偶联反应--总合
偶联反应机理
偶联反应机理偶联反应是有机合成中一种重要的反应类型,它通过将两个或多个分子中的原子键合成新的键来构建有机分子。
在有机化学领域,偶联反应被广泛应用于合成复杂的有机分子,如药物、天然产物和材料科学中的一些重要化合物。
本文将探讨偶联反应的机理及其在有机合成中的应用。
在偶联反应中,常见的反应类型包括金属催化的偶联反应、亲核偶联反应和自由基偶联反应等。
其中,金属催化的偶联反应是最为常见和广泛应用的一种。
这类反应通常由金属催化剂引导下,两个有机分子中的碳原子通过共价键结合形成新的碳-碳或碳-其他原子键。
金属催化的偶联反应机理通常包括底物配体化、金属还原和活化、配体交换和底物偶联等步骤。
以著名的Pd-catalyzed cross-coupling reaction为例,其机理如下:首先,Pd(II)络合物和氧化剂作用下发生还原生成活性的Pd(0)物种;随后底物配体化步骤中,底物与金属配体形成络合物;接着金属还原和活化步骤中,底物通过金属表面发生活化生成活性中间体;最后,在配体交换和底物偶联步骤中,活性中间体与另一种底物发生反应,形成偶联产物。
这一系列步骤共同构成了Pd-catalyzed cross-coupling reaction的反应机理。
除了金属催化的偶联反应外,亲核偶联反应和自由基偶联反应也是重要的偶联反应类型。
在亲核偶联反应中,通常通过亲核试剂攻击含有离子性反应中心的底物来实现碳-碳键的形成。
而在自由基偶联反应中,则是通过自由基试剂与底物中的碳原子发生反应,构建新的碳-碳键。
偶联反应在有机合成中具有广泛的应用。
例如,Pd-catalyzed cross-coupling reaction已被广泛应用于合成天然产物、药物和材料科学中的一些重要化合物。
亲核偶联反应则常用于合成含有碳-碳键的生物活性分子。
自由基偶联反应则在有机合成中具有独特的应用优势,因为它能够实现较高的底物范围和反应条件宽容性。
总的来说,偶联反应作为一种重要的有机合成方法,在合成复杂有机分子中发挥着至关重要的作用。
偶联反应条件
偶联反应条件
偶联反应是有机合成中广泛应用的一种方法,它可以将两个分子通过一个碳-碳键的连接而形成一种新的分子。
偶联反应的条件包括
反应物的选择、反应溶剂、催化剂、反应温度等。
反应物的选择是偶联反应中关键的一步,通常需要选择具有亲电性和亲核性的官能团分子,例如烯烃、芳香族化合物、醇、胺等。
此外,反应物的选择还要考虑它们之间的反应性和稳定性,以及它们在催化剂存在下的反应活性。
反应溶剂对偶联反应的影响也很大,通常需要选择与反应物具有亲和性的溶剂,例如氢氧化钠、氢氧化钾、丙酮和甲醇等。
此外还要考虑溶剂的极性、酸碱性、稳定性等因素。
催化剂在偶联反应中的作用是加速反应速率,常用的催化剂包括钯、铜、镍等金属催化剂。
不同的催化剂对反应物的选择和反应条件有不同的要求。
反应温度对偶联反应的影响也很大,通常需要选择适当的反应温度以保证反应的进行,同时还要考虑反应物的稳定性和催化剂的活性。
总之,偶联反应的条件要根据反应物的性质和反应条件进行选择,以保证反应的高效和高选择性。
- 1 -。
化学中的反应偶联和串联
化学中的反应偶联和串联化学反应是物质转化过程的重要形式之一。
反应的产物和反应物之间的化学连锁可以采用不同的方式组合,形成连锁反应、并联反应、串联反应和偶联反应等形式。
反应偶联和串联是两种不同的化学反应类型,它们具有不同的反应特点和应用范围。
一、反应偶联反应偶联是指两个或两个以上的独立反应在同一反应条件下发生,其反应物和产物使用相同的催化剂。
这种反应方式适用于需要多步反应才能达到预期目标的情况,能够提高反应效率和产物选择性。
反应偶联的主要特点为:1.反应速率快:由于反应物和产物使用相同的催化剂,在一定的反应条件下,反应速率比两个独立反应之和更快。
2.产物选择性高:由于两个或两个以上的独立反应都在同一催化剂的作用下发生,相互之间会发生互相干扰,从而选择性更高。
3.具有高效性和环保性:反应偶联的反应条件单一,反应时间短,催化剂的使用量较少,能够降低反应废弃物的产生。
4.适用范围广:反应偶联适用于各种有机化学反应和一些催化加氢反应等。
例如:Suzuki偶联反应是一种重要的反应偶联,在此反应中,含有硼基的芳香化合物和含有卤素基的芳香化合物,通过Pd催化剂的作用反应偶联形成对称的联合偶联物。
这种反应偶联的选择性高、反应条件温和,适用性广,已成为有机合成中最常用的反应偶联之一。
二、反应串联反应串联是指连续进行两个或两个以上的反应,每个反应都需要在新催化剂的作用下发生。
这种反应方式适用于分子中存在难以解决的问题,反应过程复杂、结构多样等化学反应体系。
反应串联主要具有以下特点:1.各阶段反应的选择性能够控制:每个阶段的反应都针对不同类型的反应物和产物,选择性更高,能够控制其反应后产生的产物。
2.重要反应中间体的稳定性高:各阶段反应直接连接在一起,产生的反应中间体需要稳定,在此过程中反应物容易发生其他反应而形成副产物。
3.反应废物产生量低:由于反应串联需要多个反应共同完成,中间体也会在反应过程中不断转化,从而降低反应废物的产生。
金属催化偶联反应
利用连续流动反应技术,实现反应物的高效混合和传质,提高反应 速率和选择性。
优化反应动力学参数
通过调整反应物浓度、催化剂用量等反应动力学参数,实现反应的 高选择性和高效率。
06
金属催化偶联反应的挑战与 未来发展
面临的挑战和问题
选择性问题
金属催化偶联反应中,如何实现高选择性地合成目标产物是一个重要挑战。不同底物和反应条件下,选择性控制需要 更加精细的策略。
过渡金属催化偶联反应
随着过渡金属催化剂的发展,金属催化偶联反应取得了重大突破。过渡金属(如铜、镍、 铁等)具有较低的毒性和成本,且可在较温和的条件下实现高效催化。这些催化剂可通过 均相或多相体系进行反应,具有广泛的应用前景。
金属有机框架(MOFs)在偶联反应中的应用
近年来,金属有机框架(MOFs)作为一类新型多孔材料,在金属催化偶联反应中展现出独 特的优势。MOFs具有高的比表面积、可调的孔径和化学功能性,可作为催化剂载体或直接 作为催化剂参与反应,提高反应的效率和选择性。
04
金属催化偶联反应在有机合 成中的应用
构建碳-碳键的方法
01
02
03
交叉偶联反应
利用不同的有机金属试剂 进行交叉偶联,构建碳-碳 键,如Suzuki偶联、 Heck偶联等。
自身偶联反应
相同的有机金属试剂在金 属催化剂作用下进行自身 偶联,生成对称与亲核试剂发生烯丙基化 反应,构建碳-碳键。
感谢您的观看
THANKS
绿色溶剂与试剂
开发可生物降解、低毒性的绿色溶剂和试剂,替代传统有毒有害的 溶剂和试剂,降低金属催化偶联反应的环境负担。
原子经济性
通过优化反应路径和提高原子利用率,实现金属催化偶联反应的高 原子经济性,减少资源浪费。
偶联反应及举例
偶联反应[编辑]偶联反应,也写作偶合反应或耦联反应,是两个化学实体(或单位)结合生成一个分子的有机化学反应。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
在偶联反应中有一类重要的反应,RM(R = 有机片段, M = 主基团中心)与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'。
[1]由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖。
[2]偶联反应大体可分为两种类型:•交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯(PhBr)与氯乙烯形成苯乙烯(PhCH=CH2)。
•自身偶联反应:相同的两个片段形成一个分子,如:碘苯(PhI)自身形成联苯(Ph-Ph)。
反应机理[编辑]偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成。
第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上。
最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂。
不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快。
中间体通常不倾向发生β-氢消除反应。
[3]在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应。
