矩阵与行列式习题课共37页

合集下载

线性代数行列式计算习题课

线性代数行列式计算习题课

3 2
a bc d
a
3
b a c d
1 x2
b b
3
c a b d
1
2
a bc
d d
3 2
1
2
c c
3 2
r4 r3

a
x1
2
xn
x1 a b c d x1
n 1
a
b 2 2 x2 xn a b c d a n 1 b x 2 a
2 3 3 2
c d ( xi x j ) ni j 1c d a b a b c d
* c in *
6、 某 行 ( 列 ) 的 k倍 加 到 另 一 行 ( 列 ) 上 , 行 列 式 值 不 变
ri k r j ( c i k c j )
第 5页
行列式按行(列)展开
行列式等于它的任一行 ( 列 ) 各元素与其对应的代数余子 式乘积之和:
D n a i1 Ai1 a i 2 Ai 2 a 1 i A1 i a 2 i A 2 i a in A in a ni Ani
5 3 1 4 3
0 4 9
20
第16页
a. 行(列)元素之和相等的行列式
1 7. D 1 1 x 1 1 1 x 1 1
b
1 x 1 1 1 1
x 1 1 1 1
bx 1
c1 c 2 c1 c 3
x x x x 1 0
1 1 x 1 1 0 x
1 x 1 1 1
x 1 1 1 1
c1 c 4

1 a b 1
c1 x
x
1 b a 1 1 x 1

矩阵与行列式练习题

矩阵与行列式练习题
ab是对称矩阵的充要条件是baab对称矩阵b是反对称矩阵证明
矩阵与行列式练习题
§1
1 0 1 1 0 1.设 A 1 1 , B 1 0 1 , 0 2
(1) 计算 AB , BA 。问 AB BA 是否成立? (2)计算 ( AB)T , AT B T 。问 ( AB) T AT B T 是否成立?
迹。证明: (1)对于任何 n 阶方阵 A , B ,成立 tr ( AB) tr ( BA) ; (2)不存在 n 阶方阵 A , B ,满足 AB BA kI n ( k 0 ) 。 15. 证明: 若 n 阶方阵 A 与 B 相乘可交换, 则 A 的多项式 f ( A) 与 B 的多项式 g ( B ) 相乘也可交换。 16.设 n 阶方阵 A , B 满足 A2 A , B 2 B ,且 ( A B) 2 A B ,证明: AB O 。
§2
1.计算下列行列式:
行列式
1 2 0 1 (1) 1 0 0 1
1 2 1 3
4 1 ; 3 1
1 1 1 2 x2 (2) 2 3 2 3
2 3 2 3 ; 1 5 1 9 x2
0 a (3) b a
a 0 a b
b a 0 a
a b ; a 0
1 a a 0 0 0 1 1 a a 0 0 (4) 0 1 1 a a 0 。 0 0 1 1 a a 0 0 0 1 1 a
18.证明: n 阶行列式
1 1 1 1 1 1 C2 C3 2 1 C32 C4 n 1 n 1 1 Cn Cn 1
1 1 19.设 D 0 2
0 1 0 2 3 1 ,求 A41 A42 A43 A44 。 1 1 3 1 1 0

2chapter1(5)矩阵与行列式习题课

2chapter1(5)矩阵与行列式习题课
Chapter 1(5) 矩阵与行列式习题课
一、内容小结 1. 矩阵运算及分块矩阵的运算 2. 行列式定义和性质 3. 关于行列式的一些重要公式 4. 关于逆矩阵的一些重要结论 5. 初等变换与初等矩阵 6. 注意比较 二、题型及方法 1. 行列式的计算 2. 逆矩阵的求法 3. 矩阵的秩的求法 4. 矩阵方程的解法
λ1 λ2
⋰ = O
n ( n −1 ) ( −1) 2 λ1λ2 ⋯ λn
λn
(12)Vandermonde行列式
1 x1 2 Dn = x1 ⋯
n x1 −1
1 x2 2 x2 ⋯
⋯ ⋯ ⋯ ⋯
1 xn 2 xn ⋯
n n x 2 −1 ⋯ x n −1
= ( x2 − x1 )( x3 − x1 ) ⋯( xn − x1 )( x3 − x2 ) ⋯( xn − x2 ) ⋯ ( x n − x n −1 )
可由A ⇔ B可由 经初等变换得到
⇔ rank ( A) = rank ( B )
6. 注意比较
(1)( AB )′ = B′A′, ( AB ) −1 = B −1 A−1 ,
AB = BA
( 2)( A + B )′ = A′ + B′, ( A + B)
−1
≠A
−1
+B ,
−1
A+ B ≠ A + B
=
1≤ i < j ≤ n
∏ ( x j − xi )
4. 关于逆矩阵的一些重要结论
(1)若AB = BA = E , 则A−1 = B, B −1 = A * a b d − b * * ( 2) AA = A A = A E 注: = − c a c d 1 * −1 ( 3) A可逆 ⇔ A ≠ 0, 且A = A A 1 −1 − 1 −1 −1 ( 4)( A ) = A, ( λA) = A , ( AB ) −1 = B −1 A−1

