二次根式1-x 有意义.思考2a 等于什么?我们不妨取a 的一些值,如2,-2,3,-3,……分别计算对应的a2的值,看看有什么规律: 22=4=2;2)2(-=4=2;23=9=3;2)3(-=9=3;……概括当a ≥0时,a a =2;当a <0时,a a -=2.这是二次根式的又一重要性质.如果二次根式的被开方数是一个完全平方,运用这个性质,可以将它“开方”出来,从而达到化简的目的.例如:22)2(4x x ==2x (x ≥0);2224)(x x x ==.练习1.计算:(1)2)8(;(2)2)9(;(3)81;(4)100.2.x 是怎样的实数时,下列二次根式有意义?(1)3+x ;(2)52-x ;(3)x1;(4)x -15. 3.2)(a 与2a 是一样的吗?说说你的理由,并与同学交流.习题22.11.x 是怎样的实数时,下列二次根式有意义?(1)1+x ;(2)23-x ;(3)123+x ;(4)x 231-. 2.计算:(1)2)7(;(2)2)32(;(3)94;(4)49a . 3.已知2<x <3,化简:3)2(2-+-x x .4.边长为a 的正方形桌面,正中间有一个边长为3a 的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.(第4题)阅读材料蚂蚁和大象一样重吗同学们一定听过蚂蚁和大象进行举重比赛的故事吧!蚂蚁能举起比它的体重重许多倍的火柴棒,而大象举起的却是比自己体重轻许多倍的一截圆木,结果蚂蚁获得了举重冠军!我们这里谈论的话题是: 蚂蚁和大象一样重吗?我们知道,即使是最大的蚂蚁与最小的大象,它们的重量明显不是一个数量级的.但是下面的“推导”却会让你大吃一惊: 蚂蚁和大象一样重!设蚂蚁重量为x 克,大象的重量为y 克,它们的重量和为2a 克,即x+y=2a .两边同乘以(x-y ),得(x+y)(x-y)=2a(x-y).即ay ax y x 2222-=-. 可变形为ay y ax x 2222-=-. 两边都加上2a ,得22)()(a y a x -=-. 于是 22)()(a y a x -=-, 可得a y a x -=-, 所以 y x =.这里竟然得出了蚂蚁和大象一样重的结论,岂不荒唐!那么毛病究竟出在哪里呢?亲爱的同学,你能找出来吗?§22.2 二次根式的乘除法1.二次根式的乘法计算:(1)254⨯与254⨯;(2)916⨯与916⨯.思考 对于32⨯与32⨯呢?从计算的结果我们发现,32⨯=32⨯这是什么道理呢?事实上,根据积的乘方法则,有32)3()2()32(222⨯=⨯=⨯, 并且32⨯>0, 所以32⨯是2×3的算术平方根,即32⨯=32⨯一般地,有ab b a =⋅(a ≥0,b ≥0). 这就是说,两个二次根式相乘,将它们的被开方数相乘.注意,在上式中,a 、b 都表示非负数.在本章中,如果没有特别说明,字母都表示正数. 例1 计算:(1)67⨯;(2)3221⨯. 解(1)426767=⨯=⨯.(2)41632213221==⨯=⨯. 2.积的算术平方根 上面得到的等式ab b a =⋅(a ≥0,b ≥0),也可以写成 b a ab ⋅=(a ≥0,b ≥0). 这就是说,积的算术平方根,等于各因式算术平方根的积.利用这个性质可以进行二次根式的化简.例2 化简,使被开方数不含完全平方的因式(或因数):(1)12;(2)34a ;(3)b a 4.解(1)32122⨯=322⨯=32=.(2)a a a ⋅⨯=2344a a ⋅=22a a 2=.(3)b a b a ⋅=44b a ⋅=22)(b a 2=.例2各题中给出的二次根式,被开方数的因式中有一些幂的指数不小于2,即含有完全平方的因式(或因数),如(1)中32122⨯=,(2)中a a a ⋅⋅=22324,(3)中b a b a ⋅=224)(,通常可根据积的算术平方根的性质,并利用a a =2(a ≥0),将这个因式(或因数)“开方”出来. 做一做计算下列各式,并将所得的结果化简:(1)63⨯;(2)a a 153⋅.3.二次根式的除法讨论两个二次根式相除,怎样进行呢?商的算术平方根又等于什么?试参考前两小节的研究,和同伴讨论,提出你的见解.概括一般地,有=b a________(a ≥0,b >0). 这就是说,两个二次根式相除,___________________________.例3计算: (1)315;(2)624.解 (1)5315315==. (2)24624624===.小题(2)也可先将分子化简为62,从而容易算得结果.上面得到的等式,也可以写成=b a______(a ≥0,b >0). 这就是说,商的算术平方根,等于__________________.利用这个性质可以进行二次根式的化简.例4 化简21.(要求分母中不含二次根式,并且二次根式中不含分母)解 2222222221212122===⨯⨯==. 这里,二次根式21的被开方数中含有分母,通常可利用分式的基本性质将它配成完全平方数,再“开方”出来.按照例2和例4的要求化简后的二次根式,被开方数中不含分母,并且被开方数中所有因式的幂的指数都小于2,像这样的二次根式称为最简二次根式.二次根式的除法,也可采用化去分母中根号的办法来进行,只要将分子、分母同乘以一个恰当的因式(也是二次根式)就可以了.如例4,将分子、分母同乘以2,得22)2(22221212==⨯⨯=. 练习1.化简:(1)27;(2)325a ;(3)31;(4)52. 2.计算:(1)3521⨯;(2)b b 62⋅;(3)208;(4)a a3965.3.现有一张边长为5cm 的正方形彩纸,欲从中剪下一个面积为其一半的正方形,问剪下的正方形边长是多少?(答案先用最简二次根式表示,再算出近似值,精确到0.01)习题22.21.化简:(1)250;(2)432x ;(3)714;(4)65. 2.计算:(1)3018⨯;(2)7523⨯;(3)368ab ab ⨯; (4)9840;(5)5120-;(6)x x 823.3.某液晶显示屏的对角线长36cm ,其长与宽之比为4∶3,试求该液晶显示屏的面积.4.本章导图中给出了第一宇宙速度的计算公式:gR =υ,其中g 通常取2/8.9秒米,R 约为6370千米.试计算第一宇宙速度.