[4]还原消除的速率高低如下:乙烯基-乙烯基> 苯基-苯基> 炔基-炔基> 烷基-烷基不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基> 乙烯基-烷基> 烷基-烷基。
另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理。
[5]§催化剂[编辑]偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂。
钯催化剂当中常用的如:四(三苯基膦)钯等。
钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性。
偶联反应
偶联反应目录偶联反应常见的偶联反应包括偶联反应具体说明偶联反应所需要注意的用途Suzuki反应偶联反应偶联反应(英文:Coupled reaction),也作偶连反应、耦联反应、氧化偶联,是由两个有机化学单位(molecules)进行某种化学反应而得到一个有机分子的过程.这里的化学反应包括格氏试剂与亲电体的反应偶联反应(Grinard),锂试剂与亲电体的反应,芳环上的亲电和亲核反应(Diazo,Addition-Elimination),还有钠存在下的Wutz反应,由于偶联反应 (Coupled Reaction)含义太宽,一般前面应该加定语.而且这是一个比较非专业化的名词. 狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
进行偶联反应时,介质的酸碱性是很重要的。
一般重氮盐与酚类的偶联反应,是在弱碱性介质中进行的。
在此条件下,酚形成苯氧负离子,使芳环电子云密度增加,有利于偶联反应的进行。
重氮盐与芳胺的偶联反应,是在中性或弱酸性介质中进行的。
在此条件下,芳胺以游离胺形式存在,使芳环电子云密度增加,有利于偶联反应进行。
如果溶液酸性过强,胺变成了铵盐,使芳环电子云密度降低,不利于偶联反应,如果从重氮盐的性质来看,强碱性介质会使重氮盐转变成不能进行偶联反应的其它化合物。
偶氮化合物是一类有颜色的化合物,有些可直接作染料或指示剂。
在有机分析中,常利用偶联反应产生的颜色来鉴定具有苯酚或芳胺结构的药物。
常见的偶联反应包括反应名称--年代--反应物A--反应物B --类型--催化剂--注Wurtz反应 1855 R-X sp³ 自身偶联 NaGlaser偶联反应 1869 R-X sp 自身偶联 CuUllmann反应 1901 R-X sp² 自身偶联 CuGomberg-Bachmann反应 1924 R-N2X sp² 自身偶联以碱作介质Cadiot-Chodkiewicz偶联反应 1957 炔烃 sp R-X sp 交叉偶联 Cu 以碱作介质Castro-Stephens偶联反应 1963 R-Cu sp R-X sp² 交叉偶联Kumada偶联反应 1972 R-MgBr sp²;、sp³ R-X sp² 交叉偶联 Pd或Ni Heck反应 1972 烯烃 sp² R-X sp² 交叉偶联 Pd 以碱作介质Sonogashira偶联反应 1973 炔烃 sp R-X sp³ sp² 交叉偶联 Pd、Cu 以碱作介质Negishi偶联反应 1977 R-Zn-X sp² R-X sp³ sp² 交叉偶联 Pd或Ni Stille偶联反应 1977 R-SnR3 sp² R-X sp³ sp² 交叉偶联 PdSuzuki反应 1979 R-B(OR)2 sp² R-X sp³ sp² 交叉偶联 Pd 以碱作介质Hiyama偶联反应 1988 R-SiR3 sp² R-X sp³ sp² 交叉偶联 Pd 以碱作介质Buchwald-Hartwig反应 1994 R2N-R SnR3 sp R-X sp² 交叉偶联 Pd N-C偶联Fukuyama偶联反应 1998 RCO(SEt) sp2 R-Zn-I sp3 交叉偶联 Pd偶联反应具体说明偶联反应是由两个有机化学单位(moiety)进行某种化学反应而得到一个有机分子的过程.这里的化学反应包括格氏试剂与亲电体的反应(Grinard),锂试剂与亲电体的反应,芳环上的亲电和亲核反应(Diazo,Addition-Elimination),还有钠存在下的Wurtz反应,偶联反应所需要注意的进行偶联反应时,介质的酸碱性是很重要的。
有机化学四大偶联反应
有机化学四大偶联反应有机化学中的偶联反应是合成有机分子的重要方法之一,广泛应用于药物合成、材料科学等领域。
以下介绍有机化学的四大偶联反应。
第一种偶联反应是格氏偶联反应(Giemsa),它是20世纪初由法国化学家格氏首次提出的。
这种反应是通过有机金属化合物与芳香化合物进行反应,形成碳-碳键。
通常使用有机锡化合物和芳香卤化物作为底物,在碱性条件下,在加热的情况下进行反应。
这种反应是高度选择性的,并且能够合成具有天然产物活性的有机化合物。
第二种偶联反应是索尼赫德烯偶联反应(Suzuky-Miyaura),该反应是由日本化学家索尼赫德和宫浦在20世纪70年代提出的。
这种反应是通过有机金属化合物与芳香卤化物进行反应,形成碳-碳键。
通常使用有机锌化合物或有机硼化合物和芳香卤化物作为底物,在碱性条件下,在加热的情况下进行反应。
索尼赫德烯偶联反应是高度选择性的合成方法,可以合成具有天然产物活性的有机化合物。
第三种偶联反应是肾上腺素偶联反应(Heck),是由丹麦化学家肯格赫首次提出的。
这种反应是通过有机金属化合物与不饱和化合物(通常是烯烃)进行反应,形成碳-碳键。
通常使用有机铜化合物和不饱和化合物作为底物,在碱性条件下,在加热的情况下进行反应。
肾上腺素偶联反应具有高效、高选择性和底物适用范围广的特点,广泛应用于药物合成和天然产物的全合成。
第四种偶联反应是叠氮偶联反应(Azide-Alkyne),又称为"CuAAC"反应,由美国化学家哈斯利首次提出。
在这种反应中,叠氮化合物与炔烃发生反应,生成1,4-二取代三氮唑化合物。
这种反应是通过铜催化剂的存在实现的,即铜催化的炉二碳合成反应。
这种反应具有高效、高选择性和底物适用范围广的特点,并且它是药物合成中的重要方法。
以上是有机化学的四大偶联反应的介绍。
这些偶联反应不仅拓宽了有机合成的范围,还为合成具有特定结构和功能的有机化合物提供了重要的手段。
研究人员可以根据这些偶联反应的特点选择合适的反应体系,并结合自己的研究目标进行合成路线的设计。
偶联反应实验报告
一、实验目的1. 掌握偶联反应的基本原理和操作方法。
2. 了解不同偶联反应条件对反应结果的影响。
3. 学会利用偶联反应合成特定有机化合物。
二、实验原理偶联反应是一种重要的有机合成方法,它涉及两个或多个分子在特定条件下形成新的共价键。
本实验以卡迪奥-肖德凯维奇偶联反应为例,通过末端炔烃与卤代末端炔烃在亚铜盐和碱催化下发生偶联,合成丁二炔的衍生物。
三、实验材料与仪器1. 实验材料:- 末端炔烃(如:1-丁炔)- 卤代末端炔烃(如:2-溴丁炔)- 亚铜盐(如:氯化亚铜)- 碱(如:氨水、一级胺、吡啶、哌啶)- 盐酸羟胺- 甲醇、乙醇、二甲基甲酰胺、四氢呋喃或水- 反应容器(如:圆底烧瓶、锥形瓶)2. 实验仪器:- 热浴搅拌器- 真空泵- 红外光谱仪- 核磁共振波谱仪四、实验步骤1. 准备反应物:将末端炔烃、卤代末端炔烃、亚铜盐、碱和盐酸羟胺按一定比例混合,加入反应容器中。
2. 加入溶剂:根据实验要求,选择甲醇、乙醇、二甲基甲酰胺、四氢呋喃或水作为溶剂,加入反应容器中。
3. 搅拌:使用热浴搅拌器将反应混合物在室温下搅拌一定时间,以确保反应充分进行。
4. 后处理:反应结束后,将反应混合物过滤,收集固体产物。
将固体产物用适量溶剂溶解,进行后续的表征分析。
5. 表征分析:使用红外光谱仪和核磁共振波谱仪对产物进行表征,确定产物的结构和纯度。
五、实验结果与分析1. 反应条件对产率的影响:- 亚铜盐的种类:在实验中,我们比较了氯化亚铜和溴化亚铜对反应的影响。
结果表明,氯化亚铜的催化效果优于溴化亚铜。
- 碱的种类:实验中使用了氨水、一级胺、吡啶和哌啶作为碱。
结果表明,氨水的催化效果最好。
- 溶剂的选择:实验中比较了甲醇、乙醇、二甲基甲酰胺、四氢呋喃和水作为溶剂对反应的影响。
结果表明,甲醇和乙醇的催化效果较好。
2. 反应产物的表征:- 红外光谱分析:产物的红外光谱图显示,在1650 cm^-1、2100 cm^-1和2300 cm^-1处有明显的吸收峰,分别对应于C=C、C≡C和C≡C的伸缩振动。
有机化学四大偶联反应
