第四章随机变量的数字特征习题

合集下载

第四章 随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=22Y X -=,则34) A C 5A 6、)1=(C ) A .34?B .37C .323?D .326 7、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A .-13?B .15C .19?D .238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )A .6?B .22C .30?D .469、设)31,10(~B X,则)(X E =(C )A .31?B .1C .310?D .1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A.E (X )=1?B.D (X )=3?C.P (X=1)=0?D.P (X<1)=0.511A .C .12、XY ρ=(D 13x =(B)A .14、(C ) A.-15、为(A .C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为则)(XY E =(B )A .91-?B .0 C .91?D .3117、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}22εσεμn n X P ≥<-?B .{}221εσεμn X P -≥<-C .{}221εσεμn X P -≤≥-?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91?B .31C .98?D .124、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A25A 1234且5x =710 67、设随机变量X 服从参数为3的指数分布,则)12(+X D =948、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=0 9、设随机变量序列 ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ- 10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2,则E?(?Y?)=-0.5 121314、3=,则cov(X 1516大于1724}=0.6826 附:18、-0.5,19的期望E?(Y)=4,D?(Y?)=9,又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P XP ,且该柜台销售情况Y (千元),满足2212+=X Y。

概率论与数理统计第四章

概率论与数理统计第四章

E (b) b E (aX ) aE ( X )
2. E(X+Y) = E(X)+E(Y);
推广 : E [ X i ] E ( X i )
i 1 i 1 n n
E ( ai X i ) ai E ( X i )
i 1 i 1
n
n
3. 设X、Y独立,则 E(XY)=E(X)E(Y);
例2.(X,Y)服从二维正态分布,其概率密度为 1 f ( x, y ) 2 21 2 1
1 y 1 2 x 1 y 2 y 2 2 exp{ [( ) 2 ( )( )( ) ]} 2 1 1 2 2 (1 )
证明: XY
Cov(kX, kY)=k2Cov(X,Y)
■相关系数
定义 设D(X)>0, D(Y)>0, 称
XY
Cov( X , Y ) X EX Y EY E[ ] D( X ) D(Y ) DX DY
为随机变量X和Y的相关系数(标准协方差)
X Y E( X Y ) XY
练习
1.设离散型随机变量(X,Y)的分布列为 Y 0 1 2 X 则E(XY)=( ) 0 1/3 1/6 1/9 1 0 1/6 1/9 2 0 0 1/9
2.设随机变量X的概率密度为
e x f ( x) 0 x0 其它
Y=e-2X,则EY=( )
■数学期望的性质
1. 设a,b是常数,则E(aX+b)=aE(X)+b;
对正态分布而言,X、Y相互独立 与互不相关是等价的。
例4.设随机变量(X,Y)~N(1, 1, 9, 16, -0.5) 令
第四章 随机变量的数字特征

第四章 随机变量的数字特征课外习题

第四章 随机变量的数字特征课外习题

{

15. 设两个随机变量 X , Y 相互独立,且都服从均值为 0,方差为 1 的正态分布,
2
则随机变量 | X − Y | 的方差 =(

(a ) 1 + 2
π
( b) 1 − 2
π
(c) 2 + 2
π
(d )
2−2
):
π
16. 如果 ξ 与 η 满足 D (ξ + η ) = D (ξ − η ) , 则必有 ( ( A) ξ 与 η 独立
( B ) ξ 与 η 不相关
(C ) Dη = 0
( D)
Dξ ⋅ Dη = 0
17 .设随机变量 X 和 Y 独立同分布,记 U = X − Y , V = X + Y 则随机变量 U 与 V 必然 是( ) (A). 不独立
(B). 独立
(C) 相关系数不为零
(D). 相关系数为零 )
18. X ~ B ( n , p ) , E ( X ) = 2.4 , D ( X ) = 1.44 ,则 n , p ( (A). n = 4 , p = 0.6 (C) n = 6 , p = 0.4 (B). n = 8 , p = 0.3 (D). n = 24 , p = 0.1
11. 0 18 . C
12. 1 19.
13. 0.975 D 20. C
14. 1
2
15.
B;
16 . B ;
二. 计算证明
N −1 kn 3 6 2 2 1. a = , b = , Dξ = ; 2. Eξ = a, Dξ = a + a ;3. EX = N − ∑ n ; 5 5 25 k =1 N

新教材高中数学第四章随机变量的数字特征课时作业含解析新人教B版选择性必修第二册

新教材高中数学第四章随机变量的数字特征课时作业含解析新人教B版选择性必修第二册

新教材高中数学:课时作业(十四) 随机变量的数字特征一、选择题1.设二项分布B (n ,p )的随机变量X 的均值与方差分别是2.4和1.44,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.12.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( ) A .6 B .9C .3D .43.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)=( ) A.158 B.154C.52D .5 4.设ξ的分布列为又设η=2A.76 B.176 C.173 D.323二、填空题5.已知X 的分布列为则D (X )等于________.6.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.7.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为________. 三、解答题8.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是ξ,求E (ξ)和D (ξ).9.海关大楼顶端镶有A ,B 两面大钟,它们的日走时误差分别为X 1,X 2(单位:s),其分布列如下:[尖子生题库]10.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、期望和方差;(2)若Y =aX +b ,E (Y )=1,D (Y )=11,试求a ,b 的值.课时作业(十四) 随机变量的数字特征1.解析:由题意得,np =2.4,np (1-p )=1.44,∴1-p =0.6,∴p =0.4,n =6.答案:B2.解析:E (X )=3×13+6×13+9×13=6. D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6. 答案:A3.解析:两枚硬币同时出现反面的概率为12×12=14,故ξ~B ⎝⎛⎭⎫10,14, 因此D (ξ)=10×14×⎝⎛⎭⎫1-14=158.故选A. 答案:A4.解析:E (ξ)=1×16+2×16+3×13+4×13=176,所以E (η)=E (2ξ+5)=2E (ξ)+5=2×176+5=323. 答案:D5.解析:E (X )=-1×0.5+0×0.3+1×0.2=-0.3,D (X )=0.5×(-1+0.3)2+0.3×(0+0.3)2+0.2×(1+0.3)2=0.61.答案:0.616.解析:因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定.答案:乙7.解析:由题意知X ~B ⎝⎛⎭⎫4,13,所以D (X )=4×13×⎝⎛⎭⎫1-13=89. 答案:898.解析:ξ的所有可能取值为0,1,3,ξ=0表示三位同学全坐错了,有2种情况,即编号为1,2,3的座位上分别坐了编号为2,3,1或3,1,2的学生,则P (ξ=0)=2A 33=13; ξ=1表示三位同学只有1位同学坐对了.则P (ξ=1)=C 13A 33=12; ξ=3表示三位学生全坐对了,即对号入座,则P (ξ=3)=1A 33=16. 所以,ξ的分布列为 ξ 0 1 3 P 13 12 16E (ξ)=0×13+1×12+3×16=1; D (ξ)=13×(0-1)2+12×(1-1)2+16×(3-1)2=1. 9.解析:∵E (X 1)=0,E (X 2)=0,∴E (X 1)=E (X 2).∵D (X 1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5;D (X 2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.∴D (X 1)<D (X 2).由上可知,A 面大钟的质量较好.10.解析:(1)X 的分布列为:X 0 1 2 3 4P 12 120 110 320 15∴E (X )=0×12+1×120+2×110+3×320+4×15=1.5. D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,得a =±2.又∵E (Y )=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2;当a =-2时,由1=-2×1.5+b ,得b =4.∴{ a =2,b =-2或{ a =-2,b =4即为所求.。