(结果用科学记数法表示,并保留两个有效数字)§22.3 二次根式的加减法试一试计算:(1)3233-;(2)a a a 423+-.概括 与整式中同类项的意义相类似,我们把像33与32-,a 3、a 2-与a 4这样的几个二次根式,称为同类二次根式.二次根式的加减,与整式的加减相类似,关键是将同类二次根式合并.例1 计算:3322323--+. 解 3322323--+)333()2223(-+-=322-=.思考 计算:12188++.分析 先将各二次根式化简:2224248=⨯=⨯=,=18______________________,=12______________________.解 12188++=+22________+___________=____________________.二次根式相加减,先把各个二次根式化简,再将同类二次根式合并.例2 计算:(1)451227+-;(2)x x x 916425-+. 解 (1)451227+-533233+-=533+=.(2)x x x 916425-+ x x x 3425-+= x )3425(-+= x 27=. 例3 计算: (1))12)(12(-+;(2))2)(2(b a b a -+.解 (1))12)(12(-+1121)2(22=-=-=.(2))2)(2(b a b a -+b a b a 2)2()(22-=-=.练习1.下列各组里的二次根式是不是同类二次根式?(1)122,27;(2)50,83;(3)ab 2,ab 83;(4)b a 23,227ab .2.下列二次根式中,哪些与24是同类二次根式?21,50,27,24,12. 3.计算:(1)433332+-;(2)75335-. 4.计算: (1))23)(23(-+;(2))32)(32(-+a a .习题22.31.下列各组里的二次根式是不是同类二次根式?(1)50,203;(2)372,28; (3)n m n m 2,2;(4)yx x y 2527,43. 2.计算:(1)245253-+-;(2)12273752+-;(3)2231872-+. 3.计算:(1))1)(1(x x -+;(2)))((b a b a --+. 4.用一根铁丝做成一个正方形,使它恰好能嵌入一个直径为20cm 的圆中(如图),求这根铁丝的长度.(结果精确到0.1cm )(第4题)5.已知二次根式12+a 与7是同类二次根式,试写出三个a 的可能取值.小结一、 知识结构二、 概括 1 理解符号a 的意义是研究二次根式的关键.a 表示非负数a 的算术平方根,即有:(1)a ≥0(a ≥0);(2)2)(a =a (a ≥0).要注意二次根式中字母的取值范围: 被开方数必须是非负数. 2 二次根式的化简是进行二次根式运算的重要手段,二次根式的化简主要包括两个方面:(1) 如果被开方数中含有分母,通常可利用分式的基本性质将分母配成完全平方,再“开方”出来.(2) 如果被开方数中含有完全平方的因式(或因数),可利用积的算术平方根的性质,将它“开方”出来.在化简过程中,都需要将被开方数中的完全平方“开方”出来,在这里,二次根式的性质“2)(a =a (a ≥0)”起着举足轻重的作用. 3 二次根式的运算,主要研究二次根式的乘除和加减.(1) 二次根式乘除,只需将被开方数进行乘除,其依据是:ab b a =⋅(a ≥0,b ≥0);ba b a=(a ≥0,b >0). (2) 二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.复习题A 组1.计算:(1)25⨯;(2)105⨯;(3)3514;(4)13252+;(5)3232245-;(6)3)8512(⨯+; (7)ab a ⋅2;(8)2245a a -(a ≥0); (9)3612-;(10))32)(32(n m n m -+. 2.下列各组里的二次根式是不是同类二次根式?(1)40,52;(2)372,218; (3)n m n m 2,2;(4)252,233ab b a . 3.x 取何值时,下列各二次根式有意义?(1)43-x ;(2)x 322+. 4.x 是怎样的实数时,x x x x -⋅-=--32)3)(2(?5.钳工车间用圆钢做正方形螺母,所需螺母边长为a ,问下料时至少要用直径多大的圆钢?(第5题)6.如图,边长为8米的正方形大厅,地面由大小完全相同的黑、白正方形方砖相间铺成.求每块方砖的边长.(第6题)B 组 7若02=+a a ,则a 的取值范围是__________________. 8若a a ---33有意义,则a 的值为______________. 9若22)2()2(-=-x x ,则x 的取值范围是________________. 10试写出一个式子,使它与12-之积不含二次根式. 11 数a 、b 在数轴上的位置如图所示,化简222)()1()1(b a b a ---++.(第11题)C 组 12 化简:981321211++++++ . 13 19世纪俄国文学巨匠列夫·托尔斯泰曾在作品《一个人需要很多土地吗》中写了这样一个故事:有一个叫巴霍姆的人到草原上去购买土地,卖地的酋长出了一个非常奇怪的地价“每天1000卢布”,意思是谁出1000卢布,只要他日出时从规定地点出发,日落前返回出发点,所走过的路线圈起的土地就全部归他.如果日落前不能回到出发点,那么他就得不到半点土地,白出1000卢布.巴霍姆觉得这个条件对自己有利,便付了1000卢布.第二天天刚亮,他就连忙在草原上大步向前走去.他走了足足有10俄里(1俄里≈1.0668公里),才朝左拐弯;接着又走了许久,才再向左拐弯;这样又走了2俄里,这时他发现天色不早,而自己离出发点还足有15俄里的路程,于是只得改变方向,径直朝出发点奔去……最后,他总算如期赶到了出发点,却因过度劳累,口吐鲜血而死.请你算一算,巴霍姆这一天走了多少俄里路?他走过的路线围成的土地面积有多大?(结果保留二次根式)第23章一元二次方程 (2)§23.1 一元二次方程 (3)§23.2 一元二次方程的解法 (4)阅读材料 (27)§23.3 实践与探索 (28)小结 (30)复习题 (31)第23章一元二次方程绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?