引物设计原则(最全汇总)

合集下载

引物设计原则(必看)

引物设计原则(必看)

mi引物设计原则1。

引物的长度一般为15—30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2。

引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。

引物3'端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加.3。

引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。

不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4。

引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应.上下游引物的GC含量不能相差太大。

5。

引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳.Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method).6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。

应当选用3'端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。

引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应.7。

引物二聚体及发夹结构的能值过高(超过4。

5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。

引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。

要设计引物首先要找到DNA序列的保守区。

引物的设计原则

引物的设计原则

引物的设计原则
引物是在PCR反应中起到扩增目标DNA序列作用的重要组成部分。

引物的设计质量直接影响PCR扩增的效率和准确性。

下面是引物设计的几个原则:
1. 引物长度:一般来说,引物长度应该在18-24bp之间。

过短的引物会导致特异性不足,容易出现非特异性扩增产物;过长的引物则会降低PCR反应的效率。

2. 引物Tm值:Tm值是指引物与模板DNA杂交时形成稳定双链结构所需要的温度。

合适的Tm值可以保证引物在PCR反应中充分杂交,从而提高扩增效率和特异性。

一般来说,引物Tm值应该在55-65℃之间。

3. 特异性:为了避免与非目标DNA序列发生杂交,引物设计时必须考虑其特异性。

可以通过比对目标DNA序列和非目标DNA序列来选择具有区别性的区域进行设计。

4. 末端修饰:在某些情况下,末端修饰可以提高PCR反应的效率和特异性。

例如,在5'端加上磷酸基团或者3'端加上羟基基团可以提高引物与模板DNA的亲和力,从而提高扩增效率。

5. 避免引物间的二聚体:引物之间的二聚体会影响PCR反应的特异性和效率。

因此,在设计引物时需要避免引物之间形成稳定的二聚体。

6. 引物浓度:在PCR反应中,引物浓度也会影响扩增效率和特异性。

一般来说,合适的引物浓度应该在0.1-1μM之间。

以上是引物设计的几个原则,通过合理地设计引物可以提高PCR反应的效率和特异性。

引物设计原则

引物设计原则

引物设计原则
1.合适的引物长度:引物长度通常在18-30个碱基对之间,过长或过
短的引物都不利于PCR扩增的稳定性。

2.适当的引物GC含量:引物的GC含量应在40%-60%之间,过高或过
低的GC含量都会影响引物和模板DNA的特异性结合。

3.引物特异性:引物应具有高度特异性,可以通过引物序列在数据库
中进行BLAST分析来评估引物的特异性。

4.避免引物自身的二聚体和结构性:引物序列中要避免出现自身二聚
体和结构性,这会干扰PCR扩增的效果。

5.选择高峰结构引物:在引物设计时,优先选择会形成高峰结构的引物,这有助于提高扩增效率。

6.引物末端碱基的特异性:在引物末端碱基选择时,尽量使用能够增
强特异性和避免非特异性扩增的碱基。

7.引物的熔解温度(Tm):引物的熔解温度直接影响PCR扩增反应的
特异性和效率,应根据目标DNA的长度和序列来确定引物的Tm。

8.避免引物之间的交叉杂交:在多引物PCR反应中,引物之间的交叉
杂交会干扰扩增效果,可以通过软件模拟或实验确认引物之间没有相互杂交。

9.引物序列中避免多个重复碱基:引物序列中的多个重复碱基可能导
致非特异性扩增,应避免在引物序列中出现连续的多个重复碱基。

10.引物设计的可操作性和经济性:引物设计时,要考虑到引物合成
的成本和操作的方便性,选择价格适中的合成方法,并确保引物容易操作。

以上是引物设计的原则和考虑因素,通过合理设计和优化引物序列,可以提高PCR扩增实验的特异性、敏感性和效率,从而获得准确和稳定的实验结果。

引物设计一般原则

引物设计一般原则

引物设计一般原则引物是一篇文章的开头部分,起着引导读者进入文章内容的作用。

设计出一个吸引人的引物,可以让读者对全文产生兴趣,从而增加文章的阅读率和影响力。

以下是设计引物的一般原则:1.引人入胜:一个好的引物应该从一开始就吸引读者的注意力。

可以使用一个有趣的事实、引人瞩目的问题、或者一个令人震惊的观点,引起读者的好奇心和注意力。

例如,一篇关于环保的文章可以这样开头:"你知道每年全球有多少塑料袋被丢弃在海洋中吗?让我们想象一下,如果塑料袋能够排成一排,能围绕地球多少次呢?"例如,一篇关于教育问题的文章可以这样开头:"教育是改变社会的关键。