线性代数讲解习题课

线性代数讲解习题课

place定理 place定理 是一个n阶行列式 中取某K行 或列 或列), 是一个 阶行列式, 中取某 定义 设D是一个 阶行列式,在D中取某 行(或列 则含于此k阶行 或列)中的所以 阶行(或列 中的所以k阶子式与其代数余子 则含于此 阶行 或列 中的所以 阶子式与其代数余子 式的乘积之和恰好等于D.即 式的乘积之和恰好等于 即
设排列 该排列中在 ai右边比 (i=1,2,---,n). 于是
ai小的数有 ai −1− ki个
τ (anan−1 ⋯a2a1 ) = (a1 −1− k1 ) + (a2 −1− k2 ) +⋯+ (an −1− kn )
= (a1 + a2 +⋯+ an ) − n − (k1 + k2 +⋯+ kn )
1 对 、 角行 式 列 λ1 D= λ2 ⋱ λn
λ1 D= λn λ2 ⋰ = (−1)
n(n−1) 2
= λ1λ2 ⋯λn ;
λ1λ2 ⋯λn.
2、上、下 三角行列 式。 a11 a12 ⋯ a1n 0 a22 ⋯ a2n ⋮ 0 ⋮ 0 ⋱ ⋮ ⋯ ann a11 0 ⋯ a21 a22 ⋯ 0 0
D = N 1 A1 + N 2 A2 + ⋯ + N t At
其中 N1 , N 2 ,⋯ N t是D的被选定的k行(或列)所含的K阶 的被选定的k 或列)所含的K 子式, 子式, A1 , A2 ,⋯ At 分别是它们的代数余子式. t = C k 分别是它们的代数余子式.
n
二.几个重要的公式
3.设 3.设A是m阶方阵,B是n阶方阵,则 阶方阵, 阶方阵,
a11 ⋯ a1m ⋮ ⋮ am1 ⋯ amm D= c11 ⋯ c1m ⋮ ⋮ cn1 ⋯ cnm 0 ⋮ ⋯ 0 ⋮

行列式习题课

行列式习题课

2 1 3 3 3
3 3 1 4 4

n 1 n 1 n 1 1 n
n n n n 1
6(2)
2 2 2
原行列式
解:
c1 c2 cn
1 2 3 n 1 n 1 1 3 n 1 n
1
r2 r1 r3 r1 rn r1
概念
a11 a21
a12 a1n a22 a2 n
p1 p2 pn

(1)t a1 p1 a2 p2 anpn
an1 an 2 ann
1.行列式与它的转置行列式相等; 2.互换行列式的两行(列),行列式变号;
性质
3.某行(列)有公因子可以提到行列式符号外面; 4.若行列式中某一行(列)的所有元素均为两元素之和,则行 列式可写成两个行列式的和; 5.行列式某行(列)的K倍后加到另一行(列)上,行列式不变。
《线性代数》
返回
下页
结束
r3+(-1)r2

D 1 1
r2+(-1)r3
1 1 1 2 1 0 1
c1+(-1)c3
1

1 1 0

1 0
《线性代数》
1 1 1 1 1 0 0 1 0 0 0 1 0
返回 下页 结束
1 1 1 0 0 (1 ) 0
《线性代数》 返回 下页 结束
1
1 2 2 2
1 2 3 3

1 2 3 n
1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1
例4 计算行列式
1 D1 1

矩阵与行列式习题课共37页

矩阵与行列式习题课共37页
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
矩阵与行列式习题课
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢

第一章行列式习题课

第一章行列式习题课

0
1.3.用定义计算行列式Dn
0
0 a1
0 a2 0
an 0 0

Dn
(1)
n
ai
i 1
排列 n(n 1)(n 2)21 的逆序数 n(n 1) .
2
n(n1) n
所以Dn (1) 2
ai
i1
5x 1 2 3 24.设f (x) 2 1 x 3 ,求f (x)中x3与x4的系数
[a (n 1)b]
0 0 0 ab
[a (n 1)b](a b)n1.
x a aa
b x aa
例4、4: 求Dn b b x a .
b b bx
解 若a b,由例3知Dn [ x (n 1)a]( x a)n1;若a b,则有
(x a) a 0 a 0 a 0 a
2x x 1 2
1 f (x)
x 1 1 中 x4 与 x3 的系数.
3 2x 1
1 11 x
解I (用行列式的定义求解)由行列式的定义及 f (x)的性质知,只有 主对角线上的元素相乘才出现 x4,且这一项带正号,为2x2,故f (x) 中 x4 的系数为2. 同理,含 x3 的项也只有一项,为x 1 x x x3, 而且列标所构成的排列为2 1 3 4,逆序数为1.故 f(x)中 x3 的系数为-1.
2.行列式的定义
设有n2个数aij (i, j 1,2,, n),称
a11 a12 a1n
D
a21
a22
a2n
an1 an2 ann
为n阶行列式,表示数值
(1) ( p1p2pn )a1p1 a2 p2 anpn
其中p1 p2 pn为自然数1,2,,n的一个排列

