圆与圆的位置关系专题复习2

合集下载

圆与圆的位置关系

圆与圆的位置关系
分析:(I)圆与圆的的位置关系判断刚才介绍了两种方法,下面 就分别从这两个角度展开解题:
解法一: 把圆 C1 的方程化为标准方程,得 x 1 y 4 25 ,
2 2
圆 C1 的圆心是点 C1(-1,-4) ,半径长 r1=5 把圆 C2 的方程化为标准方程,得 x 2 y 2 10 ,
x
2
y 2 2 x 8 y 8 x2 y 2 4 x 4 y 2 0 ,
即 6x+12y-6=0. 至于公共弦长,下面可用垂径定理解决.
解:
由 x y 2x 8 y 8 x y 4x 4 y 2 0 ,
2 2 2 2
A
y
C2(2,2) M O
x
B
(III)分析:类比过两直线公 C (-1,-4) 共点的直线系方程的设法, 可得过两圆公共点的圆 P 的方程可设为:
1
x
2
y 2 x 8 y 8 x y 4 x 4 y 2 0 ,
2 2 2
再代入点 M(1,1)即可得圆 P 方程
解法二:圆 C1 与圆 C2 的方程联立,得到方程组
x2 y 2 2x 8 y 8 0 2 2 x y 4x 4 y 2 0
(1)-(2) ,化简得
1 2
x+2y-1=0 (3)
1 x 再整理得 y 2
把(3)代入(1) ,并整理得
y
C2(2,2)
A
O
M
x
B
C1(-1,-4)
一.复习回顾
下面我们先回顾一下初中的学习内容 圆与圆的位置关系有哪些?
外离

薛城四中褚召祥圆和圆的位置关系复习

薛城四中褚召祥圆和圆的位置关系复习

教学过程一、明确考试要求师:同学们,圆和圆的位置关系是初中数学的重要内容,在中考中经常和平行四边形、三角形、函数等内容相联系,今天这节课我们就来复习考点三:圆和圆的位置关系(板书课题).首先请同学们了解一下中考对这部分内容的要求:(可以让学生齐读一下此部分的中考要求)1. 探索并了解圆和圆的位置关系.2. 探索并掌握两圆的圆心距d与两圆的半径R,r之间的关系.设计意图:让学生明白圆和圆的位置关系的重要性,以及中考对这一部分的要求,使学生做到心中有数,有的放矢,在这里起到一个总领作用.二、回顾基础知识师:下面请同学们用五分钟的时间完成以下问题.(注:教案中出现的知识点及后面题组中的题目都以答题纸的形式出现)1.请说出圆与圆的五种位置关系:2.圆与圆的位置关系的性质和判定:设两个圆的半径为R和r(R>r),圆心距为d,则:1、两圆内切.两圆相切 2、两圆外切.3、两圆相交.4、两圆外离两圆相离 .5、两圆内含.3.如果两圆相切,连心线;如果两圆相交,连心线 .设计意图:第1个题目考查圆和圆的五种位置关系,第2个题目考查的是两圆的圆心距d与两圆的半径R,r之间的关系,第3小题是让学生掌握两圆相切相交时连心线的重要性质,让学生在解决这些问题的过程中,回顾本考点的基础知识.通过小组合作及时纠错、讲解、补充,让学生加深对本考点知识的理解,体会小组合作的必要性.在学生充分思考、交流及查找相应课本的基础上,让学生在课前梳理本章的知识框架,为后面的题组训练打好基础,以帮助学生更好的掌握本部分知识.三、组织题组训练考点一.圆与圆的位置关系1.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A.内含 B.相交 C.相切 D.外离分析:从图形可以看出,图中两轮所在圆的位置关系是外离,故,选择D.点评:以北京奥运会自行车比赛项目标志为载体,设计题目,内容新颖,寓教于乐,能够使同学们在玩中学,学中玩,从而增长知识,2.右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是( )A .外离B .相交C .外切D .内切分析:由图可以发现,图标中两圆的位置关系是外切,故选择C. 点评:以社会热点问题为载体,考查了同学们关注社会,关注生活的能力。

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。

鲁教版中考数学一轮复习 圆 专题2 与圆有关的位置关系(含答案)

鲁教版中考数学一轮复习  圆  专题2  与圆有关的位置关系(含答案)

