环烷烃的异构
环烷烃
• 环烷烃的化学性质
加氢
与卤素反应
+ Cl2
hv
+ Br2 300 ℃
Cl + HCl
Br + HBr
与氢卤酸反应
+HI +HI CH3 +HI
CH3CH2CH2I
CH3CH2CH2CH2I I
CH3CHCH2CH3
反应活性次序 :
• 第三章习题 • 1-1,2,4,5,6 • 3-1,2,5 •5 • 6-1,2,4,5 • 10-1
CH3 CH3
CH3 CH3
优势构象
多取代环己烷有不同取代基时,体积较大 的取代基在e键为优势构象
CH3
CH3
(CH3)2CH
CH(CH3)2
(CH3)2CH
CH3
优势构象
(CH3)2CH
CH3
CH3
(CH3)2CH
优势构象
(CH3)2CH CH3
• 思考题: 写出反-1-甲基-3-叔丁基环己烷的优势构象。
4
315
2
6
a键和e键:
6个a键
6个e键
• a键和e键的转换
H 5H 4H 3
H
H6 1 H2
4 5
3
6
2 1
• 取代环己烷的稳定构象
单取代环己烷一般以取代基在e键的 构象为优势构象
H
5H
4
3
HH
C
H
61
室温
2
4
3
5
2
6
CH3
1
CH3
H
多取代环己烷一般以取代基在e键较多者为 优势构象
CH3 CH3
第二章烷烃和环烷烃
(1)乙烷的构象
H3C CH 3
当C-C键旋转时, 可产生无数个构象
有两种典型conformation:
乙烷的两种典型构象的表示方法
优势构象
交叉式 staggered
H
重叠式 eclipsed
作业:P130 /1, 6, 7 ,8; P105 / 8(3) (4) *C2-C3键旋转 阅读Section 1. Alkanes and Cycloalkanes 全文
翻译 1.1第一段,1.2.2第一段,1.2.3 第四段
CH3 CH3 CH C Br
CH3 CH3
四、环烷烃的异构现象
1. 顺反异构 cis-trans isomer (P84) 环烷烃环中C-C单键受环约束不能自由旋转,导致产生顺反异构
HH
H
CH 3
CH 3 CH 3
顺-1,2-二甲基环丙烷
CH 3 H
反-1,2-二甲基环丙烷
练习:写答出案: 1-甲基-3-乙H基环己烷的顺反异构体CH 3
伯碳(1°):一级碳原子,只与1个其他碳原子直接相连
仲碳(2°):二级碳原子,只与2个其他碳原子直接相连
叔碳(3°):三级碳原子,只与3个其他碳原子直接相连
季碳(4°):四级碳原子,只与4个其他碳原子直接相连
CH3
CH3
H3C
C CH2
3° 2°
H
伯氢(1°H):伯碳上的H
仲氢(2°H):仲碳上的H
练习:预测2-甲基丁烷在室温下进行氯代反应所得的一氯代物
Cl
答 案 : C3 C H H C2C H H 3 +C 2l 光 C3 C H C2 C H H 3
环烷烃的顺反异构对映异构
• 分析分子中有无对称元素。若分子中没有对称 面也没有对称中心,一般为手性分子,具有旋 光性;否则为非手性分子。
•
• 1 对称面(Plane of symmetry):如果假想一 个平面将分子一分为二切开,两部分互为镜像, 这个平面就成为该分子的对称面,用σ表示。 有对称面的分子一定是非手性分子,没有旋光 性。
得到的投影式与原来投影式都表示同一 构型。
• ⅰ与 ⅲ表示同一构型。 • 通过上述方法,可以从若干个Fisher投
影式式中,判断那些代表同一构型化合 物,那些是不同的化合物。 • • 4、 手性化合物的构型标记:
• D/L构型标记法(相对构型):
• 下面是甘油醛的一对对应体,一个使偏 振光偏振面向右旋转某个角度,是右旋 体,用(+)表示;另一个是左旋体,用 (-)表示。
D-(+)-甘油醛
D-(-)-甘油酸
• 与甘油醛相关联的手性化合物都可用D/L 来标记。此种命名法主要对葡萄糖、氨 基酸类化合物。适用范围有限。
