§8.7 用z变换解差分方程
Z变换和差分方程
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
z变换求解差分方程步骤
z变换求解差分方程步骤嘿,咱今儿就来讲讲这用 z 变换求解差分方程的步骤哈。
这可就像是解开一道神秘的谜题呢!你想想,差分方程就像是一个调皮的小精灵,藏着好多秘密等我们去发现。
而 z 变换呢,就是那把神奇的钥匙啦。
首先呢,得把差分方程给它表示清楚咯,可不能模模糊糊的。
就像你要找东西,总得先知道要找啥样的不是?然后对这个差分方程进行 z 变换,这就好比给它施了个魔法,一下子就变得不一样啦。
在这个过程中啊,你得细心点儿,可别弄错啦。
这就跟走迷宫似的,一步错步步错呀。
接着呢,就会得到一个关于 z 的表达式,这可就是我们前进的线索呢。
然后呢,咱得把这个表达式给它化简化简,把那些复杂的东西都去掉,就像给苹果削皮一样,让它露出最精华的部分。
这时候可就考验咱的本事啦,得有耐心,还得有那么点儿小技巧。
再接下来呀,就得求解啦!这就像是终于找到了宝藏的位置,要把它挖出来一样。
把 z 的值求出来,这可不容易呢,但咱不能怕呀,要勇往直前!等求出了 z 的值,可别以为就大功告成咯。
还得把它变回原来的世界,也就是反变换回去。
这就像是把变了形的东西再变回来,可神奇啦。
哎呀,你说这过程是不是挺有意思的?就好像是一场冒险,每一步都充满了挑战和惊喜。
你要是能熟练掌握这 z 变换求解差分方程的步骤,那可就厉害咯,就像是拥有了超能力一样!你想想,以后遇到那些复杂的差分方程,别人都抓耳挠腮不知道咋办的时候,你就能轻松搞定,那多牛呀!这就好比别人还在走路,你都开上小汽车啦,一下子就把他们甩在后面啦。
所以呀,可得好好学这 z 变换求解差分方程的步骤哦,别偷懒,多练练,肯定能掌握得牢牢的。
到时候,不管啥样的难题都难不倒你啦!这多棒呀,是不是?。
Z变换详细讲解2
f (t)
j
F
(s)e
st
ds
由于z esT , dz Te sT
Tz
j
ds
f (t) f (nT ) f (n)
F (s) f (n)z n F (z) n
e sT e snT z n
ds 1 dz dz Tz z
j
j
c
10
f (n) 1 F (z)z n1dz 令z re j
n0
zm x(n m)z(nm) zm x(k)zk
n0
k m
zm
x(k ) z k
m1
x(k ) z k
k 0
k 0
zm
X
(z)
m1
x(k ) z k
k 0
15
(3)双边右移序列旳单边Z变换
X (z) x(n)u(n)zn n0
ZT[x(n m)u(n)] x(n m)zn
.画出下列系统函数所表示系统的建立级联和 并联形式的结构图。
H (z) 3z3 5z 2 10z z3 3z2 7z 5
解:
H
(
z
)=
(
z z
(3z 2 1)(
z2
5z 10) 2z 5)
1 1 z 1
3 5z 1 1 2z 1
10z 2 5z2
1
H (z)
1 1 z1
br z r
r 0
N
ak zk
k 0
请注意这里 与解差分有 何不同?
因果!
22
(2)定义二:系统单位样值响应h(n) 旳Z变换
• 鼓励与单位样值响应旳卷积为系统零状
态响应
y(n) x(n)*h(n)
差分方程的求解
计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
计算机控制技术课程讲义 2
做Z反变换,由于 Y ( z) 1 1 1 2 z z 3z 2 z 1 z 2 z z 则Y ( z ) z 1 z 2 查Z变换表可得 y (k T) Z 1[Y ( z )] (1) k (2) k , k 0,1,2,...