第四章随机变量的数字特征单元测试题

第四章随机变量的数字特征单元测试题

随机变量的数字特征章节测试题一、选择题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2B .8C .18D .202.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和454,则n 、p的值分别是( )A .50,14B .60,14C .50,34D .60,34.3.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( )A .68.26%B .95.44%C .99.74%D .31.74%4.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( )A.甲学科总体的方差最小 B.丙学科总体的均值最小C.乙学科总体的方差及均值都居中 D.甲、乙、丙的总体的均值不相同5.设随机变量X 和Y 独立同分布,若记随机变量,=-=+U X Y V X Y ,则随机变量U 与V 必然( )A.不独立 B.独立 C.相关系数不为零D.相关系数为零6.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2.又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73C.113D .37.已知X 为随机变量,且E (X ), D (X )均存在,则下列式子不成立的是( ).[()]().[()]2().[()]0.[()]()=+=-==A E E X E X B E X E X E X C E X E X D D E X E X8.设随机变量X 服从[,]a b 上的均匀分布,若1()2,()3==E X D X ,则均匀分布中的常数,a b 的值分别为( ).1,3.1,2.2,3.2,2========A a b B a b C a b D a b9.设X 服从参数为1的指数分布,且2-=+X Y X e ,则()()=E Y3411....4343A B C D 10.设,X Y 为两个任意的随机变量,若()()()=E XY E X E Y ,则( ).()()().()()()..+=+=A D X Y D X D Y B D XY D X D Y C X Y D X Y 和相关和相互独立11.设随机变量12,,,(1)>n X X X n 独立同分布,且方差为20σ>,令11==∑ni i Y X n ,则( )22112211.Cov(,).Cov(,)21.().()σσσσ==+++=-=A X Y B X Y nn n C D X Y D D X Y nn12.设随机变量X 和Y 的方差存在且不等于0,则()()()+=+D X Y D X D Y 是X 和Y ( )A.不相关的充分条件,但不是必要条件B.独立的充分条件,但不是必要条件C.不相关的充分必要条件D.独立的充分必要条件13.设二维随机变量(,)X Y 服从二维正态分布,则随机变量ξ=+X Y 与η=-X Y 不相关的充分必要条件是( )2222222222.()().()[()]()[()].()().()[()]()[()]=-=-=+=+A E X E Y B E X E X E Y E Y C E X E Y D E X E X E Y E Y14. 设随机变量X 和Y 都服从正态分布,且它们不相关,则( ) ..(,)..+A X Y B X Y C X Y D X Y 与一定独立服从二维正态分布与未必独立服从一维正态分布15. 设随机变量(,1,2,,;2)=≥ij X i j n n 独立同分布,并且()2=ij E X ,则行列式111212122212=n n n n nnX X X X X X Y X X X 的数学期望()=E Y ( ).2.0.1.2-A B C D二、填空题(本大题共10个小题,每小题2分,共20分.)1.将一颗骰子连掷100次,则点6出现次数X 的均值E (X )=________. 2.一离散型随机变量X 的概率分布列为且E (X )=1.5,则a -b =3.设随机变量X 与Y 相互独立,X 的密度函数为22,0()0-⎧>=⎨⎩x X e x f x 其他,Y 分布律为33{},0,1,2,!-===k e P Y k k k ,且32=--Z X Y ,则 D (Z ) =________.4.设2(),()(0)μσσ==>E X D X ,则由切比雪夫不等式{3}μσ-≥≤P X ________. 5.若~(0,1),~(3,4)X N Y N ,且X 与Y 相互独立,则2X + Y ~ ________.6.设随机变量123,,X X X 相互独立,其中2123~(0,6),~(0,2),~(3)X U X N X P ,若记12324=-+Y X X X ,则()=E Y ________.7.设X 服从参数为2的指数分布,则2()=E X ________. 8.设随机变量X 的密度函数为sin (0)()0().≤≤π⎧=⎨⎩a xx f x ,其他,则()=D X ________.9.投掷一枚均匀的硬币100次,设随机变量X 表示出现正面的次数,试用切比雪夫不等式估计概率(0.40.6)100<<≥XP ________. 10.设二维随机变量(,)X Y 服从二维正态分布22(1,1;3,3;0.5)N ,令随机变量=-Z X Y ,则协方差Cov(,)=X Z ________.三、解答题(本大题共10个小题,共50分.解答应写出文字说明、证明过程或演算步骤)1.袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X 的均值和方差.2.已知连续型随机变量X 的分布函数为0,0,()04,41, 4.≤⎧⎪⎪=<≤⎨⎪>⎪⎩x x F x x x求()E X 和()D X .3.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进进入第二次烧制,两次烧制过程相互独立.根据该厂现有技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75,Ⅰ.求第一次烧制后恰有一件产品合格的概率;Ⅱ.经过前后两次烧制后,合格工艺品的个数为X ,求随机变量X 的均值.4.设随机变量X 的概率密度为cos ,0()20,π⎧≤≤⎪=⎨⎪⎩x x f x 其他,令随机变量2=Y X ,试求()D Y .5. 设随机变量,,X Y Z 互不相关,且222()5,()10,()6===D X D Y D Z ,令随机变量,=+=+U X Y V Y Z ,试求随机变量U 和V 的相关系数.6.设二维随机变量(,)X Y 在区域{(,)01,}=<<<D x y x y x上服从均匀分布,试求(1)关于X 和Y 的边缘概率密度; (2)(1);+≤P X Y(3)21=+Z X 随机变量的方差.7.设随机变量X 和Y 的联合分布律为110.070.180.1510.080.320.20-Y X 试求X 和Y 的相关系数ρ8. 使仪器停止工作的元件故障数X 是一个随机变量,其分布函数为()1,0,1,2,-=->=ax F x e a x试求()()E X D X 和.9.设随机变量X 和Y 相互独立,X 和Y 的概率密度分别为12,0,0(),()0,00,0--⎧⎧>>==⎨⎨≤≤⎩⎩ax bx ae x be y f x f y x y 其中,a b 为正实数,又设随机变量1,0,≤⎧=⎨>⎩X YZ X Y ,试求Z 的分布律和数学期望2()E Z .10.设随机变量X 和Y 相互独立,并且都服从正态分布2(0,)σN ,又设随机变量=(,)ξαβηαβαβ=+-X Y X Y ,为不相等的常数,试求(1)数学期望()()ξηE E 和,方差()()ξηD 和D ,ξη和的相关系数ξηρ; (2)当αβ和满足什么条件时,随机变量ξη和不相关.。

概率论与数理统计第四章随机变量的数字特征习题解答

概率论与数理统计第四章随机变量的数字特征习题解答

习题4-11、设随机变量X 服从参数为p 的01-分布,求()E X 。

解:据题意知,X 的分布律为根据期望的定义,得()0(1)1E X p p p =⋅-+⋅=。

2、袋中有n 张卡片,记有号码1,2,,n 。

现从中有放回地抽出k 张卡片,求号码之和X 的数学期望。

解:设i X 表示第i 次取到的卡片的号码(1,2,,i k =),则12k X X X X =+++。

因为是有放回地抽出卡片,所以i X 之间相互独立。

所以第i 次抽到号码为m 的卡片的概率为1{},(1,2,,;1,2,,)i P X m m n i k n====,即i X 的分布律为1{},(1,2,,)i P X m m n n===, 所以11()(12)2i n E X n n+=+++=, 所以,1(1)()()2k k n E X E X X +=++=。

注:求复杂随机变量期望时可先引入若干个简单的随机变量,再根据期望的性质即可。

3、某产品的次品率为0.1,检验员每天检验4次。

每次随机地抽取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备,以X 表示一天中调整设备的次数,试求()E X 。