• 与甘油醛不相关联的手性化合物就不可 用D/L法来标记只能用IUPAC规定的R/S :
• A、首先按次序规则确定与手性碳原子连 接的四个不同的原子或基团a,b,c,d的先后 次序(排大小)a>b>c>d ‘>’表示“优先 于”
•
• 注意: 构型和旋光方向是两个不同的概念。 • 构型: 是分子中原子在空间的排列。 • 旋光方向:是旋光仪对手性化合物进行测定
的结果。
• (+)、(-)代表的是旋光方向,但不能 代表哪一个构型,从旋光方向上无法判断分子 构型。
•
• 假定: 在Fisher投影式中,具有上述 (Ⅰ)结构,羟基在手性碳的右边的为D 型甘油醛,具有(Ⅱ)结构,羟基在手 性碳的左边的为L型甘油醛
环烷烃
a键
e键
(3) 相邻两组a键伸展方向相反,一个向上,一个向下,e 键也如此。
a a
e e
e a
a e
e e a a
1
2
3
4
a
e
a 和e键的关系不清晰
5 a 和e 键的关系清晰
3.构象翻转:
Year 1883
Name of scientist Baeyer
1890 H.Sachse 1915-1918 W.M.Mohr
1920
1943 O.Hassel
1950 D.Barton
Point of view
Assumes that six carbon atoms are on the same plane
当环己烷由一种椅式构象翻转为另一种椅式构象时,原
来的a键变成e键,原来的e键变成a键。由于六个碳上连接的 都是氢原子,所以两种椅式构象完全等同。
5
61
43
2
456 3 21
O
O
O
O O O
4O
O1 O
O O
4O O
O O
O
O
O
环上原子或基团的空间关系保持。
O
O O O
O1 O
二. 取代环己烷的构象
3.3 环的张力
一、Bayer’s张力学说
Assumption: 1 成环的碳原子均在同一同面上,且呈正多边形 2 碳原子采取sp3杂化形式,正常键角应为约109.5度 3 为了满足平面正多边形的内角要求,成环的键必须向内或向
c6h12环烷烃的构造异构体
c6h12环烷烃的构造异构体
C6H12是一个环烷烃分子的分子式,表示它包含了6个碳和12个氢原子。
对于环烷烃而言,构造异构体是指同样的分子式下,分子结构不同的化合物。
根据C6H12的分子式,以下是一些可能的构造异构体:
1. 六甲基环己烷:这是最简单的C6H12异构体,分子由一个六元环和6个甲基基团组成。
2. 甲基环己烷:这是另一个C6H12异构体,分子由一个六元环、5个甲基基团和一个乙基基团组成。
3. 叔丁基环戊烷:这是另一个C6H12异构体,分子由一个六元环、一个叔丁基基团和3个甲基基团组成。
4. 顺丁烯环戊烷:这是另一个C6H12异构体,分子由一个六元环和一个顺丁烯基团组成。
还有其他很多可能的C6H12构造异构体,以上只是其中的一些例子。
构造异构体的种类数量随着碳原子数的增加而增加。
有机化学-第二章-烷烃和环烷烃(二)
英文简写 Me Et n-Pr i-Pr n-Bu s-Bu i-Bu t-Bu
neo-Pentyl
有机化学 第二章
13
烷烃的命名
有机化学 第二章
14
普通命名法
有机化学 第二章
15
普通命名法
局限:复杂 的烷烃无法 命名。
有机化学 第二章
16
衍生命名法
以甲烷为母体,把其它的烷烃都看作是甲 烷的烷基衍生物。
有机化学 第二章
65
CH3
1
H 2H
H
CH3 H 1 2 CH2
H
CH2
H
H
1
2 HCH3 H
H
H 1 2 CH2
CH3
CH2
H
取代基处在e 键上稳定。
有机化学 第二章
66
有机化学 第二章
12
一些烷基(alkyl)结构及名称
烷基 CH3 CH3CH2 CH3CH2CH2 CH3CHCH3 CH3CH2CH2CH2 CH3CH2CHCH3
(CH3)2CHCH2 (CH3)3C (CH3)3CCH2