设宽为x米,可列出方程900)10(=+x x ,整理得0900102=-+x x .方程0900102=-+x x 中未知数x 的最高次数是2,它是一个一元二次方程.§23.1 一元二次方程问题1绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.设长方形绿地的宽为x 米,不难列出方程x (x +10)=900,整理可得0900102=-+x x . (1)问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.分析设这两年的年平均增长率为x .已知去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即2)1(5)1)(1(5x x x +=++万册.可列得方程2.7)1(52=+x ,整理可得02.21052=-+x x . (2)思考这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?概括上述两个整式方程中都只含有一个未知数,并且未知数的最高次数都是2,这样的方程叫做一元二次方程(quadric equation with one unknown ).通常可化成如下的一般形式:02=++c bx ax (a 、b 、c 是已知数,a ≠0),其中a 、b 、c 分别叫做二次项系数、一次项系数和常数项.练习将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)232=-x x ;(2)2237x x =-;(3)0)2(3)12(=---x x x x ;(4)4)5(3)1(2-+=-x x x . 习题23.11.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?2.已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3.根据题意,列出方程(不必求解):(1)学校中心大草坪上准备建两个相等的圆形花坛,要使花坛的面积是余下草坪面积的一半.已知草坪是长和宽分别为80米和60米的矩形,求花坛的半径.(2)根据科学分析,舞台上的节目主持人应站在舞台前沿的黄金分割点(即该点将舞台前沿这一线段分为两条线段,使较短线段与较长线段之比等于较长线段与全线段之比),视觉和音响效果最好.已知学校礼堂舞台前沿宽20米,问举行文娱会演时主持人应站在何处?§23.2 一元二次方程的解法试一试解下列方程,并说明你所用的方法,与同伴交流.(1)42=x ;(2)012=-x . 概括对于方程(1),有这样的解法:方程 42=x ,意味着x 是4的平方根,所以4±=x ,即 x =±2.这种方法叫做直接开平方法.对于方程(2),有这样的解法:将方程左边用平方差公式分解因式,得(x -1)(x +1)=0,必有 x -1=0或x +1=0,分别解这两个一元一次方程,得1,121-==x x .这种方法叫做因式分解法.思考(1)方程42=x 能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式?(2)方程012=-x 能否用直接开平方法来解?要用直接开平方法解,首先应将它化成什么形式? 做一做试用两种方法解方程09002=-x .例1解下列方程: (1)022=-x ;(2)025162=-x .解 (1)移项,得22=x .直接开平方,得2±=x .即 2,221=-=x x .(2)移项,得25162=x .方程两边都除以16,得16252=x 直接开平方,得 45±=x . 即 45,4521=-=x x . 例2 解下列方程: (1)0232=+x x ;(2)x x 32=.解 (1)方程左边分解因式,得x (3x +2)=0. 所以x =0或3x +2=0. 得 32,021-==x x . (2)移项,得032=-x x .方程左边分解因式,得x (x -3)=0.所以 x =0或x -3=0,得 3,021==x x .练习1.解下列方程:(1)1692=x ;(2)0452=-x ;(3)025122=-y ;(4)022=-x x ;(5)0)1)(2(=+-t t ;(6)05)1(=-+x x x .2.小明在解方程x x 32=时,将方程两边同除以x ,得到原方程的解x =3,这种做法对吗?为什么?例3 解下列方程:(1)04)1(2=-+x ;(2)09)2(122=--x .分析两个方程都可以转化为 a =2的形式,用直接开平方法求解.解(1)原方程可以变形为4)1(2=+x ,直接开平方,得x +1=±2.所以 3,121-==x x .(2)原方程可以变形为____________________,有 ____________________,得 ____________,21==x x .读一读小张和小林一起解方程x (3x +2)-6(3x +2)=0.小张将方程左边分解因式,得(3x +2)(x -6)=0,所以 3x +2=0或x -6=0. 得 6,3221=-=x x . 小林的解法是这样的:移项,得 x (3x +2)=6(3x +2), 方程两边都除以(3x +2),得x =6.小林说:“我的方法多简便!”可另一个根32-=x 哪里去了?小林的解法对吗?你能解开这个谜吗?练习解下列方程:(1)016)2(2=-+x ;(2)018)1(2=--x ;(3)1)31(2=-x ;(4)025)32(2=-+x .例4解下列方程:(1)522=+x x ;(2)0342=+-x x .思考能否经过适当变形,将它们转化为a =2的形式,用直接开平方法求解?解(1)原方程两边都加上1,得6122=++x x ,_______________________, _______________________, _______________________.(2)原方程化为43442+-=+-x x , _______________________, _______________________, _______________________.归 纳上面,我们把方程0342=+-x x 变形为1)2(2=-x ,它的左边是一个含有未知数的完全平方式,右边是一个非负常数,从而能直接开平方求解.