矩阵行列式练习卷

矩阵行列式练习卷

矩阵行列式一、矩阵例题讲解1、已知一个线性方程组对应的矩阵为431572145238-⎛⎫⎪⎪⎪--⎝⎭,写出其对应的线性方程组.2、写出下列线性方程组的系数矩阵和增广矩阵,并用矩阵变换的方法求解:⑴32243x yx y-=⎧⎨+=⎩;⑵632752215x y zx y zx y z++=⎧⎪-+=⎨⎪++=⎩.3、甲、乙、丙三人做一批零件,若甲、乙两人合作,甲做8天,乙做5天恰好完成;若甲、丙两人合作,甲做6天,丙做9天恰好完成;乙、丙两人合作,乙做10天,丙做6天恰好完成. 如果甲、乙、丙单独做,各需多少天才能完成?4 计算:⑴12232131-⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭;⑵342112546110221⎛⎫⎛⎫ ⎪⎪ ⎪-⎝⎭ ⎪⎝⎭.⑴如何用矩阵表示他们的答对的题数? 他们期中、期末的成绩?⑵果期中分数占总评成绩的40%,而期末成绩则占60%,求两位同学的总评成绩.练习:1、已知123456789A⎛⎫⎪= ⎪⎪⎝⎭,则1223a a+=___________.2、设3122x yx y z⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎝⎭,则x y z++=___________.3、线性方程组603540x yx y--=⎧⎨++=⎩对应的系数矩阵是___________,增广矩阵是___________.4、已知13211004A B⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,,则23A B+=___________.5、若211403201453A B-⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪--⎝⎭⎝⎭,,且23A X B-=,则矩阵X=___________.6、计算:⑴12232131-⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭________⑵341125411027⎛⎫⎛⎫ ⎪=⎪ ⎪-⎝⎭ ⎪⎝⎭___________.7、已知矩阵2301(1,2)123A B C⎛⎫-⎛⎫⎪==-= ⎪⎪-⎝⎭⎪-⎝⎭,,,则()AB C=___________.8、将下列线性方程组写成矩阵形式,并用矩阵变换的方法求解:⑴32110 250x yx y--=⎧⎨+-=⎩;⑵1116 1210 2113xyz⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.9、已知矩阵1111A ⎛⎫= ⎪⎝⎭,求向量(2,3)经过矩阵A 变换后所得的向量.10、如果AB BA =,矩阵B 就称为与矩阵A 可交换,若1101A ⎛⎫= ⎪⎝⎭,求所有与A 可交换的矩阵.11、若202137x y -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,则x y +=___________.12、若矩阵1cos60sin602sin60cos6012A B ⎛-︒-︒⎛⎫⎪== ⎪⎪︒︒⎝⎭-⎪⎭,,则AB =___________. 13、已知1011A ⎛⎫= ⎪⎝⎭.⑴ 分别计算23A A 、,猜测*(2)n A n n ≥∈N ,; ⑵ 另写出一个具有类似性质的矩阵B ,并说明n B 的值.二、行列式例题讲解例1 展开并化简下列各行列式:⑴x y yyx y---; ⑵ 351236724---.例2按下列要求展开并计算行列式312527342D -=-.⑴ 按第一行展开; ⑵ 按第一列展开.例3把22111133332223x y x y x y x y x y x y ++表示成一个三阶行列式. 例4已知行列式312527342--.⑴ 求行列式中元素4的余子式与代数余子式; ⑵ 按第二列展开并计算行列式;⑶ 验证行列式第一行的元素与第三行对应元素代数余子式的乘积之和为零. 例5计算:⑴111b c a c a b a b c e f df d ed e f-+- ⑵ 222222222333333b c a c a b a b c b c a c a b -+. 例6 “二元一次方程组的系数行列式0D =”是“方程组无解”的___________条件. 例7用行列式解下列线性方程组:⑴ 23705310x y x y +-=⎧⎨--=⎩;⑵ 23423573234x y z x y z x y z ++=⎧⎪++=-⎨⎪++=⎩.例8 解关于x 、y 的二元一次方程组210640mx y x y n --=⎧⎨+-=⎩,并对解的情况进行讨论.练习1、计算: 2309210121-=___________.2、行列式a bcd ef g h i中元素e 的代数余子式是___________. 3、与22222bc a a a bc a ac b b ab c c c ab c -+-的值相等的三阶行列式是___________. 4、关于x 的方程2220(0)111x a b xa b a b -=+≠的解是___________. 5、系数行列式0D ≠是二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩有唯一解的___________条件.6、用行列式解下列线性方程组:⑴ 25024110x y x y +-=⎧⎨+-=⎩;⑵ 32620x y z x y z x y z +-=⎧⎪++=⎨⎪-+=⎩.7、解关于x 、y 的二元一次方程组,并对解的情况进行讨论: 12mx y m x my m +=+⎧⎨+=⎩.8、方程组023204540x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩( ). A. 有唯一解B. 有无穷多解C. 无解D.可能无解或有无穷多解9、解关于x 、y 、z 的方程组13x y mz x my z m x y z ++=⎧⎪++=⎨⎪-+=⎩.10、方程1111900193x x=-的解为___________. 11、解关于x 的方程1221234x a =,其解集为___________. 12、三阶行列式42354112k---第2行第1列元素的代数余子式为10-,则k =___________.13、如右图“杨辉三角形”,从左上角开始的4个元素构成的二阶行列式1112的 值等于1;从左上角开始的9个元素构成的三阶行列式111123136的值也等于1; 猜想从左上角开始的16个元素构成的四阶行列式1111123413610141020的值等于________.111111112345613610151410201515161…………………。