烷基名称 甲基 乙基 正丙基 异丙基 正丁基 仲丁基 异丁基 叔丁基 新戊基
有机化学 第二章
62
环己烷可以由一种椅型构象翻转成另一 种椅型构象,原来的a键变为e键,原来的e键 变为a键:
翻转
一种椅型构象经半椅型、纽船型、船型翻转 成另一种椅型构象。在能量上:
椅型构象 < 纽船型构象 < 船型构象 < 半椅型构象
有机化学 第二章
63
环己烷的有构机化象学 第翻二章转
64
2.4.4 取代环己烷的构象
稳定性:
立体化学 第5章 环烷烃
1,2,4-三甲基环己烷
C. 必要时须注明立体构型;
D. 复杂化合物也可将环的部分当作取代基。
顺-1,2-二甲基环丙烷 反-1,3-二甲基环丁烷
4-环戊基庚烷
(2) 多环化合物的命名:
(命名较为复杂, 以二环化合物为例). A. 参加成环的总碳原子数作为母体烃; 如有8个碳原子,则称为辛烷 B. 简单桥环可用“二环”、“三环”等作词头; C. 二环“连接”处的碳原子为桥头碳原子; D. 从桥头碳原子处,由大环开始编号;将各“桥”所含的碳原子 数写入方括号中(注意:桥头C原子都不可计入)。
2) 环戊烷的构象
环戊烷的结构是以拆叠的形式存在,四个C原子基本在一 平面上,另一个C则在平面之外,这种构象称为信封式构象。 环戊烷由于以“信封式”构象存在,使分子张力较小,化学性 质较稳定。
3) 环己烷的构象及构象分析
i) 椅式和船式构象
椅式
船式
船式构象相对能量较高, 不稳定,通过C-C键扭曲, 使其成为扭曲式(或称为扭 船型)。这种构象相对于船 式能量低。
角张力---由于键角偏离正常键角 而产生的张力。
环丙烷的三个C在同一平而上,相邻两个C上的C-H键都是重叠式构象, 相互拥挤,产生排斥,也具有较高的能量。
扭转张力---由于重叠式构象而产生的张力。
4. 环烷烃的构象和构象分析
1) 环丁烷的构象
环丁烷的四个C不在同一平面上,形如蝴蝶。即通过C-C键的扭转而以 一个拆叠的碳环存在。 环丁烷的三个C原子分布在同一平面,另一个C取于平面之外。 环丁烷的这种存在形式可使环的张力降低,但仍然是一个不稳定分子。
(1)分子中有两个平行的平面,C1、C3、C5和C2、C4、C6;
(2)12个氢原子分成两类:一类与分子对称轴平行,即垂直于环平面,称为
第二章烷烃环烷烃自由基反应历程解析
烷烃名称的写出
(1)将支链(取代基)写在主链名称的前面。 (2)取代基按“次序规则”小的基团优先列出。 烷基的大小次序:甲基<乙基<丙基<丁基<戊基 <己基<异戊基<异丁基<异丙基。 (3)相同基团合并写出,位置用2,3……标出, 取代基数目用二,三……标出。 (4)表示位置的数字间要用逗号隔开,位次和 取代基名称之间要用“半字线”隔开。 例如: 可将烷烃的命名归纳为十六个字:最长碳链, 最小定位,同基合并,由简到繁。
(1)称为环某烯。 (2)以双键的位次和取代基的位置最 小为原则。 例如:
CH 3
环戊烯 1-甲基环戊烯
环烯烃的命名
CH 3 CH 3
3,4-=甲基 环己烯 1,3-环戊烯 2-甲基-1,3环己二烯
多环脂肪烃的命名
(1) 桥环烃(二环、三 环等) 分子中含有两个或 多个碳环的多环化合物中, 其中两个环共用两个或多 个碳原子的化合物称为桥 环化合物。
选择主链 :a 最长碳链b取支链多的
CH 3-CH2 CH CH CH 2-CH3 CH 2 CH CH 3 选择错误 CH 3 CH 3 选择正确 CH 3-CH2-CH CH 3 CH 3 CH CH CH-CH 3 CH 2 CH 3 选择正确 CH 2 CH 3 选择错误
碳原子的编号
(1) 从最接近取代基的一端开始,将主链碳原子用1、2、 3……编号
三、烷烃的结构
CnH2n+2
109°28′
C H H
sp3
?
H C H
CH4
+ 4
H
甲烷分子的形成
为什么烷烃分子中碳原子为四价, 且四个价键是完全相同的呢?