第六单元圆专题2 与圆有关的位置关系考点1 点和圆、直线和圆的位置关系1.已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切2.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9 cm,则⊙O 的半径是___________.3.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点.若以1cm为半径的⊙O与直线a相切,则OP的长为___________.考点2 切线的性质与判定1.如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为( )A.35°B.45°C.55°D.65°2.如图,PA,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线3.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )A.1B.2C.√2C.√34.如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD 的周长为____________.5.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为_____________.6.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=___________.7.如图,PA是以AC为直径的⊙O的切线,切点为A,过点A作AB⊥OP,交⊙O于点B. (1)求证:PB是⊙O的切线;,求PO的长.(2)若CC=6,cos∠CCC=358.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.̂上一点,连接AE并延长至点C,使9.已知:如图,AB是⊙O的直径,E为⊙O上一点,D是AE∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD²=DF· DB.考点3 三角形的外接圆与内切圆1.如图,已知点O是△ABC的外心,∠A=40°,连接BO,CO,则∠BOC的度数是( )A.60°B.70°C.80°D.90°2.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则CC=( )C.2√3C.3√3 C.3D.43.设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h,r,R,则下列结论不正确的是( )A.h=R+rB.R=2rC.C=√34C C.C=√33C4.如图,△ABC内接于⊙O,∠A=50°,点D是BC的中点,连接OD,OB,OC,则∠BOD=_______.5.如图所示的网格由边长为1个单位长度的小正方形组成,点A,B,C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC内心的坐标为_____________.6.已知△ABC的三边a,b,c满足b+|c-3|+C2−8C=4√C−1−19,则△ABC的内切圆半径=____________.专题检测一、选择题(每小题4分,共40分)1.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断2.已知⊙O的半径为5,点O到直线l的距离为3,则⊙O上到直线l的距离为2的点共有( )A.1个B.2个C.3个D.4个3.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于( )A.75°B.70°C.65°D.60°̂上一点,则∠EPF的4.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF度数是( )A.65°B.60°C.58°D.50°5.如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=( )A.30°B.35°C.45°D.55°6.如图,长方形ABCD中,AB=4,AD=3,圆B 半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外7.如图,在等腰△ABC中, AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分EF的长为半径作弧相交于点H,作射线AH;别以点E,F为圆心,大于12AB的长为半径作弧相交于点M,N,作直线②分别以点A,B为圆心,大于12MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为( )A.2√5B.10C.4D.58.如图,直线AB,BC,CD分别与⊙O相切于点E,F,G,且AB∥CD,若OB=6 cm,OC=8cm,则BE+CG的长等于( )A.13 cmB.12 cmC.11 cmD. 10 cm9.如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于( )A.35B.23C.34D.4510.如图,点A的坐标为(-3,2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为( )A.( 0,2)B.( 0,3)C.( -2,0)D.( -3,0)二、填空题(每小题4分,共24分)11.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆 (填“内”“上”或“外”).12.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为___________.13.点O是△ABC的外心,若∠BOC=110°,则∠BAC为 .14.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为 .15.如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB= .16.如图,两个圆都是以点O为圆心,大圆的弦AB是小圆的切线,点P为切点,AB=10,则图中圆环的面积为 .三、解答题(共36分)17.(12分)阅读下列材料:平面上两点P₁(x₁,y₁),P₂(x₂,y₂)之间的距离表示为|P1P2|=√(x1−x2)2+(y1−y2)2,称为平面内两点间的距离公式,根据该公式,如图,设P(x,y)是圆心坐标为C(a,b)、半径为r的圆上任意一点,则点P适合的条件可表示为√(x−a)2+(y−b)2=r,变形可得 (x-a)²+(y-b)²=r², 我们称其为圆心为C(a,b),半径为r的圆的标准方程.例如:由圆的标准方程(x-1)²+(y-2)²=25 可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C(3,4),半径为2的圆的标准方程为 ;(2)若已知⊙O的标准方程为(x-2)²+y²=2²,圆心为C,请判断点A(3,-1)与⊙O的位置关系.18.(12分)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(1)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(2)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.19.(12分)如图,在△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;,AD=2,求BO的长.(2)若tanA=34参考答案考点1 点和圆、直线和圆的位置关系1.D ⊙O的半径为2 cm,线段OA=3cm,OB=2cm,即点A到圆心O的距离大于圆的半径,点B 到圆心O的距离等于圆的半径,∴点A在⊙O外,点B在⊙O上,∴直线AB 与⊙O的位置关系为相交或相切.2.6.5cm或2.5cm 分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5 cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4 cm,最大距离PA=9 cm,∴直径AB=9-4=5(cm),∴半径r=2.5cm.3.3cm或5cm ∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1 cm. 当点O在点H的左侧,⊙O与直线a相切时,OP=PH-OH=4-1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm.考点2 切线的性质与判定1.C ∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°-∠BAC=90°-35°=55°.2.B 由切线长定理,得PA=PB,∴△BPA 是等腰三角形,故A正确;由圆的对称性可知AB⊥PD,但不一定平分,故B不一定正确;如图,连接OB,OA,由切线的性质,得∠OBP=∠OAP=90°,∴点A,B,P在以OP为直径的圆上,故C正确;∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D正确.3.D 如图,连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB,∴OA=AB=OB,∴∠AOB=60°.∵BD是⊙O的切线,∴∠DBO=90°.∵OB=1,∴BD=√3OB=√3.4.24+6√5如图,连接OE,过点C作CF⊥AD交AD于点F,∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠EOD+∠OEC =180°,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OEC=90°,∴∠EOD=90°,∵CF⊥AD,∴∠CFO=90°,∴四边形OECF为矩形,∴FC=OE,OD=3,∵AD为直径,AD=12,∴FC=OE=OD= 12在Rt△OFC中,由勾股定理得OC²=OF²+FC²=3²+6²=45.∴AB=OC=3√5,∴平行四边形ABCD的周长为12+12+3√5+3√5=24+6√5.5.2√3或2√2连接OB,∵BC是⊙O的切线,∴∠OBC=90°.∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°.当△OAC是直角三角形时,①若∠AOC=90°,∴OC=√2OB=2√2,∴AC=√OA2+OC2=√22+(2√2)2=2√3;②若∠OAC=90°,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°.∵BC=OA=OB,∴△OBC是等腰直角三角形,∴OC= 2√2.6.27°∵ PA切⊙O于点A,∴∠OAP=90°.∵∠P=36°, ∴∠AOP=54°. ∴∠B=12∠AOP=27 ∘.7.(1)证明连接OB,如图,∵PA是以AC为直径的⊙O的切线,切点为A,∴∠PAO=90°, ∵OA=OB,AB⊥OP,∴∠POA=∠POB,在△PAO和△PBO中, {AO=BO,∠POA=∠POB,OP=OP,∴△PAO≌△PBO(SAS),∴∠PBO=∠PAO=90°,即OB⊥PB,又∵OB为⊙O的半径,∴PB是⊙O的切线;(2)解设OP与AB交于点D.∵AB⊥OP,AB=6,∴DA=DB=3,∠PDA =∠PDB=90°,∵cos∠PAB=35=DAPA=3PA,∴PA=5,∴PD=√PA2−AD2=√52−32=4,在Rt△APD和Rt△APO中,cos∠APD= PDPA ,cos∠APO=PAPO,8.(1)证明∵∠CAD=∠ABD,∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)解∵AF是⊙O的切线,∴∠FAB=90°.∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°. ∴∠ABD=∠FAD.∵∠ABD=∠CAD,∠CAD=∠EAD,∴∠FAD=∠EAD.∵AD=AD,∴△ADF≌△ADE(ASA).∴AF=AE,DF=DE.∵AB=4,BF=5,∴AF =√BF 2−AB 2=3,∴AE=AF=3. ∵S △ABF =12AB ⋅AF =12BF ⋅AD, ∴AD =AB⋅AF BF=4×35=125,∴DE =√AE 2−AD 2=√32−(125)2=95, ∴BE =BF −2DE =75.∵∠AED=∠BEC,∠ADE=∠BCE=90°.∴△BEC ∽△AED. ∴BEAE =BCAD , ∴BC =BE⋅AD AE=2825, ∴sin ∠BAC =BC AB =725.∵∠BDC=∠BAC,∴sin ∠BDC =725.9.证明 (1)∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°. ∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=∠EBA+∠EAB=90°,即∠ABC=90°,∴CB ⊥AB. ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. (2)∵BD 平分∠ABE,∴∠ABD=∠DBE. ∵∠DAF=∠DBE,∴∠DAF=∠DBA.∵∠ADB=∠FDA,∴△ADF ∽△BDA, ∴ADBD =DFAD ,∴AD ²=DF ·DB. 考点3 三角形的外接圆与内切圆1.C ∵点O 为△ABC 的外心,∠A=40°, ∴∠A =12∠BOC,∴∠BOC =2∠A =80 ∘. 2.C 过点O 作OE ⊥BC 于点E,如图所示:∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,又 ∵AB̂对应的圆周角为∠ACB 和∠ADB,∴∠ACB=∠ADB=30°, 而BD 为直径,∴∠BAD=90°,在Rt △BAD 中,∠ADB=30°,AD=3, ∴cos30 ∘=ADBD =3BD =√32,∴BD =2√3,∴OB =√3,又∵∠ABD=90°-∠ADB=90°-30°=60°,∠ABC=30°,∴∠OBE=30°. 又∵OE ⊥BC,∴△OBE 为直角三角形. ∴cos ∠OBE =cos30 ∘−BEOB =√3=√32, ∴BE =32.由垂径定理可得BC=2BE= 2×32=3.3.C 如图,∵△ABC是等边三角形.∴△ABC的内切圆和外接圆是同心圆,圆心为O. 设OE=r,AO=R,AD=h,∴h=R+r,故A正确;∵AD⊥BC,∴∠DAC=12∠BAC=12×60°=30°.在Rt△AOE中,∴R=2r,故B正确;∵OD=OE=r,AB=AC=BC=a,∴AE=12AC=12a,∴(12a)2+r2=(2r)2,(12a)2+(12R)2=R².∴r=√36a,R=√33a,故C错误,D正确.4.50°∵∠A=50° ,∴∠BOC=100°.∵OB=OC,∴△OBC为等腰三角形,又∵D为BC 中点,∴OD为BC上的中线,根据等腰三角形三线合一性质可得OD为∠BOC的平分线∴∠BOD=12∠BOC=50∘.5.(2,3) 根据A,B,C三点的坐标建立如图所示的坐标系.根据题意,得AB=√62+32=3√5,AC=√42+82=4√5,BC=√102+52=5√5.∵AB²+AC²=BC².∴∠BAC=90°.设BC的函数表达式为y=kx+b,代入B( -3,3),C(7,-2).得{3=−3k+b,−2=7k+b,解得{k=−12,b=32,∴BC的函数表达式为y=−12x+32.当y=0时,x=3,即G(3,0),∴点A与点G关于BD对称,射线BD是∠ABC的平分线.设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r.∵∠BAC=90°,∴四边形MEAF为正方形, S ABC=12AB×AC=12AB×r+12AC×r+12BC×r,解得r=√5,即AE=EM=√5,∴BE=3√5−√5=2√5,∴BM=√BE2+EM2=5,∵B( -3,3),∴M(2,3).∴△ABC内心M的坐标为(2,3).6.1 ∵b+|c−3|+a2−8a=4√b−1−19,∴|c−3|+(a−4)2+(√b−1−2)2= 0,∴c=3,a=4,b=5.∵3²+4²=25=5²,∴c²+a²=b²,∴△ABC是直角三角形,∠ABC=90°.设内切圆的半径为r.根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1.(或者r=3+4−52=1)专题检测1.C2.C 如图,∵⊙O的半径为5,点O到直线l 的距离为3,∴CE=2,过点D作AB⊥ OC,垂足为D,交⊙O于A,B两点,且DE=2,∴⊙O上到直线l的距离为2的点为A,B,C,∴⊙O上到直线l的距离为2的点有3个.3.B4.B5.B 如图,连接OA.∵PA,PB是⊙O的切线,A,B是切点,∴∠PBO=∠PAO=90°,∵∠P=70°,∴∠BOA=360°—∠PBO—∠PAO-∠P=110°,∵OA=OB,∴∠ABO=∠BAO=12(180∘−∠BOA)=12(180 ∘−110 ∘)=35 ∘.6.C 两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则AB=R-1,∵AB =4,圆B半径为1,∴R=5,即圆A的半径等于5,∵AB=4,BC=AD=3,由勾股定理可知AC=5,∴AC=5=R,AD=3C在圆上,点D在圆内.7.D 如图,连接OC,设OA交BC于点T.∵AB=AC=2√5,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AT=√AC2−CT2=√(2√5)2−42=2.在Rt△OCT中.有r²=(r-2)²+4²,解得r=5.8.D9.D 连接OC、OD、CD,CD交PA于点E,如图,∵PC,PD与⊙O相切,切点分别为C,D,∴OC⊥CP,PC=PD,OP平分∠CPD.∴OP⊥CD,∴CB̂=DB̂,∴∠COB=∠DOB,∵∠CAD=12∠COD,∴∠COB=∠CAD,在Rt△OCP中, OP=√OC2+PC2=√32+42=5,∴sin∠COP=PCOP =45,∴sin∠CAD=45.10.D 连接AQ、PA,如图,∵PQ切⊙A于点Q,∴AQ⊥PQ,∴∠AQP=90°,∴PQ=√AP2−AQ2=√AP2−1,当AP的长度最小时,PQ的长度最小,∵AP⊥x轴时,AP的长度最小,∴AP⊥x轴时,PQ的长度最小,∵A(-3,2),∴此时P点坐标为(-3,0).11.上 12.55°13.55°或125°分两种情况:(1)点A 与点O 在BC 边同侧时,如图1:∵∠BOC=110°,∴∠BAC =110 ∘×12=55 ∘. (2)点A 与点O 在BC 边两侧时,如图2:∵∠BOC=110°,即BĈ所对的圆心角为110°,∴BDC ̂所对的圆心角为:360°—110°=250°. ∴∠BAC =12×250 ∘=125 ∘. 14.4415.130° ∵PA,PB 是⊙O 的切线,A,B 是切点,∴OA ⊥PA,OB ⊥PB,∴∠OAP=∠OBP=90°,∵∠OAP+∠AOB+∠OBP +∠P=360°,∴∠AOB=360°—90°—90°-50°=130°. 16.25π 如图,连接OP 、OA,∵大圆的弦AB 是小圆的切线,∴OP ⊥AB, ∴AP=BP= 12AB =5, 由勾股定理得OA ²-OP ²=AP ²=25, ∴圆环的面积=π×OA ²-π×OP ²=π×(OA ²-OP ²)=25π.17.解 (1)圆心为C(3,4),半径为2的圆的标准方程为(x-3)²+( y-4)²=4.故答案为:(x-3)²+(y-4)²=4. (2)由题意得圆心为C(2.0),∵A (3,−1),∴AC =√(3−2)2+12= √2<2,∴点A 在⊙C 内部.18.解 (1)∵AB=AC,∴∠ABC=∠ACB= 12(180 ∘−∠BAC)=12×(180 ∘−42 ∘)=69 ∘,∵BD 为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°-∠D=90°-42°=48°; ∴∠ACD=∠ABD=∠ABC-∠DBC=69°-48°=21°; (2)如图,连接OD,∵CD ∥AB,∴∠ACD=∠BAC=42°,∵四边形ABCD 为⊙O 的内接四边形,∴∠B+∠ADC=180°, ∴∠ADC=180°-∠B=180°-69°=111°,∴∠CAD=180°-∠ACD-∠ADC=180°-42°-111°=27°,∴∠COD=2∠CAD=54°, ∵DE 为切线,∴OD ⊥DE,∴∠ODE=90°,∴∠E=90°-∠DOE=90°-54°=36°. 19.(1)证明如图,过点O 作OH ⊥AB 于点H.∵∠ACB=90°,∴OC ⊥BC.∵BO 为△ABC 的角平分线,OH ⊥AB,∴OH=OC,即OH 为⊙O 的半径. ∵OH ⊥AB,∴AB 为⊙O 的切线.(2)解设⊙O 的半径为3x,则OH=OD=OC=3x.在Rt △AOH 中,∵tanA =34, ∴OHAH =34,∴3xAH =34,∴AH=4x, ∴AO =√OH 2+AH 2=√(3x )2+(4x )2=5x,∵AD=2,∴AO=OD+AD=3x+2,∴3x+2=5x,∴x=1,∴OA=3x+2=5,OH=OD=OC=3x=3 . ∴AC=OA+OC=5+3=8.在Rt △ABC 中, ∵tanA =BCAC ,∴BC =AC ⋅tanA =8×34=6, ∴OB =√OC 2+BC 2=√32+62=3√5.。

人教版中考数学考点系统复习 第六章 圆 第二节 与圆有关的位置关系

人教版中考数学考点系统复习 第六章 圆 第二节 与圆有关的位置关系

【分层分析】第一步,连接 OD,根据角平分线的定义得到∠BAD=∠∠CACD,
进而得到B︵D=BC︵DC;第二步:根据垂径定理得到
AD OD⊥BBCC;第三步:根据
平行线的性质得到 OD⊥DDFF,即可得到 DF 与⊙O 相切.
证明:连接 OD.∵∠BAC 的平分线交⊙O 于点 D,∴∠BAD=∠CAD,∴B︵D=
求线段长的问题时,因题图中多含直角三角形,因此可以考虑从以下方 面来找突破口:(1)勾股定理;(2)锐角三角函数;(3)相似三角形. 若题中含有 30°,45°,60°或者三角函数值时,常考虑用三角函数求 解,若不含,常考虑用相似三角形求解.
解:∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC, ∴AABE=BEDC,∴126 3=4BD7,∴BD=2 321.
55
1.如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 交 BC 于点 D,过点 D 作 DE⊥AC 于点 E,交 AB 的延长线于点 F. 求证:EF 是⊙O 的切线.
∵OA=OE,∴∠OAE=∠AED,∴∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE;
证明:由(1)知∠ADE=∠PAE=30°, ∵∠DAE=90°,∴∠AED=90°-∠ADE=60°. ∵∠AED=∠PAE+∠APE, ∴∠APE=∠PAE=30°,∴AE=PE.
(3)若 PE=4,CD=6,求 CE 的长.
以点 B 为圆心,BA 长为半径作⊙B,交 BD 于点 E. (1)试判断 CD 与⊙B 的位置关系,并说明理由; 【分层分析】过点 B 作 BF⊥CD 于点 F,由 AD∥BC 可得∠ADB=∠∠CCBBDD, 由 CB=CD 可得∠CDB=∠∠CCBBDD,∴∠ADB=∠∠C CDDB,B 因而利用角平分线性 质可得证,也可证△BDA≌△BDF 得出结论.

圆的总复习-圆、与圆有关的位置关系复习

圆的总复习-圆、与圆有关的位置关系复习

点在圆内
如果一个点位于圆的内部, 则该点称为圆内的点。
点在圆外
如果一个点位于圆的外部, 则该点称为圆外的点。
圆与直线的位置关系
相交
如果一条直线与圆有两个不同的 交点,则该直线称为圆的相交线。
相切
如果一条直线与圆只有一个交点, 则该直线称为圆的切线。
平行
如果一条直线与圆没有交点,则该 直线称为圆的平行线。
圆的面积与周长
圆的面积公式
A = πr^2,其中A表示面积,r表示半径。
圆的周长公式
C = 2πr,其中C表示周长,r表示半径。
圆的面积与周长的关系
周长是半径的函数,随着半径的增加而增加;面积是半径的二次函 数,随着半径的增加而快速增加。
02
与圆有关的位置关系
圆与点的位置关系
点在圆上
如果一个点位于圆的边界 上,则该点称为圆上的点。
圆的总复习-圆、与圆有 关的位置关系复习
• 圆的基本性质 • 与圆有关的位置关系 • 圆的定理与性质 • 圆的综合应用
01
圆的基本性质
圆的定义与基本性质
圆的定义
圆的度量
平面上所有与给定点(圆心)的距离 等于给定长度(半径)的点组成的图 形。
圆的周长和面积都是无限大,但常用 的度量单位是弧度。
圆的基本性质
圆与圆的位置关系
外离
如果两个圆没有交点并 且不相切,则它们是外
离的。
内含
如果一个圆完全位于另 一个圆的内部,则称该
圆为内含的。
相交
如果两个圆有两个公共 的交点,则它们是相交
的。
相切
如果两个圆有一个公共 的交点,则它们是相切
的。
03
圆的定理与性质

25.7圆和圆的位置关系(第二课时)

25.7圆和圆的位置关系(第二课时)