两个环节中间无采样开关时
a z (1 e aT ) G ( z ) Z [G1 ( s )G2 ( s )] Z s ( s a ) ( z 1)( z e aT )
G1 ( z )G2 ( z ) G1G2 ( z )
计算机控制技术课程讲义 13
T
Y (s)
D( z ) G1 ( z ) R( z ) Y ( z ) G2 ( z ) D( z ) G1 ( z )G2 ( z ) R( z )
Y ( z) G( z) G1 ( z )G2 ( z ) R( z )
计算机控制技术课程讲义
脉冲传递函数等于两个环 节的脉冲传递函数之积。
但是,对离散系统而言,串联环节的脉冲传递函数不 一定如此,这由各环节之间有无同步采样开关来确定
计算机控制技术课程讲义
10
二、离散系统串联环节 1、串联各环节之间有采样器的情况
G( z)
G1 ( z ) G2 ( z )
Z域变换分析方法
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )
因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0
n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
利用z变换解差分方程
于是
Y(z) =
br z−r ∑ ak z−k ∑
k= 0 M r= 0 N
M
X(z)
令
H(z) =
∑b z
r r= 0 N k= 0
−r
ak z−k ∑
则
Y(z) = X (z)H(z)
−1
此时对应的序列为 y(n) = F [X(z)H(z)]
差分方程为 例:若描述离散系统的 1 1 y(n) + y(n −1) − y(n − 2) = x(n) 2 2 x(n) = 2n u(n) , y( 已知激励 初始状态 −1) =1, y(−2) = 0, 求系统的零输入响应、 零状态响应和全响应。 求系统的零输入响应、 零状态响应和全响应。
ak z−k [Y(z) = ∑br z−r [X(z) + ∑x(m)z−m] ∑
k= 0 r= 0 m=−r N M −1
如果激励x(n)为因果序列, 如果激励x(n)为因果序列,上式可以写成 x(n)为因果序列
ak z−k [Y(z) = ∑br z−r X(z) ∑
k= 0 r= 0 N M
8.5节已经给出利用 节已经给出利用z 在8.5节已经给出利用z变换解差分方程的简 单实例,本节给出一般规律。 单实例,本节给出一般规律。这种方法的原 理是基于z变换的线性和位移性, 理是基于z变换的线性和位移性,把差分方程 转化为代数方程,从而使求解过程简化。 转化为代数方程,从而使求解过程简化。
k= 0 l =−k r= 0 m=−r −1
若激励x(n)=0,即系统处于零输入状态,此时 若激励x(n)=0,即系统处于零输入状态, x(n)=0,即系统处于零输入状态 差分方程( 差分方程(1)成为齐次方程∑a y(n −源自) =0k=0 kN
差分方程及其Z变换法求解
例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)
y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2
Z变换和差分方程
• 引入变量: 引入变量:
z=e
Ts
sT s
或者写成: s = 1 ln z 或者写成:
S: 拉普拉斯变换的算子; Ts:采样周期; 拉普拉斯变换的算子; Ts:采样周期 采样周期; 一个复变量, 平面上, 变换算子, Z:一个复变量,定义在 Z 平面上,称为 Z 变换算子, 记为:采样信号的Z变换: 记为:采样信号的Z变换:Z[f*(t)] = F(z) 变换, F (z)是采样脉冲序列的 Z变换, 它只考虑了采样时刻的信号值。 它只考虑了采样时刻的信号值。
y ( 0 ) = 0 , y (1) = 2 , 激励 f ( k )= 2 k ε ( k ),
求: y (k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, 以外的各项都移到等号右边, • 得: y (k ) = −3 y (k − 1) − 2 y (k − 2) + f (k ) • 对于 k = 2, 将已知初始值y (0) = 0, y (1) = 2代入上式,得:
s z 1 z R2 = lim ( s + jω ) = sT s → − jω ( s − jω )( s + jω ) z − e 2 z − e − jωT
例8—6 求
解:
f ( t ) = t 的Z变换
两阶重极点!! 两阶重极点!!