大学有机化学课件第二节环烷烃
2023/10/6
十氢萘
二、环烷烃得理化性质
(一)物理性质
状态:环丙烷、环丁烷为气态;常见 环为
(二)化学性质
液态;中环和大环为固态。
沸点、熔点、密度:比开链烷烃高。
1、卤代反应
H2CCHC2溶H解2 性+ C:不l2 溶h于 水H,可2CC溶H于C2 H有C机l溶+剂H。Cl 稳定性:六元环>五元环>四元环>三
H
0.252nm
H
行得C—H键 得C-H键
H
H
H HH
H H
H
H
H
2023/10/6
椅式构象中有六个直立键,六个平伏键。直立键和周围
其她键之间得距离较近,原子间得斥力大,所以不稳定。
平伏键和周围其她原子间得距离远,原子间斥力小,所以
较稳定。
平伏键
H
H
直立键
H
2023/10/6
H H
H H
H
H H
H H
2023/10/6
螺原子
3、桥环脂环烃得命名
(1)注明词头 (2)确定母体 (3)注明环得结构 (4)编号 (5)名称书写:同烷烃
2023/10/6
以桥环中含环得数目为词头。如双环 、三环等。
算出所有环所含碳原子得总数,并将与这一 数字相应得链烃得名称写在词头得后面。 如:双环某烷、三环某烷等。
3、环烷烃得氧化燃烧
2023/10/6
从燃烧热值也可看出环得稳定性次序为: 六元环>五元环>四元环>三元环
环丙烷 697.1
每个“CH2”单位得平均燃 烧热值越大,说明分子得内 能越高,稳定性越差。
环丁烷
环戊烷
环己烷
烷烃、环烷烃、烯烃、炔烃
烷烃、环烷烃、烯烃、炔烃一、烷烃1、烷烃的命名和异构普通命名法、习惯命名法C1-C10:甲、乙、丙……壬、癸C11以上用中文数字:如十一烷正、异、新的含义俗名系统命名法一长、二多、三小的原则(最低系列)书写原则:a、在母体前标出取代基及位次b、相同取代基合并,小的在前(按次序规则)c、数字与数字间用逗号、数字与文字间用短横隔开IUPAC命名法与系统命名法的区别:取代基书写次序按英文字母序烷基的命名及英文缩写-CH3甲基Me. -CH2CH3乙基Et.-CH2CH2CH3丙基n-Pr. -CH(CH3)2异丙基i-Pr.-(CH2)3CH3 丁基n-Bu. -CH2CH(CH3)2异丁基i-Bu.-CH(CH3)CH2CH3 仲丁基s-Bu.-C(CH3)3叔丁基t-Bu.SP3杂化、正四面体结构伯、仲、叔、季碳原子(1°、2°、3°、4°碳原子)构造式、结构简式、键线式锯架式、投影式、纽曼式等同分异构构造异构碳架异构、位置异构、官能团异构构型异构对映异构、顺反异构(烯烃、脂环化合物)构象异构1、烷烃的物理性质及变化规律颜色、气味熔点、沸点密度、溶解性、极性变化规律沸点(直链、支链)熔点(直、支链,奇、偶数)2、烷烃的反应A、氧化反应燃烧生成CO2和H2O 注意碳氢比与产物的关系催化氧化生成含氧衍生物如醇、醛、酸等【例题】三种等摩尔气态脂肪烷烃在室温(25℃)和常压下的体积为2升,完全燃烧需氧气11升;若将该气态脂肪烃混合物冷至5℃,体积减少到原体积的0.933倍。
试写出这三种脂肪烃的结构式,给出推理过程。
注:已知该混合物没有环烃,又已知含5个或更多碳原子的烷烃在5℃时为液态。
(12分)【评析】(1)解题的第一步是写出用烷烃通式来表示的完全燃烧的化学方程式:C n H2n+2+(1.5n+0.5)O2=nCO2+(n+1)H2O写出通式的依据自然是试题告诉我们——这三种气态烷烃中没有环烷。
第二节 环烷烃
第二节环烷烃2.1环烷烃的定义和命名分子中具有碳环结构的烷烃称为环烷烃,单环烷烃的通式为C n H2n,与单烯烃互为同分异构体。
环烷烃可按分子中碳环的数目大致分为单环烷烃和多环烷烃两大类型。
1.单环烷烃最简单的环烷烃是环丙烷,从含四个碳的环烷烃开始,除具有相应的烯烃同分异构体外,还有碳环异构体,如分子式为C5H10的环烷烃具有五种碳环异构体。
为了书写方便,上述结构式可分别简化为:当环上有两个以上取代基时,还有立体异构。