矩阵与行列式习题课

矩阵与行列式习题课

Ir Ps Ps 1 P2 P1 AQ1Q2 Qt 0
0 0
4
若令P Pt Pt 1 P2 P1 Q Q1Q2 Qs, 则有
任一矩阵Amn ,总存在可逆矩阵Pmm , Qnn , Ir 0 使得 PAQ 0 0 (4) 设A是m n矩阵, P , Q是m阶和n阶可逆
3、逆矩阵 (1)逆矩阵的定义、性质 (2)方阵A可逆的充要条件 (1)B, 使AB BA I n (2)齐次方程组AX 0只有零解 (3) A ~ I n (4) A Ps Ps 1 P2 P1 其中P1, P2,, Ps都是初等矩阵. (5) det A 0 (6) A是非奇异阵 (7) A是满秩矩阵
7
解线性方程组是线性代数中的最基本的题型, 各类考试中均会考核,需注意以下几个问题: 1、从由方程组写出所对应的系数矩阵、增广 矩阵,到初等变换的正确性;由行阶梯形矩阵 写出相应的方程组到确定自由变量的个数、自 由变量的选取、赋值,再求出解,每一步都要 正确无误。 2、解线性方程组所作的初等变换,只能作行 变换,不能作列变换。因为“列变换”会改变 未知系数之间的相对关系,所得方程组与原方 程组不同解。
1 0 0 0 反例 : A 0 1 , B 1 1 (矩阵乘法一般不满足交 换律)
4.若方阵A可逆, 且AB 0, 则B 0
(3) 当r( A) r(B) r n时,方程组有无穷多组 解,此时解中含有n r个自由变量。
6
2、齐次线性方程组 推论1: 设齐次线性方程组AX=0的系数矩 阵Am n的秩为r。 (1)
AX=0有唯一零解当且仅当r=n;
(2)
AX=0有非零解当且仅当r<n。

高中数学 矩阵 行列式 专题练习及答案精析版含答案(79页)

高中数学 矩阵 行列式 专题练习及答案精析版含答案(79页)