有机化学四大偶联反应有机化学是研究碳元素及其化合物的科学,是化学学科中的一个重要分支。
在有机化学中,有机合成反应是一项重要的研究内容。
有机化学四大偶联反应是有机合成中常用的四种反应类型,包括:Suzuki偶联反应、Stille偶联反应、Heck偶联反应和Sonogashira 偶联反应。
这些反应在有机合成中起到了重要的作用,为有机化学的发展做出了巨大的贡献。
我们来介绍Suzuki偶联反应。
Suzuki偶联反应是一种重要的芳香化合物合成方法,它是基于钯催化剂的反应。
该反应将有机硼酸酯和有机卤化物或磺酸酯作为底物,在适当的条件下,经过交叉偶联反应,生成目标产物。
Suzuki偶联反应在药物合成和材料科学中有着广泛的应用,可以高效地合成出具有重要生物活性和物理性质的化合物。
接下来是Stille偶联反应,它是一种重要的碳-碳键形成反应。
该反应是通过钯催化剂催化下的亲核取代反应来实现的,底物包括有机卤化物和有机锡化合物。
Stille偶联反应具有底物适用范围广、反应条件温和等优点,在天然产物的合成和药物研发中得到了广泛的应用。
第三种偶联反应是Heck偶联反应,它是一种重要的芳香化合物合成方法。
该反应是通过钯催化下的芳香取代反应实现的,底物包括有机卤化物和烯烃。
Heck偶联反应是一种高效、高选择性的反应,在药物研发和天然产物的合成中得到了广泛的应用。
最后是Sonogashira偶联反应,它是一种重要的炔烃合成方法。
该反应是通过钯催化下的炔烃与有机卤化物的偶联反应实现的。
Sonogashira偶联反应可以高效地合成炔烃化合物,对于合成具有炔烃结构的药物和功能材料具有重要意义。
在有机化学四大偶联反应中,每一种反应都有其独特的应用领域和优点。
这些反应的发展和应用为有机合成提供了新的思路和方法,为有机化学的发展做出了重要贡献。
总结起来,有机化学四大偶联反应包括Suzuki偶联反应、Stille偶联反应、Heck偶联反应和Sonogashira偶联反应。
偶联反应的机理
偶联反应的机理一、概述偶联反应是有机合成中常用的一类重要反应,通过将两个或多个小分子有机物连接起来,形成一个较大的分子。
偶联反应在药物合成、材料科学等领域具有广泛的应用。
本文将介绍偶联反应的机理及其应用。
二、偶联反应的分类偶联反应可分为以下几类:1. 碳-碳偶联反应碳-碳偶联反应是指通过将两个碳原子连接起来形成新的碳-碳键的反应。
常见的碳-碳偶联反应包括Suzuki偶联、Negishi偶联、Stille偶联等。
2. 碳-氮偶联反应碳-氮偶联反应是指通过将碳原子与氮原子连接起来形成新的碳-氮键的反应。
常见的碳-氮偶联反应包括Ullmann偶联、Buchwald-Hartwig偶联等。
3. 碳-氧偶联反应碳-氧偶联反应是指通过将碳原子与氧原子连接起来形成新的碳-氧键的反应。
常见的碳-氧偶联反应包括Suzuki-Miyaura偶联、Heck偶联等。
4. 碳-硫偶联反应碳-硫偶联反应是指通过将碳原子与硫原子连接起来形成新的碳-硫键的反应。
常见的碳-硫偶联反应包括Chan-Lam偶联、Kumada偶联等。
三、偶联反应的机理偶联反应的机理可以分为以下几个步骤:1. 激活底物偶联反应的第一步是激活底物,通常通过加入催化剂或活化试剂来实现。
催化剂可以提供活化中心,活化试剂可以引入亲核试剂或电子试剂。
2. 形成中间体激活底物后,会形成一个中间体,该中间体具有较高的反应活性。
中间体的形成通常涉及键的断裂和形成。
3. 底物偶联中间体与另一个底物发生偶联反应,形成新的化学键。
偶联反应通常涉及亲核试剂和电子试剂的参与。
4. 氧化还原在偶联反应中,氧化还原反应常常是不可或缺的一步。
通过氧化还原反应,可以改变底物的官能团,从而实现偶联反应。
四、偶联反应的应用偶联反应在有机合成中具有广泛的应用。
以下是一些常见的应用领域:1. 药物合成偶联反应在药物合成中扮演着重要的角色。
通过偶联反应,可以将不同的功能团连接在一起,构建复杂的有机分子结构。
偶联反应ppt--总合
+
+
Yu Chen*, J. Chem. Sic , Part A, DOI 10.1002/POLA
Suzuki偶联反应
科研应用:
Yu Chen*,Chem. Eur. J. 17: 10304-30311 (2011) IF:5.925
Suzuki偶联反应
科研应用:
+
Suzuki偶联反应
-CHO、-COCH3、-COOC2H5、-OCH3、-CN等官能团。
Stille 偶联
Stille偶联反应中两组分的组合
Stille 偶联
机理:
Pd(II)被当场还原成Pd(0)随后Pd(0)与卤代烃发生氧化加成生成中间体2,然后中间体 2的卤原子与RM中的R发生交换反应生成中间体3,中间体3发生还原反应生成交叉 偶联产物4和活性零价Pd,,从而开始新的催化循环。
1924年Gomberg和Bachmann发现,芳香重氮盐在碱性条 件下与其它芳香族化合物偶联生成联苯或联苯衍生物。反应 是通过自由基历程进行的。 例如:
NaOH +
N2+Cl-
(3)Ullmann反应(联芳烃合成):通常利用铜作为催化剂 , 催化卤代芳烃发生偶合反应生成联苯及其衍生物。芳香卤 化物与铜共热发生偶联反应。 该反应可用来合成许多对称/不对称的联芳基卤化合物。 芳环上的取代基除-OH、-NH2、CH3CONH-、-COOH等外, 一般对反应没有不良影响。现已发现,卤原子邻位的硝基可 促进反应的进行,R、RO基在所有位置都能促进反应。
Stille 偶联
Stille交叉偶联反应在现代有机合成以及复杂的天然产物的合成中均得到了广 泛的应用。
优点:
1.对底物的兼容性好,具有广泛的官能团兼容性; 2.在空气中有机锡极其稳定,对水和空气不敏感; 3.反应产物形成锡盐, 容易分离;
有机化学基础知识点整理偶联反应与交叉偶联反应
有机化学基础知识点整理偶联反应与交叉偶联反应有机化学基础知识点整理:偶联反应与交叉偶联反应有机化学是研究有机物结构与特性的科学,其中偶联反应和交叉偶联反应是有机合成中常用的重要手段,本文将对这两种反应进行基础知识点整理。
一、偶联反应偶联反应是指两个有机分子中的两个不同官能团在反应条件下发生连接形成新的键,从而生成一个新的有机分子。
常见的偶联反应有Heck反应、Suzuki反应、Stille反应等。
1. Heck反应Heck反应是通过钯催化下的芳香化合物与烯烃发生的偶联反应,生成具有烯烃结构的芳香化合物。
该反应需要碱性条件和适量的氧气存在。
反应机理包括反应前的氧化加成、钯催化下的反应、脱氧等步骤。
2. Suzuki反应Suzuki反应是通过钯催化下的芳香化合物与硼酸酯发生的偶联反应,生成具有芳香环和烷基或芳基基团的化合物。
该反应需有碱性条件和无氧环境。
反应机理包括反应前的亲核加成、钯催化下的反应、脱氧等步骤。
3. Stille反应Stille反应是通过钯催化下的芳香化合物与有机锡化合物发生的偶联反应,生成具有烷基或芳基基团的化合物。
该反应需有碱性条件、无氧环境和适量的溴化物存在。
反应机理包括反应前的亲核加成、钯催化下的反应、脱溴等步骤。
二、交叉偶联反应交叉偶联反应是指两个不同有机物之间的偶联反应,生成具有两个不同基团的化合物。
常见的交叉偶联反应有Negishi反应、Kumada反应、Suzuki-Miyaura反应等。
1. Negishi反应Negishi反应是通过钯催化下的有机锌化合物和卤代化物发生的交叉偶联反应,生成具有不同基团的化合物。
该反应需有碱性条件和适量的酸存在。
反应机理包括反应前的亲核加成、钯催化下的反应、脱卤等步骤。
2. Kumada反应Kumada反应是通过钯催化下的有机镁卤化物和卤代化物发生的交叉偶联反应,生成具有不同基团的化合物。
该反应需有碱性条件和无氧环境。
反应机理与Negishi反应类似。
实验室常用的几个反应机理必需掌握