单环烷烃的命名与烷烃基本相同,只是在“某烷”前加一“环”字,环烷烃若有取代基时,它所在位置的编号仍遵循最低系列原则。
只有一个取代基时“1”字可省略。
当简单的环上连有较长的碳链时,可将环当作取代基。
如:2.多环烷烃含有两个或多个碳环的环烷烃属于多环烷烃。
多环烷烃又按环的结构、位置分为桥环、螺环等。
(1)桥环两个或两个以上碳环共用两个以上碳原子的称为桥环烃,两个或两个以上环共用的叔碳原子称为“桥头碳原子”,从一个桥头到另一个桥头的碳链称为“桥”。
桥环化合物命名时,从一个桥头开始,沿最长的桥编到另一个桥头,再沿次长的桥编回到起始桥头,最短的桥最后编号。
命名时以二环、三环作词头,然后根据母体烃中碳原子总数称为某烷。
在词头“环”字后面的方括号中,由多到少写出各桥所含碳原子数(桥头碳原子不计入),同时各数字间用下角圆点隔开,有取代基时,应使取代基编号较小。
例如:1,2,7-三甲基-双环[2.2.1]庚烷双环[4.4.0]癸烷双环[2.2.1]庚烷(2)螺环脂环烃分子中两个碳环共用一个碳原子的称为螺环烃,共用的碳原子为螺原子。
命名时根据成环的碳原子总数称为螺某烷,编号从小环开始,经过螺原子编至大环,在“螺”字之后的方括号中,注明各螺环所含的碳原子数(螺原子除外),先小环再大环,数字间用下角圆点隔开。
有取代基的要使其编号较小。
例如:5-甲基螺[3.4]辛烷 1,6-二甲基螺[3.5]壬烷2.2环烷烃的物理性质在常温常压下,环丙烷与环丁烷为气体,环戊烷、环己烷为液体。
掌握环烷烃的构造异构和顺反异构及其命名方法;
掌握环烷烃的构造异构和顺反异构及其命名方法;第三章环烷烃教学目的与要求:1. 掌握环烷烃的构造异构和顺反异构及其命名方法;2. 了解环烷烃的物理性质,掌握环烷烃的化学性质;3. 理解环的张力;4. 掌握环己烷和取代环己烷的的构像;5. 了解多环烃命名方法。
教学重点、难点:环烷烃的化学性质;环己烷和取代环己烷的的构像。
环烷烃是指分子中碳原子以单键互相连接成闭合的碳环,剩余的价完全与氢原子相连。
将链烃变为环烃,要在分子中增加一个碳-碳单键,同时减少两个氢原子,因此,单环烷烃的通式为CH。
n2n ? 3.1环烷烃的异构和命名3.1.1 环烷烃的异构1. 构造异构:环烷烃由于环的大小,侧链的长短及位置的不同而产生构造异构体。
CH 无构造异构 36CH 48CH 5102. 顺反异构1,4-二甲基环己烷分子中,两个甲基可以在环平面的同侧,也可以在环平面的异侧,形成顺反异构:HCHHH3CHCH33CH3H顺反异构体由于环的存在,不能互变(断键)。
其物理性质有差异。
13.1.2 环烷烃的命名1.单环体系1)根据环中碳原子数目叫做环某烷。
2)有取代基时,编号应使取代基位次尽可能小。
3)有不同取代基时,编号从小基团开始。
CH3CHCH3CHCHCH2331-甲基-3-乙基环戊烷 1-甲基-4-异丙基环己烷 2. 顺反异构体命名时,取代基在环平面同侧称顺式(cis-),异侧称反式(trans-)。
HCHHH3CHCH33CH3H顺-1.4-二甲基环己烷反-1.4-二甲基环己烷为书写方便,环烷烃常用键线式:戊烷 3-环己基己烷?3.2 环烷烃的物理性质和化学反应3.2.1 环烷烃的物理性质环烷烃的熔点、沸点和比重都较相应的开链烷烃高。
因环烷烃的环状结构,分子较有序,排列较紧密,分子间作用力较大。
而直链烷烃分子自由摇摆,有序度小,分子间作用力较弱,故熔点、沸点和比重较小。
3.2.2 环烷烃的反应环烷烃与直链烃结构相似,所表现出的化学性质也相似(常温下,不与强酸、强碱、强氧化剂、强还原剂起反应,可以起燃烧、热解、卤代等反应)。
1 有机化合物的异构和命名