(设诸产品是否是次品是相互独立的。

)解:令Y 表示一次抽检的10件产品的次品数,据题意知,~(10,0.1)Y b ,00101191010{1}1{0}{1}10.10.90.10.90.2639p P Y P Y P Y C C =>=-=-==--=,因此,~(4,0.2639)X b ,从而()40.2639 1.0556E X np ==⋅=。

注:此题必须先求出一天中调整设备的概率。

即p 值。

4、据统计,一位60岁的健康(一般体检未发生病症)者,在5年内仍然活着或自杀身亡的概率为p (01p <<,p 为已知),在五年内非自杀身亡的概率为1p -。

保险公司开办5年人寿保险,条件是参保者需缴纳人寿保费a 元(a 已知),若5年内非自杀死亡,保险公司赔偿b 元(b a >)。

第四章随机变量数字特征习题

第四章随机变量数字特征习题

第四章随机变量的数字特点一、填空题:1. 设随机变量 ~B(n,p) , 且E 0.5 ,D 0. 45 ,则 n= , p= 。

2. 设随机变量表示 10 次独立重复射击中命中目标的次数,且每次射击命中目标的2概率为,则E( ) = 。

3. 已知随机变量的概率密度为12x 2 x 1 (x) e (x ),则E( ) ,D( ) 。

14. 设随机变量~ U (a,b) ,且E( ) 2,D( ) ,则a ,b 。

35. 设随机变量 ,有E 10 ,D 25 ,已知E(a b) 0 ,D(a b) 1则 a= , b= , 或 a= , b= 。

6. 已知失散型随机变量听从参数为 2 的普哇松散布,则随机变量3 2 的数学希望E 。

27. 设随机变量 1 ~ U [0,6] , 2 ~ N (0,2 ) ,且 1 与 2 互相独立,则D( 1 2 2 ) 。

2 8. 设随机变量 1 , 2 , , n 独立,而且听从同一散布。

数学希望为a , 方差为, n1令in 1,则E ,D 。

i19. 已知随机变量与的方差分别为D 49 ,D 64 ,相关系数0.8 ,则D( ) ,D( ) 。

10. 若随机变量的方差为D( ) 0.0 0 4,利用切比雪夫不等式知P E 0.2 。

二、选择题:1. 设随机变量的函数为a b ,(a , b 为常数),且E ,D 均存在,则必有()。

A. E aEB. D aDC. E aE bD. D aD b2. 设随机变量的方差D 存在,则D(a b) ()(a , b 为常数)。

2 A. aD b B. a D2C. a D bD. a D23. 假如随机变量 ~ N( , ) ,且E 3,D 1,则P( 1 1) ().A. 2 (1) 1B. (2) (4)C. ( 4) ( 2)D. (4) (2)4. 若随机变量听从指数散布,且D 0 .25 ,则的数学希望E () .A.12 B. 2 C.14D. 40, x 05. 设随机变量的散布函数为3F (x) x , 0 x 1 ,则E( ) ().1, x 14 A. x dx12B. 3x dxC.1x D. 3x dx 4 dx xdx4dx xdx21 026. 设随机变量的希望E 为一非负值,且E( 1) 2 ,21 D( 1) ,则2 22E ()。

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。

2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。

3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。

DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。

6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。

试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。

(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。

随机变量的数字特征试题答案

随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=0.5,D (X )=0.5? B. E (X )=0.5,D (X )=0.25 C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=22、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D(Z )=? (??C?) A. 1 ?B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. 0.04? C. 0.4? D. 44、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) ?D . D (X -C )=D (X )5、设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=4,142,122,0)(x x x x x F ,则E(X)=(D )A .31 ?B . 21 C .23?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)31,12(~B Y ,则)1(+-Y X D =(C )A . 34 ?B . 37C . 323 ?D . 3267、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A . -13 ?B . 15C . 19 ?D . 238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 469、设)31,10(~B X,则)(X E =(C )A . 31 ?B . 1C . 310 ?D . 1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A. E (X )=1?B. D (X )=3?C. P (X=1)=0?D. P (X<1)=0.5 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C )A .)(X D +)(Y D ?B . )(X D -)(Y DC .)(XD +)(Y D -2),cov(Y X ?D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)21,10(~B X,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数XY ρ=(D )A . -0.8 ?B . -0.16C . 0.16 ?D . 0.8 13、已知随机变量X 的分布律为25.025.012p P xX i-,且E (X )=1?,则常数x =( B)A . 2 ?B . 4C . 6 ?D . 814、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. -0.5 B. 0 C. 0.5 D. 215、已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--otherx e x12,则X 的均值和方差分别为(?D ) A .4)(,2)(==X D X E ?B . 2)(,4)(==X D X E C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16则)(XY E =(B ) A .91- ?B . 0 C . 91 ?D . 31 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A . 2- ?B . 0 C .0.5 ?D 218、设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B(6,0.5),则E(X-Y)=( A)A .5.2- ?B . 0.5 C . 2 ?D . 519、设二维随机变量(X ,Y)的协方差cov(X ,Y)=61,且D(X)=4,D(Y)=9,则X 与Y 的相关系数XYρ为(?B ) A .2161 ?B . 361 C . 61 ?D . 1 20、设随机变量X 与Y 相互独立,且X ~N?(0,9),Y ~N?(0,1),令Z=X-2Y , 则D?(Z)=(D ) A . 5 ?B . 7 C . 11 ?D 13 21、设(X ,Y)为二维随机变量,且D?(X)>0,D?(Y)>0,则下列等式成立的是(B ) A . )()()(Y E X E XY E = ? B .)()(),cov(Y D X D Y X XY ⋅=ρC . )()()(YD X D Y X D +=+ ?D . ),cov(2)2,2cov(Y X Y X =22、设n X X X ,,,21Λ是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B )A . {}22εσεμn n X P ≥<- ?B .{}221εσεμn X P -≥<-C . {}221εσεμn X P -≤≥- ?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91 ?B . 31 C . 98?D . 1 24、设随机变量 X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A .91 ?B . 31 C . 94 ?D 21 25、已知随机变量X ~N(0,1),则随机变量Y=2X-1的方差为(D ) A . 1 ?B .2 C .3 ?D4 二、填空(每小题2分) 1、设X~)21,4(B ,则)(2X E =5 2、设E (X )=2,E (Y )=3,E (XY )=7,则cov (X ,Y )=1 3、已知随机变量X 满足1)(-=X E ,2)(2=X E ,则)(X D =1 4、设随机变量X ,Y 的分布列分别为 且X ,Y 相互独立,则E (XY )=2413-5、随机变量X 的所有可能取值为0和x ,且3.0}0{==X P ,1)(=X E ,则x =710 6、设随机变量X 的分布律为4.03.02.01.02101iP X -,则)(X D =17、设随机变量X 服从参数为3的指数分布,则)12(+X D =94 8、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=09、设随机变量序列ΛΛ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,Λ,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ-10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2, 则E?(?Y?)=-0.5 12、已知随机变量X 的分布律为2.03.05.0501iP X -,则)}({X E X P <=0.813、已知E (X )= -1?,D (X )=3,则)23(2-X E =1014、设1X ,2X ,Y 均为随机变量,已知1),cov(1-=Y X ,3),cov(2=Y X ,则),2cov(21Y X X +=515、设)1,0(~N X ,)21,16(~B Y,且X ,Y 相互独立,则)2(Y X D +=816、将一枚均匀硬币连掷100次,则利用中心极限定理可知,正面出现的次数大于60的概率近似为0.0228 (附:Φ(2)=0.9772)17、设随机变量X?~?B (100,0.2),应用中心极限定理计算P{16?X ?24}=0.6826 附:Φ(1)=0.841318、设随机变量X ,Y 的期望和方差分别为E(X)=0.5,E(Y)=-0.5,D(X)=D(Y)=0.75,E(XY)=0,则X ,Y 的相关系数XY ρ=31 19、设随机变量X 的期望E?(X?)=2,方差D?(X?)=4,随机变量Y 的期望E?(Y)=4, D?(Y?)=9, 又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布)31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P X P ,且该柜台销售情况Y (千元),满足2212+=X Y 。