我们如何培养出具有创新精神和社会责任感的下一代?本文将探讨教育系统中存在的问题,并提出一些解决方案。

"3.引用名言:一个有启发性的引言可以吸引读者的注意力,并激发他们对文章内容的思考。

这种引物可以是一个名人的名言、一句格言或者一句普遍认同的观点。

例如,一篇关于成功的文章可以这样开头:"爱因斯坦曾经说过,成功不是偶然发生的,而是由采取正确行动的结果。

本文将探讨一些成功的秘诀,并帮助你实现自己的目标。

"例如,一篇关于健康饮食的文章可以这样开头:"在现代社会中,我们很容易陷入不健康的饮食习惯中。

但是,我们应该意识到食物对我们的健康有着巨大的影响。

本文将分享一些健康饮食的技巧,让你拥有一个健康的生活方式。

"6.语言生动:一个好的引物应该通过使用生动的语言和形象的描述,给读者留下深刻的印象。

这样可以增加读者的情感共鸣,让他们更容易被文章吸引和影响。

例如,一篇关于环保的文章可以这样开头:"在一个炎热的夏天,当你走近那片被绿意覆盖的公园时,你能感受到清新的空气和树木的阴凉。

但是,你是否想过背后那些无声的英雄们,他们为了保护这片绿洲付出了多少努力?"总结来说,一个好的引物应该具有引人入胜、提出观点、引用名言、切入主题、简洁明了和语言生动等特点。

PCR引物设计原则

PCR引物设计原则

PCR引物设计原则PCR(聚合酶链反应)是一种广泛应用于分子生物学领域的基础技术,可以在体外复制DNA分子。

PCR的核心是引物,引物的设计质量直接影响PCR反应的效率和特异性。

以下是PCR引物设计的原则。

1.引物长度:引物的理想长度为18-22个碱基对。

引物过短可能导致特异性不足,引物过长则可能降低PCR的效率。

2.引物序列:引物序列应具备良好的互补性,即能与待扩增的目标DNA序列特异性结合。

通常,引物的GC含量应在40-60%之间,以确保引物和目标序列之间形成稳定的氢键。

3.引物选择:引物的设计需要仔细考虑避免引物间以及引物与模板序列间的互补。

如果引物之间有互补性,则可能导致非特异性扩增。

另外,引物不能与附近的肥皂序列或重复序列互补,以免引入非特异性产物。

4.引物结构:引物的3'端应以碱基对为基础设计,以提高扩增特异性。

同时,避免引物在末端出现重复序列,以免引导多聚加合反应。

5.引物的熔解温度(Tm):引物的熔解温度应相似,并在50-60℃之间,以确保引物和模板序列的互补结合,同时避免引物之间的自身结合。

6.引物的位点选择:引物应选择在目标序列上的保守区域,以确保引物在不同基因型和物种之间的通用性。

在选择引物位点时,避免选择在引物附近有大量SNP(单核苷酸多态性)或缺失突变的区域。

7.引物的杂合性别:引物的杂合性别是指引物本身的互补性。

如果引物存在杂合性别,则可能导致非特异性扩增。

在进行引物设计时,可以使用软件工具来评估引物的可能杂合效应。

8.引物的特异性评估:在进行引物设计后,可以使用BLAST等工具来评估引物的特异性。

该工具可以引物序列与数据库中的其他序列的互补匹配。

特异性较好的引物应仅与目标序列匹配。

9.引物标记:引物可以通过添加特定序列或化学标记进行标记。

在PCR扩增过程中,通过标记引物可以进行定量和检测反应产物的操作。

在PCR实验中,良好的引物设计是确保特异性扩增的关键。

引物设计需要综合考虑引物长度、序列、选择、结构、熔解温度、位点选择、杂合性别、特异性评估、标记和固定等因素。

引物设计原则(必看)

引物设计原则(必看)

mi引物设计原则1。

引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2。

引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。

引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。

3. 引物3'端的末位碱基对Taq酶的DNA合成效率有较大的影响。

不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4. 引物序列的GC含量一般为40—60%,过高或过低都不利于引发反应。