Negishi偶联反应偶联反应,也写作偶合反应或耦联反应,是两个化学实体或单位结合生成一个分子的有机化学反应;狭义的偶联反应是涉及有机金属催化剂的碳-碳键形成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应; 在偶联反应中有一类重要的反应,RMR = 有机片段, M = 主基团中心与R'X的有机卤素化合物反应,形成具有新碳-碳键的产物R-R'; 1由于在偶联反应的突出贡献,根岸英一、铃木章与理查德·赫克共同被授予了2010年度诺贝尔化学奖; 2偶联反应大体可分为两种类型:•交叉偶联反应:两种不同的片段连接成一个分子,如:溴苯 PhBr与氯乙;烯形成苯乙烯PhCH=CH2•自身偶联反应:相同的两个片段形成一个分子,如:碘苯 PhI自身形成联苯 Ph-Ph;反应机理偶联反应的反应机理通常起始于有机卤代烃和催化剂的氧化加成;第二步则是另一分子与其发生金属交换,即将两个待偶联的分子接于同一金属中心上;最后一步是还原消除,即两个待偶联的分子结合在一起形成新分子并再生催化剂;不饱和的有机基团通常易于发生偶联,这是由于它们在加合一步速度更快;中间体通常不倾向发生β-氢消除反应;3在一项计算化学研究中表明,不饱和有机基团更易于在金属中心上发生偶联反应;4还原消除的速率高低如下:乙烯基-乙烯基 > 苯基-苯基 > 炔基-炔基 > 烷基-烷基不对称的R-R′形式偶联反应,其活化能垒与反应能量与相应的对称偶联反应R-R与R′-R′的平均值相近,如:乙烯基-乙烯基 > 乙烯基-烷基 > 烷基-烷基;另一种假说认为,在水溶液当中的偶联反应其实是通过自由基机理进行,而不是金属-参与机理;催化剂偶联反应中最常用的金属催化剂是钯催化剂,有时也使用镍与铜催化剂;钯催化剂当中常用的如:四三苯基膦钯等;钯催化的有机反应有许多优点,如:官能团的耐受性强,有机钯化合物对于水和空气的低敏感性;如下一些关于钴催化的偶联反应的综述,钯和镍介导的反应以及它们的应用离去基团离去基团X在有机偶联反应中,常常为溴、碘或三氟甲磺酰基;较理想的离去基团为氯,因有机氯化合物相对其他的这些离去基团更廉价易得;与之反应的有机金属化合物还有锡、锌或硼;操作条件虽然大多的偶联反应所涉及的试剂都对于水和空气极其敏感,但不可认为所有的有机偶联反应需要绝对的无水无氧条件;有些有机钯介导的反应就可在水溶液中,使用三苯基膦和硫酸制备的磺化膦试剂进行反应;15总体来讲,空气中的氧气能够影响偶联反应,这是因为大多这类反应都是通过不饱和金属络合物发生反应,而这些络合物都不满足18共价电子的稳定结构;根岸偶联反应Negishi coupling是一个有机反应;反应中,有机锌试剂与卤代烃在镍或钯的配合物的催化下发生偶联,生成一根新的碳-碳键12:其中,•卤素X可以是氯、溴或碘,也可以是其它的基团,如三氟甲磺酰基或乙酰氧基,而基团R则可以是烯基、芳基、烯丙基、炔基或炔丙基英语:propargyl;•卤素X'同样可以是氯、溴或碘,R'则可以是烯基、芳基、烯丙基或者烷基;•催化剂中的金属M可以是镍或者钯;•配体L可以是三苯基膦,dppe,BINAP或者双二苯基膦丁烷英语:chiraphos;用含钯催化剂时,通常产率较高,对官能团的耐受性也比较好;反应以日本化学家根岸英一命名,根岸凭借此贡献得到了2010年诺贝尔化学奖反应机理在这个反应中具有催化活性的是零价的金属M0;反应整体上经过了卤代烃对金属的氧化加成、金属转移英语:transmetalation与还原消除这三步:卤化烃基锌与二烃基锌都可以作为反应物;对模型化合物的研究发现,在金属转移一步中,前者会生成顺式的络合物从而能很快地发生还原消除的后续步骤,生成产物;而后者则会生成反式的络合物,必须经过缓慢的顺反异构体异构化过程3;编辑最新进展Negishi偶联反应在最近的多个合成中有应用,包括从2-溴吡啶合成2,2'-联吡啶所用的催化剂为四三苯基膦合钯0英语:tetrakistriphenylphosphinepalladium04,从邻甲苯基氯化锌和邻位取代的碘苯仍以四三苯基膦合钯0作催化剂合成联苯衍生物5,以及从1-癸炔与Z-1-碘-1-己烯合成5,7-十六碳二烯6;Negishi偶联还用于六二茂铁苯的合成,如下式所示7:这个反应用六碘苯与双二茂铁锌为原料,以三二亚苄基丙酮二钯0英语:trisdibenzylideneactonedipalladium0作催化剂,在四氢呋喃中反应;产率仅为4%,这与芳环周围的位阻有关;Negishi反应的一种最新的变化形式是先用2-氯-2-苯基苯乙酮1来氧化钯,生成含有OPdCl基团的钯配合物;该化合物随后发生双金属转移反应,接受分别来自有机锌试剂2和有机锡试剂3的两个烃基,如下式所示8:Heck反应Heck反应也被叫做Mizoroki-Heck反应,是由一个不饱和卤代烃或三氟甲磺酸盐和一个烯烃在强碱和钯催化下生成取代烯烃的一个反应;其命名是因为其发现者、美国化学家Richa rdF.Heck;Heck反应图示Heck反应所用的催化剂主要是含钯类化合物;所用的卤化物和三氟基甲磺酸盐是一类芳基化合物,甲苯基化合物和乙烯基化合物等;催化剂主要有氯化钯,醋酸钯,三苯基膦钯等;载体主要有三苯基膦,BINAP等;所用的碱主要有三乙胺,碳酸钾,醋酸钠等;heck反应- 反应机理从反应机理图示可以看出,Heck反应实质上是一系列围绕着催化剂钯的循环反应;Heck反应机理图示第一步:醋酸钯Ⅱ被三苯基膦还原为零价钯,而三苯基膦被氧化为三苯基氧化物;第二步:零价钯通过氧化加成反应插入到芳溴键间;第三步:钯与烯烃形成键;第四步:烯烃化合物通过顺式加成反应插入到钯碳键间;第五步:化合物发生构象转变;第六步:通过β氢消去形成新的烯钯配合物;第七步:烯钯配合物分解;第八步:二价钯通过还原消去反应重新成为零价钯;heck反应- 工业应用由于该反应在肉桂酸酯类衍生物、某些医药中间体的合成总有着广泛的应用,受到了人们的极大关注;近年来人们又利用分子内Heck反应合成了很多复杂化合物,也有不少学者用Heck反应合成高分子化合物;工业生产的萘普生和防晒油中的主要成分桂皮酸盐都是通过Heck反应生产的;heck反应Suzuki反应铃木反应- 简介Suzuki反应铃木反应,也称作Suzuki偶联反应、Suzuki-Miyaura反应铃木-宫浦反应,是一个较新的有机偶联反应,零价钯配合物催化下,芳基或烯基硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联;该反应由铃木章在1979年首先报道,在有机合成中的用途很广,具强的底物适应性及官能团容忍性,常用于合成多烯烃、苯乙烯和联苯的衍生物,从而应用于众多天然产物、有机材料的合成中;铃木反应示意图铃木反应- 概述Suzuki反应对官能团的耐受性非常好,反应物可以带着-CHO、-COCH3、-COOC2H5、-O CH3、-CN、-NO2、-F等官能团进行反应而不受影响;反应有选择性,不同卤素、以及不同位置的相同卤素进行反应的活性可能有差别,三氟甲磺酸酯、重氮盐、碘鎓盐或芳基锍盐和芳基硼酸也可以进行反应,活性顺序如下:R2-I > R2-OTf > R2-Br >> R2-Cl 另一个底物一般是芳基硼酸,由芳基锂或格氏试剂与烷基硼酸酯反应制备;这些化合物对空气和水蒸气比较稳定,容易储存;Suzuki反应靠一个四配位的钯催化剂催化,广泛使用的催化剂为四三苯基膦钯0,其他的配体还有:AsPh3、n-Bu3P、MeO3P,以及双齿配体Ph2PCH22P Ph2dppe、Ph2PCH23PPh2dppp等; Suzuki反应中的碱也有很多选择,最常用的是碳酸钠;碱金属碳酸盐中,活性顺序为:Cs2CO3 > K2CO3 > Na2CO3 > Li2CO3 而且,加入氟离子F−会与芳基硼酸形成氟硼酸盐负离子,可以促进硼酸盐中间体与钯中心的反应;因此,氟化四丁基铵、氟化铯、氟化钾等化合物都会使反应速率加快,甚至可以代替反应中使用的碱;首先卤代烃2与零价钯进行氧化加成,与碱作用生成强亲电性的有机钯中间体4;同时芳基硼酸与碱作用生成酸根型配合物四价硼酸盐中间体6,具亲核性,与4作用生成8;最后8经还原消除,得到目标产物9以及催化剂1;氧化加成一步,用乙烯基卤反应时生成构型保持的产物,但用烯丙基和苄基卤反应则生成构型翻转的产物; 这一步首先生成的是顺式的钯配合物,而后立即转变为反式的异构体;还原消除得到的是构型保持的产物;SUZUKI cross coupling reaction 的基本因素总的来说可以分为下面几个部分,底物的活性简单的分类可以是:ArN2+X->>ArI>ArBr>ArCl>ArOTf≥ArOTs,ArOMe这里面常用的是卤代物,其中尤其是碘代和溴代最为常见,也是反应效果较好的;但是,ArN2+ X在有些情况下,是个很好的选择;它的制备我可以给出一个常用的方法,这里我们的重氮盐,是氟硼盐.