第一章第章有机化合物的异构和命名理解有机化合物的习惯命名法理解有机化合物的衍生物命名法掌握有机化合物的IUPAC 命名法掌握有机化合物的CCS 命名法§1.11.1有机化合物命名法有机化合物命名法y 习惯命名法y 衍生物命名法y系统命名法:IUPAC 命名法(国际纯粹与应用化学联合会)以abcd…字母排先后CCS 命名法(中国化学会)简称CCS 法,以次序规则排先后简序则甲基methyl 乙基ethyl 丙基propyl 丁基butyl烷烃的异构:2+21、烷烃的异构:C n H2n+2全式:CH—CH—CH—CH H C CH CH CH 3223323C的数目异构体数目6 565CH … …H HH伯C、仲C、叔C、季C仲叔季构造异构体:(碳骼异构)12331C212C1C命名法——习惯命名法:指低级的简单的烷烃:甲、乙、丙、丁、戊、己、庚、辛、壬、癸、十一、十二……烷甲乙丙丁戊己庚辛壬癸十十二无支链的为正有支链的用异、仲、叔、新……表示正丁烷异丁烷对简单的支链化合物而言:对简单的支链化合物言以甲烷为母体选择连有烷基最多的C原子作为甲烷的母体原子连接的烷基按次序规则排列,优先基团后列四甲基甲烷二甲基乙基异丙基甲烷异正丁基异丁基异丙基仲丁基叔丁基异异甲基乙基异丁基异丙基甲烷CCS 命名法要点:(1) C C C ()选择分子中最长的链作为主链,按这个链所含有原子数称为CH 2CH 2CH 33-3甲基己烷取代基位次取代基数目甲乙丙… 烷2,4-二甲基戊烷,甲基戊烷b) 基先序序先基×c) 有两个以上不同取代基时,先按次序规则排列次序,再按优先基3-甲基-5-乙基-4-异丙基庚烷2原则选定原则选定:a) 2,3,5-三甲基-4-丙基庚烷×多一长二多三小官能团多取代基位次小¾CCS 用命名法命名下列烷烃13取代基小的位置小烯烃的异构1、烯烃的异构:C H 构造异构:位置异构(双键的位置)立体异构以C 7H 14为例:系统命名法——系统命名法:要点:i选择双键在内的最长C链为主链iiiii 官能团(双键)的位次最小5-甲基-3-乙基-3-丙基-1-己烯1)对简单烯烃而言:2烯CH CHCH2-丁烯CH CH=CHCH如果四个基团都不同:X个基团都同X(E)-(Z)-优先基团异面优先基团同面a)a)原子序数大的优先;同位素质量大的优先(C)(C)(C)(C)例:(Z)22(E)22()()()()(Z)-2-氯-2-丁烯(E)-2-氯-2-丁烯Cl炔烃的异构1、炔烃的异构:C H 构造异构叁键的位置异构(官能团异构)炔烃∗——CCS 命名法定)4-烯丙基-1-辛烯-6-炔4-乙基-6-辛烯-1-炔-16-4-炔丙基-1,6-庚二烯烷烃的异构1、环烷烃的异构位置异构旋光异构2)多环烷烃2) 多环烷烃:C H顺-cis-反-trans-——旋光异构写出分子式为C 5H 8的所有环烷烃的异构体:2、环烷烃的命名:-1,4-二甲基环己烷cis-反-1,4-二甲基环己烷trans-顺,甲基环己烷,甲基环己烷CHCH 2CH 2CH 3——螺环化合物:1368——桥环化合物:桥环化合物环71534课后作业:1出分子式为C 要含有含键叁1、写出分子式为C 6H 10,要含有三元环而不含双键、叁键的所有异构体并命名之。
有机化学烷烃和环烷烃
2.2 烷烃和环烷烃的命名
练习: 1) 5-丙基-4-异丙基壬烷 4-isopropyl-5-propylnonane
8
6
4
9
7
5
2
3
1
CH3
2) CH3CH2CHCH2CHCH2CH3
CH3CHCH3
2,5-二甲基-3-乙基庚烷 3-Ethyl-2,5-dimethylheptane
思考:为什么不是3-甲基-5-异丙基庚烷?
再沿次长桥回到“桥头”碳,最短的桥最后编号。
9
8
4
5
H3C CH3
4 5
6 CH3
6
3
21
3
CH3 7 CH3
2
1
7
(稠环烷烃同二环命名)
1,7-二甲基二环 [3.2.2]壬烷
8, 8-二甲基二 环[3.2.1]辛烷
6-甲基二环[3.2.0]庚烷
2.2 烷烃和环烷烃的命名
(B)螺环烷烃——两个环共用一个碳原子的多环烷烃.