概率论与数理统计第四章

概率论与数理统计第四章

例5.设随机变量 ,Y相互独立,且均服从正态 设随机变量X, 相互独立 相互独立, 设随机变量 分布N(0,0.5),求E|X-Y|. 分布 求
■切比雪夫不等式
定理 设随机变量X有期望 有期望E(X)和方差 σ 2 则对于 设随机变量 有期望 和方差 , 任给 ε >0, 2
σ P{| X E( X ) |≥ ε} ≤ 2 ε
■方差的定义
是一个随机变量, 设X是一个随机变量,若E[X-E(X)]2 < ∞,则 是一个随机变量 , 称 D(X)=E[X-E(X)]2 (1) 的方差. 为X 的方差
采用平方是为了保证一切 差值X-E(X)都起正面的作用 都起正面的作用 差值
方差的算术平方根 D(X) 称为标准差 由于标准差与X具有相同的度量单位, 由于标准差与 具有相同的度量单位, 具有相同的度量单位 在实际问题中经常使用. 在实际问题中经常使用
a
甲仪器测量结果
a
乙仪器测量结果
又如,甲 乙两门炮同时向一目标射击 发炮 又如 甲,乙两门炮同时向一目标射击10发炮 其落点距目标的位置如图,试比较精度. 弹,其落点距目标的位置如图,试比较精度
中心
中心
甲炮射击结果
乙炮射击结果
为此需要引进另一个数字特征,用它 为此需要引进另一个数字特征 用它 来度量随机变量取值在其中心附近的离 来度量随机变量取值在其中心附近的离 散程度. 散程度 这个数字特征就是: 这个数字特征就是:
Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]} =E(XY) -E(X)E(Y) D(X+Y)=D(X)+D(Y)+2 Cov(X,Y)
∞ ∑g( xk ) pk , X离散型 E(Y ) = E[g( X)] = k=1 ∞ g( x) f ( x)dx, X连续 型 ∫∞

第4章随机变量的数字特征习题解答

第4章随机变量的数字特征习题解答

+∞ −∞
x
λ π (λ+x
2
)
dx =
λ

+∞ ln( λ + x 2 ) | 0 = +∞
| x | f ( x ) dx 不收敛,因此 E ( X ) 不存在。
5、解
(1) E ( X ) = ∫
+∞ −∞
+∞ −∞
xf ( x )dx = ∫ x ⋅xdx + ∫ x ⋅ ( 2 − x ) dx = 1
P { X = ( −1 ) k +1 3k 2 ,k =1, 2 , }= k 3k
说明 X 的数学期望不存在。 4、设随机变量 X 的概率密度为
f (x)=
λ π (λ+x2 )
, −∞ < x < ∞
说明 X 的数学期望不存在。 5、设随机变量 X 的概率密度为
⎧ x , 0 ≤ x ≤1 ⎪ (1) f ( x ) = ⎨ 2 − x , 1 < x ≤ 2 ⎪ ⎩ 0 , 其它
1 ⎧ ,| x | <1 ⎪ (2) f ( x ) = ⎨ π 1 − x 2 ⎪ 0, 其它 ⎩ 1 ⎧ x, 0 ≤ x ≤ 1500 ⎪ 2 ( 1500 ) ⎪ ⎪ −1 ⎪ ( x − 3000 ), 1500 < x ≤ 3000 (3) f ( x ) = ⎨ ⎪ ( 1500 ) 2 ⎪ 0, 其它 ⎪ ⎪ ⎩
XY
=−
1 X Y ,设 Z = + 2 3 2
(1)求 X 的数学期望 E(X)和方差 D(X) ; (2)求 X 与 X 的相关系数 P XZ ; (3)问 X 与 X 是否相互独立? (二)解答 1、解 因 E ( X ) = 0 × 0 .4 + 1 × 0 .3 + 2 × 0 .2 + 3 × 0 .1 = 1