4.如图⊙O和⊙B外切于A点,两圆的外 公切线CD交OB的延长线于点P,C、D为 切点.连结OC,BD,设R,r分别为 ⊙O,⊙B的半径(R>r),Rr=25,AC,AD 是方程x2-2(m+2)x+2m2-m+3=0的两个 根(AC>AD). ⑴求证:∠CAD=900
⑵求m的值; ⑶求PO的 长.
• 由上述性质,你可以推导出相切两圆两圆 有什么性质吗?说明理由。
A O1 B O2
A O1 B O2
A O1 B O2
A O1 B O2
A O1 B O2
O1
O2
定理:相切两圆的连心线经过切点
已知:⊙O1与⊙O2相切于点T
求证:直线O1O2经过点T
O1
T
O2
例三:已知⊙O1与⊙O2外切于点T,过 点T的直线分别交⊙O1和⊙O2于点A和B 求证:O1A∥O2B
C
D
O
A
B
P
相交两圆的性质:相交两圆的连 心线垂直平分两圆的公共弦 相切两圆的性质:相切两圆的连 心线经过切点
25.7圆和圆的位置关系(2)
--相交、相切两圆的性质
复习: 1、两圆有几种位置关系?从公共点的角 度如何定义?
位置关系 图
O2

O1
公共点
外离 外切
0 1
O2
O1
相交 内切
内含
O2
O1
2 1
O2 O1
O2
O1
O2O1
0复习 2、两圆的位Fra bibliotek关系用什么方法确定?
相 离
相 交 相 切
外离
d>R+r
外切
新授 如图,⊙O1与⊙O2 交于A、B, O1O2 是连心线,求证:O1O2 ⊥AB, 且O1O2平分AB。 A 两圆相交时,连心线垂直平分 两圆的公共弦, o1 o2

中考数学 考点系统复习 第六章 圆 第二节 与圆有关的位置关系

中考数学 考点系统复习 第六章 圆 第二节 与圆有关的位置关系

点 C,过点 A 作 AD∥OB 交⊙O 于点 D,连接 CD.若∠B=50°,则∠OCD

( B)
A.15°
B.20°
C.25°
D.30°
5.(2021·贺州)如图,在 Rt△ABC 中,∠C=90°,AB=5,点 O 在 AB
上,OB=2,以 OB 为半径的⊙O 与 AC 相切于点 D,交 BC 于点 E,CE 的长
∴CE=DH=2 5,∠DEC=90°, ∴OD⊥BC, ∴BC=2CE=4 5,
BC 5 ∵sin∠BAC=AB= 3 , ∴AB=12, 即半圆的直径为 12.
12.(2020·宜宾)如图,已知 AB 是⊙O 的直径,点 C 是圆上异于 A,B 的 一点,连接 BC 并延长至点 D,使 CD=BC,连接 AD 交⊙O 于点 E,连接 BE. (1)求证:△ABD 是等腰三角形; (2)连接 OC 并延长,与以 B 为切点的切线交于点 F,若 AB=4,CF=1,求 DE 的长.

( B)
A.12
2 B.3
2 C. 2
D.1
6.(2021·泰安)如图,在△ABC 中,AB=6,以点 A 为圆心,3 为半径的
圆与边 BC 相切于点 D,与 AC,AB 分别交于点 E 和点 G,F 是优弧 GE 上一
点,∠CDE=18°,则∠GFE 的度数是
( B)
A.50°
B.48°
C.45°
连接 EM,过点 M 作 MH⊥EF 于 H,则 EF=2EH,
在 Rt△EHM 中,EM=4,MH=3, 根据勾股定理得 EH= EM2-MH2= 42-32= 7, ∴弦长 n=EF=2EH=2 7.
形内一点,连接 CF,DF,且∠ADF=∠DCF,点 E 是 AD 边上一动点,连接 EB,EF,则 EB+EF 长度的最小值为_33-133-3 .

必修二4.2.2圆与圆的位置关系

必修二4.2.2圆与圆的位置关系

图形示意
复习作业:
习题4.2 A组8、9、10、11.

易错探究 例4:求与圆(x-2)2+(y+1) 2=4相切于点A(4,-1)且半径长 为1的圆的方程. 错解:设所求圆的圆心C(a,b),则


由①②解得a=5,b=-1. ∴所求圆的方程为(x-5) 2+(y+1) 2=1.
错因分析:两圆相切包括内切和外切两种情况,错解中 认为相切就是外切,思考不到位,丢掉了内切的情况, 造成错解. 正解:设所求圆的圆心C(a,b),则 2 2 ( a 4) (b 1) 1, ① 2 2 ( a 2) ( b 1) 3, ② (1)当两圆外切时,有 由①②解得a=5,b=-1. ∴所求圆的方程为(x-5)2+(y+1) 2=1.
1、点和圆的位置关系有几种?如何判定?
答:三种。点在圆外;点在圆上;点在圆内。
设点P(x0,y0),圆(x-a)2+(y-b)2=r2, 圆心(a,b)到P(x0,y0)的距离为d,则:
几何法:点在圆内d<r 点在圆上d=r 点在圆外d>r 代数法:点在圆内(x0 -a)2+(y0 -b)2<r2 点在圆上(x0 -a)2+(y0 -b)2=r2 点在圆外(x0 -a)2+(y0 -b)2>r2
题型三: 与两圆相切有关的问题 例2:求与圆x2+y2-2x=0外切且与直线 x 3 y 0 相切于点 (3, 3) 的圆的方程. 分析:先设出圆的方程(x-a) 2+(y-b) 2=r2 (r>0),利用 题设条件,得到关于a、b、r的三个方程,解方程组 求得a,b,r即可.

专题02 (圆与圆的位置关系及判定)(原卷版)-高考数学中平面解析几何知识点提优(江苏专用)

专题02  (圆与圆的位置关系及判定)(原卷版)-高考数学中平面解析几何知识点提优(江苏专用)

一、单项选择题1. 两圆x 2+y 2−1=0和x 2+y 2−4x +2y −4=0的位置关系是( )A. 内切B. 外离C. 外切D. 相交2. 已知圆C :(x +1)2+(y −4)2=m 和两点A(−2,0),B(1,0),若圆上存在点P ,使得|PA|=2|PB|,则m 的取值范围是A. [8,64]B. [9,64]C. [8,49]D. [9,49]3. 若圆C 1:x 2+y 2=4与圆C 2:x 2+y 2−6x −8y +m =0外切,则实数m =( )A. −24B. −16C. 24D. 164. 两圆x 2+y 2=1与x 2+y 2−2√ax −2√by +a +b =4有且只有一条公切线,那么1a +2b 的最小值为A. 1B. 3+2√2C. 5D. 4√25. 圆x 2+y 2−4=0与圆x 2+y 2−4x +4y −12=0的公共弦长为( )A. √2B. √3C. 2√2D. 3√26. 已知动圆M 与圆C 1:(x +1)2+y 2=1外切,与圆C 2:(x −1)2+y 2=25内切,则动圆圆心M 的轨迹方程是( )A. x29+y 28=1 B. x 28+y29=1 C. x29+y 2=1 D. x 2+y29=1 二、填空题(本大题共11小题,共55.0分)7.已知两圆的方程分别为x2+y2−4x=0和x2+y2−4y=0,则这两圆公共弦的长等于______.8.在平面直角坐标xOy中,设圆M的半径为1,圆心在直线上,若圆M上不存在点N,使NO=12NA,其中A(0,3),则圆心M横坐标的取值范围___________9.在平面直角坐标系xOy中,若圆C1:x2+(y−1)2=r2(r>0)上存在点P,且点P关于直线x−y=0的对称点Q在圆C2:(x−2)2+(y−1)2=1上,则r的取值范围是________.10.在平面直角坐标系xOy中,已知点A(0,−2),点B(1,−1),P为圆x2+y2=2上一动点,则PBPA的最大值是______.11.在平面直角坐标系xOy中,已知圆C:(x+1)2+y2=2,点A(2,0),若圆C上存在点M,满足MA2+MO2≤10,则点M的纵坐标的取值范围是____.12.圆C1:x2+y2+2ax+a2−9=0和圆C2:x2+y2−4by−1+4b2=0只有一条公切线,若a∈R,b∈R,且ab≠0,则4a2+1b2的最小值为.13.已知圆C的圆心是直线x−y+1=0与x轴的交点,且圆C与圆(x−2)2+(y−3)2=8相外切,则圆C的方程为________.14.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y−2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.三、解答题(本大题共4小题,共48.0分)15.已知圆心在直线x+y−1=0上且过点A(2,2)的圆C1与直线3x−4y+5=0相切,其半径小于5.若圆C2与圆C1关于直线x−y=0对称.(1)求圆C2的方程;(2)过直线y=2x−6上一点P作圆C2的切线PC,PD,切点为C,D,当四边形PCC2D面积最小时,求直线CD的方程.16.已知动圆C与圆x2+y2+2x=0相外切,与圆x2+y2−2x−8=0相内切.(1)求动圆的圆心C的轨迹方程;(2)若直线ι:y=kx+m与圆心C的轨迹交于A,B两点(A,B不是左右顶点),且以AB为直径的圆经过圆心C的轨迹的右顶点,判断直线ι是否过定点,若是,求出定点的坐标;若不是,请说明理由.17.已知圆C:(x+3)2+(y−1)2=7.①由点O(0,0)向圆C引切线OA,OB,A,B为切点,求直线AB方程;②直线l:x−y−2=0上的点P向圆引切线PA,PB,A,B为切点,判断直线AB是否过定点,若过定点,请求出定点坐标,否则说明理由.。

圆与圆的位置关系

圆与圆的位置关系

O
. .
5 R
解:设⊙P的半径为R
P
(1)若⊙O与⊙P外切, 则 R =op-5=8-5 则 R =8-5 R=3 cm (2)若⊙O与⊙P内切, 则 R=OP+5=8, R=13 cm 综上⊙P的半径为3cm或13cm
5
O
. .
R
P
练习3.两圆的半径之比为5:3,当两圆相切时, 圆心距为8cm,求两圆的半径?
外离
外切
相交
O1O2>R+r
R r
O1O2=R+r
R
R-r<O1O2<R+r
R
r
O1 O2
O1 O2
r
O1O2
内切
内含
同心圆 (一种特殊的内含)
O1O2=R-r
0≤O1O2<R-r
O1O2=0
歌诀:
计算差与和,两圆相切了
大于和,各管各
(相切)
(相离)
小于差,中间 落
大差小和双手握 相切两圆的性质
(内含)
O2
d
O1 A
d
B
精彩源于发现
外 离
o1 R d
r o2
d>R+r
外 切
o1
T
o2
R d
r
d=R+r
内 切
o2 o1
T
r R
d
d=R-r (R>r)
相 交
R-r<d<R+r
(R>r)
o1
R
d
r
o2
o1
o2
o1
o2
o1 o 2
d=R+r

2圆与圆的位置关系课件

2圆与圆的位置关系课件

求:这三个圆的半径长.
问1: ⊙A、 ⊙B、 ⊙C两两外切 表示什么意思?
RA+RB=AB,
A
C
RA+RC=AC,
RB+RC=BC
问2:用怎样的方法求这三个圆的半径?
B
设元,列出三元一次方程组.
三、例题讲授
例2 如图,已知⊙A、 ⊙B、 ⊙C两两外切,且AB=3厘米, BC=5厘米,AC=6厘米,
(3)∵d=0.5 ∴0≤d <∣R1-R2∣
所以⊙O1和⊙O2的位置关系是内含.
适时小结
例1 已知⊙O1和⊙O2的半径长分别为3和4,根据下列条件 判断⊙O1和⊙O2的位置关系:
(1) O1 O2=7;(2) O1 O2=4; (3) O1 O2=0.5;
解:分别用R1、R2、d 表示⊙O1和⊙O2的半径和圆心距 .
这些数量关系可以借助于图形的直观性来推导.
三.例题讲授
例 ⊙1O1已和知⊙⊙OO2的1和位⊙置O关2的系半: 径长分别为3和4,根据下列条件判断 (1) O1 O2=7;(2) O1 O2=4; (3) O1 O2=0.5;
解:分别用R1、R2、d 表示⊙O1和⊙O2的半径和圆心距 . 由R1=3和R2=4得 R1+R2=7,∣R1-R2∣=1
O1
A
B
O2
两圆内含
O1 O2
d>R1+R2 0≤d<∣R1-R2∣
有一个交点: O1
O2
两圆相切
O1
O2
有两个交点:
两圆相交
O1
O2
两圆外切 两圆内切 两圆相交
d= R1+R2
0<d= ∣R1-R2∣
∣R1-R2∣<d<R1+R2