1 F (s) = 2 s
d z d z Tz 2 1 R = lim (s − 0) 2 = lim = sT sT 2 s →0 ds s →0 ds z − e s z −e ( z − 1)
c ( k ) = (1 − T ) k c ( 0 ) + T
∑
matlab用z变换求解差分方程
matlab用z变换求解差分方程
在matlab中,可以使用z变换来求解差分方程。
z变换是一种将离散信号转换为复变量函数的方法,其在数字信号处理中有着广泛应用。
通过将差分方程转换为z域的方程,可以方便地求解。
在matlab中,可以使用ztrans函数来进行z变换的计算。
该函数需要输入一个差分方程,返回其在z域中的表示。
然后,可以使用iztrans函数来进行逆z变换,将z域的结果转换为时间域的结果。
在使用z变换求解差分方程时,需要注意选择合适的初始条件,以及确保差分方程是稳定的。
此外,还需要注意处理z变换中的极点和零点,以避免求解出现错误。
总之,使用matlab求解差分方程可以借助z变换的方法,通过简单的函数调用来实现。
需要注意的是,在实际应用中需要考虑各种因素,以保证求解的准确性和可靠性。
- 1 -。
利用z变换解差分方程 ppt课件
利用z变换解差分方程
6
于是 令 则
M
br z r
Y(z)
r=0 N
X (z)
ak zk
k=0
M
br z r
H (z)
r=0 N
ak zk
k=0
Y(z)X(z)H (z)
此时对应的序列为 F y(n) 1[X(z)H (z)]
利用z变换解差分方程
7
例: 已知系统的差分方达程式表为
y(n)0.9y(n1) 0.05u(n) 若边界条y件(1) 1,求系统的完全响应。
5
若系统的起始状态y(l)=0(-N≤l≤-1),即系统处于 零起始状态,此时式(2)变成
N
M
1
a kz k[Y (z)b rz r[X (z) x (m )z m ]
k = 0
r= 0
m r
如果激励x(n)为因X(z)
k= 0
r= 0
利用z变换解差分方程
3
线性常系数差分一方般程形的式为
N
M
ak y(nk) brx(nr)
k0
r0
(1)
将 等 式 两 边 取 换单 ,边 利z用变z 变性换得位 移 特
N
1
M
1
akzk[Y(z) y(l)zl] brzr[X(z) x(m)zm] (2)
k=0
lk
r=0
mr
利用z变换解差分方程
§7.7 利用z变换解差分方程
• 主要内容
•z变换解差分方程的一般步骤 •举例说明
• 重点:利用z变换解差分方程的一般步骤
利用z变换解差分方程
1
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法
8.07 用z变换解差分方程
x n
1 E
3
1 E 1 E
y n
2
yn xn xn 1 3 yn 1 2 yn 2
(2)用z变换求解需要 y 1 , y 2 , 用 y 1 , y 0 由方 程迭代出 1 5 y 1 , y 2 2 4
§8.7 用z 变换解差分方程
序言
描述离散时间系统的数学模型为差分方程。求解 差分方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: •时域方法——第七章中介绍,烦琐 •z变换方法 •差分方程经z变换→代数方程; •可以将时域卷积→频域(z域)乘积; •部分分式分解后将求解过程变为查表; •求解过程自动包含了初始状态(相当于0-的 条件)。
yn 3 yn 1 2 yn 2 xn xn 1
(3)差分方程两端取z变换,利用右移位性质
Y z 3 z 1Y z y 1 2 z 2Y z z 1 y 1 y 2 z z 1 x 1 0 1 z z2 z2
z z Y z 0.5 0.45 z 1 z 0.9
A1 A2 Y z z z 1 z 0.9
yn 0.5 0.45 0.9
n
n 0
例8-7-2
已知系统框图
列出系统的差分方程。 2n n 0 , y 0 y 1 0, x n 0 n0 求系统的响应 y(n)。 解: (1) 列差分方程,从加法器入手
Yzi z 1 3z 1 2z 2 2z 1 y 1 3 y 1 2 y 2
z z 1 3z 2z Yzi z z 2z 1 z 2 z 1 零输入响应为
z变换和差分方程的matlab求解
一、概述在科学和工程领域,差分方程和离散时间系统模型的求解是非常常见和重要的问题。
差分方程是描述离散时间系统动态行为的数学模型,而z变换则是一种用于分析和求解差分方程的工具。
在matlab中,我们可以利用其强大的数值计算和符号计算功能来求解差分方程和进行z 变换分析,本文将介绍如何使用matlab来求解差分方程和进行z变换分析。
二、差分方程的matlab求解1. 差分方程的表示差分方程表示为:y(n) + a1*y(n-1) + a2*y(n-2) + ... + aN*y(n-N) = b0*x(n) +b1*x(n-1) + ... + bM*x(n-M)其中y(n)为系统的输出,x(n)为系统的输入,aN, aN-1, ..., a1, bM, bM-1, ..., b0为差分方程的系数。