概率论与数理统计+第四章+随机变量的数字特征+练习题

概率论与数理统计+第四章+随机变量的数字特征+练习题

滨州学院《概率论与数理统计》(公共课)练习题第四章 随机变量的数字特征一、填空题1.已知随机变量X 的分布函数为:()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--=. 若 ,若,若,<若 1 , 1 10 , 0.7501 , 25.01 , 0 x x x x x F 则⎪⎭⎫ ⎝⎛+21X X D = . 2.设随机变量X 分布函数为()x F ,则随机变量⎪⎩⎪⎨⎧<-=>=01,,0 ,0,0,1 X X X Y 若若若的数学期望=EY .3.设随机变量X 服从参数为0.5的泊松分布,则随机变量)1(1X Y +=的数学期望EY = .4.假设无线电测距仪无系统误差,其测量的随机误差服从正态分布.已知随机测量的绝对误差以概率0.95不大于20米,则随机测量误差的标准差σ= .5.设随机变量X 和Y 独立同正态分布()21,0N ,则||Y X D -= .6.100次独立重复试验成功次数的标准差的最大值等于 .7.有若干瓶超过保质期的饮料,假设其中变质的期望瓶数为18瓶,标准差为4瓶.则变质饮料的瓶数X 的概率分布是 .8.假设随机变量X 和Y 的方差都等于1,X 和Y 的相关系数为0.25,则随机变量Y X U +=和Y X V 2-=的协方差为 .9.三名队员投篮的命中率分别为0.45、0.5和0.4,且相互独立,现在让每人各投一次,则三人总进球次数的期望是 .10.设随机变量X 服从参数为λ的指数分布,则}{DX X P >= .11.设随机变量X 在区间[-1,2]上服从均匀分布;随机变量 ⎪⎩⎪⎨⎧<-=>=.01,00,01X X X Y 若若若 则方差=DY .12. 随机变量X ,Y 的联合概率分布为则2X 和2Y 的协方差),(22Y X Cov = .13.设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则Cov(),1Y X = .二、选择题1.对于任意随机变量X 和Y ,如果)()(Y X D Y X D -=+,则( ).(A) X 和Y 独立; (B) X 和Y 不独立;(C) )()()(Y D X D XY D =; (D) )()()(Y E X E XY E =.2.设X 在区间[-1,1]上均匀分布,则X U arcsin 和X V arccos =的相关系数等于( ).(A) 1-; (B) 0; (C) 0.5; (D) 1.3.假设试验E 以概率p 成功,以概率p q -=1失败,分别以X 和Y 表示在n 次独立地重复试验中成功和失败的次数,则X 和Y 的相关系数ρ等于( ).(A)1-; (B) 0; (C) 1/2; (D) 1.4.设随机变量X 的方差存在,且记μ=EX ,则对任意常数C ,必有( ).(A )222)(C EX C X E -=-; (B )22)()(μ-=-X E C X E ;(C )22)()(μ-<-X E C X E ; (D )22)()(μ-≥-X E C X E5.设随机变量X 的概率密度为⎩⎨⎧<<+=其他010)(x bx a x f ,又X 的期望53=EX ,则X 的标准差为( ).(A )15011 ; (B )150121; (C )1511 ; (D )3013. 6.设随机变量X 和Y 的方差存在且为正,则DY DX Y X D +=+)(是X 和Y ( ).(A )不相关的充分条件,但不是必要条件 ;(B )独立的必要条件,但不是充分条件;(C )不相关的充要条件 ;(D )独立的充要条件 .7.设二维随机变量(X ,Y )服从二维正态分布,则随机变量Y X Y X -=+=ηξ与不相关的充要条件为( ).(A )EY EX =; (B )2222)()(EY EY EX EX-=-; (C )22EY EX =; (D )2222)()(EY EY EX EX +=+.8.将一枚硬币重复掷n 次,以X ,Y 分别表示正面向上和反面向上的次数,则X ,Y 的相关系数等于( ).(A )1-; (B )0; (C )1/2; (D )1.三、解答题1.自动生产线加工的零件的内径X (mm)服从正态分布)1,(μN ,内径小于10或大于12mm的为不合格品,其余为合格品.每件产品的成本为10元,内径小于10mm 的可再加工成合格品,尚需费用5元.全部合格品在市场上销售,每件合格品售价20元.问零件的平均内径μ取何值时,销售一个零件的平均销售利润最大?2.假设某季节性商品,适时地售出1kg 可以获利s 元,季后销售每千克净亏损t 元.假设一家商店在季节内该商品的销售量X (kg )是一随机变量,并且在区间),(b a 内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?3.独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p .假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a .4.假设n 个信封内分别装有发给n 个人的通知,但信封上各收信人的地址是随机填写的.以X 表示收到自己通知的人数,求X 的数学期望和方差.5.求}1|,min{|X E ,假设随机变量X 服从柯西分布,其概率密度为()()∞<<∞-+=x x x f 11)(2π. 6.假设一种电器设备的使用寿命X (单位:小时)是一随机变量,服从参数为λ=0.01的指数分布.使用这种电器每小时的费用为C 1=3元,当电器工作正常时每小时可获利润C 2=10元.此设备由一名工人操作,每小时报酬为C 3=4元,并且按约定操作时间为h 小时支付报酬.问约定操作时间h 为多少时,能使期望利润最大?7.一微波线路有两个中间站,其中任何一个出现故障都要引起线路故障.假设两个中间站无故障的时间都服从指数分布,平均无故障工作的时间相应为1和0.5(千小时),试求线路无故障工作时间X 的数学期望.8.设随机变量X ,Y 相互独立,并且都服从正态分布),(2σμN ,求随机变量},min{Y X Z =的数学期望.9.假设随机向量),(Y X 在以点)1,1(),0,1(),1,0(为顶点的三角形区域上服从均匀分布.试求随机变量Y X Z +=的方差.10.假设随机变量X ,Y 的数学期望都等于1,方差都等于2, 其相关系数为0.25,求随机变量Y X U 2+=和Y X V 2-=的相关系数ρ.11.假设随机变量1021,,,X X X 独立同分布,且方差存在.求随机变量 651X X X U +++= 和 1065X X X V +++=的相关系数ρ.12.对于任意二随机事件A 和B ,设随机变量⎩⎨⎧-=,不出现若出现若 ,1, ,1A A X ⎩⎨⎧-=;不出现若出现若 , 1 , ,1B B Y 试证明“随机变量X ,Y 不相关” 当且仅当“事件A 和B 独立”.13.现有10张奖券,其中8张为2元,2张为5元,今某人从中随机无放回地抽取3张,则此人得奖的金额的数学期望为多少.14.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备. 假设各产品是否为次品是相互独立的,以X 表示一天中调整设备的次数,试求)(X E 和)(X D .15.有3只球, 4只盒子, 盒子的编号为1,2,3,4. 将球逐个独立地, 随机地放入4只盒子中去,以X 表示其中至少有一只球的最小号码(例如X =3表示第1号,第2号盒子是空的,第3号盒子至少有一个球), 试求)(X E 和)(X D .16.某射手每次射击的命中率为)10(<<p p , 他有6发子弹, 准备对一目标进行射击, 一旦打中或子弹打完, 他就立即转移, 求他在转移前平均射击的次数.17.设随机变量X 的概率密度函数为⎩⎨⎧<<=其他0102)(x x x f 试求)2|(|DX EX X P ≥-18.设随机变量X 的分布律为 ,3,2,1,32)(===n n X P n ,试求X Y )1(1-+=的数学期望与方差. 19.设随机变量X ,Y 相互独立,且X 服从[0,2]上的均匀分布,)1,1(~N Y ,求)(XY D20.设随机变量X 的分布列为若随机变量32,X Z X Y ==,(1)试求),(Z Y Cov ,并问Y ,Z 是否相关;(2)求二维随机变量(Y ,Z )的联合分布列;(3)试问Y ,Z 是否独立?为什么?21.已知二维随机变量(Y X ,)的概率密度为 ⎩⎨⎧<<++=其它01,0)1(),(y x xy y C y x f (1)试确定常数C ;(2)试问Y X ,是否相互独立?为什么?(3)试问Y X ,是否不相关?为什么?如果相关的话,其相关系数是多少.22.已知二维随机变量(Y X ,)的概率密度为⎩⎨⎧<≤<=其它01012),(2x y y y x f 试求:(1)2)(Y X E -(2)Y X ,的协方差.23.设n X X X ,,,21 为取自总体X 的一个样本,且2,σμ==DX EX 存在,X 为样本均值,试证明X X i -与X X j -的相关系数为n j i j i n ,,2,1,,,11 =≠--=ρ 24.设随机变量X 服从参数为0>λ(λ待定)的指数分布,)(x F 为其分布函数,若已知21)31(=F ,试确定最小值2)(min C X E C -是多少? 25.随机的向半圆)0(202>-<<a x ax y 抛掷一个点, 点落在任何一个区域的概率与该区域的面积成正比, 设原点与该点的连线与x 轴正向的夹角为θ, 试求θ的数学期望与方差.26.假设一电路由3个同种电子元件,其工作状况相互独立,无故障工作时都服从参数为0>λ的指数分布,当3个元件都无故障工作时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作时间T 的概率分布、数学期望与方差.27.编号为n ,,2,1 的n 张卡片中随机地抽取1张,如果抽出的卡片的号码为k ,则第2张卡片从编号为k ,,2,1 的k 张卡片中抽取.记X 为抽出的第2张卡片的号码,试证:43+=n EX . 28.设随机变量Z Y X ,,相互独立,且X 服从[0,6]上的均匀分布,Y 服从正态分布2(0,2)N , Z 服从参数为31的指数分布,试求2)(Z XY E -和)32(Z Y X D -+. 29.设Y X ,是相互独立,分别服从参数为0>λ和0>μ的指数分布,令⎩⎨⎧>≤=YX Y X Z 2,02,1. 求Z 的分布函数和方差. 30.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=其他002cos 21)(πx x x f ,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 31.游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的第5分钟、25分钟和55分钟从底层起行,假设一游客在早八点的第X 分钟到达底层候梯处,且X 在[0,60]上服从均匀分布,求该游客等候时间的数学期望.32.设n X X X ,,,21 i .i .d ),(~2σμN ,求)||(1∑=-n k k X XE ,其中∑==n k k n X X 1133.供电公司每月可以供应某工厂的电力服从[10,30](单位:万度)上均匀分布,而该工厂每月实际生产所需要的电力服从[10,20]上的均匀分布.如果工厂能从供电公司得到足够的电力,则每一万度电可创造30万元的利润,若工厂从供电公司得不到足够的电力,则不足部分由工厂通过其它途径自行解决,此时,每一万度电只能产生10万元的利润.问该工厂每月的平均利润为多大?34.对于任意二事件A B 与,0101<<<<P A P B (),(),))(1)(())(1)(()()()(B P B P A P A P B P A P AB P ---=ρ称为事件A B 与的相关系数.(1)证明事件A B 与独立的充分必要条件是其相关系数等于0;(2)利用随机变量相关系数的基本性质,证明1||≤ρ.35.设随机变量X 的具有连续的密度函数为)(x f ,令||)(a X E a h -=,试证明:当a 满足21)(=≤a X P 时(此时称a 为X 的中位数),)(a h 达到最小.。