这种解一元二次方程的方法叫做配方法.例5用配方法解下列方程:(1)0762=--x x ;(2)0132=++x x .解(1)移项,得762=-x x .方程左边配方,得32237332+=+⋅⋅-x x ,即 16)3(2=-x .所以x -3=±4.得1,721-==x x .(2) 移项,得132-=+x x .方程左边配方,得222)23(1)23(232+-=+⋅⋅+x x , 即45)23(2=+x .所以2523±=+x . 得2523,252321--=+-=x x x . 练习1.填空:(1)2x +6x+( )=(x+ )2; (2)2x -8x+( )=(x- )2; (3)x x 232++( )=(x+ )2; (4)42x -6x+( )=4(x- )2=(2x- )2. 2.用配方法解下列方程:(1)2x +8x -2=0;(2)2x -5x -6=0.试一试用配方法解方程2x +px +q =0(q p 42-≥0). 思考如何用配方法解下列方程?(1)42x -12x -1=0;(2) 32x +2x -3=0.讨论请你和同桌讨论一下: 当二次项系数不为1时,如何应用配方法?探索我们来解一般形式的一元二次方程 a 2x +bx +c =0(a ≠0). 因为a ≠0,方程两边都除以a ,得02=++acx a b x . 移项,得ac x a b x -=+2.配方,得a c a b a b a b x x -=+⋅⋅+222)2()2(22,即22244)2(aac b a b x -=+. 因为a ≠0,所以42a >0,当2b -4ac ≥0时,直接开平方,得a acb a b x 2422-±=+. 所以aac b a b x 2422-±-=, 即aacb b x a ac b b x 24,242221---=-+-=. 由以上研究的结果,得到了一元二次方程a 2x +bx +c =0的求根公式:)04(2422≥--±-=ac b aac b b x .利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的根.这种解方程的方法叫做公式法.例6解下列方程:(1)22x +x -6=0;(2)2x +4x =2;(3)52x -4x -12=0;(4)42x +4x +10=1-8x .解(1)这里a =2,b =1,c =-6,2b -4ac =21-4×2×(-6)=1+48=49,所以47122491242±-=⨯±-=-±-=a ac b b x , 即23,221=-=x x . (2)将方程化为一般式,得2x +4x -2=0.因为2b -4ac =24, 所以622244±-=±-=x . 即62,6221--=+-=x x .(3) 因为2b -4ac =256, 所以5821016452256)4(±=±=⨯±--=x . 得2,5621=-=x x . (4) 整理,得 42x +12x +9=0. 因为2b -4ac =0,所以8012±-=x , 即2321-==x x .练习用公式法解下列方程:(1)2x -6x +1=0;(2)22x -x =6;(3)42x -3x -1=x -2;(4)3x (x -3)=2(x -1)(x +1).思考根据你学习的体会小结一下: 解一元二次方程有哪几种方法?通常你是如何选择的?和同学交流一下.应用现在我们来解决§23.1的问题1: x (x +10)=900,2x +10x -900=0,3755±-=x ,3755,375521+-=--=x x .它们都是所列方程的根,但负数根x1不符合题意,应舍去.取 x =3755+-≈25.4,x +10≈35.4,符合题意,因此绿地的宽约为25.4米,长约为35.4米.例7学校生物小组有一块长32m ,宽20m 的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402m ,小道的宽应是多少?分析问题中没有明确小道在试验田中的位置,试作出图23.2.1,不难发现小道的占地面积与位置无关.设道路宽为xm ,则两条小道的面积分别为32x 2m 和20x 2m ,其中重叠部分小正方形的面积为2x 2m ,根据题意,得 32×20-32x -20x +2x =540.图23.2.1图23.2.2试一试如果设想把道路平移到两边,如图23.2.2所示,小道所占面积是否保持不变?在这样的设想下,列方程是否符合题目要求?是否方便些?在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决.求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答.练习1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的32时较美观,求镶上彩纸条的宽.(精确到0.1厘米)2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=.爆竹点燃后以初速度0v =20米/秒上升,经过多少时间爆竹离地15米?(重力加速度g ≈10米/秒2)例8某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分率相同,求每次降价的百分率.分析 若一次降价百分率为x ,则一次降价后零售价为原来的(1-x )倍,即56(1-x )元;第二次降价百分率仍为x ,则第二次降价后的零售价为56(1-x )的(1-x )倍.解设平均降价百分率为x ,根据题意,得56(1-x )2=31.5.解这个方程,得75.1,25.021==x x .因为降价的百分率不可能大于1,所以75.12=x 不符合题意,符合本题要求的是x =0.25=25%.答: 每次降价百分率为25%.练习1.某工厂1月份的产值是50000元,3月份的产值达到60000元,这两个月的产值平均月增长的百分率是多少?(精确到0.1%)2.据某中学对毕业班同学三年来参加市级以上各项活动获奖情况的统计,初一阶段有48人次获奖,之后逐年增加,到初三毕业时共有183人次获奖.求这两年中获奖人次的平均年增长率.