高二数学复习考点知识与题型专题讲解13---圆与圆的位置关系

高二数学复习考点知识与题型专题讲解13---圆与圆的位置关系

高二数学复习考点知识与题型专题讲解2.5.2 圆与圆的位置关系【考点梳理】考点一:两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d 与r 1,r 2的关系 d >r 1+r 2 d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0),C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎨⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个2个1个0个【题型归纳】题型一:判断圆与圆的位置关系1.(2022·全国·高二课时练习)已知圆221:210()C x y x my m +-++=∈R 的面积被直线210x y ++=平分,圆222:(2)(3)25C x y ++-=,则圆1C 与圆2C 的位置关系是( )A .外离B .相交C .内切D .外切2.(2022·江苏·高二课时练习)已知圆221:()()4C x a y b -+-=(a ,b 为常数)与222:20C x y x +-=.若圆心1C 与圆心2C 关于直线0x y -=对称,则圆1C 与2C 的位置关系是( )A .内含B .相交C .内切D .相离3.(2022·天津市第九十五中学益中学校高二期末)圆222830x y x y +++-=与圆()()22225x y -+-=的位置关系为()A .外切B .内切C .相交D .相离题型二:求圆的交点坐标4.(2021·全国·高二课时练习)圆心在直线x ﹣y ﹣4=0上,且经过两圆x 2+y 2﹣4x ﹣3=0,x 2+y 2﹣4y ﹣3=0的交点的圆的方程为( ) A .x 2+y 2﹣6x +2y ﹣3=0B .x 2+y 2+6x +2y ﹣3=0C .x 2+y 2﹣6x ﹣2y ﹣3=0D .x 2+y 2+6x ﹣2y ﹣3=05.(2021·江苏·高二专题练习)若圆C 的圆心在直线40x y --=上,且经过两圆22460x y x +--=和22460x y y +--=的交点,则圆C 的圆心到直线3450x y ++=的距离为( ) A .0B .85C .2D .1856.(2022·山西·运城市景胜中学高二阶段练习(文))设点(1,0)A ,(4,0)B ,动点P 满足2||||PA PB =,设点P 的轨迹为1C ,圆2C :22((3)4x y +-=,1C 与2C 交于点,M N ,Q 为直线2OC 上一点(O 为坐标原点),则MN MQ ⋅=( )A .4B .C .2D题型三:圆与圆的位置关系求参数范围7.(2022·全国·高二课时练习)已知圆()()()22:140C x y m m ++-=>和两点()2,0A -,()10B ,,若圆C 上存在点P ,使得2PA PB =,则m 的取值范围是( )A .[8,64]B .[9,64]C .[8,49]D .[9,49]8.(2022·全国·高二课时练习)若圆()()2221:10C x y r r +-=>上存在点P ,且点P 关于直线y =x 的对称点Q 在圆()()222:211C x y -+-=上,则r 的取值范围是( )A .1⎤⎦B .C .⎡⎣D .(]0,19.(2022·江苏·高二课时练习)已知圆1O :2216x y +=和圆2O :22268240x y mx my m +--+=有且仅有4条公切线,则实数m 的取值范围是( )A .()(),11,-∞-⋃+∞B .()1,1-C .()(),23,-∞-⋃+∞D .()2,3- 题型四:圆与圆的位置求圆的方程10.(2022·全国·高二单元测试)若圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点(,)C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程是()A .24480y x y -++=B .22220y x y +-+=C .24480y x y +-+=D .2210y x y ---=11.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于A .14B .34C .14或45D .34或1412.(2019·安徽马鞍山·高二期中)已知半径为1的动圆与圆C :()()225316x y +++=相切,则动圆圆心的轨迹方程是( )A .()()225325x y +++=B .()()225325x y -+-=或()()22539x y -+-= C .()()22539x y -+-=D .()()225325x y +++=或()()22539x y +++=题型五:圆的公共弦长问题(参数、弦长问题)13.(2022·全国·高二专题练习)已知圆221:420C x y x y +-+=与圆222:240C x y y +--=相交于A 、B 两点,则圆()()22:331C x y ++-=上的动点P 到直线AB 距离的最大值为( )A1B .1C .12+D 1 14.(2022·四川资阳·高二期末(理))已知圆221:20C x y x ++=,圆222:60C x y y +-=相交于P ,Q 两点,其中1C ,2C 分别为圆1C 和圆2C 的圆心.则四边形12PC QC 的面积为( )A .3B .4C .6D .15.(2021·广东·人大附中深圳学校高二期中)若圆221:4C x y +=与圆()222:2600C x y ay a ++-=>的公共弦长为=a ( )A .1B .1.5C .2D .2.5题型六:圆的共切线问题16.(2022·全国·高二专题练习)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列不是M ,N 两圆公切线的直线方程为( ) A .0y =B .430x y -=C .20x y -=D .20x y +17.(2022·江苏·高二课时练习)若直线l 与圆()221:11C x y ++=,圆()222:14C x y -+=都相切,切点分别为A 、B ,则AB =( )A .1B.18.(2022·江苏·高二课时练习)在平面直角坐标系xOy 中,圆1C :222660x y x y ++-+=与圆2C :224240x y x y +-++=,则两圆的公切线的条数是( ) A .4条B .3条C .2条D .1条题型七:圆与圆位置关系的综合类问题19.(2022·陕西·武功县普集高级中学高二阶段练习(理))已知圆C :22240x y x y m +--+=.(1)若圆C 与圆D :22(2)(2)1x y +++=有三条外公切线,求m 的值;(2)若圆C 与直线20x y +-=交于两点M ,N ,且OM ON ⊥(O 为坐标原点),求m 的值.20.(2022·全国·高二单元测试)已知圆1C :²²4230x y x y +---=,圆2:?²20C x y x m +-+=,其中51m -<<.(1)若1m =-,判断圆1C 与2C 的位置关系,并求两圆公切线方程(2)设圆1C 与圆2C 的公共弦所在直线为l ,且圆2C 的圆心到直线l 的距离为2,求直线l 的方程以及公共弦长21.(2021·江苏·高二专题练习)已知圆221:(1)1C x y -+=与圆222:80C x y x m +-+=.(1)若圆1C 与圆2C 恰有3条公切线,求实数m 的值;(2)在(1)的条件下,若直线0x n +=被圆2C 所截得的弦长为2,求实数n 的值.【双基达标】一、单选题22.(2021·黑龙江·勃利县高级中学高二期中)两圆224210x y x y +-++=与224410x y x y ++--=的公切线有( )A .1条B .2条C .3条D .4条23.(2019·江西省大余县新城中学高二阶段练习)圆221:430C x y x +-+=与圆222:(1)(4)C x y a ++-=恰有三条公切线,则实数a 的值是( )A .4B .6C .16D .3624.(2022·全国·高二课时练习)圆1O 的方程为()()22231x y ++-=,圆2O 的圆心为()21,7O .(1)若圆2O 与圆1O 外切,求圆2O 的方程;(2)若圆2O 与圆1O 交于A 、B 两点,且AB =2O 的方程.25.(2022·全国·)已知圆1C 与y 轴相切于点(03),,圆心在经过点(21),与点(23)--,的直线l 上. (1)求圆1C 的方程;(2)若圆1C 与圆222:6350C x y x y +--+=相交于M ,N 两点,求两圆的公共弦长.【高分突破】一:单选题26.(2021·黑龙江·双鸭山一中高二阶段练习)以下四个命表述正确的是( )个①若点()1,2A ,圆的一般方程为222410x y x y ++-+=,则点A 在圆外 ②圆C :2228130+--+=x y x y 的圆心到直线4330x y -+=的距离为2 ③圆1C :2220x y x ++=与圆2C :224840x y x y +--+=恰有三条公切线④两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的线方程为:260x y ++= A .1B .2C .3D .427.(2021·江苏·高二专题练习)已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6B .7C .8D .928.(2017·江西南昌·高二阶段练习(文))与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有A .1条B .2条C .3条D .4条29.(2022·全国·高二课时练习)已知Rt PAB 的直角顶点P 在圆(()22:11C x y +-=上,若点(),0A t -,()(),00B t t >,则t 的取值范围为( ) A .(]0,2B .[]1,2C .[]2,3D .[]1,330.(2022·全国·高二)已知半径为1的动圆与圆()()225716x y -++=相切,则动圆圆心的轨迹方程是( ) A .()()225725x y -++=B .()()225717x y -+-=或()()225715x y -++=C .()()22579x y -+-=D .()()225725x y -++=或()()22579x y -++=二、多选题31.(2022·江苏·南京市中华中学高二开学考试)已知圆()()221:1311C x y -+-=与圆2222:2230C x y x my m ++-+-=,则下列说法正确的是( )A .若圆2C 与x 轴相切,则2m =B .若3m =-,则圆C 1与圆C 2相离C .若圆C 1与圆C 2有公共弦,则公共弦所在的直线方程为()246220x m y m +-++=D .直线210kx y k --+=与圆C 1始终有两个交点32.(2022·全国·高二专题练习)圆221:20+-=Q x y x 和圆222:240++-=Q x y x y 的交点为A ,B ,则( )A .公共弦AB 所在直线的方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1Q 上一动点,则P 到直线AB 1+ 33.(2022·江苏·高二单元测试)设有一组圆()()()22:4R k C x k y k k -+-=∈,下列命题正确的是( )A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点(3,0) C .存在定直线始终与圆k C 相切D .若圆k C 上总存在两点到原点的距离为1,则k ⎛∈⋃ ⎝⎭⎝⎭34.(2022·重庆市实验中学高二期末)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是( )A .AB 的最小值为.若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-35.(2022·江苏南通·高二期末)已知圆1O :225x y +=和圆2O :22(4)13x y -+=相交于A ,B 两点,且点A 在x 轴上方,则( ) A .||4AB =B .过2O 作圆1O 的切线,切线长为C .过点A 且与圆2O 相切的直线方程为3210x y -+=D .圆1O 的弦AC 交圆2O 于点D ,D 为AC 的中点,则AC 的斜率为7236.(2022·广东·高二阶段练习)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-=,则下列结论正确的是( ) A .直线l 与圆C 的位置关系只有相交和相切两种 B .圆C 的圆心到直线l C .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上37.(2022·河北石家庄·高二期末)设m R ∈,直线310mx y m --+=与直线310x my m +--=相交于点(,)P x y ,线段AB 是圆22:(2)(1)9C x y +++=的一条动弦,Q 为弦AB 的中点,||AB = )A .点P 在定圆22(2)(2)8x y -+-=上B .点P 在圆C 外C .线段PQ 长的最大值为6D .PA PB ⋅的最小值为15-38.(2022·浙江省杭州学军中学高二期中)过点(A 作圆221:4C x y +=的切线l ,P是圆222:40C x y x +-=上的动点,则下列说法中正确的是( )A .切线l 40y -+=B .圆1C 与圆2C 的公共弦所在直线方程为1x = C .点P 到直线l 的距离的最小值为1D .点O 为坐标原点,则AO OP ⋅的最大值为4 三、填空题39.(2022·江苏·徐州华顿学校高二阶段练习)设两圆22110C x y +-=:与圆222240C x y x y +-+=:的公共弦所在的直线方程为_______40.(2022·全国·高二课时练习)已知两圆O :224x y +=,C :22224510x ax y ay a -+-+-=,当两圆相交时,实数a 的取值范围是______.41.(2022·江苏·高二课时练习)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.42.