2.2 烷烃和环烷烃的命名
(D)支链上有取代基,从和主链相连的碳原子开始将支链碳原子 依次编号,并将取代基位号、名称连同支链名写在括号内。
1 2 3 4 5 6 7 8 9 10
CH3CHCH2CH2CHCH2CH2CH2CH2CH3 CH3 CH3—C1—' C2'H2—C3'H3 CH3
2-甲基 -5-(1,1 – 二甲基丙基)癸烷 或 2-甲基 -5-1’,1’ – 二甲基丙基癸烷
2.3 烷烃和环烷烃的结构
2.3.1 烷烃的结构 (1)甲烷结构
正四面体,所有C—H键长和 H-C-H键角均相等。
sp3杂化
第二节 环烷烃
偏转角度= 偏转角度= 2
N = 3 偏转角度
24° 24°44’
4
9°44’
5
4°4’
6
-5°16’
7
-9°33’
从偏转角度来看,五员环应最稳定, 从偏转角度来看,五员环应最稳定,大于五员环或小于五 员环都将越来越不稳定。但实际上,五员, 员环都将越来越不稳定。但实际上,五员,六员和更大的环型 化合物都是稳定的。这就说明张力学说存在缺陷。 化合物都是稳定的。这就说明张力学说存在缺陷。
CH 3 H最 多 和 含 H最 少 的 两个碳原子之间。 加成规律: 遵循不对称加成规律。
17/77
2、取代反应
hν
+ X2 X = Cl、Br X X
3、氧化反应: 氧化反应:
+ KMnO4 不反应
可与烯烃或炔烃区别开来。
+
O2
Co+ + , P
1.2 环烷烃
环烷烃的分类、 一 、环烷烃的分类、异构和命名 环烷烃 脂环烃 环烃 环烯烃 环炔烃 单环芳烃 芳 烃 多环芳烃 非苯芳烃
1/77
单环烷烃 桥环烷烃 螺环烷烃 集合环烷烃
单环烷烃的通式: 单环烷烃的通式:CnH2n
单 环 烷
n = 3, 4 3, n = 5, 6 5,
小
环
常见环 中 环
反-1-甲基-3甲基乙基环己烷
注:当环上有复杂的取代基时,碳环作为取代基 当环上有复杂的取代基时,
CH2CH2CH2CHCH2CH3
4-甲基-1-环丙基己烷 甲基CH3
7/77
CH3 C 2H 5
2
CH3
1 5
CH3
1 6 5
C2H5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、加溴
+ Br2 hv
+ Br2
+ Br2
BrCH2CH2CH2; HBr
+ HBr
H3C
CH3CH2CH2Br
CH3CH2CHCH3
Br
4、氧化
三元环对氧化剂相对稳定,例如,环丙烷不能使高锰 酸钾溶液退色。含三元环的多环化合物氧化时,三元环可 以保持不变。
O
O
O2 +
O
例题:某烃A,分子式为C5H10,不能使Br2-CCl4溶液 褪色,在光照下与Br2 作用,只得到一种产物B,分子式 为C5H9Br,此化合物与KOH-EtOH溶液加热回流得化合物 C(C5H8)。请推测A,B,C的结构式。
(A)
(B)
Br
(C)
第三节 环烷烃的来源和用途(自学)
补充环烷烃的实验室合成:
CH3
CH3
顺 -1,4-二 甲 基 环 己 烷
CH3
CH3
反 -1,4-二 甲 基 环 己 烷
例题:用CCS命名法命名下列化合物:
(A)
CH3
CH3
C(CH3)3 (B)
解 :(A) 1,1- 二甲基环丙烷 (B) 叔丁基环癸烷
碳环可以简写成相同大小的正多变型,每一个定点 表示一个亚甲基。还上有取代基式,在相应的位置上写 出取代基的编号。
第一节 环烷烃的异构和命名
一、环烷烃的异构
1、构造异构 环烷烃由于环的大小及侧链的长短和位置不同而产生构造
异构体。 最简单的环烷烃含有三个碳原子,它没有异构体;含有四
个碳原子的环烷烃有两个异构体;含五个碳原子的环烷烃有五 个构造异构体。
2、立体异构
构造相同,分子中原子在空间的排列方式不同的化合物互 称为立体异构体。
例如:1,4-二甲基环己烷分子中,两个甲基可以在环平 面的一边,也可以各在一边。它们的具有不同的物理性质,相 互转换需要较高的能量。这种现象称为顺反异构,是立体异构 的一种。
构象也属于立体异构体,例如,环己烷的椅式构象 和船式构象:
二、环烷烃的命名