上下游引物的GC含量不能相差太大.5。

引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。

Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。

6。

ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性.应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。

引物的3'端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。

7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8。

对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。

引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。

要设计引物首先要找到DNA序列的保守区.同时应预测将要扩增的片段单链是否形成二级结构.如这个区域单链能形成二级结构,就要避开它。

引物设计知识点汇总图

引物设计知识点汇总图

引物设计知识点汇总图引物设计在生物学、分子生物学、遗传学和基因工程等领域中起着至关重要的作用。

引物是一种短链核酸序列,能够与待测DNA分子的特定区域发生互补配对,并作为PCR扩增的起始序列。

本文将汇总引物设计的知识点,以帮助读者更好地理解和应用引物设计技术。

一、引物设计的基本原则良好的引物设计需要遵循以下几个基本原则:1. 引物长度:引物的长度通常在18-30个碱基对左右,过长或过短都会影响扩增效率。

2. CG含量:引物的CG含量应在40-60%之间,过高或过低都会影响扩增效果。

3. 碱基配对:引物末端3-5个碱基对应于待扩增区域的碱基,必须能够与模板DNA发生稳定的碱基配对。

4. 引物间无重叠:引物对应于待扩增区域的两端应无重叠,以免引起非特异性扩增。

5. 避免自身互补:引物序列内部不应有自身互补碱基序列的存在,以免引起二聚体结构形成。

二、引物的特殊设计要求除了基本原则外,引物设计还需根据特定应用场景和需求进行相关的特殊设计,常见的特殊设计要求包括:1. 限制性内切酶位点:为了方便下游的限制性酶切鉴定或其他目的,引物设计时可以在引物两端加入限制性内切酶位点。

2. 标签或引物标记:引物序列中可以加入氨基酸序列或引物标记,用于检测、纯化或识别等应用。

3. 引物修饰:如磷酸化、甲基化等化学修饰可以增加引物的稳定性和特异性。

三、引物设计的常见软件工具为了方便引物设计和评估,现有许多专业软件工具可用于辅助设计引物,其中常见的包括:1. Primer3: 一种广泛使用的引物设计软件,提供了多个参数选项,如引物长度、Tm(两链融合温度)、GC含量等。