(2022·全国·高二课时练习)已知圆1C 的标准方程是()()224425x y -+-=,圆222:430C x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为______.43.(2022·北京房山·高二期末)心脏线,也称心形线,是一个圆上的固定一点在该圆绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名.心脏线的平面直角坐标方程可以表示为22x y ay ++=0a >,则关于这条曲线的下列说法: ①曲线关于x 轴对称;②当1a =时,曲线上有4个整点(横纵坐标均为整数的点); ③a 越大,曲线围成的封闭图形的面积越大; ④与圆()222x a y a ++=始终有两个交点. 其中,所有正确结论的序号是___________.四、解答题44.(2022·全国·高二单元测试)已知圆()222:0O x y r r +=>,直线:40l kx y k --=,当k =l 与圆O 恰好相切. (1)求圆O 的方程;(2)若直线l 上存在距离为2的两点M ,N ,在圆O 上存在一点P ,使得0PM PN ⋅=,求实数k 的取值范围.45.(2022·江苏·高二阶段练习)已知圆22:(1)4C x y -+=. (1)若直线l 经过点(1,3)A -,且与圆C 相切,求直线l 的方程;(2)若圆2221:2280C x y mx y m +--+-=与圆C 相切,求实数m 的值.46.(2022·上海市行知中学高二期中)已知圆()()22:10C x y a a ++=>,定点()(),0,0,A m B n ,其中,m n 为正实数,(1)当9a =时,若对于圆C 上任意一点P 均有PA PO λ=成立(O 为坐标原点),求实数,m λ的值;(2)当2,4m n ==时,对于线段AB 上的任意一点P ,若在圆C 上都存在不同的两点,M N ,使得点M 是线段PN 的中点,求实数a 的取值范围47.(2022·江苏·高二课时练习)若圆221:C x y m +=与圆222:68160C x y x y +--+=相外切.(1)求m 的值;(2)若圆1C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,P 为第三象限内一点且在圆1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.48.(2022·江苏·高二单元测试)已知圆()22:24M x y -+=,点()()1,R P t t -∈.(1)若1t =,半径为1的圆N 过点P ,且与圆M 相外切,求圆N 的方程;(2)若过点P 的两条直线被圆M 截得的弦长均为且与y 轴分别交于点S 、T ,34ST =,求t .49.(2022·广东揭阳·高二期末)过点()3,1P 作圆()22:11C x y -+=的两条切线,切点分别为A ,B ;(1)求直线AB 的方程;(2)若M 为圆上的一点,求MAB △面积的最大值.【答案详解】1.B【分析】由圆1C 的面积被直线210x y ++=平分,可得圆心在直线上,求出m ,进而利用圆心距与半径和以及半径差的关系可得圆1C 与圆2C 的位置关系.【详解】因为圆1C 的面积被直线210x y ++=平分,所以圆1C 的圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,所以12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,所以圆1C 的圆心为(1,1)-,半径为1.因为圆2C 的圆心为(2,3)-,半径为5,所以125C C ==, 故125151C C -<<+,所以圆1C 与圆2C 的位置关系是相交. 故选:B . 2.B【分析】由对称求出,a b ,再由圆心距与半径关系得圆与圆的位置关系.【详解】222:(1)1C x y -+=,2(1,0)C ,半径为1r =,2(1,0)C 关于直线0x y -=的对称点为(0,1),即(,)1C 01,所以0,1a b ==,圆1C 半径为2R =,12C C =13R r R r -=<<=+,所以两圆相交. 故选:B . 3.A【分析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可. 【详解】由22222830(1)(4)20x y x y x y +++-=⇒+++=,该圆的圆心为(1,4)--,半径为圆()()22225x y -+-=的圆心为(2,2)= 所以两圆的半径和等于两圆的圆心距,因此两圆相外切, 故选:A 4.A【分析】求出两个圆的交点,再求出中垂线方程,然后求出圆心坐标,求出半径,即可得到圆的方程.【详解】由2222430,430x y x x y y +--=+--=解得两圆交点为M ⎝⎭与N ⎝⎭因为1MN k =,所以线段MN 的垂直平分线斜率21k =-;MN 中点P 坐标为(1,1) 所以垂直平分线为y =﹣x +2 由240y x x y =-+⎧⎨--=⎩解得x =3,y =﹣1,所以圆心O 点坐标为(3,﹣1)所以r 所以所求圆的方程为(x ﹣3)2+(y +1)2=13即:x 2+y 2﹣6x +2y ﹣3=0 故选:A 5.C【解析】求出过AB 两点的垂直平分线方程,再联立直线40x y --=,求得圆心,结合点到直线距离公式即可求解【详解】设两圆交点为,A B ,联立2222460460x y x x y y ⎧+--=⎨+--=⎩得1111x y =-⎧⎨=-⎩或2233x y =⎧⎨=⎩,1AB k =,则AB 中点为()1,1,过AB 两点的垂直平分线方程为()112y x x =--+=-+, 联立240y x x y =-+⎧⎨--=⎩得31x y =⎧⎨=-⎩,故圆心为()3,1-,由点到直线距离公式得334525d ⨯-+==故选:C【点睛】本题考查线段垂直平分线方程的求解,点到直线距离公式的应用,属于中档题 6.C【分析】由题意先求动点P 的轨迹1C 的方程,联立1C 和2C 求出M,N 的坐标,如图由平面几何知识和向量数量积的运算规则可求得MN MQ ⋅.【详解】设点P(,x y ),由()()A 1,0,B 4,0,2PA PB =可得()()2222214x y x y -+-+化简得动点P 的轨迹1C 的方程为:224x y +=,联立(()22224334x y x y ⎧+=⎪⎨+-=⎪⎩解得:()()M 3,1,N 0,2-,如图所示,有平面几何知识可得:()1cos 2MQ QMN MN ∠=,向量数量积的运算规则可得:()1cos 2MN MQ MN MQ QMN MN MN ⋅=⋅∠=⋅()(()22211021222MN ⎡⎤==+-=⎢⎥⎣⎦. 故选:C.【点睛】本题考查了由已知条件求动点轨迹的问题,考查了求两圆交点坐标的运算,借助于平面几何知识求向量的数量积的问题,考查了综合运算能力,属于中档题. 7.D【分析】设P 的坐标为(),x y ,由2PA PB =可得P 的轨迹为()2224x y -+=,又因为点P在圆C 上,所以两圆有公共点,从而求解即可.【详解】解:设P 的坐标为(),x y ,因为2PA PB =,()2,0A -,()10B ,,=()2224x y -+=,又因为点P 在圆()()()22:140C x y m m ++-=>上, 所以圆()2224x y -+=与圆C 有公共点,22≤且0m >, 解得949m ≤≤, 故选:D . 8.A【分析】利用对称圆,把问题转化为两圆的位置关系问题进行处理.【详解】根据题意,圆1C 的圆心坐标为(0,1),半径为r ,其关于直线y =x 的对称圆3C 的方程为()2221x y r -+=,根据题意,圆3C 与圆2C 有交点,既可以是外切,也可以是相交,也可以是内切.又圆()()222:211C x y -+-=,所以圆3C 与圆2C 的圆心距为23||C C =以只需11r r -+,解得1r ⎤∈⎦.故B ,C ,D 错误.故选:A. 9.A【分析】根据题意圆1O 、2O 相离,则1212O O r r >+,分别求圆心和半径代入计算. 【详解】圆1O :2216x y +=的圆心()10,0O ,半径14r =,圆2O :22268240x y mx my m +--+=的圆心()23,4O m m ,半径1r m =根据题意可得,圆1O 、2O 相离,则1212O O r r >+,即54m m >+ ∴,11,m故选:A . 10.C【分析】由圆与圆的对称性可得a ,再利用几何关系,求点P 的轨迹方程.【详解】由圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,可知两圆半径相等且两圆圆心连线的中点在直线1y x =-上,可得2a =,即点C 的坐标为(2,2)-,所以圆P 的圆心的轨迹方程为222(2)(2)x y x ++-=,整理得24480y x y +-+=. 故选:C. 11.D【分析】先将两个圆的方程化为圆的标准方程,写出两个圆的圆心坐标和半径,然后计算两个圆的圆心之间的距离,圆心距等于两个圆的半径差的绝对值、和,得到关于a 的方程,即可解得a 的值.【详解】设圆1C 、圆2C 的半径分别为1r 、2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-. 由两圆相切得,1212C C r r =+或1212C C r r =-,∵125C C =,∴215r +=或22154r r -=⇒=或26=r 或24r =-(舍去). 因此,5016a -= 解得a =34 或5036a -= 解得14a = 故选:D.【点睛】本题考查了利用两个圆相切求解参数值的问题,属于中档题目,解题时需要准确将圆的一般方程化为圆的标准方程,利用圆心距与半径的关系建立关于参数的方程. 12.D【分析】根据动圆与圆C 相内切、相外切分类讨论进行求解即可.【详解】设动圆圆心为O ,圆C :()()225316x y +++=的圆心坐标为:(5,3)C --,半径为4.动圆与圆C 相内切时,413OC =-=,所以动圆圆心的轨迹方程()()22539x y +++=; 动圆与圆C 相外切时,415OC =+=,所以动圆圆心的轨迹方程()()225325x y +++=. 故选:D【点睛】本题考查了圆与圆的相切关系,考查了圆的定义,考查了圆的标准方程,属于基础题. 13.A【分析】判断圆1C 与2C 的位置并求出直线AB 方程,再求圆心C 到直线AB 距离即可计算作答.【详解】圆221:(2)(1)5C x y -++=的圆心1(2,1)C -,半径1r =222:(1)5C x y +-=的圆心2(0,1)C ,半径2r =,12||C C =121212||||||r r C C r r -<<+,即圆1C 与2C 相交,直线AB 方程为:10x y --=,圆()()22:331C x y ++-=的圆心(3,3)C -,半径1r =,点C 到直线AB 距离的距离2d ==,所以圆C 上的动点P 到直线AB 1. 故选:A 14.A【分析】求得12,C C PQ ,由此求得四边形12PC QC 的面积. 【详解】圆1C 的圆心为()1,0-,半径11r =; 圆2C 的圆心为()0,3,所以12C C =由2220x y x ++=、2260x y y +-=两式相减并化简得30x y +=, 即直线PQ 的方程为30x y +=,()1,0-到直线PQ,所以PQ ==,所以四边形12PC QC 的面积为1211322C C PQ ⨯⨯==. 故选:A15.A【分析】先求得公共弦所在直线方程,代入224x y +=,运算即得解【详解】由题意,圆221:4C x y +=的圆心11(0,0),2C r =;圆()222222:2600()6C x y ay a x y a a ++-=>⇔++=+,圆心22(0,),C a r -设圆心距为12C C d ,故12C C d a =由于两圆相交,故122112C C r r d r r -<<+2a <,解得12a >两圆方程作差得公共弦所在直线方程为1y a =,代入224x y +=,解得x == 解得1a =(负根舍去),满足12a > 故选:A 16.D【分析】计算两圆的圆心和半径,可得两圆相离,有四条公切线,两圆心坐标关于原点O 对称,则有两条切线过原点O ,另两条切线与直线MN 平行且相距为1,数形结合可计算四条切线方程,结合选项,即得解【详解】由题意,圆()()22:211M x y -+-=的圆心坐标为()2,1M ,半径为11r =圆()()22:211N x y +++=的圆心坐标为()2,1N --,半径为21r =如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线:l y kx =22111k k -=+,解得0k =或43k =, 另两条切线与直线MN 平行且相距为1,又由1:2MN l y x =,设切线1:2l y x b =+1114b=+,解得5b = 结合选项,可得D 不正确. 故选:D 17.C【分析】设直线l 交x 轴于点M ,推导出1C 为2MC 的中点,A 为BM 的中点,利用勾股定理可求得AB .【详解】如下图所示,设直线l 交x 轴于点M ,由于直线l 与圆()221:11C x y ++=,圆()222:14C x y -+=都相切,切点分别为A 、B , 则1AC l ⊥,2BC l ⊥,12//AC BC ∴,2122BC AC ==,1C ∴为2MC 的中点,A ∴为BM 的中点,1122MC C C ∴==,由勾股定理可得22113AB MA MC AC ==-故选:C.【点睛】关键点点睛:求解本题的关键在于推导出A 为M B 的中点,并利用勾股定理进行计算,此外,在直线与圆相切的问题时,要注意利用圆心与切点的连线与切线垂直这一几何性质. 18.A【分析】根据给定条件,求出两圆圆心距,再判断两圆位置关系即可作答. 【详解】圆1C :22(1)(3)4x y ++-=的圆心1(1,3)C -,半径12r =, 圆2C :22(2)(1)1x y -++=的圆心2(2,1)C -,半径21r =,2212||(12)[3(1)]5C C =--+--,显然1212||C C r r >+,即圆1C 与圆2C 外离,所以两圆的公切线的条数是4. 故选:A19.