概率论与数理统计第四章测试题

概率论与数理统计第四章测试题

概率论与数理统计第四章测试题第4章 随机变量的数字特征一、选择题1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是 (A) 8 (B) 16 (C) 28 (D) 44 2.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( ) (A)X与Y 相互独立 (B) D(X+Y)=DX+DY(C)D(X-Y)=DX-DY (D) D(XY)=DXDY 3.设随机变量X和Y相互独立,且()()221122,,,X N Y N μσμσ::,则2Z X Y =+:( )(A) ()221212,2N μμσσ++ (B) ()221212,N μμσσ++ (C) ()2212122,4N μμσσ++ (D) ()2212122,4N μμσσ--4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为(A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2(C) E(X 2)= E(Y 2) (D) E(X 2)+(EX)2=E(Y 2)+ (EY)25.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则()max ,Z X Y =的数学10.设随机变量X 和Y 独立同分布,具有方差2σ>0,则随机变量U=X+Y 和V=X-Y(A )独立 (B) 不独立 (C ) 相关 (D) 不相关11.随机变量X 的方差存在,且E(X)=μ,则对于任意常数C ,必有 。

(A )E(X-C)2=E(X 2)-C 2 (B )E(X-C)2=E(X-μ)2(C )E(X-C)2< E(X-μ)2(D )E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=31, 则P(1<X<3) =( )(A )0 (B )41 (C )31 (D )21二、填空题1.设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则()2E X =2.设一次试验成功的概率为p ,进行了100次独立重复试验,当p = 时,成功的次数的标准差的值最大,其最大值为3.设随机变量X 在区间[-1,2]上服从均匀分布,随机变量100010X Y X X >⎧⎪= =⎨⎪- <⎩,则Y 的方差DY=4.()4D X =,()9D Y =,0.5XYρ=,则()D X Y -=,()D X Y +=5.设随机变量X 服从于参数为λ的泊松分布,且已知()()121E X X --=⎡⎤⎣⎦,则λ= 6.设(X,Y)的概率分布为:则),cov(22Y X= 。

概率论与数理统计第四章测试题

概率论与数理统计第四章测试题

第4章随机变量得数字特征一、选择题1.设两个相互独立得随机变量X与Y得方差分别为4与2,则随机变量3X-2Y得方差就是(A) 8 (B) 16 (C) 28 (D) 442.若随机变量与得协方差,则以下结论正确得就是( )(A) 与相互独立(B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY3.设随机变量与相互独立,且,则( )(A) (B)(C) (D)4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关得充要条件为(A) EX=EY (B) E(X2)- (EX)2= E(Y2)- (EY)2(C) E(X2)= E(Y2) (D) E(X2)+(EX)2= E(Y2)+ (EY)25.设、就是两个相互独立得随机变量且都服从于,则得数学期望( ) (A) (B) 0 (C) (D)6.设、就是相互独立且在上服从于均匀分布得随机变量,则( )(A) (B) (C) (D)7.设随机变量与得方差存在且不等于0,则D(X+Y)=DX+DY就是X与Y( )(A) 不相关得充分条件,但不就是必要条件(B) 独立得充分条件,但不就是必要条件(C) 不相关得充分必要条件(D) 独立得充分必要条件8.若离散型随机变量得分布列为,则( )(A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n次,以X与Y分别表示正面向上与反面向上得次数,则X与Y得相关系数等于(A)-1 (B)0 (C) (D)110.设随机变量X与Y独立同分布,具有方差>0,则随机变量U=X+Y与V=X-Y(A)独立(B) 不独立(C) 相关(D) 不相关11.随机变量X得方差存在,且E(X)=μ,则对于任意常数C,必有。

(A)E(X-C)2=E(X2)-C2(B)E(X-C)2=E(X-μ)2(C)E(X-C)2< E(X-μ)2(D)E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=, 则P(1<X<3) =( )(A)0 (B) (C) (D)二、填空题1.设表示10次独立重复射击命中目标得次数,每次命中目标得概率为0、4,则2.设一次试验成功得概率为,进行了100次独立重复试验,当时,成功得次数得标准差得值最大,其最大值为3.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则得方差DY=4.,,,则,5.设随机变量服从于参数为得泊松分布,且已知,则6.设(X,Y)得概率分布为:则=。

天津理工大学概率论与数理统计第四章习题答案详解.doc

天津理工大学概率论与数理统计第四章习题答案详解.doc

第 4 章随机变量的数字特征一、填空题1、设X为北方人的身高,Y 为南方人的身高,则“北方人比南方人高”相当于E( X ) E(Y)2、设X为今年任一时刻天津的气温,Y 为今年任一时刻北京的气温,则今年天津的气温变化比北京的大,相当于D(X) D(Y) .3、已知随机变量X 服从二项分布,且E(X ) 2.4, D(X) 1.44 ,则二项分布的参数n= 6 , p= .4、已知X服从(x ) 1 e x2 2x 1,则 . E(X)=1 , D(X)=1/2.5、设X的分布律为X 1 0 1 2P 1 1 1 1 8 4 2 8则 E(2X 1) 9/4 .6、设X ,Y相互独立,则协方差cov( X ,Y ) 0 .这时, X ,Y 之间的相关系数XY 0 .7 、若XY是随机变量 (X,Y)的相关系数,则 | XY| 1的充要条件是P Y aX b 1 .8、XY是随机变量 ( X ,Y ) 的相关系数,当XY 0时,X与Y 不相关,当| XY | 1 时,X 与 Y 几乎线性相关 .9、若D(X) 8, D(Y ) 4 ,且X ,Y相互独立,则 D (2X Y ) 36 .10、若a, b为常数,则D (aX b) a2 D ( X ) .11、若X ,Y相互独立,E( X ) 0, E(Y) 2 ,则 E(XY ) 0 .12、若随机变量X 服从[0,2 ]上的均匀分布,则E( X )π.13、若D(X) 25, D(Y ) 36, XY 0.4 ,则 cov( X ,Y ) 12 , D(X Y) 85,D ( X Y ) 37 .14、已知E( X ) 3,D(X) 5,则E(X 2)2 30 .15、若随机变量X 的概率密度为e x x 0,(x)x,则 E(2X ) 20 0E (e 2 X ) 1/3 .二、计算题1、五个零件中有 1 个次品,进行不放回地检查,每次取 1 个,直到查到次品为止。