2. OligoAnalyzer: 用于计算引物序列的理论Tm和二聚体结构等信息。

3. IDT PrimerQuest: 由Integrated DNA Technologies提供的在线引物设计工具,可根据需求设计引物,并评估其性能。

4. NCBI Primer-BLAST: 在NCBI数据库中进行引物设计和BLAST分析的综合工具。

引物设计原则

引物设计原则

引物设计原则标题:引物设计原则及其重要性在分子生物学中,引物是PCR反应、基因克隆、测序和表达分析等实验中的关键组成部分。

引物的设计决定了实验的成败,因此,理解并遵循引物设计的基本原则至关重要。

本文将详细介绍引物设计的原则,并强调其在现代生物学研究中的重要性。

一、引物长度理想的引物长度通常为18-25个核苷酸。

如果引物太短,可能会导致非特异性扩增,因为较短的引物更容易与其他DNA序列匹配。

而过长的引物则可能降低扩增效率,因为它们的合成速度较慢,且容易形成二级结构。

二、GC含量引物的GC含量一般应介于40%-60%之间。

过高或过低的GC含量都可能导致引物熔解温度(Tm)过高或过低,从而影响引物与模板DNA的结合效率。

此外,GC含量不均衡也可能引发非特异性扩增。

三、Tm值引物的Tm值应该接近理想范围,通常在55℃-65℃之间。

Tm值过低可能导致引物与模板DNA的结合不稳定,而Tm值过高则可能导致引物不易与模板DNA 分离,影响PCR反应的进行。

四、避免自身互补和发夹结构引物设计时要尽量避免引物内部出现互补序列或发夹结构。

这些结构会影响引物的溶解度和稳定性,从而影响PCR反应的效果。

五、3'端稳定性和5'端保守性引物的3'端应该是最稳定的,因为它决定了引物与模板DNA的结合强度。

而引物的5'端则可以有一定的变化,以提高引物的特异性。

六、避免引物二聚体和引物-dimer引物二聚体是指两条引物之间的配对,引物-dimer则是指一条引物自身形成的环状结构。

这两种结构都会影响PCR的特异性和效率,因此在设计引物时要尽量避免。

七、考虑序列的复杂性和重复性设计引物时应选择具有较低复杂性和较少重复性的区域。

这是因为复杂的序列和重复的区域可能会导致非特异性扩增。

总的来说,引物设计是一个需要综合考虑多种因素的过程。

只有遵循以上提到的原则,才能设计出高效、特异的引物,保证实验的成功进行。

在实际操作中,我们还可以借助各种软件工具来辅助引物设计,如OligoEvaluator、Primer3等。

引物设计原则和注意事项详解

引物设计原则和注意事项详解

引物设计原则和注意事项详解1、引物最好在模板cDNA的保守区内设计。

DNA序列的保守区是通过物种间相似序列的比较确定的。

在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。

2、引物长度一般在15-30碱基之间。

引物长度(primer length)常用的是18-27bp,但不应大于38bp,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。

3、引物GC含量在40%~60%之间,Tm值最好接近72℃。

GC含量(composition)过高或过低都不利于引发反应。

上下游引物的GC含量不能相差太大。

另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。

有效启动温度,一般高于Tm值5-10℃。

若按公式Tm=4(G+C+2(A+T)估计引物的Tm值,则有效引物的Tm为55-80℃,其Tm值最好接近72℃以使复性条件最佳。

4、引物3'端要避开密码子的第3位。

如扩增编码区域,引物3'端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。

5、引物3'端不能选择A,最好选择T。

引物3'端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3'端最好选择T。

6、碱基要随机分布。

引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。

降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。

尤其3'端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。

引物设计原则(必看)

引物设计原则(必看)

mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。

引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。

3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。

不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。

另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。

上下游引物的GC含量不能相差太大。

5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。

Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。

6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。

应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。

引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。

7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。

引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。

要设计引物首先要找到DNA序列的保守区。

同时应预测将要扩增的片段单链是否形成二级结构。

引物设计原则最全汇总

引物设计原则最全汇总

引物设计原则最全汇总1.特异性:引物应与所需扩增的目标序列特异性结合,避免与非目标序列发生非特异性结合,以确保产生准确结果。

2.高GC含量:引物的GC含量应高于50%,以增加引物与目标序列的稳定性和特异性。

3.避免酶切位点:在引物设计过程中,应避免引物与目标序列中的酶切位点重叠,以防止扩增产物的酶切降解。

4.引物长度:引物的长度通常在18至30个核苷酸之间,过长的引物会降低特异性,而过短的引物则可能导致非特异性扩增。

5.引物的Tm值匹配:引物的熔解温度(Tm)应在同一PCR反应中保持一致,以确保引物能同时结合于目标序列并发挥作用。

6.避免互补性:在引物设计过程中,应避免引物之间存在互相互补的情况,以防止互补引物之间的杂交,从而导致错误的扩增结果。

7.引物末端修饰:常用的引物末端修饰包括磷酸化、末端标记和引物的截断,通过这些修饰可以提高引物的选择性和特异性。

8.引物的GC平衡:引物的GC含量应在一定范围内均衡,以避免在PCR反应中产生二聚体或无效的扩增。

9.引物序列的重复性:引物设计中应避免引物序列的重复性,以防止引物产生二聚体或与非目标序列互补结合。

10.引物的独特性:在引物设计中,应确保引物序列在目标基因组中的唯一性,避免与非目标序列存在相似区域。

11.引物的结合位点:引物的结合位点应尽可能位于目标序列的保守区域,以增加引物与目标序列的稳定性和特异性。

12.引物的交叉反应:在引物设计中,应避免引物之间存在交叉反应,即两个不同引物同时与同一目标序列结合。

13.引物与模板序列的一致性:在引物设计过程中,应将引物与目标序列进行比对,确保引物与目标序列的一致性,避免在扩增过程中形成不可扩增的结构。

14.避免自相互补性:在引物设计过程中,应避免引物序列存在自相互补性,防止引物自结合或形成不稳定的结构。

15.引物的GC间隔:在引物设计中,应使引物中的GC核苷酸尽可能均匀分布,以避免形成不稳定的结构。

16.引物的无副产物性:在引物设计过程中,应避免引物产生具有毒性或干扰扩增的副产物。

引物设计原则(必看)

引物设计原则(必看)

mi引物设计原则1。

引物的长度一般为15-30 bp,常用的是18—27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应.2. 引物序列在模板内应当没有相似性较高,尤其是3'端相似性较高的序列,否则容易导致错配。