高中数学 矩阵 行列式 专题练习及答案精析版含答案(79页)1.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021.已知πβα=+,2πβα=-,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ).A. 00⎡⎤⎢⎥⎣⎦B. 01⎡⎤⎢⎥⎣⎦C. 10⎡⎤⎢⎥⎣⎦D. 11⎡⎤⎢⎥⎣⎦2.规定运算a bad bc c d=+,若sincos122332cossin22θθθθ=,其中0θπ<<,则sin θ=A .12-B.2-C.2±D.23.定义行列式运算:32414321a a a a a a a a -=,将()xx x f c os 1s in 3----=向左平移()0>m m 个单位,所得图象对应的函数为偶函数,则m 的最小值为( )A 、8π B 、3πC 、32πD 、65π4.如图, 111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==, 从中任取三个数,则至少有两个数位于同行或同列的概率是 ( )A .37 B .47 C .114 D .13145.(选修4-2矩阵与变换)试从几何变换角度求解矩阵AB 的逆矩阵:⎥⎦⎤⎢⎣⎡-=1001A ,⎥⎦⎤⎢⎣⎡-=0 11 0B . 6.定义:a b ad bc c d=-.若复数z 满足112z i i i=-+-,则z 等于A .1i +B .1i -C .3i +D .3i -7.已知关于x y 、的二元一次线性方程组的增广矩阵为111222a b c a b c ⎛⎫⎪⎝⎭,记121212(,),(,),(,)a a a b b b cc c ===,则此线性方程组有无穷多组解的充要条件是 [答]( )A 、0a b c ++=.B 、a b c 、、两两平行. C 、a b //. D 、a b c 、、方向都相同. 8.定义运算a bad bcc d=-,则符合条件120121z i ii+=--的复数z 对应的点在( )A.第四象限B.第三象限C.第二象限D.第一象限 9.定义运算a b ad bc c d=-,若函数()123x f x xx -=-+在(,)m -∞上单调递减,则实数m 的取值范围是( )A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-10.定义运算bc ad db ca -=,则符合条件i ziz=12的复数z 的虚部为( )A .51 B .51- C .52 D .52- 11.设1141A ⎛⎫=⎪⎝⎭,则矩阵A 的一个特征值λ和对应的一个特征向量α为 A .3=λ,12α⎛⎫= ⎪⎝⎭B .1-=λ,21α⎛⎫=⎪-⎝⎭C .3=λ,12α-⎛⎫=⎪⎝⎭ D .1-=λ,12α⎛⎫= ⎪⎝⎭12.对2×2数表定义平方运算如下: ( )222a b a b a b a bc ab bd c d c d c d ac cd bc d ⎛⎫++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 则21201-⎛⎫ ⎪⎝⎭为 A.1011⎛⎫ ⎪⎝⎭ B.1101⎛⎫ ⎪⎝⎭ C. 1001⎛⎫ ⎪⎝⎭ D.0110⎛⎫⎪⎝⎭13.已知2010200820062004262422201816141210864,++++-= 则bc ad dc b a =( )A . 2008B .—2008C .2010D .—201014.定义2×2矩阵12142334a a a a a a a a ⎛⎫=- ⎪⎝⎭,若sin()()cos()1x f x x ππ⎛-= +⎝⎭,则()f x 的图象向右平移3π个单位得到的函数解析式为( ) A .22sin()3y x π=- B .2sin()3y x π=+C .2cos y x =D .2sin y x =15.已知a 、b 、c 是ABC ∆的三边长,且满足0222=ac b c b a ,则A B C ∆一定是( ). A 、等腰非等边三角形 B 、等边三角形 C 、直角三角形 D 、等腰直角三角形16.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n 2填入n×n 个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方,记n 阶幻方的对角线上数的和为N ,如图1的幻方记为N 3=15,那么N 12的值为 ( )A .869B .870C .871D .875 17.矩阵E =⎪⎪⎭⎫⎝⎛1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数18.将5,6,7,8四个数填入12349⎛⎫ ⎪ ⎪⎪⎝⎭中的空白处以构成三行三列方阵,若要求每一行从左到右、每一列从上到下依次增大,则满足要求的填法种数为 ( )A .24B .18C .12D .6 19. 已知bc ad dc b a -=,则=+++20102008200620041816141210864 ( )A -2008B 2008C 2010D -201020.定义运算bc ad db ca -=,则符合条件121211-+--x yy x = 0的点P (x , y )的轨迹方程为( )A .(x – 1)2 + 4y 2 = 1B .(x –1)2 – 4y 2 = 1C .(x –1)2 + y 2 = 1D .(x –1)2 – y 2 = 121.第3行第2列的元素的代数余子式记作()x f ,()x f +1的零点属于区间 ( )(A ); (B ); (C ); (D );22.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,2αβπ-=,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ). A.00⎡⎤⎢⎥⎣⎦ B.01⎡⎤⎢⎥⎣⎦ C.10⎡⎤⎢⎥⎣⎦ D.11⎡⎤⎢⎥⎣⎦23.如图,三行三列的方阵中,从中任取三个数,则至少有两个数最大公约数大于1 的概率是 ( ) ⎪⎪⎪⎭⎫ ⎝⎛55331135217532 A 8413 B72C8471 D75 24. 已知a b ad bc c d=-,则46121420042006810161820082010+++=( )A .-2008B .2008C .2010D .-201025.若规定bcad d c ba -=,则不等式0111lg<x的解集是A .(1,2)B .(2,+∞)C .(-∞,2)D .(-∞,3)26.计算矩阵的乘积=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛0110n m y x ______________ 27.规定运算a bad bc c d=+,若sincos122332cossin22θθθθ=,则sin θ= .28.函数x x xx x x x f sin cos sin 2)cos(cos sin )(--+=π的最小正周期=T29.线性方程组21202x z x y y z -=-⎧⎪+=⎨⎪+=⎩的增广矩阵是__________________.30.对任意的实数y x ,,矩阵运算⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛x y y x d c b a 都成立,则=⎪⎪⎭⎫⎝⎛d c b a . 31.方程组2132x y x y -=⎧⎨+=-⎩的增广矩阵是__________________.32.定义矩阵变换a b m am bn c d n cm dn +⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭;对于矩阵变换11sin 20cos u v αα⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,函数1()2y u v =+的最大值为_____________ 33.设二阶矩阵,,a b A c d ⎛⎫= ⎪⎝⎭,其中每一个数字称为二阶矩阵的元素,又记二阶矩阵乘法222,,a bc ab bd A A A ac cd bc d ⎛⎫++=⨯= ⎪ ⎪++⎝⎭,请观察二阶矩阵乘法的规律,写出1112322122,,a a A A A a a ⎛⎫=⨯= ⎪⎝⎭中的元素21a =__________.34.若复数z 满足109z z-=,则z 的值为___________.35.二阶行列式ii i++-1101的值是 . (其中i 为虚数单位)36.计算:122423432⎛⎫⎛⎫⋅+⎪ ⎪⎝⎭⎝⎭= . 37.若0ln 1a b π⎛⎫ ⎪⎝⎭是单位矩阵,则a b -= . 38.行列式(a,b,c,d ∈{-1,1,2})的所有可能值中,最大的是 .39.如果矩阵()111113-是线性方程组{111222a x b y c a x b y c +=+=的增广矩阵,则这个线性方程组的解⎪⎪⎭⎫ ⎝⎛y x 可用矩阵表示为 ▲ .40.将正整数21,2,3,4,,n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数,a b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.