碱的参与2.SUZUKI cross coupling reaction 在没有碱的参与下,是很难反应的,甚至不反应反应中碱的影响不仅取决于碱负离子的强弱,而且要兼顾阳离子的性质;阳离子如果太小不利于生成中间的过渡态ylidePd中间体,如果要弄清楚这个问题简单的机理介绍是必不可少的,下面化学式可以明了的解释这个原理;通常来说,大的阳离子的碱,如Ba,Cs,会加速反应,当阳离子太小而被屏蔽反应的速率和效率将显著下降;溶剂选择常用的溶剂分为质子,非质子,极性和非极性,当然他们是互相交叉的,我这里再一次强调一下,溶剂和碱要综合考虑选择,这里只简单的给出一些常用的二者间的配合:BaOH2/95%EtOH, Na2CO3,K2CO3,CsCO3/dioxane,DMF,CsF,K3PO4/toluene......当然,具体到实际的应用上还要考虑你底物在这些溶剂中的溶解性;底物芳基硼酸及酯Suzuki 偶联反应的优势就是形成了这个过渡的中间体,让反应更容易进行;有点类似催化剂,严格说这不准确的芳基硼酸及酯是一个对水和空气稳定的物质,因此它的储存将不是问题,而同时又具备好的反应活性;它是一个弱酸PKa=12左右,因此,可以在反应的后处理中利用这一点,用氢氧化钠与它成盐,有机溶剂提杂纯化它;另外还有一点要特别注意的芳基硼酸在加热干燥过程中自身会脱水形成酸酐,所以如果你要测它的熔点时,你会发现这是很困难的;芳基硼酸的合成一般的来说,有两个方法,一个用有机锂盐,另外一个用格式试剂,后面一个很常用,自己也做过,前面没用过,有谁用的可以分享一下;现在大家更常用的是芳基硼酯,这里面以频那醇硼酸酯最普遍,这个方法是由Miyanra 小组对Suzuki 偶联反应改良产生的感兴趣的可以看看这个文献:JOC.60, 7508芳基频那醇硼酸酯制备方法中,用Pddppf作为催化剂适用碘代物,和溴代物以及三氟甲磺酰基物;用Pddba3/PCy3,和PdOAc做为不活泼的氯化物的制备;特别说一点,这里的用的碱不能用太强的,一般用醋酸钾就可以了,太强的碱会造成同分子的双分子偶合,这是我们不愿意看到的;催化剂和配体这是这个反应最精髓的地方,也是最新最有挑战性的一个领域;这里我只简单的介绍一下,Suzuki 偶联反应的催化剂主要有两大类Pd类,Ni类,前者可用于含水体系,耐受很多的官能团,后者在反应中必需是无水无氧的;Suzuki 偶联反应的催化剂的发展经历过三个过程:1 简单的零价Pd0和Ni0的盐和磷的配合物,反应活性较低如PdCl2,Pd/C等2 高活性的钯催化剂3 高活性,可反复利用的催化剂我们日常用的多的是第一和第二类,第一类中以PdPPh34为最常见,最广谱,用于底物是溴化物和碘化物最好,如果用于不活泼的氯化物反应的条件要苛刻一点;一般的配体就是PPh3,P Cy3.Suzuki 偶联反应的催化剂都是怕氧的所以反应进行中脱氧是必备的一步,这里很有意思的是第三代的催化剂,它具有高活性,高效率,它是固态的不溶于溶剂中的因此反应后处理通过过滤出去,回收反复利用,这样的体系,要加点季铵盐提高催化剂的稳定性同时是不是还有相转移催化剂的功能;2铃木反应- 2010诺贝尔化学奖美国科学家理查德-海克和日本科学家根岸英一、铃木彰因在研发“有机合成中的钯催化的交叉偶联”而获得2010年度诺贝尔化学奖;这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子;瑞典皇家科学院诺贝尔颁奖委员会在颁奖状中称,钯催化的交叉偶联是今天的化学家所拥有的最为先进的工具;这种化学工具极大地提高了化学家们创造先进化学物质的可能性,例如,创造和自然本身一样复杂程度的碳基分子;碳基有机化学是生命的基础,它是无数令人惊叹的自然现象的原因:花朵的颜色、蛇的毒性、诸如青霉素这样的能杀死细菌的物质;有机化学使人们能够模仿大自然的化学,利用碳能力来为能发挥作用的分子提供一个稳定的框架,这使人类获得了新的药物和诸如塑料这样的革命性材料;2010年诺贝尔化学奖获得者sonogashire反应由Pd/Cu混合催化剂催化的末端炔烃与sp2型碳的卤化物之间的交叉偶联反应通常被称之为Sonogashira 反应Eq. 1. 这一反应最早在1975年由Heck, Cassar以及Sonogashira等独立发现. 经过近三十年的发展, 它已逐渐为人们所熟知, 并成为了一个重要的人名反应. 目前, Sonogashira反应在取代炔烃以及大共轭炔烃的合成中得到了广泛的应用, 从而在很多天然化合物,农药医药,新兴材料以及纳米分子器件的合成中起着关键的作用;在通常条件下Sonogashira反应对于活泼卤代烃如碘代烃和溴代烃具有较好的反应活性; 但对于氯代烃其活性通常较低, 从而要求的反应条件较为苛刻. 而且, 当炔烃上取代基为强吸电子基团如CF3时, 即使对于活泼卤代烃Sonogashira反应活性也将明显降低5. 其次, Sonogashira反应通常要求严格除氧, 以防止炔烃化合物自身氧化偶联反应的发生, 从而有利于反应向所期待的方向进行6. 此外, Sonogashira反应复合催化剂中的Pd化合物价格通常较为昂贵, 限制了该反应在一些较大规模合成中的应用.鉴于以上的种种问题, 最近几年来人们对Sonogashira反应做了多方面的探索与研究, 并取得了一些重要进展, 其中主要包括了Sonogashira 反应的进一步优化,联串化,绿色化以及非Pd催化的Sonogashira反应等. 由于这些进展对于许多实验室乃至工业合成有着重要的科学和经济价值, 本文对这些最新的研究结果进行了综述.Pd催化的Sonogashira 反应Sonogashira反应自发现以来, Pd化合物是应用最多的催化剂. 在对原始反应条件进行了改进的基础上, 人们最近还实现了由Pd 催化剂单独催化完成Sonogashira反应. 此外, 还发现了一些由Sonogashira反应诱导的联串反应, 使得该反应在有机合成中有了更为广泛的应用.Pd催化Sonogashira反应工序的改进早期的Sonogashira反应通常在胺类溶剂中进行,Sonogashira偶联反应和醇氧化反应这不仅需要较高的反应温度, 反应物也必须经过仔细地纯化并严格地除氧. 尽管这样, 在很多Sonogashira反应中人们仍然能够得到可观量的炔烃氧化偶联7Glaser 偶联产物. 为此人们常常需要在反应中使用过量的炔烃. 这种作法不仅不够经济, 而且导致了分离上的困难. 经过多年的完善, 至今Sonogashira反应已得到了多方面的改进. 以下我们将以溶剂的变化为主线辅以催化剂,配体以及碱的变化, 来概述这一发展过程.1997年, Miller等8在合成过程中使用PdPPh3Cl2/ CuI为催化剂, 以THF代替胺作为溶剂, 在0 ℃即可完成Sonogashira反应. 对于其给出的底物反应只需25~5 min, 产率最高可达97% Eq. 2.1998年, Krause等9也以THF为溶剂,稀PdPPh3- Cl2/CuI为催化剂,Et3N为碱完成了Sonogashira反应. 使用这一改进后反应条件, 反应的底物可以为普通试剂级化合物, 除氧的工序也得到了简化, 而炔烃氧化偶联的产物则大为减少. 很多不活泼的底物在改进后的反应中也能够顺利地给出产物Eq. 3.后来Karpov等10报道, 使用Krause的方法也可以完成苯乙炔与溴代杂环化合物的偶联Eq. 4.同样在1998年, Ecker等11又对Krause的方法作了改进, 仍以THF为溶剂,PdPPh3Cl2/CuI为催化剂, 而改用K2CO3作为碱, 在较为温和的条件下完成了带有吸电子基团的炔烃与碘代芳香化合物的偶联Eq. 5.此外在1998年, Shultz等12在合成共轭炔烃的过程中, 以乙醚为溶剂, 使用零价的金属Pd为催化剂, PPh3为配体, 在室温下短时间内完成了底物的Sonogashira偶联, 产率可达92% Eq. 6.2001年, Buchmeiser等13合成出了新型Pd催化剂1, 在THF溶剂中, 以Bu3N为碱, 在CuI的共同作用下, 除碘代,溴代芳烃外, 氯代芳烃亦能顺利得到偶联产品Eq.7.Krause的方法适用于溴代以及碘代芳烃的Sonogashira偶联. 针对更为活泼的碘代芳烃, Yamagu-chi等14在1999年优化出了一种在DMF溶剂中完成的低温下的Sonogashira偶联方法. 该方法以Pd2dba3/CuI dba: 二亚苄基丙酮为催化剂, i-Pr2NEt为碱, 此外还需加入n-Bu4NI作为活化剂. 比较于Krause的方法, Yamaguchi 的方法需要严格除氧. 然而, 使用这一方法能够在-20 ℃下实现Sonogashira偶联, 并且对于部分取代基团其底物可以完成定量反应. 在这样的反应条件下, 很多活泼的有机基团不会被破坏. 因此, Yamaguchi提出的反应方法能够适用于一些脆弱的天然化合物的合成Eq. 