习题23.21.解下列方程: (1)22x -6=0; (2)27=42x ;(3)32x =4x ; (4)x (x -1)+3(x -1)=0; (5)2)1(+x =2;(6)32)5(-x =2(5-x ).2.解下列方程: (1)2)12(-x -1=0; (2)212)3(+x =2; (3)2x +2x -8=0;(4)32x =4x -1;(5)x (3x -2)-62x =0; (6)2)32(-x =2x . 3.求满足下列要求的x 的所有值: (1)32x -6的值等于21;(2)32x -6的值与x -2的值相等. 4.用适当的方法解下列方程: (1)32x -4x =2x ;(2)312)3(+x =1; (3)2x +(3+1)x =0;(4)x (x -6)=2(x -8);(5)(x +1)(x -1)=x 22;(6)x (x +8)=16; (7)(x +2)(x -5)=1;(8)2)12(+x =2(2x +1).5.已知A =22x +7x -1,B =6x +2,当x 为何值时A =B ?6.已知两个连续奇数的积是255,求这两个奇数.7.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.(精确到0.1米)(第7题)8.某商店2月份营业额为50万元,春节过后3月份下降了30%,4月份比3月份有所增长,5月份的增长率又比4月份的增长率增加了5个百分点(即5月份的增长率要比4月份的增长率多5%),营业额达到48.3万元.问4、5两月营业额增长的百分率各是多少? 9.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较合适?阅读材料一元二次方程根的判别式我们在一元二次方程的配方过程中得到22244)2(aac b a b x -=+.(1) 发现当且仅当2b -4ac ≥0时,右式2244a ac b -有平方根.直接开平方,得aacb a b x 2422-±=+. 也就是说,一元二次方程a 2x +bx +c =0(a ≠0)当且仅当系数a 、b 、c 满足条件2b -4ac ≥0时有实数根.观察(1)式我们不难发现一元二次方程的根有三种情况: ① 当2b -4ac >0时,方程有两个不相等的实数根; ② 当2b -4ac =0时,方程有两个相等的实数根ab x x 221-==; ③ 当2b -4ac <0时,方程没有实数根.这里的2b -4ac 叫做一元二次方程的根的判别式,用它可以直接判断一个一元二次方程实数根的情况(是否有?如有,两实数根是相等还是不相等?),如对方程2x -x +1=0,可由2b-4ac=1-4<0直接判断它没有实数根;在用公式法解一元二次方程时,往往也是先求出判别式的值,直接代入求根公式.如第27页例6;还可以应用判别式来确定方程中的待定系数,例如:m取什么值时,关于x的方程++-mxmx-22=22()2有两个相等的实数根?求出这时方程的根.§23.3 实践与探索试研究下列问题,并与你的同伴交流、讨论.问题1小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如图23.3.1.图23.3.1(1)如果要求长方体的底面面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形边长会发生什么样的变化?折合成的长方体的侧面积又会发生什么样的变化?cm)81 64 49 36 25 16 9 4 折合成的长方体底面积(2剪去的正方形边长(cm)cm)折合成的长方体侧面积(2探索在你观察到的变化中,你感到折合而成的长方体的侧面积会不会有最大的情况?先在上面的表格中记录下你得到的数据,再以剪去的正方形的边长为自变量,折合而成的长方体侧面积为函数,并在直角坐标系中画出相应的点.看看与你的感觉是否一致.问题2阳江市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.探索若调整计划,两年后的财政净收入值为原净收入值的1.5倍、1.2倍、……那么两年中的平均年增长率分别应调整为多少? 又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现两年后市财政净收入翻一番?练习1.某花生种植基地原有花生品种的每公顷产量为3000千克,出油率为55%.改用新品种之后,每公顷收获的花生可加工得到花生油2025千克.已知新品种花生的公顷产量和出油率都比原有品种有所增加,其中出油率增加是公顷产量增长率的一半,求两者的增长率(精确到1%).2.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则应进货多少个?定价为多少?(1)本题如何设未知数较适宜?需要列出哪些相关量的代数式? (2)列得方程的解是否都符合题意?如何解释?(3)请你为商店估算一下,若要获得最大利润,则应进货多少?定价是多少?3.某市人均居住面积14.6平方米,计划在两年后达到18平方米.在预计每年住房面积的增长率时,还应考虑人口的变化因素等.请你把问题补充完整,再予解答.问题3解下列方程,将得到的根填入下面的表格中,观察表格中两个根的和与积,它们和原来的方程的系数有什么联系? (1) 2x -2x =0; (2) 2x +3x -4=0; (3) 2x -5x +6=0.方程 1x2x21x x +21x x ⋅探索一般地,对于关于x 的一元二次方程2x +px +q =0(p 、q 为已知常数,2p -4q ≥0),试用求根公式求出它的两个根1x 、2x ,算一算21x x +、21x x ⋅的值,你能发现什么结论?与上面观察的结果是否一致?习题23.31.一块长30米、宽20米的长方形操场,现要将它的面积增加一倍,但不改变操场的形状,问长和宽各应增加多少米?(精确到0.1米)2.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折) 3.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级两年来植树数的平均年增长率.(精确到1%)4.