若ij a 表示某个n 行n 列数表中第i 行第j 列的数(1i n ≤≤,1j n ≤≤),且满足(1),(1),ij i j i n i j a i n i j n i j +--<⎧=⎨+-+-≥⎩, ,,当4=n 时数表的“特征值”为_________ 41.当πcos12=a 时,行列式211121a a +-的值是 .42.方程cos sin sin cos =x x xx 的解为__________________.43.若行列式124012x -=,则x = .44.各项都为正数的无穷等比数列{}na ,满足,,42t a m a ==且⎩⎨⎧==ty mx 是增广矩阵⎪⎪⎭⎫ ⎝⎛-2221103的线性方程组⎩⎨⎧=+=+2222111211c y a x a c y a x a 的解,则无穷等比数列{}n a 各项和的数值是 _________.45.若3sin 5θ=-,则行列式cos sin sin cos θθθθ= . 46.不等式210x x+≥ 1 2 2的解为 .47.已知变换100M b ⎡⎤=⎢⎥⎣⎦,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 48.⎥⎦⎤⎢⎣⎡6421的逆矩阵为 . 49.行列式987654321中元素8的代数余子式为______________.50.已知矩阵10102A ⎡⎤⎢⎥=⎢⎥-⎣⎦,则矩阵A 的逆矩阵为51.矩阵⎪⎪⎭⎫⎝⎛-0110的逆矩阵是 .52.矩阵2130A ⎛⎫=⎪⎝⎭的特征值是_____________________. 53..由9个正数组成的数阵111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭中,每行中的三个数成等差数列,且a 11+a 12+a 13,a 21+a 22+a 23,a 31+a 32+a 33成等比数列.给出下列结论:①第二列中的a 12,a 22,a 32必成等比数列;②第一列中的a 11,a 21,a 31不一定成等比数列;③a 12+ a 32≥a 21+a 23; ④若9个数之和大于81,则a 22>9. 其中正确的序号有 .(填写所有正确结论的序号). 54.已知函数11()13xf x -=,则1(4)f-= .55.[选修4-2:矩阵与变换] 已知矩阵1211,121A B x -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,向量2a y ⎡⎤=⎢⎥⎣⎦,,x y 是实数,若Aa Ba =,求x y +的值.56.定义运算:12142334a a a a a a a a =-,将函数cos ()sin xf x x的图象向左平移m个单位(0m >),若所得图象对应的函数为偶函数,则m 的最小值为57.已知矩阵A =1234⎛⎫⎪⎝⎭,矩阵B =4231⎛⎫ ⎪⎝⎭,计算:AB = .58.若2211x x x y y y =--,则______x y += 59.对于任意),1()1,0(∞+∈ a ,函数)1(log 111)(--=x x f a 的反函数)(1x f-的图像经过的定点的坐标是______________. 60.已知,则cos2α= .61.若以⎪⎪⎭⎫⎝⎛1431a a 为增广矩阵的线性方程组有唯一一组解,则实数a 的取值范围为 .62.规定矩阵3A A A A =⋅⋅,若矩阵31 1 10 10 1x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则x 的值是_____________.63.矩阵⎪⎪⎭⎫⎝⎛=2563N 的特征值为______________.来源 64.设平面上一伸缩变换把(1,1)A 变换为(2,3)P -,则点(2,3)B -在此变换下所对应的点是65.已知圆22:4C x y +=在矩阵1002A ⎡⎤=⎢⎥⎣⎦对应伸压变换下变为一个椭圆,则此椭圆方程为66.对2×2数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cdbc d ⎛⎫++⎛⎫⎛⎫⎛⎫=⋅= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭,则21201-⎛⎫= ⎪⎝⎭__________. 67.已知,1->t 当[]2,+-∈t t x 时,函数xxx y 4=的最小值为-4,则t 的取值范围是 68.如图,2(4)nn ≥个正数排成n 行n 列方阵:符号(1,)ij a i j n ≤≤ 表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且每一列的数的公比都等于q . 若1112a =,241a =,3214a = , 则q = ________,ij a =__________.69,则x =__________70.将正整数21,2,3,4,,n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数,a b (a b >)的比值ab,称这些比值中的最小值为这个数表的“特征值”.若ij a 表示某个n 行n 列数表中第i 行第j 列的数(1i n ≤≤,1j n ≤≤),且满足(1),(1),ij i j i n i j a i n i j n i j +--<⎧=⎨+-+-≥⎩, ,,当3n =时数表的“特征值”为_________71.若3sin 5θ=-,则行列式cos sin sin cos θθθθ=72.增广矩阵为⎪⎪⎭⎫⎝⎛-111311的线性方程组的解为________________. 73.关于z 的方程20132012101i zii izi+=--+(其中i 是虚数单位),则方程的解=z . 74.三阶行列式12324310中第二行第一列元素0的代数余子式是________.75.已知矩阵⎥⎦⎤⎢⎣⎡=421x A 可逆,则x 的取值范围为76.已知函数cos ()sin xf x x=, 则方程()021cos =+⋅x x f 的解是________.77.下列命题: ①函数⎪⎭⎫⎝⎛-=2sin πx y 在[]π,0上是减函数; ②点A (1,1)、B (2,7)在直线03=-y x 两侧;③数列{}n a 为递减的等差数列,051=+a a ,设数列{}n a 的前n 项和为n S ,则当4=n 时,n S 取得最大值; ④定义运算11a b ,b a b a a b 122122-=则函数()13312x x x x x f +=的图象在点⎪⎭⎫⎝⎛31,1处的切线方程是.0536=--y x其中正确命题的序号是________(把所有正确命题的序号都写上).78.不等式1111x x+-1≤的解集为._______79.若规定a b cd=|ad -bc|,则不等式log2111x<0的解集为80.三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,111213212223313233 a a a a a a a a a ⎛⎫ ⎪⎪ ⎪⎝⎭从中任取三个数,则至少有两个数位于同行或同列的的概率为__________.81.不等式1011ax x <+对任意R x ∈恒成立,则实数a 的取值范围是 .82.规定矩阵A A A A ∙∙=3,若矩阵31 1 10 10 1x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则x 的值是_____________.83. 已知线性方程组的增广矩阵为103210⎛⎫ ⎪⎝⎭,则其对应的方程组为_____________ 84.若1250120131xx =,则实数x = . 85.矩阵1141⎡⎤⎢⎥⎣⎦的特征值为 . 86.若=642531222c b a 222222C c B b A a ++,则2C 化简后的最后结果等于__________.87.已知矩阵2134A -⎛⎫=⎪⎝⎭,2143B -⎛⎫= ⎪⎝⎭,则A B ⨯=____________ 88.cos()αβ-计算公式可用行列式表示为_____________. 89.若1312,2433A B -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则=-B A 3 .90.若关于x, y 的线性方程组的增广矩阵为0603m n ⎛⎫⎪⎝⎭,该方程组的解为3,4.x y =-⎧⎨=⎩则mn的值为 .91.已知N=0110-⎛⎫⎪⎝⎭,计算N 2.92.三阶行列式xb x x D 31302502-=, 元素b ()R b ∈的代数余子式为()x H ,(){}0≤=x H x P ,(1) 求集合P ;(2)函数()()22log 22f x ax x =-+的定义域为,Q 若,P Q ⋂≠∅求实数a 的取值范围;93.已知矩阵A =⎪⎭⎫ ⎝⎛b a 12有一个属于特征值1的特征向量⎪⎪⎭⎫ ⎝⎛-=12α. (Ⅰ) 求矩阵A ; (Ⅱ) 若矩阵B =⎪⎭⎫⎝⎛-1011,求直线10x y ++=先在矩阵A ,再在矩阵B 的对应变换作用下的像的方程.94.点(-1,k)在伸压变换矩阵001m ⎡⎤⎢⎥⎣⎦之下的对应点的坐标为(-2,-4),求m 、k 的值.95.已知矩阵A = ⎝⎛0a ⎪⎪⎭⎫b 1把点(1,1)变换成点(2,2) (Ⅰ)求b a ,的值(Ⅱ)求曲线C :122=+y x 在矩阵A 的变换作用下对应的曲线方程. 96.选修4—2:矩阵与变换 (本小题满分10分)已知矩阵3222-⎡⎤=⎢⎥-⎣⎦M ,⎥⎦⎤⎢⎣⎡-=41α,试计算:10M α. 97.(1)(矩阵与变换)求矩阵12A 14⎛⎫= ⎪-⎝⎭的特征值和对应的特征向量。