2. 差分方程的matlab表示在matlab中,可以使用“filter”函数来求解差分方程。
该函数的用法为:y = filter(b, a, x)其中b为差分方程输出项的系数,a为差分方程输入项的系数,x为系统的输入。
该函数可以帮助我们求解差分方程,并得到系统的输出。
3. 示例假设有一个差分方程为:y(n) - 0.5*y(n-1) = x(n)其在matlab中的求解代码如下:输入信号x = randn(1, 100);系数b = 1;a = [1, -0.5];求解差分方程y = filter(b, a, x);通过以上代码,我们可以得到系统的输出y,从而求解了差分方程。
三、z变换和差分方程的关系1. z变换的定义z变换是一种用于分析和求解离散时间系统的工具,其定义为:Y(z) = Z{y(n)} = sum(y(n)*z^(-n), n=-inf to inf)其中Y(z)表示系统的z变换,y(n)表示系统的离散时间响应,z为复数变量。
2. z变换与差分方程的关系差分方程和z变换的关系可以表示为:Y(z) = H(z)X(z)其中Y(z)为系统的输出的z变换,H(z)为系统的传递函数的z变换,X(z)为系统的输入的z变换。
用单边Z变换解差分方程
n
h( n)
15
可以稳定
x ( n)
h( n)
k
y(n) x(n) * h(n)
h(k ) x(n k )
x(n) M
y ( n)
k
h ( k ) x ( n k ) M h( k )
k
k x ( k ) z
1 m k k z x ( k ) z x ( k ) z k m k 0 1 m k z X ( z ) x(k ) z k m
4
(4)对于因果序列x(n)
k m k x ( k ) z 0 1
1 2 2
10 z Y ( z ) 0.1z [Y ( z ) zy (1)] 0.02 z [Y ( z ) z y (2) zy (1)] z 1 10 z (1 0.1z 1 0.02 z 2 )Y ( z ) 0.08 z 1 0.28 z 1
2 1
yss (n) B sin[n 2 ( )]
28
Y (e ) H (e ) j X (e )
j
j
H (e ) H (e ) e B H (e ) A
j
j
j
j ( )
B j[ 2 ( ) 1 ( )] e A
( ) 2 ( ) 1 ( )
§8.7 用单边Z变换解差分方程
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法
1
(一)复习Z变换的位移特性
若x(n)分别是双边序列、双边左移序列、 双边右移序列时,它们的双边和单边Z变 换是不同的: (1)双边序列的双边Z变换(p79-p83)
z变换 积分 差分
z变换积分差分全文共四篇示例,供读者参考第一篇示例:【z变换积分差分】是信号与系统分析中常用的三种重要方法,它们在数字信号处理和控制系统中起到关键作用。
本文将介绍和比较这三种方法的原理、特点和应用。
1. z变换z变换是一种离散时间信号的分析方法,它类似于拉普拉斯变换用于连续时间信号的分析。
z变换将离散信号变换为z域中的函数,其中z是一个复数变量。
通过z变换可以将差分方程表示为代数方程,从而方便进行信号的频域分析和系统设计。
在z变换中,信号x(n)的z变换定义为:X(z) = Σ(x(n) * z^(-n)), n = 0, 1, 2, ...其中X(z)是信号x(n)的z变换,n是离散时间序列。
z变换的性质包括线性性、时移性、频率移位性、共轭性等。
通过这些性质,可以方便地对信号和系统进行分析。
z变换在数字信号处理中应用广泛,例如数字滤波、频域分析、数字控制系统等都离不开z变换的支持。
2. 积分在信号与系统中,积分是一种对信号进行求和的操作,可以将连续信号或离散信号进行积分得到一个新的信号。
积分在信号处理和系统控制中有着重要的作用,能够实现信号的平滑、去噪和特征提取等功能。
对于连续信号,积分的定义为:∫f(t)dt积分算子常用于信号的平滑和去噪处理,可以消除信号中的高频组分和噪声,提取信号的低频特征。
在控制系统中,积分常用于实现系统的稳定性、误差消除和跟踪功能,是PID控制器中的一个重要组成部分。
3. 差分f(n+1) - f(n)差分算子常用于信号的导数计算、特征提取和系统建模等领域,可以实现信号的变化率和变化趋势的分析。
在数字信号处理中,差分算子也被广泛应用于信号去噪、特征提取、运动检测等领域,是数字图像处理和视频处理中的重要工具。
z变换、积分和差分是信号与系统分析中常用的三种方法,它们在数字信号处理和控制系统中有着重要作用。
通过对这三种方法的深入理解和灵活运用,可以实现信号处理和系统设计的高效和精确。
Z变换和差分方程