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.服装厂向24名家庭贫困学生免费提供.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.问这批演出服共生产了多少套?5.如图,某建筑物地基是一个边长为30米的正六边形.要环绕地基开辟绿化带,使绿化带的面积和地基面积相等.请你给出设计方案.(画图并标注尺寸)(第5题)6.解下列问题,并和同学讨论一下,有哪些不同的解法:(1)已知关于x的方程2x-px+q=0的两个根是0和-3,求p和q的值;(2)已知关于x的方程2x-6x+2p-2p+5=0的一个根是2,求方程的另一个根和p 的值.小结一、知识结构二、概括1.要联系已有的方程知识,在学习中进一步认识“方程是反映现实世界数量关系的一个有效的数学模型”,在解决实际问题中增强学数学、用数学的自觉性.2.掌握一元二次方程的各种解法:直接开平方法、因式分解法、配方法与公式法.着重体会相互之间的关系及其“转化”的思想,并能应用这一思想方法进行自主探索和合作交流.3.在应用一元二次方程解实际问题时,要注重对数量关系的抽象和分析;得到方程的解。
初中数学二次根式的学习技巧
初中数学二次根式的学习技巧
初中数学二次根式的学习技巧主要包括以下几个方面:
1.理解二次根式的概念:首先,要理解什么是二次根式,以
及它的基本形式。
二次根式是指根指数为2的根式,也就是平方根。
例如,√4就是一个二次根式,它的值是2。
2.掌握二次根式的性质:二次根式具有一些基本的性质,如
非负性、算术平方根的定义等。
这些性质是解二次根式方程和不等式的基础,需要熟练掌握。
3.化简二次根式:化简二次根式是学习二次根式的重要步
骤。
化简二次根式的方法包括提取公因式、利用平方差公式等。
通过化简,可以将复杂的二次根式转化为简单的形式,方便进行计算。
4.掌握二次根式的运算:二次根式的运算包括加法、减法、
乘法和除法。
在进行二次根式的运算时,需要注意运算的顺序和法则,以及根式的化简。
5.注意二次根式的定义域:二次根式的定义域是指使根式有
意义的未知数的取值范围。
在进行二次根式的计算时,需要注意定义域的限制,避免出现无意义的根式。
6.大量练习:通过大量的练习,可以加深对二次根式概念、
性质和运算方法的理解,提高解题速度和准确性。
7.注意细节:在学习二次根式时,要注意细节问题,如符号
的处理、根式的化简等。
这些细节问题看似简单,但却是容易出现错误的地方。
以上就是初中数学二次根式的学习技巧。
希望对你有所帮助!。
初中数学二次根式
初中数学二次根式二次根式二次根式是指满足一个数的平方等于被开方数的数,即x²=a,x称为a的平方根或二次平根。
被开方数a称为二次根式。
最简二次根式指被开方数中不含有能开得尽方的因式或因数,且被开方数因数是整数,因式是整式。
同类二次根式是指几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式就是同类二次根式。
判断方法是:根指数都是2,先化成最简二次根式,被开方数相同。
二次根式的乘法公式是ab=a×b(a≥0,b≥0),除法公式是a/√b=a/√b×√b/√b=a√b/b。
二次根式的重要性质是a²=a,其中a为任意实数。
分母有理化的公式是1/(a+b)=((a-b)/(a+b))×(1/(a-b))=(a-b)/(a²-b²)。
例1中,最简二次根式是23x³。
3π,其他不是最简二次根式。
例2中,化简后的二次根式分别为2√3、4√3、2√7、4√3、5√3、5√3、10√2.例3中,将2m+3和-66m-7化成最简二次根式,得到2√m+3和-2√66m+7,因为它们是同类二次根式,所以2=m+3,-66m-7=-66m-7,解得m=-1.例4中,化简后的二次根式分别为10√2、6√2.例5中,计算结果分别为676、8√3、和.例6中,计算结果分别为529和121.例7中,设宽为x,则长为2x,周长为2(x+2x)=6x,面积为2x×x=2x²,解得x=11,周长为66m。
课堂练:1、和3是同类二次根式的有①45和③12,所以选B。
2、m的平方根是±8,所以m=±8²=64或m=±(-8)²=64,代入m=3n³-17中,解得n=2或n=-2,所以选A。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1. 2的算术平方根是.【答案】【解析】∵2的平方根是±,∴2的算术平方根是.故答案为:.【考点】算术平方根2.请写出一个比小的整数【答案】答案不唯一,小于或等于2的整数均可,如:2,1等【解析】首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.试题解析:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数答案不唯一,小于或等于2的整数均可,如:2,1等【考点】估算无理数的大小.3.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【答案】C.【解析】当n=时,n(n+1)=(+1)=2+<15;当n=2+时,n(n+1)=(2+)(3+)=6+5+2=8+5>15,则输出结果为8+5.故选C.【考点】实数的运算.4.在,0,3,这四个数中,最大的数是()A.B.C.D.【答案】C.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵,∴四个数中,最大的数是3.故选C.【考点】实数的大小比较.5.使二次根式有意义的x的取值范围是.【答案】x≥﹣3【解析】由二次根式的定义可知被开方数为非负数,则有x+3≥0所以x≥﹣3.【考点】二次根式有意义的条件6.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.7.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.【答案】±【解析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.8.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b 的最小值是4.9.