(1)11m =- (2)2m =【分析】(1)两圆有三条公切线,说明两圆外切,根据两圆外切可以求出参数的值 (2)设()11,M x y ,()22,N x y ,则OM ON ⊥等价于12120x x y y +=,直线与圆联立方程,根据韦达定理,得到关于m 的等式,即可求解m 的值 (1)由2222240(1)(2)5x y x y m x y m +--+=⇒-+-=-,知圆C 的圆心(1,2)C由圆D :22(2)(2)1x y +++=,有圆心()2,2D --,半径为1,依题意有圆C 与圆D 相外切,故||1511CD m ==⇒=-; (2)设()11,M x y ,()22,N x y ,有112x y =-,222x y =-, 由OM ON ⊥,有()()121212120220x x y y y y y y +=⇒--+=, 整理得12122y y y y +=+………①由2222402602x y x y m y y m x y⎧+--+=⇒-+=⎨=-⎩,3680m ∆=->得:92m <,易知1y ,2y 是方程的根,故有123y y +=,122m y y =代入①,得3222mm =+⇒=,满足要求,故2m =20.(1)两圆内切,10x y ++=;(2)直线l 的方程为0x y +=【分析】(1)由1m =-,分别得到圆1C 和圆2C 的圆心,半径,然后利用圆圆的位置关系判断,再由两圆方程相减得到公切线;(2)先得到两圆公共弦所在直线l 的方程,再利用弦长公式求解. 【详解】(1)当1m =-时,圆1C 的圆心()12,1C ,半径1r =圆2C 的圆心()21,0C ,半径2r圆心距1212C C r r ==-,所以两圆内切; 因为两圆内切,所以公切线只有一条,两圆的公切线方程可由两圆方程相减得到:10x y ++=; (2)两圆公共弦所在直线l 的方程为:2230x y m +++=,圆2C 的圆心()21,0C 到直线l 2=, 于是52m +=,3m =-或7(-舍), 所以直线l 的方程为0x y +=;因为圆2C 半径22r =,弦心距d ==21.(1)12m =;(2)1n =-或7n =-.【分析】(1)由公切线条数知两圆外切,从而可得m 值;(2)求出圆2C 圆心坐标和半径,求得圆心到直线的距离,用勾股定理求得圆心到直线的距离从而得参数值.【详解】解:(1)圆221:(1)1C x y -+=,圆心1(1,0)C ,半径11r =;圆222:(4)16C x y m -+=-,圆心2(4,0)C ,半径2r因为圆1C 与圆2C 有3条公切线,所以圆1C 与圆2C 相外切,所以1212C C r r =+,即31=12m =.(2)由(1)可知,圆222:(4)4C x y -+=,圆心2(4,0)C ,半径22r =.因为直线0x n +=与圆2C 相交,弦长是2,所以圆心2C 到直线0x n ++=的距离d ===,解得1n =-或7n =-. 【点睛】结论点睛:本题实质考查圆与圆的位置关系,圆与圆的位置关系与公切线条数: 两圆圆心距离为d ,半径分别为,r R ,则相离d R r ⇔>+,公切线有4条;外切d R r ⇔=+,公切线有3条;相交R r d R r ⇔-<<+,公切线有2条;内切d R r ⇔=-,公切线有1条;内含d R r ⇔<-,无公切线. 22.C【详解】由题意,得两圆的标准方程分别为22(2)(1)4x y -++=和22(2)(2)9x y ++-=,则两圆的圆心距523d =+,即两圆外切,所以两圆有3条公切线;故选C .【点睛】本题考查圆与圆的位置关系和两圆公切线的判定;在处理两圆的公切线条数时,要把问题转化为两圆位置关系的判定:当两圆相离时,两圆有四条公切线;当两圆外切时,两圆有三条公切线;当两圆相交时,两圆有两条公切线;当两圆内切时,两圆有一条公切线;当两圆内含时,两圆没有公切线. 23.C【分析】两圆外切时,有三条公切线.【详解】圆1C 标准方程为22(2)1x y -+=, ∵两圆有三条公切线,∴两圆外切,116a =. 故选C .【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线. 24.(1)()()221716x y -+-=(2)()()221725x y -+-=或()()221727x y -+-=.【分析】(1)根据圆与圆的位置关系,求出圆2O 的半径即可写出圆2O 的方程; (2)由两圆的圆心距确定圆心到公共弦的的距离公式,从而求出圆2O 的半径即可求解. (1)圆1O 的方程为()()22231x y ++-=, 则圆心坐标为()2,3-,半径为1. 圆2O 的圆心()21,7O ,5=. 由圆2O 与圆1O 外切, 则所求圆2O 的半径为4,所以圆2O 的方程()()221716x y -+-=. (2)圆2O 与圆1O 交于A 、B 两点,且AB =所以圆1O 到AB 110=.5=,当圆2O 到AB 的距离为14951010-=时,2O 5=, 所以圆2O 的方程为()()221725x y -+-=.当圆2O 到AB 的距离为15151010+=时,圆2O = 所以圆2O 的方程为()()221727x y -+-=.综上所述,圆2O 的方程为()()221725x y -+-=或()()221727x y -+-=. 25.(1)()()224316x y -+-=(2)【分析】(1)利用两点求出直线方程l ,利用圆心在l 上又在3y =求出圆心坐标,进而求出圆的半径求出圆1C 的方程;(2)利用两圆的方程相减得到公共弦所在直线方程,求出圆心1C 到公共弦的距离,利用勾股定理求出两圆的公共弦长. (1)经过点(21),与点(23)--,的直线l 的方程为123122y x --=----,即1y x =-, 因为圆1C 与y 轴相切于点(03),,所以圆心在直线3y =上,联立31y y x =⎧⎨=-⎩解得43x y =⎧⎨=⎩可得圆心坐标为(43),, 又因为圆1C 与y 轴相切于点(03),,故圆1C 的半径为4, 故圆1C 的方程为()()224316x y -+-=. (2)圆1C 的方程为()()224316x y -+-=,即228690x y x y +--+=,圆222:6350C x y x y +--+=,两式作差可得两圆公共弦所在的直线方程为2340x y +-=,圆1C 的圆心(43),到直线2340x y +-=的距离d ==所以两圆的公共弦长为= 26.A【分析】①将点()1,2A 代入圆可判断;②将圆化为标准方程,得出圆心,利用点到直线距离公式可得;③求出两圆圆心和半径,判断位置关系可得;④两圆方程相减即可求出. 【详解】①点()1,2A 代入圆可得2212214210++⨯-⨯+=,所以点A 在圆上,故①错误; ②由2228130+--+=x y x y 可得()()22144x y -+-=,则圆心为()1,4,由点到直线的距离公式可得圆心到线4330x y -+=1=,故②错误;③圆1C 化为()2211x y ++=,圆心为()11,0C -,半径11r =,圆2C 化为()()222416x y -+-=,圆心为()22,4C ,半径24r =,则圆心距12125C C r r ==+,故两圆外切,公切线有3条,故③正确;④两圆方程相减可得260x y -+=,故公共弦所在方程为260x y -+=,故④错误,综上,正确的有1个. 故选:A. 27.D【解析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r =-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立, 因此,2211a b +的最小值为9. 故选:D.【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r . (1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.【分析】根据两圆的位置关系判断.【详解】解:圆1C 的标准方程:22(1)(3)36x y ++-=,圆心()11,3C -,半径16r =, 圆2C 的标准方程:22(2)(1)1x y -++=,圆心()22,1C -,21r =,因为圆心距12125C C r r ===-,所以两圆内切,所以与两圆都相切的直线有1条. 故选:A 29.D【分析】求出P 的轨迹方程,结合点P 为两圆交点且2CM,列出不等式,求出t 的取值范围.【详解】由题意得P 在以AB 为直径的圆222:M x y t +=上(去掉A ,B 两点).又因为点P 在圆(()22:11C x y +-=上,所以圆C 与圆M 有交点,因为2CM ,所以121t t -≤≤+,所以13t ≤≤.故选:D . 30.D【分析】设动圆圆心为(),x y ,两半径相加,内切两半径相减,即可求解【详解】设动圆圆心为(),x y 41=+,∴()()225725x y -++=;41=-,∴()()22579x y -++=.31.BD【分析】对A ,圆心到x 轴的距离等于半径判断即可;对B ,根据圆心间的距离与半径之和的关系判断即可;对C ,根据两圆有公共弦,两圆的方程相减可得公共弦所在直线方程求解即可;对D ,根据直线210kx y k --+=过定点()2,1以及()2,1在圆C 1内判断即可.【详解】因为221:(1)(3)11C x y -+-=,222:(1)()4C x y m ++-=,对A ,故若圆2C 与x 轴相切,则有||2m =,故A 错误;对B ,当3m =-时,1262C C =>>B 正确; 对C ,由两圆有公共弦,两圆的方程相减可得公共弦所在直线方程24(62)20x m y m +-+-=,故C 错误;对D ,直线210kx y k --+=过定点()2,1,而22(21)(13)511-+-=<,故点()2,1在圆221:(1)(3)11C x y -+-=内部,所以直线210kx y k --+=与圆1C 始终有两个交点,故D 正确.故选:BD 32.ABD【分析】两圆方程作差后可得公共弦方程,从而可判断A 的正误,求出圆1Q 的圆心坐标后求出垂直平分线的方程后可判断B 的正误,利用垂径定理计算弦长后可判断C 的正误,求出1Q 到直线的距离后可求动点到直线距离的最大值,从而可判断D 的正误.【详解】对于A ,因为圆221:20+-=Q x y x ,222:240++-=Q x y x y ,两式作差可得公共弦AB 所在直线的方程为440x y -=,即0x y -=,故A 正确;对于B ,圆221:20+-=Q x y x 的圆心为(1,0),1AB k =,则线段AB 中垂线的斜率为1-,即线段AB 中垂线方程为()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C ,圆心()11,0Q 到0x y -=的距离为2d ==又圆1Q 的半径1r =,所以AB =C 不正确;对于D ,P 为圆1Q 上一动点,圆心()11,0Q 到0x y -=的距离为d =又圆1Q 的半径1r =,所以P 到直线AB 1,故D 正确.故选:ABD. 33.ACD【分析】对于A ,考查圆心k C 的横纵坐标关系即可判断;对于B ,把3x =,0y =代入圆k C 方程,由关于k 的方程根的情况作出判断;对于C ,判断圆心k C 到直线0x y -±=距离与半径的关系即可; 对于D ,圆k C 与以原点为圆心的单位圆相交即可判断作答.【详解】解:根据题意,圆22:()()4(R)k C x k y k k -+-=∈,其圆心为(,)k k ,半径为2, 依次分析选项:对于A ,圆心为(,)k k ,其圆心在直线y x =上,A 正确; 对于B ,圆22:()()4k C x k y k -+-=,将(3,0)代入圆的方程可得22(3)(0)4k k -+-=, 化简得22650k k -+=,364040∆=-=-<,方程无解, 所以不存在圆k C 经过点()3,0,B 错误;对于C ,存在直线y x =±,即0x y -+=或0x y --=,圆心(,)k k 到直线0x y -+=或0x y --=的距离2d =, 这两条直线始终与圆k C 相切,C 正确,对于D ,若圆k C 上总存在两点到原点的距离为1, 问题转化为圆221x y +=与圆k C 有两个交点,,则有1|3k <<,解可得:k <k <,D 正确.故选:ACD . 34.ACD【分析】判断出直线l 过定点()1,1D ,结合勾股定理、圆的对称性、点到直线的距离公式、四点共圆等知识对选项进行分析,从而确定正确答案. 【详解】直线():11l y k x =-+过点()1,1D ,圆()()22:2216C x y -++=,即224480x y x y +-+-=①, 圆心为()2,2C -,半径为4r =,由于()()22121216-++<,所以D 在圆C 内.CD =所以min AB =AB CD ⊥,所以A 选项正确.若圆C 关于直线l 对称,则直线l 过,C D 两点,斜率为21321--=--,所以B 选项错误. 设22ACB CAB θ∠=∠=,则π2π,4θθθθ++==,此时三角形ABC 是等腰直角三角形,C 到直线AB 的距离为42==解得1k =或17k =-,所以C 选项正确.对于D 选项,若,,,A B C O 四点共圆,设此圆为圆E ,圆E 的圆心为(),E a b ,,O C 的中点为()1,1-,1OC k =-,所以OC 的垂直平分线为:11,2l y x y x +=-=-,则2b a =-②, 圆E 的方程为()()2222x a y b a b -+-=+, 整理得22220x y ax by +--=③, 直线AB 是圆C 和圆E 的交线,由①-③并整理得()():422480AB a x b y --++=,将()1,1D 代入上式得()()422480a b --++=,40a b +-=④, 由②④解得3,1a b ==, 所以直线AB 即直线l 的斜率为42212463a b --==-+,D 选项正确. 故选:ACD【点睛】求解直线和圆位置关系有关题目,首先要注意的是圆和直线的位置,是相交、相切还是相离.可通过点到直线的距离来判断,也可以通过直线所过定点来进行判断. 35.ACD【分析】根据给定条件,求出点A ,B 的坐标,再结合圆的性质逐项分析、计算判断作答.【详解】依题意,由22225(4)13x y x y ⎧+=⎨-+=⎩解得12x y =⎧⎨=±⎩,则(1,2),(1,2)A B -,圆1O 的圆心1(0,0)O ,半径1r =2O 的圆心2(4,0)O ,半径2r||4AB =,A 正确;。