(完整版)第一章行列式与矩阵的计算的练习(含答案)

(完整版)第一章行列式与矩阵的计算的练习(含答案)

(完整版)第一章行列式与矩阵的计算的练习(含答案)行列式及矩阵的计算(课堂练习)一、填空1.已知三阶方阵A 的行列式为3,则2A -= -242. 设12,01A -??= 1()32x g x x -=-+,则()g A =0800-??3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若3,A B =则=,,,,6αβγβγα+=4.行列式11111111---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=kA 1021k ??。

(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=,1232,,,n αααβ=,则12312,,,2αααββ-=16m n +解:11231232,,,2,,,Dαααβαααβ=+-14412312322,,,(1),,,16m n αααβαααβ=+-=+7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分别为3,-2,1,1,则行列式D =-3 .解:D =1×3+3×(-2)+(-2)×1+2×1=-3二、判断题1.设A 、B 均为n 阶方阵,则A B A B =.(× )2.设A 、B 均为n 阶方阵,则AB A B =. (√ )三、行列式计算(1)4333343333433334ΛΛΛΛΛΛΛΛΛ=n D 解:nD n c c c c c c +++13121M 43313343133341333313ΛΛΛΛΛΛΛΛΛ++++n n n n 11312r r r r r r n ---M 10100001033313ΛΛΛΛΛΛΛΛΛ+n =13+n (2)11111231149118271D --=--解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2-1)=-240五、a 为何值时,线性方程组:-=++=++=++aax x x x ax x x x x a 322321321321有唯一解?解:2)1)(2(111111det -+==a a aa a A ,2-≠a 且1≠a 时,有唯一解.。

线代矩阵行列式优秀习题

线代矩阵行列式优秀习题

1

0
2
0 1 0 0
1 2 . 2
1

0
0 1
2
0
3 2 A A A 0 0
0 0
3
2
2
2
0
3 2 3 3
1 2 0 2 0
矩阵行列式习题课
一、主要概念:
1.矩阵的定义
2.特殊的矩阵(对角阵;上、下三角阵; 对称阵与反对称阵;矩阵多项式) 3.逆矩阵、伴随矩阵的定义 4.分块矩阵的定义 5.矩阵的初等变换、初等矩阵 6.矩阵等价的定义、等价标准形
7.矩阵秩的定义
二、主要性质
1.矩阵的运算性质(特别注意:矩阵乘法不满足 交换律;消去律) 2.逆矩阵的性质 3.矩阵秩的性质。
1 3 4 2 1 3 0 2 1 0 0 2
解: A( I C 1 B )T C T A[C ( I C 1 B )]T
A(C B ) A(C B ) I
T
T T
所以有
A (C T B T ) 1 1 2 3 4 0 0 0 1 0 0 2 1 0 3 2 1
例9
设n阶方阵
a 1 A 1 1 1 1 1 a 1 1 1 a 1 1 1 a
求r(A)
解:由于n阶矩阵A的行列式 A (a 1) n1 (a n 1) 所以(1) 当a 1且a 1 n时, 0, A
线性方程组的解的定理 1、非齐次线性方程组 定理1 设非齐次线性方程组为AX=b
其中A为m n矩阵,B A b 为m ( n 1) 矩阵, 称为增广矩阵 则 ,

行列式习题课共56页

行列式习题课共56页

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
行列式习题课
26、机遇对于有准备的头脑有特别的 亲和力Байду номын сангаас。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

行列式习题课PPT课件

行列式习题课PPT课件

的行列式是
0 0 -x 0 0 x2 y2. 00 0 y 0
个字行列式, 其计算方法 如上.
0 0 0 0 -y 11 第11页/共36页
例4 不计算行列式值,利用性质证明
xx
2
2 x 1 3 ( x 1)( x 2)( x 3)
3 3 x1
证明:令
xx 2 f (x) 2 x 1 3
第6页/共36页
0 0
ann
a1n 0
0
第1章
6
3、设D1是m 阶行列式,D2是n 阶行列式,则
D= D1 0
0 D2
D1D2;
0 D=
D2
D1 0
(1)mn D1D2。
4、范德蒙行列式
11 x1 x2 x12 x22
1
xn xn2 (xi x j ).
ni j1
x x n-1
n-1
1
2
c c2 1
1 a a2 =(ab bc ac) 1 b b2
1 c c2
(ab bc ac)(b a)(c a)(c b).
又因a>b>c>0,所以D<0. 14 第14页/共36页
例6 设α、β、γ是方程x3+px+q = 0的根,计算
D .
解 由于 D
λn
第5页/共36页
第1章
5
2、上、下三角行列式.
a11 a12
0 D=
a22
a1n a11 0 a2n a21 a22
00
= a11a22
0 0 D=
ann
ann .
an1 an2
0 a1n a11 a12
a2n1 a2n a21 a22