使有意义的x的取值范围是()A.x>2B.x<-2C.x≤2D.x≥2【答案】D.【解析】依题意,得x-2≥0,解得,x≥2.故选:D.考点: 二次根式有意义的条件.10.下列二次根式是最简二次根式的是A.B.C.D.【答案】C.【解析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.考点: 最简二次根式.11.已知为等腰三角形的两条边长,且满足,求此三角形的周长.【答案】10或11【解析】解:由题意可得即所以,.当腰长为3时,三角形的三边长为,周长为10;当腰长为4时,三角形的三边长为,周长为11.12.下列计算中,正确的是()A.B.C.=±2D.【答案】D.【解析】试题分析:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.考点:二次根式的混合运算.13.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.14.计算:(1)+-2012+();(2)(1-)—【答案】(1);(2).【解析】(1)根据二次根式、绝对值、零次幂及负整数指数幂的意义进行计算即可求出答案;(2)根据完全平方公式及二次根式的除法进行计算即可.试题解析:(1)(2)考点: 实数的混合运算.15.计算:【答案】.【解析】根据二次根式及非零数的零次幂的意义进行计算即可得出答案.试题解析:原式=考点: 1.二次根式的混合运算;2.非零数的零次幂.16.计算:= 。
苏科版初三数学 复习资料(2次根式,方程)
初 三 数 学(第一章 复习(2))时间: 月 日教学目标:1.进一步掌握等腰梯形的性质和判定;2.进一步掌握中位线定理.教学重点:等腰梯形的性质和判定、中位线定理的运用.教学难点:等腰梯形的性质和判定、中位线定理的运用. 作业布置:P 37∽38 5、6、9 教学过程: 一、自主探究1.回忆等腰梯形的性质和判定填空:(1)等腰梯形同一底上的 ; (2)等腰梯形的两条 ;(3)在同一底上的 是等腰梯形.2.回忆中位线的性质填空:(1)三角形的中位线 ; (2)梯形的中位线 .二、自主合作例1等腰梯形ABCD 中,AD ∥BC ,AE ∥CD 交BC 于点E ,AD =AB =12 BC ,梯形的周长是30.(1)求AD 的长;(2)证明:△ABE 是等边三角形.例2如图,在等腰梯形ABCD 中,AD ∥BC ,AD =3㎝,BC =7㎝,E 是CD 的中点,四边形ABED 的周长比△BCE 的周长大2㎝,试求AB 的长.例3如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC ,BD ⊥AD 于点D ,E•为BC 中点.求DE 的长.三、自主展示1. 三角形的三条中位线长分别为2cm 、3cm 、4cm ,则原三角形的周长为 .2. 在梯形ABCD 中,AD ∥BC ,AB =CD =AD =2㎝,∠B =600,则下底BC = ㎝.EDCBA ED CBA EDCBA3. 如图,等腰梯形ABCD 中,A D ∥BC ,∠B =450,AE ⊥BC 于点E ,AE =AD =2㎝,则这个梯形的下底长为 ㎝.(第3题) (第4题) (第5题)4. 如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠,②OA =OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是(填序号).5. 如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为 .6. 如图,梯形A B C D 中,A D B C ∥,A B D C =,P 为梯形A B C D 外一点,P A P D 、分别交线段B C 于点E F 、,且PA PD =.(1)图中除了A B E D C F △≌△外,请你再找出其余三对全等的三角形(不再添加辅助线); (2)求证:A B E D C F △≌△.四、自主拓展1. 如图,在△ABC 中,AD ⊥BC 于D ,E 、F 、G 分别是AB 、BD 、AC 的中点.若EG=EF ,AD+EF=12cm ,求△ABC 的面积.2. 已知,如图,在梯形ABCD 中,AB ∥DC ,AD =BC ,AC ⊥BD ,BE ⊥DC ,垂足为E ,若AB=4,DC=6,求梯形的面积.五、自主评价1. 本节课你学到了哪些知识?2. 本节课你最大的收获是什么?教学反思:EDCBAODC BAA B CD EF PEDCBA D CFEA BP23Aa c0b初 二 数 学(第三章 二次根式复习(2))时间: 月 日教学目标:1.进一步加深对二次根式有关概念的理解;2.熟练掌握二次根式的化简和加、减、乘除、乘方等混合运算. 教学重点:二次根式的化简与加减、乘除、乘方混合运算. 教学难点:解决问题使用的思想方法. 一、化简与运算的步骤: 1.二次根式的化简步骤:(1)一分:分解因数(因式)、平方数(式);(2)二移:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面; (3)三化:化去被开方数中的分母. 2.二次根式混合运算的步骤:(1)乘方运算;(2)乘除运算;(3)加减运算. 二、解决问题使用的思想方法: (一)整体思想: 例题1.化简:)0,0(n m n m nm n m ≠>>--且练习:化简)0,0(2>>--+++b a abab b a ba abb a(二)分类思想: 例题2.化简:1222+-+x x x提示:零点分段法.具体操作:先令求和的各项值为0,求出对应的未知数的值,然后分区间讨论.练习:化简 4422+-a a(三)数形结合:例题3.已知:数轴上点A 表示的实数为a ,化简22)3()2(-+-a a .练习:a 、b 、c 、在数轴上的位置如图所示,请化简式子b a c a c b a+--+++222)()(.214422-+-+-=x x x y DCBA (四)二次根式的非负性: 例题4.(1)已知:011=-++b a ,试求ba b a +-的值.(2)已知:x x y 2112-+-=,求yx 的值.