2022-2023学年人教版高二数学阶段复习精练专题2-5 直线与圆,圆与圆位置关系(解析版)

2022-2023学年人教版高二数学阶段复习精练专题2-5 直线与圆,圆与圆位置关系(解析版)

d=rrd专题2.5 直线与圆,圆与圆之间的位置关系1.直线与圆的位置关系:1. 直线0=++C By Ax 与圆222)()(r b y a x =-+-,圆心到直线的距离22BA C Bb Aa d +++=(1)无交点直线与圆相离⇔⇔>r d ; (2)只有一个交点直线与圆相切⇔⇔=r d ;(3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r - 2.还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交; (2)当0=∆时,直线与圆只有1个交点,直线与圆相切; (3)当0<∆时,直线与圆没有交点,直线与圆相离;2. 两圆的位置关系1.设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-= ① 条公切线外离421⇔⇔+>r r d ; ② 条公切线外切321⇔⇔+=r r d ; ③ 条公切线相交22121⇔⇔+<<-r r d r r ; ④ 条公切线内切121⇔⇔-=r r d ; ⑤ 无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 内含3.切线问题1. 过一点作圆的切线的方程: (1) 过圆外一点的切线: ①k 不存在,验证是否成立①k 存在,设点斜式方程,用圆心到该直线距离=半径,即:⎪⎩⎪⎨⎧+---=-=-1)()(2110101k x a k y b R x x k y y(2) 过圆上一点的切线方程:圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),设切线方程上某点坐标为),(y x ,10000-=--⋅--ax by x x y y则过此点的切线方程为:0))(())((0000=--+--y y b y x x a x22020)()(r a x b y =-+- , 则过此点的切线方程也可为:200))(())((r b y b y a x a x =--+--特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+. 2.切点弦过①C :222)()(r b y a x =-+-外一点),(00y x P 作①C 的两条切线,切点分别为B A 、,则切点弦AB 所在直线方程为:200))(())((r b y b y a x a x =--+--3.切线长:若圆的方程为(x -a )2+(y -b )2=r 2,则过圆外一点P (x 0,y 0)的切线长为 d =22020b)(+)(r y a x --- 4.圆心的三个重要几何性质:① 圆心在过切点且与切线垂直的直线上;① 圆心在某一条弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线。

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

第四节 直线与圆、圆与圆的位置关系(二)(知识梳理)

第四节 直线与圆、圆与圆的位置关系(二)(知识梳理)

第四节直线与圆、圆与圆的位置关系(二)复习目标学法指导1.直线与圆的位置关系(1)判断直线与圆的位置关系.(2)在已知直线与圆的位置关系的条件下,求直线或圆的方程.2.圆与圆的位置关系(1)判断圆与圆的位置关系.(2)会利用圆与圆的位置关系判断切线情况.3.直线与圆的方程的应用(1)利用坐标法解直线与圆的方程.(2)直线与圆方程的综合应用.4.通过研究圆上任意两1.直线与圆的位置关系是圆的重点内容.由于圆的特殊性,解答直线与圆的位置关系问题的方法多种多样,繁简不一.要注意方法的选择.对于求参数的取值范围问题,一般将直线与圆的位置关系转化为圆心和半径的几何问题,然后根据距离公式列出方程(不等式组),解方程(不等式(组)),得解.2.根据两圆位置关系求参数的值或取值范围时,一般将两圆的位置关系转化为圆心和半径的几何问题,利用距离公式,列出方程(组)或不等式(组),解出所求结果.点之间距离的最值问题,体会数形结合、化归的思想方法;通过两圆关于直线对称问题的研究,进一步体会解析法思想.一、直线与圆的位置关系已知直线l:Ax+By+C=0,圆C:(x-a)2+(y-b)2=r2(r>0).位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离d=22||Aa Bb CA B+++d<r d=r d>r 代数法:由()()2220,,Ax By Cx a y b r++=⎧⎪⎨-+-=⎪⎩消元得到一元二次方程的判别式ΔΔ>0 Δ=0 Δ<01.概念理解过定点A作已知圆的切线,可得到的有关切线的条数: (1)当点A在圆内时,无切线;(2)当点A在圆上时,有且只有一条切线;(3)当点A在圆外时,有两条切线.2.与直线与圆位置关系相关的结论(1)当直线Ax+By+C=0(A2+B2≠0)与圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)相交时,经过它们交点的圆都可以用方程x2+y2+Dx+Ey+F+λ(Ax+By+C)=0表示,称这个方程是过直线和圆交点的圆系方程.(2)过圆上一点的切线方程①与圆x2+y2=r2相切于点(x1,y1)的切线方程是x1x+y1y=r2,②与圆(x-a)2+(y-b)2=r2相切于点(x1,y1)的切线方程是(x1-a)(x-a)+(y1-b)(y-b)=r2.二、圆与圆的位置关系1.几何法:设圆C1:(x-a)2+(y-b)2=22r,圆C2:(x-m)2+(y-n)2=22r(r1>0,r2>0),圆心距用d表示,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r2-r1|d<|r2-r1|2.代数法:联立两圆的方程组成方程组,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交外切或内切 外离或内含1.概念理解两圆的位置关系有五种:外离、外切、相交、内切和内含,判断两圆的位置关系一般用几何法,因代数法判断时,有时得不到确切的位置关系,如两圆组成的方程组仅有一解时有内切和外切两种关系,具体是哪一种,用代数法是无法判断的. 2.相关结论(1)两圆相切时常用的性质有:①设两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则两圆相切12121212||||||.O O r r O O r r ⇔=-⎧⎪⎨⇔=+⎪⎩内切,外切 ②两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦).在解题过程中应用这些性质,能大大简化运算.(2)求两圆公共弦方程的前提条件是两圆相交,只要使x 2,y 2的系数对应相等,两圆方程作差即得到公共弦所在的直线方程.(3)一般地,过圆C 1:x 2+y 2+D 1x+E 1y+F 1=0与圆C 2:x 2+y 2+D 2x+E 2y+F 2=0交点的圆的方程可设为:λ1(x 2+y 2+D 1x+E 1y+F 1)+λ2(x 2+y 2+D 2x+E 2y+F 2)=0,λ1+λ2≠0.(4)直线与圆的方程的应用涉及两方面①实际应用问题,多通过建系利用坐标法来解决.②与圆有关的最值问题,可借助图形性质,利用数形结合求解,一般地:a.形如u=y bx a--形式的最值问题,可转化为动直线斜率的最值问题; b.形如t=ax+by 形式的最值问题,可转化为动直线截距的最值问题; c.形如t=(x-m)2+(y-n)2的最值问题,可转化为动点(x,y)与定点(m,n)距离平方的最值问题.1.直线3x+4y=5与圆x 2+y 2=16的位置关系是( A ) (A)相交 (B)相切 (C)相离 (D)相切或相交 解析:圆心到直线的距离2234+所以相交.故选A.2.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=03的点共有(C )(A)0个 (B)1个 (C)2个 (D)3个解析:因为圆x 2+2x+y 2+4y-3=0的圆心为(-1,-2),半径为2圆心到22因此圆上到直线x+y+1=03共有2个.故选C.3.半径为1的圆C 与(x+1)2+(y-2)2=9相切,则圆C 的圆心轨迹为( A )(A)两个圆 (B)一个圆 (C)两个点 (D)一个点解析:若两圆外切,则C 与(-1,2)的距离为4,在一个圆上;若两圆内切,则C 与(-1,2)的距离为2,在一个圆上. 故选A.4.若直线y=mx+1与圆C:x 2+y 2+2x+2y=0相交于A,B 两点,且AC ⊥BC,则m 等于( A ) (A)34(B)-1 (C)-12(D)32解析:圆C:(x+1)2+(y+1)2=2,因为AC ⊥BC,所以圆心C 到直线的距离为1, 则221m m -+=1,解得m=34.故选A. 5.如果圆C:x 2+y 2-2ax-2ay+2a 2-4=0与圆O:x 2+y 2=4总相交,那么实数a 的取值范围是 .解析:圆C 的标准方程为(x-a)2+(y-a)2=4,圆心坐标为(a,a),半径为2. 依题意得0<22a a +<2+2,所以0<|a|<22.所以a ∈(-22,0)∪(0,22).答案:(-22,0)∪(0,22)考点一 直线与圆的位置关系[例1] 已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2则圆C 的标准方程为 .解析:由题意,设圆心坐标为(a,0),则由直线l:y=x-1被该圆所截得的弦长为22,得(|1|2a -)2+2=(a-1)2,解得a=3或-1.又因为圆心在x 轴的正半轴上,a>0, 所以a=3,故圆心坐标为(3,0),又已知圆C 过点(1,0),所以所求圆的半径为2, 故圆C 的标准方程为(x-3)2+y 2=4. 答案:(x-3)2+y 2=4(1)用几何法求圆的弦长:设圆的半径为r,弦心距为d,弦长为l,则(2l )2=r 2-d 2.(2)求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无切线;若点在圆上,有一条切线;若点在圆外,有两条切线.在平面直角坐标系xOy 中,若直线3)上存在一点P,圆x 2+(y-1)2=1上存在一点Q,满足OP u u u r=3OQ u u u r,则实数k 的最小值为 .解析:设P(x,y),所以Q(3x ,3y ),所以(3x )2+(3y -1)2=1,x 2+(y-3)2=9,23331k k --+3,所以3≤k ≤0,即实数k 的最小值为3.答案3考点二 圆与圆的位置关系[例2] 如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M:x 2+y 2-12x-14y+60=0及其上一点A(2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B,C 两点,且BC=OA,求直线l 的方程;(3)设点T(t,0)满足:存在圆M 上的两点P 和Q,使得TA u u r+TP u u r=TQ u u u r,求实数t 的取值范围.解:圆M 的标准方程为(x-6)2+(y-7)2=25, 所以圆心M(6,7),半径为5.(1)由圆心N 在直线x=6上,可设N(6,y 0).因为圆N 与x 轴相切、与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x-6)2+(y-1)2=1. 解:(2)因为直线l ∥OA,所以直线l 的斜率为4020--=2. 设直线l 的方程为y=2x+m,即2x-y+m=0.则圆心M 到直线l 的距离 d=5=5.因为BC=OA=2224+=25,而MC 2=d 2+(2BC )2, 所以25=()255m ++5,解得m=5或m=-15, 故直线l 的方程为2x-y+5=0或2x-y-15=0. 解:(3)设P(x 1,y 1),Q(x 2,y 2). 因为A(2,4),T(t,0),TA u u r +TP u u r =TQ u u u r,所以21212,4,xx t y y =+-⎧⎨=+⎩①因为点Q 在圆M 上, 所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t-4)2+(y 1-3)2=25.于是点P(x 1,y 1)既在圆M 上,又在圆[x-(t+4)]2+(y-3)2=25上, 从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点, 所以5-5≤()()224637t ⎡+-⎤+-⎣⎦≤5+5,解得2-221≤t ≤2+221.因此,实数t 的取值范围是[2-221,2+221].判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.已知圆O:x 2+y 2=4与圆B:(x+2)2+(y-2)2=4.(1)求两圆的公共弦长;(2)过平面上一点Q(x 0,y 0)向圆O 和圆B 各引一条切线,切点分别为C,D,设QD QC=2,求证:平面上存在一定点M 使得Q 到M 的距离为定值,并求出该定值.(1)解:由2224440,4,x y x y x y ⎧++-+=⎪⎨+=⎪⎩相减得两圆的公共弦所在直线方程为l:x-y+2=0, 设(0,0)到l 的距离为d,则所以公共弦长为2所以公共弦长为(2)证明:=2,化简得:20x +20y -43x 0+43y 0-203=0配方得2023x ⎛⎫- ⎪⎝⎭+(y 0+23)2=689. 所以存在定点M(23,-23)使得Q 到M 的距离为定值,. 考点三 利用圆系的方程解题[例3] 已知圆C 1:x 2+y 2+2x+2y-8=0与圆C 2:x 2+y 2-2x+10y-24=0相交于A,B 两点,(1)求公共弦AB 所在的直线方程;(2)求圆心在直线y=-x 上,且经过A,B 两点的圆的方程. 解:(1)由题圆C 1,圆C 2相交,由22222280,210240,x y x y x y x y ⎧+++-=⎪⎨+-+-=⎪⎩两式作差可得直线AB 的方程为x-2y+4=0.解:(2)设所求圆的方程为x 2+y 2+2x+2y-8+λ(x 2+y 2-2x+10y-24)=0,即x 2+y 2+221λλ-+x+2101λλ++y-8241λλ++=0, 圆心坐标为(11λλ-+,-151λλ++),其在直线y=-x 上, 所以11λλ-+-151λλ++=0,解得λ=-12, 代入可得所求圆的方程为x 2+y 2+6x-6y+8=0.具有某种共同性质的圆的集合,称为圆系.(1)同心圆系的方程为(x-x 0)2+(y-y 0)2=r 2,x 0,y 0为常数,r 为参数. (2)过两个已知圆f i (x,y)=x 2+y 2+D i x+E i y+F i =0(i=1,2)的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0, 即f 1(x,y)+λf 2(x,y)=0(λ≠-1). (3)过直线与圆交点的圆系方程.设直线l:Ax+By+C=0与圆C:x 2+y 2+Dx+Ey+F=0相交,则方程x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0表示过直线l 与圆C 的两个交点的圆系方程.已知直线l:4x-3y+1=0与圆C:x 2+y 2-3x+3y+2=0,求过l 与C 的交点且圆心在直线x-2y+3=0上的圆的方程.解:设所求圆的方程为x 2+y 2-3x+3y+2+t(4x-3y+1)=0, 即x 2+y 2+(4t-3)x+3(1-t)y+2+t=0,则其圆心为(342t -,332t -)在直线x-2y+3=0上, 所以342t --2×332t -+3=0,得t=32, 所以所求圆的方程为2x 2+2y 2+6x-3y+7=0.考点四易错辨析[例4] 求半径为4,与圆A:x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.解:由题意,设所求圆C的方程为(x-a)2+(y-b)2=16,因为圆C与直线y=0相切,且半径为4,故b=±4,所以圆心坐标为C(a,4)或C(a,-4).又已知圆A的方程可化为(x-2)2+(y-1)2=9,圆心坐标为A(2,1),半径为3.若两圆相切,则|CA|=4+3=7或|CA|=4-3=1.(1)当取C(a,4)时,(a-2)2+(4-1)2=72解得a=2±210,或(a-2)2+(4-1)2=12(无解),此时圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16.(2)当取C(a,-4)时,(a-2)2+(-4-1)2=72解得a=2±26,或(a-2)2+(-4-1)2=12(无解),此时圆的方程为(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.综上,所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16或(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.本例的一种常见错误是由于思维定势,想当然地认为两圆外切只考虑|CA|=4+3=7,遗漏了|CA|=4-3=1的情况,本例另一种常见错误是忽略圆心在x轴下方的情况从而导致所求方程个数丢失一半. 防范措施:(1)涉及两圆相切的情况,要分清是内切还是外切,切莫将外切等同于相切,以免出现知识性错误.(2)可通过作图观察有哪些情况,以避免遗漏某些情形.。