引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。

3。

引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。

不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A.另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应.上下游引物的GC含量不能相差太大。

5。

引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳.Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method).6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。

应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物.引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。

7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。

引物序列应该都是写成5—3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右.要设计引物首先要找到DNA序列的保守区。

同时应预测将要扩增的片段单链是否形成二级结构。

引物设计原则(必看)

引物设计原则(必看)

mi引物设计原则1、引物得长度一般为15-30 bp,常用得就是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2. 引物序列在模板内应当没有相似性较高,尤其就是3’端相似性较高得序列,否则容易导致错配。

引物3’端出现3个以上得连续碱基,如GGG或CCC,也会使错误引发机率增加。

ﻫ3。

引物3’端得末位碱基对Taq酶得DNA合成效率有较大得影响。

不同得末位碱基在错配位置导致不同得扩增效率,末位碱基为A得错配效率明显高于其她3个碱基,因此应当避免在引物得3’端使用碱基A。

另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5'端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

ﻫ4。

引物序列得GC含量一般为40-60%,过高或过低都不利于引发反应。

上下游引物得GC含量不能相差太大。

ﻫ5、引物所对应模板位置序列得Tm值在72℃左右可使复性条件最佳。

Tm值得计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用得就是最邻近法(thenearest neighbor method)。

ﻫ6. ΔG值就是指DNA双链形成所需得自由能,该值反映了双链结构内部碱基对得相对稳定性。

应当选用3’端ΔG值较低(绝对值不超过9),而5’端与中间ΔG值相对较高得引物。

引物得3’端得ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。

ﻫ7、引物二聚体及发夹结构得能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8. 对引物得修饰一般就是在5’端增加酶切位点,应根据下一步实验中要插入PCR产物得载体得相应序列而确定。

引物序列应该都就是写成5-3方向得,ﻫTm之间得差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。

ﻫ要设计引物首先要找到DNA序列得保守区、同时应预测将要扩增得片段单链就是否形成二级结构、如这个区域单链能形成二级结构,就要避开它。

引物设计基本原则

引物设计基本原则

引物设计基本原则
引物设计是分子生物学研究中极为重要的一环,其基本原则能够影响实验结果的准确性和可靠性。

以下是引物设计的基本原则:
1. 引物应具有高度特异性:引物应该与目标DNA片段的序列高度匹配,以确保其只结合到目标DNA上,避免与其他非目标DNA结合的可能性。

2. 引物应具有适当的长度:引物的长度应当适中,一般在18-25个核苷酸之间,以便在PCR反应中达到最佳的扩增效率,并避免在扩增过程中引物与非目标DNA结合。

3. 引物应具有相似的GC含量:引物的GC含量应该相似,以确保在PCR反应中两个引物能够同时结合到目标DNA序列上,从而获得最佳扩增效率。

4. 引物应避免含有重复序列:引物中不应含有重复序列,以避免PCR反应中产生非特异性扩增产物的可能性。

5. 引物应避免形成二级结构:引物应当避免形成稳定的二级结构,如发卡氏环等,这些结构会影响引物的结合效率和PCR反应效率。

6. 引物应避免含有多余的碱基:引物中不应含有多余的碱基,否则会影响PCR反应的特异性和扩增效率。

总之,引物设计是PCR反应成功的关键,只有遵循以上基本原则,才能够设计出高特异性、高效率的引物,从而获得准确、可靠的实验结果。

- 1 -。

引物设计原则最全汇总

引物设计原则最全汇总

引物设计原则(汇总)普通引物设计(适用于从载体上扩增模板):1.普通引物长度一般在20-30bp之间,常用24-28bp左右以保证基因特异性;2.下载基因序列到Vector NTI;3.找到所需安装载体序列;4,将基因序列的CDS高亮标记;5.寻找载体序列中常用酶切位点,一般为EcoRI、BamHI、Hindlll、XhoI等等,比对检测基因序列中是否有这些位点,有的话舍弃,最后选择两个酶切位点,最好离得远一点,并且最好buffer用一样的。

酶切位点一般是6bp的回文序列;6.从基因ATG开始往后选择10-20bp均可(我的习惯是27bp-6bp酶切位点-2bp保护碱基-xbp 补齐序列),但最好保证最后两个是G或者C,以减少错配率;7.将上游酶切位点序列补在ATG前方,并根据载体对框情况补足两者之间的空缺,再根据序列的GC含量和TM值在酶切位点前补足保护碱基,以保证GC和AT的含量不能过高。