练习:已知△ABC 的三边长为a 、b 、c ,且a 、b 满足条件:b a b 4412=+-+.试求c 的取值范围.三.巩固练习: 1. 如果22332+-+-=x x y ,求2x +3y的平方根.2.已知86-++-b a b a 与互为相反数,求a 、b 的值. 3. 已知三角形的三边长分别是a 、b 、c ,且c a >,那么2)(b c a a c -+--= . 4.已知x 、y 是实数,且 ,试求3x +4y 的值.5.已知2323+-=x ,,2323-+=y 求x 2y +xy 2的值.6. 如图,在四边形ABCD 中,∠A =∠BCD =Rt ∠,已知∠B =450,AB =62 , CD =3.试求:(1)四边形ABCD 的周长;(2)四边形ABCD 的面积.四、课后作业:补充习题P 50-51小结与思考五、教学反思:3. 若关于x 的一元二次方程(m -1)x 2+x +m 2+2m -3=0有一根为0,则m 的值是_____. 6.某数学兴趣小组对关于x 的方程01)2()1(22=--+++x m x m m(提出了下列问题.(1)若使方程为一元一次方程,m 是否存在?若存在,求出m 并解此方程.(2)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.二、自主合作思考:通过配方法可将一元二次方程02=++c bx ax 转化为22244)2(aac b ab x -=+,问这个方程是否有实数根,由什么来判定? 点拨:总结:一元二次方程)0(02≠=++a c bx ax 的根的情况可由ac b 42-来判定:当240b ac ->时,方程有两个不相等的实数根; 当240b ac -=时,方程有两个相等的实数根; 当240b ac -<时,方程没有实数根。
初中数学二次根式公式
初中数学二次根式公式1. 二次根式的入门嘿,大家好!今天我们来聊聊一个可能让你又爱又恨的话题——二次根式。
首先,啥是二次根式呢?简单来说,二次根式就是那些看起来像√x这样的东西。
想象一下,如果你把一个数字放到一个神秘的箱子里,然后这个箱子就告诉你“嘿,我的平方是那个数字”。
这就是根式的魅力所在了!说白了,它就是在帮你找到一个数的平方根。
听起来是不是挺酷的?记得小时候,我也曾被这些神秘的符号搞得晕头转向。
老师一边讲解,我一边心里嘀咕:“这东西什么时候能用得上呀?”其实,二次根式在我们生活中无处不在,从计算面积到设计房间,都是它在默默出力呢。
1.1 二次根式的基本知识那么,二次根式有什么基本性质呢?首先,根式的定义就是:如果x是一个非负数,且y² = x,那么y就是x的平方根,用数学语言说就是y = √x。
这里要注意的是,根式里面的数字要是非负的,不然就会出现“负根式”,那可就麻烦了。
还有,根式有个有趣的特性,那就是它的平方根不止一个。
例如,√9的平方根有两个:3和3。
为什么呢?因为3²和(3)²都是9。
听起来有点复杂,但其实我们只需要记住正根就好,毕竟在数学的世界里,我们更喜欢正能量,对吧?1.2 二次根式的运算规则接下来,我们聊聊根式的运算规则。
这部分可能是大家最头疼的,但别担心,我们一步步来。
根式的加减法是相对简单的,如果根号里面的数字一样,我们就可以直接把它们的系数相加减,比如√2 + √2 = 2√2,这就像买了一对鞋子,当然是两只鞋子要一起算!但是,根号里面的数字不一样,就没办法简单相加了,就像买了不同颜色的鞋子,谁也不愿意把它们放在一起。
而乘法和除法就要简单得多了。
√a × √b = √(ab),这就好比说把两个不同的水果混在一起,结果还是能得到一堆新鲜果汁!2. 实际应用那么,二次根式到底能用在哪里呢?有很多地方!比如说,你在设计一个花园,需要知道每个花坛的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学二次根式21.1(第二课时)导学案
活 动 单 导 学 案
[活动1] 复习引入:
(1)什么是二次根式,它有哪些性质? (2)二次根式25
x -有意义,则x 。
(3)要使二次根式a 5、a -、a -3有
意义,a 取什么值?
(4)在实数范围内因式分解:
x 2-6= x 2 - ( )2
= (x+ ____)(x-____)
4x 2 -13= ( + ____)( -____)
2x 2
-7=( + ____)( -____)
1学生自主完成—展示交
流—教师评价 (复习上节课学过知识,
为新知识的学习打下基
础,并让所学的知识进一
步得到深化)
2
4 22.0 2)54(220
=2a -2)4(
-2)2.0(-2)54(
-2
)20( =2a 20 当,=2a
九年级数学二次根式(第二课时)活动单
[活动1] 复习引入:
(1)什么是二次根式,它有哪些性质?
(2)二次根式
2
5
x -有意义,则x 。
(3)要使二次根式a 5、a -、a -3有意义,a 取什么值?
(4)在实数范围内因式分解:
x 2-6= x 2 - ( )2= (x+ ____)(x-____) 4x 2 -13= ( + ____)( -____) 2x 2 -7=( + ____)( -____)
2
4 22.0 2)54(
220 =2a
-2)4( -2)2.0( -2
)54(
-2
)20( =2a 20 当,=2a
(1))3()3(2≥-a a (2)
()232+x (x <-2)
(3) x-4│-│7-x │ 4.填空 (1)2)12(-x -2)32(-x )2(≥x =_____.
(2)、2)4(-π=
2、已知2<x <3,化简:3)2(2-+-x x
3、 已知0 <x <1,化简:4)1
(2+-x
x
九年级活页作业
1、化简下列各式:
姓名:
______
=______=
_______
=
_____a 0=(<) 2、化简下列各式
(1)4 (2)24 (3))0(42≥x x (4) 4
x 3、化简下列各式
(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(_________(化简). (2) 把(2-x)
2
1
-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x。