24章.圆的复习(2)PPT课件

24章.圆的复习(2)PPT课件
2021/2/13
欢迎046班的同学们!注意听课, 积极思考呵!
一、知识回顾 1、点和圆的位置关系
.o .p r
.p .o
Op<r Op=r Op>r
2021/2/13
点p在⊙o内
点p在⊙o上 点p在⊙o外
欢迎046班的同学们!注意听课, 积极思考呵!
.o .p
2、不在同一直线上的三个点确定一个圆
1
一圆在另一 圆的内部
d=R-r
0
一圆在另一 圆的内部
欢迎046班的同学们!注意听课, 积极思考呵!
d<R-r
8、切线的判定定理
▪ 定理 经过半径的外端,并且垂直于这条半径的 直线是圆的切线.
如图
●O
∵OA是⊙O的半径, 且CD⊥OA,
∴ CD是⊙O的切线.
D
C
A
2021/2/13
欢迎046班的同学们!注意听课, 积极思考呵!
(1)定义
(2)圆心到直线的距离d=圆的半径r
(3)切线的判定定理:经过半径的外端, 并且垂直于这条半径的直线是圆的切线.
2021/2/13
欢迎046班的同学们!注意听课, 积极思考呵!
切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要 作出过这一点的半径,再证明直线垂直
于这条半径即可; 2、如果不明确直线与圆的交点,往往
练习:
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分 别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ()
A.点A在⊙O内部 B.点A在⊙O上
C.点A在⊙O外部 D.点A不在⊙O上
2、M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm,最短的弦长为8 cm,则OM= _____ cm.

圆与圆的位置关系复习

圆与圆的位置关系复习

检测:
2.如图,某城市公园的雕塑是由3个直径为1m的圆两两 相垒立在水平的地面上,则雕塑的最高点到地面的距离 为( )
2 3 2
A
3 3 2
B
2 2 3 2
2
2
C
D
3.如图,在边长为3cm的正方形
ABCD中,⊙O1与⊙O2相外切,
且⊙O1分别与DA、DC边相切,
⊙O2分别与BA、BC边相切,则
圆心距O1 O2为
圆与圆的位置关系练习题
学习目标
熟练运用圆与圆的位置 关系解题。
巩固圆与圆的位置关系。
自学指导:
互相交流,回 忆圆与圆的位 置关系有几种? 怎样判断?
比较点与圆, 直线与圆,圆 与圆的位置关 系。
5分钟后检测。
两个半径相等的⊙O1和 ⊙O2分别与⊙O外切和内切,
并且O1O=7cm, O2O=5cm,则⊙O与⊙O1 的半径分别是___________。
。D O1AFra bibliotekCO2 B
小结:
圆圆 与和 圆圆 的的 位置关位置 系关 系
外离 内含 外切 内切
相交

有 公







共 点
相 切



共 点
相 交
当堂训练: • P103 16 17
如图,王大伯家房屋后有一块长
12m,宽8m的
D
C
矩形空地,他在以长边BC为直径的
O
半圆内种菜.
A
B
他家养的一只羊平时拴在A处的一
棵树上,拴羊 的绳长为3m.问羊是否能吃到菜?
为什么?
O
D
C

东城职教对口升学数学专题复习:直线与圆、圆与圆的位置关系02

东城职教对口升学数学专题复习:直线与圆、圆与圆的位置关系02

2014东城职教对口升学数学专题复习:直线与圆、圆与圆的位置关系02典题导入[例3](1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离(2)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=________.[自主解答](1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+1=17.∵3-2<d<3+2,∴两圆相交.(2)由题意可设两圆的方程为(x-r i)2+(y-r i)2=r2i,r i>0,i=1,2.由两圆都过点(4,1)得(4-r i)2+(1-r i)2=r2i,整理得r2i-10r i+17=0,此方程的两根即为两圆的半径r1,r2,所以r1r2=17,r1+r2=10,则|C1C2|=(r1-r2)2+(r1-r2)2=2×(r1+r2)2-4r1r2=2×100-68=8.[答案](1)B(2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S△O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4一、选择题1.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎪⎫1x 0,0,B ⎝ ⎛⎭⎪⎫0,1y 0,则|AB |=⎝ ⎛⎭⎪⎫1x 02+⎝ ⎛⎭⎪⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立. 5.若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎪⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝⎛⎭⎪⎪⎫ca 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3.答案:2 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆和圆的位置关系》专题复习
一、教学目标:
1、通过本课的学习使学生对《圆和圆的位置关系》这一单元的相关知识有进一步的理解和认识;
2、结合实际问题的实验、讨论与分析设计,培养学生观察、动手、猜想以及运用所学的数学知识分析、解决实际问题的能力。

3、通过例题和练习的学习,使学生在分类、探究以及合作交流等方面有进一步的提高。

二、教学过程:
(一)练习:
1、1999版的一元硬币的直径为26毫米,2002版的一角硬币的直径为20毫米。

若上述一枚一元硬币和一枚一角硬币所在的两个圆有公共点,且这两个圆的圆心距为d毫米,则d的取值范围是。

2、⊙O1、⊙O2的半径分别为40mm和25mm,两圆相交于A、B两点。

若AB=48mm,则O1O2= mm。

3、已知两圆的半径分别是7和4,圆心距是3,那么这两圆的公切线的条数是()
(A)1 (B)3 (C)1或3 (D)2或4
说明:
(1)通过这三道习题的训练,使学生对《圆和圆的位置关系》这一单元的主要知识点有一个清晰的回顾与认识;同时使学生对数学分类讨论的思想有进一步的认识和提高。

(2)教师在处理这三道习题时应注意以下几点:首先由学生独立完成,教师巡视,尽可能发现学生解题中的错误;接着,请这类同学介绍他的解答过程,然后,请解答正确的学生来纠正,并要求说明算理,以达到全体同学共同提高;最后,教师对问题的正确解答加以总结、点评。

(二)、问题探究:
某企业技术员小张要用2个半径分别为R、r(R≥r)的钢球和一把刻度尺来测量一个口小内大的机器零件的内孔直径d(内孔是圆柱形且满足2R<d≤2R+2r ,)你能帮他设计出测量方案吗?
说明:
(1)教师要求学生将事先准备的两个乒乓球(要求大小不一)、一把刻度尺和一个空易拉罐瓶分小组进行动手操作、观察,并要求学生在实验与操作的过程中思考:求内孔直径需测量哪些量的长度,以及操作的可行性。

为下一步设计出测量方案做准备。

此举意在培养学生的动手、观察、探究和分析问题的能力,同时也加强学生之间的合作交流。

(2)在学生做好上述实验和分析后,教师请某一小组的一名代表进行演示和说明,接着教师请有不同意见或不同方法的小组代表进行发言、交流,最后,教师加以点评和总结,为下面后面具体的解决问题埋下伏笔。

(三)例题讲解:
现有半径分别为5mm 和4mm 的两种钢球各2个,技术员小张用它们来测量一些口小内大的机器零件的内孔直径。

(1)如图示(此图为截面示意图),小张用上述两种钢球各一个进行测量时,测得钢球顶点与孔口平面的距离分别为11mm 、10mm ,则此零件的内孔直径是多少?
说明:
此题由学生独立完成,完成后,教师请一名同学进行口答,并对解答加以点评和纠正,提问中尽可能发现学生存在的问题。

(2)若测量某零件的内孔直径时,小张用了上述4个钢球中的2个,且这两个钢球与内孔侧壁、底壁都接触,晃动后两球之间无间歇,则此零件的内孔直径可能是多少?
说明:
本小题是对学生进一步利用分类讨论问题的数学思想解决具体问题的一个练习。

教师可先由学生自己完成,对考虑问题不全面的同学,一方面帮助纠正,另一方面请这类同学向全体同学进行说明,主要谈谈自己解题的思路,从而发现问题,最后师生共同解决问题。

(四)课堂练习:
1、在平面直角坐标系中,⊙O 1与⊙O 2外切,它们的半径分别为6和4。

若 圆心O 1的坐标为(8,0),圆心O 2在坐标轴上,则点O 2的坐标为 。

2、某饮料厂生产一种半径为5cm 的易拉罐,包装时每8瓶装一箱。

现有两 种装箱方案(下图是箱底平面示意图):
图1
图2
试判断哪种装箱方案的箱底面积较小?
说明:
这两道练习的目的是让学生对利用《圆和圆的位置关系》的主要知识和分类 思想解决相关问题有进一步训练的机会。

解决这两道问题时,教师应放手让学生独立解决,最后再加以总结和点评。

(五)课堂小结:
教师可结合实际情况进行小结,也可安排学生对本节课所学的内容谈谈自己的收获与感受。

三、课后作业:
1、若一枚一元硬币和一枚一角硬币所在的两个圆没有公共点,则这两圆的位置关系是( D )
(A)外离(B)内含(C)外切(D)外离或内含
2、已知⊙O1与⊙O2相切,它们的半径分别为3和6,则圆心距O1O2的长为3或9 。

3、已知:⊙O1与⊙O2外切,⊙O1的半径R=2,设⊙O2的半径是r。

(1)如果⊙O1与⊙O2的圆心距d=4,求r的值;
(2)如果⊙O1、⊙O2的公切线中有两条互相垂直,求r的值。

解:(1)∵⊙O1与⊙O2外切,∴d=r+R,∴r=4-2=2.
(2)分析:分两种情况讨论:①当两圆的一条外公切线和内公切线互相垂直时,可求得r=2;②当两圆的两条外公切线互相垂直时,可求得r=。

相关文档
最新文档