8.2002年Batey15合成出了钯的碘化物催化剂2, 同样在DMF溶剂中, 以Et3N或Cs2CO3为碱, 这一新型催化剂与CuI共同作用, 可以高效催化溴代芳烃与炔烃的Sonogashira偶联反应, 对于一些底物产率高达99% Eq. 9.Hunckttmark等16在2000年, 以PdPhCN2Cl2/CuI为催化剂, i-Pr2NH为碱, 在二氧六环溶剂中, 也完成了活性较低的溴代芳烃与炔烃的Sonogashira偶联 Eq. 10.2001年Chow等17报道, 以甲苯为溶剂, 在PdPPh3Cl2/CuI的共同催化作用下, 可使用NaOH作为碱, 在加入活化剂Bu4NI的情况下, 同样可以完成溴代芳烃的Sonogashira偶联Eq. 11.同年, Dai等18在合成过程中使用乙腈/三乙胺作为混合溶剂, PdPPh34/CuI为催化剂, 加入n-Bu4NI作为活化剂, 顺利地得到了底物的偶联产物Eq. 12. 从表1中我们可以看出n-Bu4NI对于该反应显著的活化作用, 产率较不加时提高了两倍多.近来, Elangovan等20也以乙腈为溶剂完成了溴代表1 改进的Sonogashira反应中n-Bu4NI的活化作用Table1 Activation effects of n-Bu4NI on Sonogashira reactiondevelopedNo. n-Bu4NI/mol% t/h 产率/%1 0 17 292 50 24 563 100 24 844 150 24 91吡啶与炔烃的Sonogashira偶联Eq. 13. 其独特之处在于, 反应过程中使用氢气与氮气的混合气体取代了以往单纯的氮气作为保护氛围, 使该反应的主要副产品——炔烃自身氧化偶联产物, 得到了大幅度的降低比较情况见表 2. 在反应过程中, 如果单纯的通入氧气, 其产品主要为炔烃的自身偶联产物, 高达92%左右, 并且在增加催化剂量的条件下, 这一副产品也会相应增加. 鉴于这两个现象, 他们提出了该条件下反应可能的机理图1, 认为在有氢气存在的条件下, H2与反应体系中的氧作用, 从而抑制了Pd催化剂的氧化, 使得反应更有利于向期待的方向进行.表2 改进前后反应产率对比 Table 2 Changes of yields due to the improvementNo. R N2氛产率/% N2+H2氛产率/%1 2,4-Me2 59 33 89 1.902 4-OMe 64 28 91 1.883 4-NMe2 63 25 94 1.784 4-NEt25 30 95 25 4-H 45 45 88 26 4-Me 58 31 85 1.85a 括号中为主要副产品——炔烃自身氧化偶联产物的产率.No. 1 王晔峰等:Sonogashira反应研究的最新进展 11图 1 Elangovan条件下的反应机理Figure 1 Reaction mechanism under Elangovan's conditions2002年, Yang等19报道在溶剂DMAc N, N-二甲基乙酰胺中也可完成溴代芳烃的Sonogashira偶联. 在这一条件下, 选择PdOAc2/CuI作为催化剂, Cs2CO3作为碱, 氮杂卡宾化合物3作为催化剂配体, 其产率一般达到了94%以上, 对于部分底物可完成定量反应. 值得一提的是活性较低的氯代芳烃在这一条件下也有50%左右的偶联产品生成Eq. 14.Stille反应Stille反应,也称Stille偶联反应、Stille偶合反应,是有机锡化合物和不含β-氢的卤代烃或三氟甲磺酸酯在钯催化下发生的交叉偶联反应X通常是卤素, 比如氯, 溴, 碘. 另外,X可以是类卤素比如三氟甲磺酰基;该反应由John Kenneth Stille和David Milstein于20世纪70年代首先发现,是有机合成中很重要的一个偶联反应,在1992年的偶连发表文献当中占到一半以上;反应同时还被工业合成大量应用,尤其是药物合成反应一般在除水除氧溶剂及惰性环境中进行;等计量的CuI或MnII盐可以提高反应的专一性及反应速率;101112氧气会使钯催化剂发生氧化,并导致有机锡化合物发生自身偶联;四三苯基膦合钯0是最常用的钯催化剂,其他催化剂还有:PdCl2PPh32、PdCl2MeCN2等;使用的卤代烃一般为乙烯基或芳基三氟甲磺酸酯或氯、溴、碘代烃;用三氟甲磺酸酯时,加入少量的氯化锂可以活化氧化加成一步的产物,使反应速率加快;烃基三丁基锡是最常用的有机锡原料;虽然烃基三甲基锡的反应性更强,但较大的毒性约前者的1000倍限制了其应用;强极性溶剂如六甲基磷酰胺、二甲基甲酰胺或二恶烷可以提高有机锡原料的活性;反应机理该反应的机理与其他钯催化的偶联反应机理类似;其催化循环如下:活性零价钯与卤代烃发生氧化加成反应,生成顺式的中间体,并很快异构化生成反式的异构体;后者与有机锡化合物发生金属交换反应,然后发生还原消除反应,生成零价钯和反应产物,完成一个催化循环;锡所连基团发生金属交换一步时的速率有如下顺序:炔基 > 烯基 > 芳基 > 烯丙基 = 苄基 > α-烷氧基烃基 > 烃基零价钯Pd0PPh32和-PdII-X-Sn-C环状中间体的存在于2007年通过质谱分析得到证实;编辑反应改进为了改进反应进程,氯化锂经常被加入参与反应. 这个试剂的作用能够稳定氧化加成形成的反应中间体从而加速反应进程;反应活性和选择性能够通过加入等当量的CuI或者MnII盐来获得改善.161718偶连反应能够被高供电子数的配位剂所抑制;在CuI盐的催化下,钯碳被证明是一个非常高效的催化剂.在绿色化学领域,Stille反应被报道可以在一个特定的条件下反应:低熔点高极性混合物:糖比如甘露糖, 脲比如二甲基脲和一个盐,比如氯化铵2122. 催化体系是 Pd2dba3和三苯砷:Buchwald-Hartwig反应Buchwald–Hartwig偶联反应布赫瓦尔德-哈特维希反应,又称Buchwald–Hartwig反应;Buchwald–Hartwig交叉偶联反应;Buchwald–Hartwig胺化反应钯催化和碱存在下胺与芳卤的交叉偶联反应,产生 C-N 键,生成胺的N-芳基化产物;此反应是合成芳胺的重要方法;反应中的芳卤也可为拟芳卤三氟甲磺酸的酚酯所代替;胺可为伯胺或仲胺,胺上的取代基可以为任何有机基团;钯催化剂常为钯磷配合物,如四三苯基膦钯0,也可为三双亚苄基丙酮二钯01等其他钯配合物;反应用碱一般为双三甲硅基氨基钠或叔丁醇盐;类似的反应为 Stille反应和 Heck反应;反应也可扩展到碳亲核试剂,如丙二酸酯;以及扩展到氧亲核试剂如酚,用于合成二芳醚,由此提供了铜介导的Ullmann二芳醚合成和 Goldberg反应以外的选择;Buchwald–Hartwig 这一类型的反应最早是由乌克兰的 Lev M. Yagupolskii 等在 1986 年发现的;他们用多取代的活化氯代芳烃与苯胺衍生物在 1mol% 的 PdPhPPh32I 催化之下进行反应,得到了偶联产物,产率中等;此后美国的 Buchwald 和 Hartwig 两个团队又分别在 1994 年重新发现这个反应;耶鲁大学的 Hartwig 等用的是对溴甲苯与三丁基锡基胺之间的偶联;麻省理工学院的 Buchwald 等用的则是间溴苯甲醚与另一三丁基锡胺之间的偶联,见下;。
偶联反应
——《百度百科》自由基偶联反应酯等羰基化合物在金属还原下,会形成双分子偶联产物(偶姻反应)。
例如:COOEt3OOHCOOEtCOOEt OHO 3芳基重氮盐与不饱和化合物在氯化亚酮的作用下,可以发生芳基化反应(Meerwein 反应)。
例如:PhN 2++OCOCH 3CH 337oCH 3CPhON 2+ Cl-O 2NOOOONO 235-45%+CuCl1924年Gomberg 和Bachmann 发现,芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物。
反应是通过自由基历程进行的。
N 2+Cl -+五、过渡金属催化偶联反应偶联反应(Coupling reaction )是两个化学实体(或单位)结合生成一个分子的有机化学反应。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
下面对各种偶联反应作简单介绍。
1)Wurtz-Fittig 反应1855年,法国化学家Wurtz 发现卤代烷和金属钠作用后,生成了含碳原子数增加1倍的烷烃。
上述反应对伯卤代烷较为适宜,叔卤代烷则形成烯烃。
反应可能形成有机钠中间体,属于S N 2历程。