单环烷烃的命名是根据环中碳原子的数目叫做环某烷。如环 上有取代基,则在母体环烃名称的前面加上取代基的名称和位置, 环上碳原子的编号,应使表示取代基位置的数字尽可能小一些, 有不同的取代基时,要用较小的数字表示较小的取代基。
二、环烷烃的化学性质
环烷烃的化学性质和烷烃相似,可以燃烧、裂解和 卤化。
含三元环和四元环的小环化合物有一些特殊的性质, 它们容易开环生成开链化合物。
1、氢解
Ni + H2
40℃, 常 压
CH3CH2CH3
Ni + H2
100℃, 常 压
CH3CH2CH2CH3
Pt + H2
300℃, 常 压
CH3CH2CH2CH2CH3
由于单环环烷烃的通式为CnH2n,如果把环烷烃的燃烧 热除以环内碳原子数n,得到的是各环烷烃的每一个亚甲 基的燃烧热,就可以进行比较。环烷烃的燃烧热参见表 3.2。
三、张力能
有机化合物中能产生张力的因素有:非键作用、键长 的变化、键角的变化和扭转角的变化。
非键作用:分子中两个非键合的原子或原子团由于几 何的原因相互靠近,当它们之间的距离小于两者的范德华 半径之和时,这两个原子或原子团就强烈地互相排斥,由 此引起的体系能量升高称为非键作用,用Enb表示。
1、分子内环化法
hv
2、分子间环化法
Zn-Cu
H3C
C H
CH2
+ CH2I2
3、环加成反应
Zn-Cu +
COOC2H5
+ COOC2H5
COOC2H5
第四节 环的张力
一、拜尔张力学说
1885年拜尔(A. von. Baeyer)提出张力学说:假定 形成环的碳原子都在同一平面上,并排列成正多边形;在 不同的环中碳碳键之间的夹角小于或大于正四面体所要求 的角度,碳碳键键角的变形会产生张力;键角变形的程度 越大,张力越大;张力使环的稳定性降低,张力越大,环 的反应活性也越大。
键长的变化:两个用化学键连接的原子核之间的距离
等于平衡键长时,能量最低。分子中由于几何的原因,必 须使某一个键生长或缩短,能量都随之升高,其大小用El 表示。
H3C
CH3
CH(CH3)2
环壬烷
1,1-二 甲 基 -4-异 丙 基 环 奎 烷
如取代基为较长的碳链时,则将环作为取代基,按照 烷烃的衍生物命名。
CH2CHCH2CH3
1,2-二 环 丙 基 丁 烷
3-环 己 基 己 烷
顺反异构体的命名是假定环中碳原子在同一个平面上, 把它作为参考平面。两个取代基在同一边的叫做顺式 (cis-),不在同一边的叫做反式(trans-)。
学习要求
1、了解环张力的概念、不同环的张力 2、掌握环烷烃的构造异构、立体异构以及环烷烃的命名方 法,环烷烃的物理性质和化学反应 3、掌握并会运用环己烷、取代环己烷的构象以及多环烃的 构象;掌握环己烷的椅式构象及其构象转换、椅式构象化学键 区别(a键、e键)。
教学重点:
构造异构、立体异构、环烷烃的命名,环烷烃的化学反应, 环己烷的椅式构象、不同取代类型的环己烷的构象
+ 22。 44’
+ 9。 44’
+ 0。 44’
- 5。 44’
根据拜尔张力学说,环己烷和更大的环都有因键角的 变化所引起的张力。但后来,普遍认识到这一结论是不正 确的,因为环己烷和更大的环中碳原子并不像拜尔假设的 那样在一个平面内。因此拜尔张力主要存在于小环化合物 中。
二、环烷烃的燃烧热
根据异构体燃烧热的大小可以推测其相对热化学稳定 性。不同环烷烃所含的碳原子和氢原子的数目不等,它们 的燃烧热不能直接进行比较。
环的一半可以用粗线写出,表示环平面与纸面垂直, 粗线表示在纸面的前面。
烷烃也可以简写成折线,每一个转折点便是一个亚 甲基,折线两端的点表示两个甲基。
第二节 环烷烃的物理性质和化学性质
一、环烷烃的物理性质
环烷烃的物理性质和支链烷烃相似。 环烷烃的高级同系物为固体,环烷烃的熔点较同碳数 直链烷烃的熔点高,因为它们能更紧密地排列在晶格中。 不溶于水,易溶于非极性有机溶剂。
教学难点:
环张力的概念、立体异构、不同取代类型的环己烷的构象
在环烷烃分子中碳原子以单键互相连接成闭合的碳环,
剩余的价完全与氢原子相连。将链烃变为环烃,需要增加 一个碳碳单键,同时减少两个氢原子,因此单环烃的通式 为CnH2n。每增加一个环都要增加一个碳碳单键,同时减 少两个氢原子。如通式为CnH2n-2,则该化合物为双环烷 烃。