第4章随机变量的数字特征

第4章随机变量的数字特征
1. 袋中有 20 个同样的球,其中 12 个标上数字 1,8 个标上数字 2,现在从袋中任取一 球并记住球上的数字后再放回,这样一共进行了 4 次,记 X 为数字 1 出现的次数,则 E(X) = ( ) . (A) 1.6 (B) 0.4 (C) 2.4 (D) 9.6
⎧ax + b, 0 ≤ x ≤ 1 2. 设随机变量 X 的密度函数 f ( x ) = ⎨ ,且 E ( X ) = 7 / 12 ,则( 其它 ⎩ 0,
9. 二维随机向量 ( X , Y ) 满足 E ( XY ) = E ( X ) E (Y ) ,则( (A) D ( XY ) = D ( X ) D (Y ) (C) X 与 Y 独立
) .
(B) D ( X + Y ) = D ( X − Y ) (D) X 与 Y 不独立
) .
10. 设 X ~ N(3,2),Y ~ U(2,8) ,且 X 与 Y 相 5 (C) 11 (D) 1
) .
(A) -1 (B) 4 (C) 2 (D) 7 . 4. 如果随机变量 X 存在二阶原点矩,则下列表达式正确的是( ) (A) E ( X 2 ) < [ E ( X )] 2 (C) E ( X 2 ) ≥ E ( X ) (B) E ( X 2 ) ≥ [ E ( X )] 2 (D) E ( X 2 ) < E ( X )
Y=
1 n ∑ X i ,则( n i =1
(A) Cov( X 1 , Y ) =
) .
σ2
n
(B) Cov( X 1 , Y ) = σ 2
(C) D( X 1 + Y ) =
n+2 2 σ n
(D) D( X 1 − Y ) =

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。

概率论习题

概率论习题

第四章、随机变量的数字特征检测题一、单项选择题,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在表格中。

错选、多选或未选均无分。

1.设离散随机变量X 的分布列为,则D (X )=( )A.0.21B.0.6C.0.84D.1.22.设随机变量X ~B (30,61),则E (X )=( ) A.61B. 65C. 625 D.53.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3B. 6C. 10D. 124.设二维随机向量(X,Y )~N(μ1,μ2,ρσσ,,2221),则下列结论中错误..的是( ) A.X~N (21,1σμ),Y~N (222,σμ)B.X 与Y 相互独立的充分必要条件是ρ=0C.E (X+Y )=21μ+μD.D (X+Y )=2221σ+σ5.设随机变量X ,Y 都服从区间[0,1]上的均匀分布,则E (X+Y )=( ) A.61B.21 C.1D.26.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A.D(X+c)=D(X)B.D(X+c)=D(X)+cC.D(X-c)=D(X)-cD.D(cX)=cD(X)7.设E (X )=E (Y )=2,Cov(X,Y)=,61-则E (XY )=( ) A.61-B.623C.4D.625 8.设随机变量X ~U(0,2),又设Y=e -2X ,则E(Y)=( ). A. 21(1-e -4) B.41(1-e -4) C.41D. -41e -4 9.设(X ,Y )为二维连续随机向量,则X 与Y 不相关...的充分必要条件是( ) A .X 与Y 相互独立B .E (X +Y )=E (X )+E (Y )C .E (XY )=E (X )E (Y )D .(X ,Y )~N (μ1,μ2,21σ,22σ,0)10.设二维随机向量(X ,Y )~N (1,1,4,9,21),则Cov (X ,Y )=( ) A .21 B .3 C .18D .3611.已知二维随机向量(X ,Y )的联合分布列为( )则E (X )= A .0.6 B .0.9 C .1D .1.612.设随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( )A.1B.2C.3D.413.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=214.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则E (Z 2)=( )A.1B.4C.5D.615.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.416.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8 B .16 C .28D .44二、填空题,不写解答过程,将正确的答案写在每小题的空格内。

第四章随机变量的数字特征(有答案)

第四章随机变量的数字特征(有答案)

第四章随机变量的数字特征1. (2016)设随机变量X 的概率密度函数2,01(),0,x x f x <<⎧=⎨⎩其他 则2()E X =0.5 .2. (2016)设随机变量X 与Y 满足()1,()2,()4,()9,0.5XY E X E Y D X D Y ρ=====, 则()E XY = 5 .3. (2016)设二维随机变量(,)X Y 的联合分布律为(1) 求,X Y 的边缘分布律; (2) 求,X Y 的相关系数XY ρ; (3) 判断,X Y 是否相关、是否独立? 解答: (1)X 与Y分分(2)2()()3E X E Y ==, 4()()9D X D Y ==, 2()9E XY =, 因此 故 1.2XY ρ===- …...................................4分(3)X 与Y 相关, 不独立. ...............................................................................2分4.(2016)设A 与B 是两个随机事件, 随机变量1,,0,A X A ⎧=⎨⎩出现不出现 1,,0,B Y B ⎧=⎨⎩出现不出现证明: 随机变量X 与Y 不相关的充分必要条件是A 与B 相互独立.证明: X故 ()()E X P A =, 同理, ()()E Y P B =.XY故 ()()E XY P AB =. ...........................................................................................3分XY ρ==因此 X 与Y 不相关0XY ρ⇔=()()()E XY E X E Y ⇔=()()()P AB P A P B ⇔= 即 X 与Y 不相关的充分必要条件是A 与B 相互独立. ..................................2分 5. (2015)设随机变量X 服从参数为2的泊松分布, 则期望2[(1)]E X +=11 . 6. (2015)设随机变量X 服从正态分布2(1,3)N , Y 服从正态分布2(0,4)N , X 与Y的相关系数12XY ρ=-, 设32X YZ =+, 求:(1) Z 数学期望()E Z 及方差()D Z ;(2) X 与Z 的协方差cov(,)X Z 及相关系数XZ ρ. 解答:(1)111()()()323E Z E X E Y =+=;()()32X YD Z D =+1111()()29432XY D X D Y ρ=++⋅⋅2211111342()34394322=⋅+⋅+⋅⋅⋅-⋅⋅=. …...................................…6分(2)cov(,)cov(,)32X YX Z X =+ 11cov(,)cov(,)32X X X Y =+11()32XY D X ρ=+21113(0322=⋅+-=. 故 0XZ ρ=. ............................................................................................……...4分 7. (2014)对球的半径做近似测量, 设测量值均匀分布在区间(2,3)上, 则球的体积的数学期望为653π . 8. (2014)设随机变量X 与Y 的方差均为4, 相关系数12XY ρ=, 2Z X Y =+, 则协方差cov(,)X Z = 8 .9. (2014)设X ,Y 为随机变量, 下列选项中, 不是()()()E XY E X E Y =的充要条件的是 D . (A) cov(,)0X Y = (B) ()D X Y DX DY -=+ (C) X 与Y 不相关(D) X 与Y 独立10. (2014)设连续型随机变量X 的概率密度函数为,01()0,Ax x f x <<⎧=⎨⎩,其他. (1)求常数A ;(2)设随机变量2Y X =, 求Y 的概率密度函数()Y f y ;(3)设随机变量11,,210,.2X Z X ⎧≥⎪⎪=⎨⎪<⎪⎩, 求()E Z .解答:(1)+-()d 1f x x ∞∞=⎰,即+d 1Ax x ∞-∞=⎰,得2A =. ……………………3分(2)法1:2y x =的反函数为x =(01,()0,X XYf f yf y⎧+<<⎪=⎨⎪⎩其它.0,01,0,y⎧+<<⎪=⎨⎪⎩其它.1,01,0,y<<⎧=⎨⎩其它.…………………4分法2:2(){}{}YF y P Y y P X y=≤=≤当0y≤时:()0YF y=,当01y<<时:(){dYF y P X x x y=≤≤==⎰,当1y≥时:()1YF y=.因此1,01,()()0,Y Yyf y F y<<⎧'==⎨⎩其它.……………………………………4分(3)11213{1}{}2d24P Z P X x x==≥==⎰,故3()4E Z=. ………………………3分11.(2014)设某厂生产的某种设备的寿命(单位: 年)X服从指数分布, 其概率密度函数为141e, 0,()40,0.xxf xx-⎧>⎪=⎨⎪≤⎩工厂规定: 若出售的设备在一年内损坏, 则可予以调换. 工厂售出一台设备后, 若在一年内未损坏, 厂方可获利100元, 若在一年内损坏, 厂方则亏损200元.试求厂方售出一台设备的平均利润.解答:设Y为厂方售出一台设备的利润,有114411{1}e d1e4xP X x--<==-⎰,……………………3分则Y平均利润111444()100e200(1e)300e200E Y---=--=-. (3)分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 随机变量的数字特征
一、填空题:
1. 设随机变量ζ~B(n,p) ,且5.0=ζE ,45.0=ζD ,则n= , p= 。