注意,所有的补齐不能用到终止密码子;8.检测上游序列的结构情况,理论上不要太多二级结构以及3’端匹配即可;不过重复的序列也不能太多,以免移码;9.从下游终止密码子开始向前选择10-20bp均可,但最好保证最后两个是G或者C,以减少错配率;10.选择complementary sequence,在N端补齐下游酶切位点,如果tag在C端(即下游),则在第9点中应该从终止密码子前开始选择(即舍弃终止密码子),并且下游引物也要对框,如果tag在N端,则下游引物不需要对框,只要在N端加上下游酶切位点,再根据情况加上2个保护碱基,然后检测二级结构,原则上3’端部匹配即可。

不过重复的序列也不能太多,以免移码;11.将设计好的上下游引物放在一起检测二级结构,原则上3’端部匹配即可。

不过重复的序列也不能太多,以免移码;12.最后在NCBI的primer Blast网站上比对引物序列,看是否基因特异性的。

2011年10月18日左洁1.引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引物设计原则(汇总)普通引物设计(适用于从载体上扩增模板):1. 普通引物长度一般在20-30bp之间,常用24-28bp左右以保证基因特异性;2. 下载基因序列到Vector NTI;3. 找到所需安装载体序列;4. 将基因序列的CDS高亮标记;5. 寻找载体序列中常用酶切位点,一般为EcoRI、BamHI、HindIII、XhoI等等,比对检测基因序列中是否有这些位点,有的话舍弃,最后选择两个酶切位点,最好离得远一点,并且最好buffer用一样的。

酶切位点一般是6bp的回文序列;6. 从基因ATG开始往后选择10-20bp均可(我的习惯是27bp-6bp酶切位点-2bp保护碱基-xbp 补齐序列),但最好保证最后两个是G或者C,以减少错配率;7. 将上游酶切位点序列补在A TG前方,并根据载体对框情况补足两者之间的空缺,再根据序列的GC含量和TM值在酶切位点前补足保护碱基,以保证GC和AT的含量不能过高。

注意,所有的补齐不能用到终止密码子;8. 检测上游序列的结构情况,理论上不要太多二级结构以及3’端匹配即可;不过重复的序列也不能太多,以免移码;9. 从下游终止密码子开始向前选择10-20bp均可,但最好保证最后两个是G或者C,以减少错配率;10. 选择complementary sequence,在N端补齐下游酶切位点,如果tag在C端(即下游),则在第9点中应该从终止密码子前开始选择(即舍弃终止密码子),并且下游引物也要对框,如果tag在N端,则下游引物不需要对框,只要在N端加上下游酶切位点,再根据情况加上2个保护碱基,然后检测二级结构,原则上3’端部匹配即可。