04
离散系统稳定性分析与判断
离散系统稳定性概念及意义
稳定性定义
离散系统的稳定性是指系统在受到外部 扰动后,能够恢复到原平衡状态的能力 。
VS
稳定性意义
稳定性是离散系统正常工作的前提,不稳 定的系统可能导致输出失控、性能恶化甚 至损坏。
基于差分方程稳定性分析方法
差分方程
描述离散系统动态行为的数学模型, 通过求解差分方程可得到系统输出。
若$x[n]$的Z变换为$X(z)$ ,则$x[n]e^{jomega n}$ 的Z变换为 $X(ze^{ jomega})$。证明 过程基于复指数函数的性质 和Z变换的定义。
若$x_1[n]$和$x_2[n]$的Z 变换分别为$X_1(z)$和 $X_2(z)$,则它们的卷积 $x_1[n]*x_2[n]$的Z变换为 $X_1(z)X_2(z)$。证明过程 利用卷积的定义和Z变换的 性质进行推导。
系统函数与稳定性分析
系统函数是描述系统频率响应特性的 重要工具,可通过Z变换求得。同时 ,利用系统函数可进行系统稳定性分 析,如判断系统是否稳定等。
Z变换和差分方程在其他领域应用前景探讨
数字信号处理
Z变换和差分方程在数字信号处理领域具有广泛应用,如滤波器设计 、信号压缩与重构等。
控制系统分析
在控制系统中,Z变换和差分方程可用于分析系统稳定性、设计控制 器等。
收敛域
Z变换的收敛域是指使得级数 $sum_{n=-infty}^{infty} |x[n]z^{n}|$收敛的所有$z$的集合。收敛域对 于Z变换的分析和性质至关重要。
常见函数Z变换表
单位样值信号
$delta[n]$的Z变换为$1$,收敛 域为整个复平面。
单位阶跃信号
差分方程_z_变换___概述说明以及解释
差分方程z 变换概述说明以及解释1. 引言1.1 概述差分方程是描述离散时间系统行为的重要数学工具。
在现实生活中,许多系统的变化是按照离散时间步骤进行的,例如数字信号处理、数字滤波、通信系统等。
而差分方程则可以描述这些系统在每个时间步骤上的状态和演变。
与此同时,z变换是一种重要的数学工具,用于分析离散信号和离散系统。
它将差分方程从时域(自变量是时间)转换到z域(自变量是复平面上的复数z),并且能够提供更加简洁和便于分析的表达形式。
本文将概述差分方程z变换的基本概念以及其在离散系统分析和设计中的应用。
我们将解释差分方程z变换过程,并讨论其优势和局限性。
最后,我们将总结主要观点和结论,并对未来发展提出展望和建议。
1.2 文章结构本文共分为五个部分:引言、差分方程z变换概述、解释差分方程z变换过程、差分方程z变换的优势与局限性以及结论和总结。
1.3 目的本文的目的是介绍差分方程z变换的基本概念和原理,并探讨其在离散系统分析和设计中的应用。
通过阐述z变换与时域之间的关系,传递函数和频率响应描述以及求解差分方程的步骤与方法,读者将能够理解并运用这一重要数学工具。
同时,我们还将提供对差分方程z变换优势与局限性的考察,以及对未来发展的展望和建议。
2. 差分方程z 变换概述:2.1 差分方程基础知识:差分方程是离散时间系统建模和分析中的重要工具,它可以描述离散时间的动态过程。
差分方程以递推关系式的形式表示系统的行为,其中当前时刻输出值与过去一段时间内输入值和输出值之间存在着数学上的关系。
2.2 z 变换介绍:z 变换是一种用于将差分方程从时域转换到复平面上的方法。
在信号处理领域中,z 变换常被用于对离散系统进行频域分析和设计数字滤波器。
z 变换将离散时间信号表示成复变量z 的函数,使得我们可以通过对复平面上的频率响应进行分析来理解系统的特性。
2.3 z 变换的应用领域:z 变换在许多领域都有广泛的应用。
在控制系统工程领域,z 变换可用于建立数字控制器模型、设计数字滤波器以及实现各种控制算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.应用z变换求解差分方程步骤
第 3
页
一.步骤
(2)由z变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到y(n) 。
二.差分方程响应y(n)的起始点确定时刻定
对因果系统y(n)不可能出现在x(n)之前
观察Y(z)分子分母的幂次
分母高于分子的次数是响应的起点
Y
z
z
2z
1z
22
从n 2开始yn有不为零的值。
三.差分方程解的验证
原方程迭代出 y0, y1, y2两种迭代结果相同, 解的表达式迭代出y0, y1, y2解答是正确的
§8.7 用z变换解差分方程
北京邮电大学电子工程学院
序言
第 2
页
描述离散时间系统的数学模型为差分方程。求解差分方 程是我们分析离散时间系统的一个重要途径。
求解线性时不变离散系统的差分方程有两种方法: •时域方法——第七章中介绍,烦琐 •z变换方法
•差分方程经z变换→代数方程; •可以将时域卷积→频域(z域)乘积; •部分分式分解后将求解过程变为查表; •求解过程自动包含了初始状态(相当于0-的 条件)。