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析1.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021.已知πβα=+,2πβα=-,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ).A. 00⎡⎤⎢⎥⎣⎦B. 01⎡⎤⎢⎥⎣⎦C. 10⎡⎤⎢⎥⎣⎦D. 11⎡⎤⎢⎥⎣⎦2.定义运算a b ad bc c d =-,则符合条件120121z ii i +=--的复数z 对应的点在( )A.第四象限B.第三象限C.第二象限D.第一象限 3.矩阵E =⎪⎪⎭⎫⎝⎛1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数4. 若行列式212410139xx =-,则=x .5.若2021310x y -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,则x y += .6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-⎛⎫ ⎪⎝⎭,则x y -=_______. 7.矩阵1141⎡⎤⎢⎥⎣⎦的特征值为 . 8.已知变换100M b ⎡⎤=⎢⎥⎣⎦,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知,,则y= .11.若2211x xx y y y=--,则______x y +=12.计算矩阵的乘积=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛0110n m y x ______________ 13.已知矩阵A -1 =⎪⎪⎭⎫ ⎝⎛1201,B -1 =⎪⎪⎭⎫ ⎝⎛1011,则 (AB)-1 = ;七、解答题14.已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M . 15.已知直线1=+y x l :在矩阵⎥⎦⎤⎢⎣⎡=10n m A 对应的变换作用下变为直线1=-'y x l :,求矩阵A .16.[选修4—2:矩阵与变换]已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,求矩阵A 的特征值和特征向量. 17.已知二阶矩阵M 有特征值λ=3及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .18.(选修4—2:矩阵与变换)设矩阵02 1a ⎡⎤=⎢⎥⎣⎦M 的一个特征值为2,若曲线C 在矩阵M 变换下的方程为221x y +=,求曲线C 的方程.19.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎢⎡⎦⎥⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎢⎡⎦⎥⎥⎤3-2.求矩阵A ,并写出A 的逆矩阵.20.选修4­2:矩阵与变换已知矩阵M =12b c ⎡⎤⎢⎥⎣⎦有特征值λ1=4及对应的一个特征向量e 1=23⎡⎤⎢⎥⎣⎦.(1)求矩阵M ;(2)求曲线5x 2+8xy +4y 2=1在M 的作用下的新曲线的方程.21.求直线x +y =5在矩阵0011⎡⎤⎢⎥⎣⎦对应的变换作用下得到的图形.22.已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 23.求点A(2,0)在矩阵1002⎡⎤⎢⎥-⎣⎦对应的变换作用下得到的点的坐标. 24.已知N=0110-⎛⎫ ⎪⎝⎭,计算N 2.25.已知矩阵M =1234⎡⎤⎢⎥⎣⎦,N =0113-⎡⎤⎢⎥⎣⎦. (1)求矩阵MN ;(2)若点P 在矩阵MN 对应的变换作用下得到Q(0,1),求点P 的坐标. 26.已知矩阵20 01⎡⎤=⎢⎥⎣⎦A ,1125-⎡⎤=⎢⎥⎣⎦B ,求矩阵1-A B 27.已知矩阵A =10-⎡⎢⎣ 02⎤⎥⎦,B =01⎡⎢⎣ 26⎤⎥⎦,求矩阵1A B -.28.求使等式 2 4 2 03 50 1M ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦成立的矩阵M . 29.已知矩阵A =⎪⎭⎫ ⎝⎛b a 12有一个属于特征值1的特征向量⎪⎪⎭⎫ ⎝⎛-=12α. (Ⅰ) 求矩阵A ; (Ⅱ) 若矩阵B =⎪⎭⎫⎝⎛-1011,求直线10x y ++=先在矩阵A ,再在矩阵B 的对应变换作用下的像的方程.30.已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.参考答案1.A【来源】2012-2013学年湖南省浏阳一中高一6月阶段性考试理科数学试题(带解析) 【解析】试题分析:根据题意,由于根据新定义可知⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,那么由2πβα=-,πβα=+sin cos cos sin cos cos sin s ()cos sin sin cos cos sin sin cos()in ααβαβαβαβααβαβαβαβ++⎡⎤⎡⎤⎡⎤⎡⎤⋅==⎢⎥⎢⎥⎢⎥⎢⎥+-⎣⎦⎣⎦⎣⎦⎣⎦=00⎡⎤⎢⎥⎣⎦,故选A. 考点:矩阵的乘法点评:此题主要考查矩阵的乘法及矩阵变换的性质在图形变化中的应用,属于基础题.考查知识点比较多有一定的计算量 2.D【来源】2012-2013学年河北省邢台一中高二下学期第二次月考理科数学试题(带解析) 【解析】 试题分析:按照所给法则直接进行运算,利用复数相等,可求得复数对应点所在象限.根据题意,由于120121z ii i +=--,即可知z (1-i )-(1-2i )(1+2i )=0,∴z (1-i )=5 设z=x+yi ,∴z (1-i )=(x+yi )(1-i )=5,(x+y )+(y-x )i=5,x+y=5,y-x=0,那么考点:复数点评:主要是考查了复数的基本概念和代数形式的混合运算,是高考常考点,也是创新题,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档