不过重复的序列也不能太多,以免移码;11. 将设计好的上下游引物放在一起检测二级结构,原则上3’端部匹配即可。

不过重复的序列也不能太多,以免移码;12. 最后在NCBI的primer Blast网站上比对引物序列,看是否基因特异性的。

2011年10月18日左洁1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。

引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。

3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。

不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。

另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。

上下游引物的GC含量不能相差太大。

5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。

Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。

6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。

应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。

引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。

7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。

引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。

要设计引物首先要找到DNA序列的保守区。

同时应预测将要扩增的片段单链是否形成二级结构。

如这个区域单链能形成二级结构,就要避开它。

如这一段不能形成二级结构,那就可以在这一区域设计引物。

① 引物应用核酸系列保守区内设计并具有特异性。

② 产物不能形成二级结构。

③ 引物长度一般在15~30碱基之间。

④ G+C含量在40%~60%之间。

⑤ 碱基要随机分布。

⑥ 引物自身不能有连续4个碱基的互补。

⑦ 引物之间不能有连续4个碱基的互补。

⑧ 引物5′端可以修饰。

⑨ 引物3′端不可修饰。

⑩ 引物3′端要避开密码子的第3位。

1.引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。

2.避开产物的二级结构区某些引物无效的主要原因是引物重复区DNA二级结构的影响,选择扩增片段时最好避开二级结构区域。

用有关计算机软件可以预测估计mRNA的稳定二级结构,有助于选择模板。

实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。

若不能避开这一区域时,用7-deaza-2′- 脱氧GTP取代dGTP对扩增的成功是有帮助的。

3.长度寡核苷酸引物长度为15~30bp,一般为20~27mer。

引物的有效长度:Ln=2(G+C)+(A+T),Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。

4.G+C含量 G+C含量一般为40%~60%。

其Tm值是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度,有效启动温度,一般高于Tm值5~10℃。

若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。

5.碱基础随机分布引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。

尤其3′端不应超过3个连续的G或C,因这样会使引物在G+C 富集序列区错误引发。

6.引物自身引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构牙引物本身复性。

这种二级结构会因空间位阻而影响引物与模板的复性结合。

若用人工判断,引物自身连续互补碱基不能大于3bp。

7.引物之间两引物之间不应不互补性,尤应避免3′端的互补重叠以防引物二聚体的形成。

一对引物间不应多于4个连续碱基的同源性或互补性。

8.引物的3′端引物的延伸是从3′端开始的,不能进行任何修饰。

3′端也不能有形成任何二级结构可能,除在特殊的PCR(AS-PCR)反应中,引物3′端不能发生错配。

在标准PCR反应体系中,用2U Taq DNA聚合酶和800μmol/L dNTP(四种dNTP 各200μmol/L)以质粒(103拷贝)为模板,按95℃,25s;55℃,25s;72℃,1min的循环参数扩增HIV- 1 gag基因区的条件下,引物3′端错配对扩增产物的影响是有一定规律的。

A∶A错配使产量下降至1/20,A∶G和C∶C错七下降至1/100。

引物A:模板G与引物G:模板A错配对PCR影响是等同的。

9.引物的5′端引物的5′端限定着PCR产物的长度,它对扩增特异性影响不大。

因此,可以被修饰而不影响扩增的特异性。

引物5′端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入突变位点、插入与缺失突变序列和引入一启动子序列等。

10.密码子的简并如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增特异性与效率。

Hairpin 发卡结构如果自由能值大于0 则该结构不稳定从而不会干扰反应如果自由能值小于0 则该结构可以干扰反应二聚体可以在序列相同的两条引物或正反向。

引物之间形成如果配对区域在3 末端问题会更为严重3 末端配对很容易引起引物二聚体扩增使Pair Rating 匹配度评分匹配度低的引物对常常不太有效是因为在同样退火温度下Tm低的引物决定扩增的特异性而Tm高的引物更易于形成非特异性结合而造成错误的起始【1】引物的长度以15-30bp为宜,否则会影响扩增的特异性。

【2】】碱基尽可能随机分布,避免相同的碱基成串排列,引物的G+C含量在40%-60%之间,若G+C含量太低,可在5"端加上一些G或C,若G+C 含量太高,可在5"端加上一些A或T。

【3】应避免每条引物内部形成二级结构及两条引物的3"端互补形成引物二聚体,避免在引物的3"端有3个G或3个C成串排列,3"端的末位碱基最好选T、C、G,而不选A,也有建议在引物的两端用1-2个嘌呤碱基。

【4】尽可能使用两条引物的Tm值相同(最好相差不要超过5℃),退火温度根据较低的Tm值选定,也可以通过改变引物的长度来平衡两条引物的退火温度。

Tm值可以根据Tm=4(G+C)+2(A+T)计算。

而对于较长的引物,Tm值需要考虑动力学参数、从“最近邻位”的计算方式得到,现有的PCR引物设计软件大多数都采用这种方式。

(注:对于Tm值的计算有争议的地方是附加序列应不应该计算在内,我觉得有值得商讨的地方。

因为从理论上只有最开始的循环引物的附加序列是不与模板链结合的,而在后来的PCR反应中,引物的附加序列是和模板链结合了的。

)【5】引物的3’端要与模板严格配对,而5’端碱基没有严格的限制,只要与模板DNA结合的部分足够长,其5’端碱基可不与模板DNA配对而呈游离状态,这样,我们可以在引物的5末端加上酶切位点(引入酶切位点时,要考虑到进行双酶切的共用缓冲液,否则给下游工作带来困难)、启动子,方便下游操作。

【6】不要在扩增序列的二级结构区设计引物,以免退火困难。

也要考虑引物设计处模板的特异性。

引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。

引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。

3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。

不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。

另外,引物二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。

上下游引物的GC含量不能相差太大。

5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。

Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。

相关文档
最新文档