例如:EtOOCI2Na, PhCH 3COOEtEtOOC德国化学家费提希用金属钠、卤代烷和卤代芳烃一起反应,得到了烷基芳烃,称为“武尔兹-费提希反应”。
本法收率较高,副产物容易分离,是一种重要的制备烷基芳烃方法。
2)Glaser 偶联反应1869年,Glaser 发现末端炔烃在亚铜盐、碱以及氧化剂作用下,可以形成二炔烃化合物。
例如:4O 260%3)Ullmann 反应Ullmann 偶合反应是有机合成中构建碳—碳键最重要的方法之一。
Ullmann 偶合反应首次报道1901年, 它通常是利用铜作为催化剂, 催化卤代芳烃发生偶合反应生成联苯及其衍生物。
一般反应式为:2 ArXPd(0)或Pd(II)X= Cl 、Br 、I Ar-Ar目前该反应的底物范围、反应条件以及催化剂等都有了较大的改进。
偶联反应机理
偶联反应机理
在有机化学领域中,偶联反应是一种重要的合成方法,可以将两个或多个分子通过形成新的键而结合在一起。
这种反应通常由一个催化剂引发,可以在不同的底物之间形成碳-碳、碳-氮、碳-氧等键。
偶联反应机理的研究对于设计和优化合成路线至关重要。
一种常见的偶联反应是钯催化的Suzuki偶联反应。
在这种反应中,芳基溴化物和芳基硼酸酯经过交替的反应步骤,在钯催化下发生偶联,生成一个新的碳-碳键。
这种反应的机理经过多年的研究已经比较清楚:首先,芳基溴化物在钯催化下发生还原消除反应,生成一个活性的芳基钯中间体;同时,芳基硼酸酯在碱的作用下与钯生成的芳基钯中间体发生反应,形成新的碳-碳键。
另一种常见的偶联反应是钯催化的Heck偶联反应。
在Heck偶联中,烯烃和芳基卤化物在钯的催化下发生偶联反应,生成一个新的碳-碳键。
这种反应的机理也得到了广泛的研究:首先,烯烃与钯催化剂形成配合物,然后与芳基卤化物发生反应,生成一个新的碳-碳键。
这种反应通常在惰性气氛下进行,以防止氧化或还原反应的竞争。
除了钯催化的偶联反应,还有许多其他的偶联反应,如铜催化的Ullmann偶联、铂催化的Sonogashira偶联等。
每种偶联反应都有其独特的机理和反应条件,需要仔细设计和优化才能实现高效合成。
总的来说,偶联反应是有机合成中一种重要的反应类型,通过形成
新的键来构建复杂的分子结构。
对偶联反应机理的深入研究可以帮助化学家设计更高效、更环保的合成路线,为药物、材料等领域的研究提供重要支持。
希望随着技术的进步,偶联反应可以在更广泛的领域得到应用,为人类社会带来更多福祉。
偶联反应名词解释
偶联反应名词解释偶联反应又称两步反应,是指在一个实验过程中发生两步化学反应形成最终产物,因此又被称为“两步反应”。
这种反应是大多数化学反应当中十分重要的,它可以帮助我们更好地去揭示反应机理并计算反应物之间的相互作用以及产物与反应物之间的相互作用。
偶联反应可以被分为四类:单配位偶联反应、多配位偶联反应、尖峰偶联反应和五步偶联反应。
单配位偶联反应指的是其中一种反应物在另一种反应物的一个官能团上形成一个单配位的键,然后使反应物的另一个官能团在另一种反应物的另一个官能团上形成另一个键,形成一个新的物质。
多配位偶联反应是指反应物间形成多配位键,这些键可以是金属-碳键、金属-氮键或者碳-氮键之类。
尖峰偶联反应指的是在一个实验过程中反应物可以形成一个共价键或一个非共价键,这可以将它们带到一个反应物,从而形成一个新的产物。
最后,五步偶联反应是指在一个实验过程中反应物通过一系列的反应,最终形成一个最终的产物。
这些四种偶联反应的执行机理不同,由此可以反映出反应的不同动力学以及化学性质。
对不同动力学行为以及化学性质,科学家们也开发出一系列有效的研究方法,以便更好地探究不同反应之间的关系,并优化反应条件以及产物的结构。
在实际应用中,偶联反应更加丰富了化学实验的可能性,可以将一系列的单步反应组合起来,使复杂的反应变得更加有效,节约时间和空间。
例如,有些药物的合成只能通过偶联反应实现,香烟的吸入需要偶联反应的产物来实现,也有些食品类的特性得益于偶联反应的体现。
总之,偶联反应在现今的化学反应当中具有重要的地位,它提供了一种高效、精准、可控的科学反应机制,被广泛应用于药物合成、材料研究、工业生产等多个领域。
此外,偶联反应还能够发现其他未被发现的新反应,为今后反应的研究提供重要的思路。
suzuki偶联反应总结报告模板
suzuki偶联反应总结报告模板suzuki偶联反应总结报告模板一、引言suzuki偶联反应是有机合成领域中一种重要的金属催化偶联反应。
在过去的几十年里,该反应已成为人们合成有机化合物中不可或缺的工具。
本文将从深度和广度两个层面对suzuki偶联反应进行全面评估,并据此撰写一篇有价值的文章。
二、基础知识概述1. suzuki偶联反应的原理:suzuki偶联反应是通过钯催化下,将含有芳基硼酸酯和卤代芳烃两种物质进行偶联,生成芳香烃的合成方法。
2. suzuki偶联反应的重要性:该反应能够高效实现碳-碳键的构建,为合成复杂有机分子提供了一种可行的途径。
三、反应条件探讨1. 底物选择:首先需要根据目标化合物的结构特点选择合适的底物,包括芳基硼酸酯和卤代芳烃的类型和取代基的位置。
2. 钯配体选择:不同的钯配体对反应的速率和产率有很大影响,需要根据具体需求进行选择。
3. 溶剂选择:溶剂的选择对反应速率和产率也具有重要作用,需要根据反应体系的特点进行选择。
四、反应机理分析1. cis-作用:suzuki偶联反应的反应机理中,cis-作用是合成芳烃的关键步骤之一。
通过分析该步骤的反应路径,可以更好地理解反应的原理。
2. 过渡态的形成:过渡态的形成对于反应速率和产率同样至关重要,本节将详细描述过渡态的生成机制和影响因素。
五、反应优化与改进1. 温度和压力的调节:温度和压力是影响反应速率和产率的重要因素,通过调节反应条件可以得到更好的结果。
2. 醇配体的引入:醇配体的引入可以提高反应的活性和选择性,但具体的影响机制尚待深入研究。
六、个人观点和理解1. suzuki偶联反应在有机合成中的重要性:suzuki偶联反应为有机合成提供了一种高效、可控的合成策略,对于合成药物、天然产物以及功能分子具有重要的应用价值。
2. 钯配体的研究:钯配体的选择和设计是优化suzuki偶联反应的关键,未来的研究中应加强对钯配体的研究,以提高反应的效率和选择性。
偶联反应
偶联反应——《百度百科》自由基偶联反应酯等羰基化合物在金属还原下,会形成双分子偶联产物(偶姻反应)。
例如:COOEt3OOHCOOEtCOOEt OHO 3芳基重氮盐与不饱和化合物在氯化亚酮的作用下,可以发生芳基化反应(Meerwein 反应)。
例如:PhN 2++OCOCH 3337o CH 3CPhON 2+ Cl-O 2NOOOONO 235-45%+CuCl1924年Gomberg 和Bachmann 发现,芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物。
反应是通过自由基历程进行的。
N 2+Cl -+五、过渡金属催化偶联反应偶联反应(Coupling reaction )是两个化学实体(或单位)结合生成一个分子的有机化学反应。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成反应,根据类型的不同,又可分为交叉偶联和自身偶联反应。
下面对各种偶联反应作简单介绍。
1)Wurtz-Fittig 反应1855年,法国化学家Wurtz 发现卤代烷和金属钠作用后,生成了含碳原子数增加1倍的烷烃。
上述反应对伯卤代烷较为适宜,叔卤代烷则形成烯烃。
反应可能形成有机钠中间体,属于S N 2历程。
例如:EtOOCI23COOEtEtOOC德国化学家费提希用金属钠、卤代烷和卤代芳烃一起反应,得到了烷基芳烃,称为“武尔兹-费提希反应”。
本法收率较高,副产物容易分离,是一种重要的制备烷基芳烃方法。
2)Glaser 偶联反应1869年,Glaser 发现末端炔烃在亚铜盐、碱以及氧化剂作用下,可以形成二炔烃化合物。
例如:4260%3)Ullmann 反应Ullmann 偶合反应是有机合成中构建碳—碳键最重要的方法之一。
Ullmann 偶合反应首次报道1901年, 它通常是利用铜作为催化剂, 催化卤代芳烃发生偶合反应生成联苯及其衍生物。
一般反应式为:2 ArXPd(0)或Pd(II)X= Cl 、Br 、I Ar-Ar目前该反应的底物范围、反应条件以及催化剂等都有了较大的改进。
heck反应方程式
heck反应方程式
Heck反应,也被称为Heck-偶联反应,是一种有机合成反应。