2. 设随机变量ξ表示10次独立重复射击中命中目标的次数,且每次射击命中目标的概率为0.4,则)(2
ξE = 。

3. 已知随机变量ξ的概率密度为1
22
1
)(-+-=
x x
e x π
ϕ(+∞<<∞-x ),则
=)(ξE ,=)(ξD 。

4. 设随机变量ξ),(~b a U ,且2)(=ξE ,3
1)(=
ξD ,则=a ,=b 。

5. 设随机变量ζ,有10=ζE ,25=ζD ,已知 0)(=+b a E ζ ,1)(=+b a D ζ 则 a= , b= , 或 a= , b= 。

6. 已知离散型随机变量ζ服从参数为2的普哇松分布,则随机变量23-=ζη的数学期望=ηE 。

7. 设随机变量1ξ]6,0[~U ,2ξ)2,0(~2
N ,且1ξ与2ξ相互独立,则
=-)2(21ξξD 。

8. 设随机变量n ζζζ,,,21 独立,并且服从同一分布。

数学期望为a , 方差为2
σ,
令 i n
i n ζζ∑==1
1 ,则 =ζE ,=ζD 。

9. 已知随机变量ζ与η的方差分别为49=ζD , 64=ηD , 相关系数
8.0=ζηρ,则=+)(ηζD ,=-)(ηζD 。

10. 若随机变量ζ的方差为004.0)(=ξD ,利用切比雪夫不等式知
{}≥<-2.0ξξE P 。

二、选择题:
1. 设随机变量ζ的函数为b a +=ζη,(a , b 为常数),且ζE ,ζD 均存在,则必有( C )。

A. ζηaE E =
B. ζηaD D =
C. b aE E +=ζη
D. b aD D +=ζη
2. 设随机变量ζ的方差ζD 存在,则=+)(b a D ζ( B )(a , b 为常数)。

A. b aD +ζ
B. ζD a 2
C. b D a +ζ2
D. ζD a
3. 如果随机变量ζ~),(2σμN ,且3=ζE ,1=ζD ,则=≤<-)11(ζP ( D ).
A. 1)1(2-Φ
B.)4()2(Φ-Φ
C.)2()4(-Φ--Φ
D.)2()4(Φ-Φ
4. 若随机变量ζ服从指数分布,且2
5.0=ζD ,则ζ的数学期望=ζE ( A ).
A.
21 B. 2 C. 4
1
D. 4 5. 设随机变量ζ的分布函数为⎪⎩
⎪⎨⎧>≤≤<=1
,110,
,
0)(3
x x x x x F ,则=)(ξE ( B ). A.
dx x ⎰
+∞
4
B.
dx x ⎰1
2
3 C. ⎰⎰+∞
+1
1
4
xdx dx x
D.
dx x ⎰
+∞
23
6. 设随机变量ζ的期望ζE 为一非负值,且2)12
(
2
=-ζE ,2
1
)12
(
=

D ,则
=ζE ( C )。

A. 0 B. 1 C. 2 D.
8
7. 随机变量ζ与η相互独立,且4)(=ξD ,2)(=ηD ,则
=+-)523(ηξD ( D )。

A. 8 B. 16 C. 28 D. 44
8. 如果ζ与η满足)()(ηζηζ-=+D D ,则必有( B )。

A. ζ与η独立
B. ζ与η不相关
C. 0=ηD
D. 0=⋅ηζD D 9. 设随机变量ζ与η的相关系数为1=ξηρ,则( D )。

A. ζ与η相互独立
B. ζ与η必不相关
C.{
}12
=++=c b a P ξξη D. {}
1=+=b a P ξη
三、计算题:
1. 设随机变量ζ的分布律为
求)(ζE ,)(2
ζE , )53(2

E ,
)12(-ζD
2.三枚硬币,用ξ表示出现正面的个数,试求3
ξη=的数学期望)(ηE 。

3.
(此种题一般为均匀分布)某公共汽车站每隔10分钟有一辆车经
过,某一乘客到达车站的时间是任意的,该乘客的候车时间(单位:分钟)是一个随机变量ζ,求ζ的数学期望与标准差。

4. 设随机变量的密度函数为⎩⎨⎧<=其它
,01
,)(2x Ax x ϕ,
求:(1)常数A ; (2) ⎭
⎬⎫
⎩⎨⎧≤
21ξP ; (3) )(ξE ,)(ξD 5. 设随机变量)(~λπξ,且已知1)]2)(1[(=--ξξE ,求λ。

6. 设ζ为一个随机变量。

已知1=ζE ,1)2
(=ζ
D ,求 2
)1(-ζE 。

7. 设随机变量ζ服从指数分布,且方差3=ζD ,写出ζ的概率密度,并计算
)31(≤<ζP 。

8. 已知随机变量ζ服从参数为1的指数分布,求随机变量ζ
ζη2-+=e
的数学期
望。

9. 设圆的半径ζ服从[0,1]内的均匀分布,求其面积η的数学期望。

10. 设随机变量ζ与η的概率密度均为⎪⎩⎪⎨⎧
<
<=其它,
010,2)(2θθϕx x x ,
若θ
ηζ1
)2(=
+c E ,求常数c 。

11. 设三台仪器出现故障的概率分别为1P ,2P ,3P ,求出现故障的仪器数的数学期望和方差。

12. 掷10颗骰子,假定每颗骰子出现1至6点都是等可能的,求10颗骰子的点数和
的数学期望与方差。

13. 设4=ζD ,1=ηD ,6.0=ζηρ 求 )23(ηζ-D 。

14. 设二维随机变量(ηξ,)的联合概率分布为 η ξ 0 1
0 3625 365 1 36
5
36
1 求:(1))(ξE ,)(ηE ;(2))(ξηE ;(3)),cov(ηξ;(4)ξηρ。

5. 设随机变量),(ηζ的密度为⎪⎩
⎪⎨⎧+=0)
(81
),(y x y x ϕ , 其他20≤≤x ,20≤≤y
求ζE ,ηE ,),cov(ηζ。

四、证明题:
设随机变量),(ηζ的联合分布律为
ζ η -1 0 1
-1 1/8 1/8 1/8
0 1/8 0 1/8
1 1/8 1/8 1/8
试证ζ与η既不相关也不独立。

五、附加题:
1. 设随机变量ζ的概率密度为⎪⎩⎪⎨⎧≤≤=其它,
00,2
cos 21
)(π
ϕx x x ,对ζ独立地重复观察4次,用η表示观察值大于
3
π的次数,求2
η的数学期望。

2. 设二维随机变量(ηξ,)在区域:D 10<<x ,x y <内服从均匀分布,求关于ξ
的边缘概率密度函数及随机变量12+=ξη的方差)(ηD 。

3. 设 A , B 是两个随机事件,随机变量⎩
⎨⎧-=不出现若,出现
若A A 1,1ξ,
⎩⎨
⎧-=不出现
若,出现
若B B 1,1η,试证ξ与η不相关的充要条件是事件A , B 相互独立。

相关文档
最新文档