其定义是在底物中的烯烃和芳香化合物之间形成键合。
具体表达式为:烯烃 + 芳香化合物 + 催化剂 + 溶剂→ 新的键合物。
这个反应通常在有机合成领域被广泛使用,可以用于合成含有芳香环的有机分子,如药物、农药、香料等。
此外,Heck反应还可以用于构建复杂的有机分子骨架,实现分子结构的精确控制。
Heck反应的特点主要表现在以下几个方面:
1.反应的适用性广:Heck反应可以用于多种类型的底物,包括单取代烯
烃、双取代烯烃、端基烯烃等。
2.对基团具有较高的耐受性:Heck反应中的烯烃和芳香化合物可以包含许
多不同的官能团,如酯、醚、羧酸、腈、酚、醛、硝基等,这些基团在反应中通常不受影响。
3.对电子等具有较高选择性:Heck反应在底物中的烯烃和芳香化合物之间
形成键合时,具有较高的电子等选择性,可以得到反式产物。
4.对水和溶剂不敏感:Heck反应对水和溶剂不敏感,因此在进行反应时,
不需要进行特别的处理。
5.立体专一性:在Heck反应中,钯络合物对烯烃的插入和β-H的消除都
是顺式,因此可以得到立体专一性的产物。
总的来说,Heck反应是一种非常有用的有机合成工具,其特点使得它在合成多种类型的有机分子时具有广泛的应用价值。
生物偶联 反应类型
生物偶联反应类型
生物偶联反应是通过生物技术手段,利用生物分子的高度特异性选择性识别和结合性质,将两种生物分子或者分子与固体表面之间进行特异性相互作用,从而实现一种新的化学键合,具有高效特异性及环境友好等特点。
生物偶联反应的类型包括:
1.抗原-抗体偶联反应:抗原-抗体偶联反应是由于抗体与其特异性抗原结合而发生的生物偶联反应。
这种反应常用于生物分析、免疫沉淀等实验中。
2.酶偶联反应:酶偶联反应是指将酶和其底物相结合, 通过酶底物反应来进行检测或者产生荧光和发光信号等应用。
常见的是酶联免疫吸附分析法(ELISA)。
3.核酸偶联反应:核酸偶联反应是通过两个互补的DNA或RNA链之间的特异性结合形成一个新的核酸复合物。
4.蛋白质偶联反应:通过蛋白质的特异性结合,例如利用His-Tag技术,利用His-Tag结合亲和纯化树脂等将蛋白质进行纯化。
5.生物素-链霉素偶联: 生物素-链霉素的偶联体系可特异性结合,广泛用于免疫印迹、免疫磁珠、核酸探针、酶标记等领域。
这些生物偶联反应的类型可以根据具体的应用来选取合适的反应类型,从而实现目标分子的特异性检测、纯化等操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1973), Germany, Giulio Natta (1903 - 1979), Italy • 1979 Wittig Reaction, Georg Wittig(1897-1987) Germany,
实用文档
Suzuki偶联反应
定义:
碱的作用下钯催化的有机硼化物在卤代烃、磺酸酯等发生的交叉偶联 反应。
实用文档
➢利用零价钯作催 化剂
➢金属试剂为硼试 剂
Suzuki偶联反应
Suzuki偶联反应具有条件温和、原料低毒性、易处理、高度的区域选择性、 立体选择性以及良好的官能团容忍性等优点受到人们的广泛关注。
偶联反应又叫做偶连反应、耦联反应、氧化偶联。
偶联反应
交叉偶联:两种不同的片段连接成一个分子,如:溴苯(PhBr)与氯 乙烯形成苯乙烯(PhCH=CH2)。
自身偶联:相同的两个片段形成一个分子,如:碘苯(PhI)自身形成 联苯 (Ph-Ph)。
实用文档
基本类型
实用文档
基本应用
1.Suzuki reaction(铃木偶联反应) 2.Stille coupling(施蒂勒反应) 3.Yamamoto coupling(山本偶联反应) 4. Sonogashira coupling(薗头偶联反应) 5.Heck reaction(赫克反应) 6.其他
实用文档
科研应用:
Suzuki偶联反应
Yu Chen*,Chem. Eur. J. 17: 13646-13652 (2011) IF:5.925
实用文档
科研应用:
Suzuki偶联反应
+
实用文档
Stille 偶联
是有机合成中很重要的一个偶联反应,目前总数占到现在所有交叉偶联反 应的一半以上。
1977 年Kosugi等首次报道了有关过渡金属钯催化的Stille反应。
Heck, Ei-ichi Negishi, Akira Suzuki
实用文档
基本概念
2010年诺贝尔得奖
实用文档
基本概念
定义:是由两个有机化学单位(molecules)进行某种化学反应而得到一个有机分子的过
程,包括自由基偶联反应、过渡金属催化偶联反应。狭义的偶联反应指涉及有机金属催化剂 的碳-碳键43;
+
Yu Chen*, J. Chem. Sic , Part A, DOI 10.1002实/P用O文L档A
科研应用:
Suzuki偶联反应
Yu Chen*,Chem. Eur. J. 17: 10304-30311 (2实0用1文1)档IF:5.925
科研应用: +
Suzuki偶联反应
➢最早发现的stille偶联反应是锡与酰氯的反应.
Kosugi, M.; Shimizu, Y.; Mifita, T. Chem. Lett. 1977, 1423.
实用文档
Stille 偶联
定义: Pd催化下,有机锡和有机卤、三氟磺酸酯等之间的交叉偶联反应。
➢有机试剂为锡试剂 ➢不含β-氢的卤代烃 ➢氧气会使钯催化剂发生氧化,并导致有机锡化合物发生自身偶联 ➢一般在无氧溶剂及惰性环境中进行 ➢四(三苯基膦)合钯(0)是最常用的催化剂,其他催化剂包括 PdCl2(PPh3)2、PdCl2(MeCN)2等
实用文档
Suzuki偶联反应
发展:
催化剂是这个反应最精髓的地方,也是最新最有挑战性的一个领域。
Suzuki 偶联反应的催化剂的发展经历过三个过程:
(1) 简单的零价Pd(0)和Ni(0)的盐和磷的配合物,反应活性较低; (2) 高活性的钯催化剂 ; (3) 高活性,可反复利用的催化剂 。
实用文档
科研应用:
实用文档
Suzuki偶联反应
机理:
Suzuki 偶联反应的催化循环过程:1)Pd(0)与卤代烃发生氧化-加成反应生成Pd(II) 的络合物;2)络合物与活化的硼酸发生金属转移反应生成Pd(II)的络合物;3)进行还 原-消除而生成产物和Pd(0)。
实用文档
Suzuki偶联反应
影响因素:
1. 在整个Suzuki-coupling反应循环中,Pd(0)与卤代烃发生氧化-加成反应生成Pd(II) 的络合物这一步被认为是起决定作用的步骤。底物卤代芳烃中离去集团的相对活性有如下 特征:I > Br >> Cl;
2. 反应基上若带有基团,则吸电子基团对氧化-加成的促进作用要比给电子基团强。 在Pd(II)的络合物的还原-消除得到偶联产品的步骤中,相对的速率为:芳基–芳基 > 芳基 –烷基 > 丙基–丙基 > 乙基–乙基 > 甲基–甲基;
3. Suzuki反应中的碱也有很多选择,最常用的是碳酸钠。碱金属碳酸盐中,活性顺序 为: Cs2CO3 > K2CO3 > Na2CO3 > Li2CO3 。
优点:
1.反应对水不敏感; 2.可允许多种活性官能团存在; 3.可以进行通常的区域和立体选择性的反应; 4.硼试剂易于合成,稳定性好; 5.这类反应的无机副产物是无毒的且易于除去,可以保证其适用于实验室且可以用 于工业化生产。
-CHO、-COCH3、-COOC2H5、-OCH3、-CN、-NO2、-F等官能团。
Herbert Charles Brown(1912-2004), America • 2005 Olefin metathesis,Yves Chauvin (1930-),France; Robert
H. Grubbs(1942-), Richard Royce Schrock(1945-), America • 2010 Heck Reaction, Negishi Reaction, Suzuki Reaction, Richard F.
偶联反应
报 告 人:樊菲、程红霞、刘柳 指导老师:陈彧 教授 报告时间:2013-10-10
概要
偶联反应基本概念 偶联反应基本类型
偶联反应基本应用
实用文档
基本概念
历史上碳基的研究获得的6次诺贝尔奖:
• 1912 Grignard Reaction,Victor Grignard(1871-1935), France • 1950 Diels-Alder Reaction, Otto Paul Hermann Diels (1876-