高电压技术前言及第一章讲
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器相间绝 缘以气体作为绝 缘材料
2.带电质点的产生与消失
(1) 激发 原子在外界因素作用下,其电子跃迁到能量较高的状态
(2)游离 原子在外界因素作用下,使其一个或几个电子脱离原
子核的束博而形成自由电子和正离子
(3)游离的方式 a.碰撞游离 b.光游离 c.热游离 d.金属表面游离
碰撞游离
当带电质点具有的动能积累到一定数值后,
高电压技术
张一尘主编
前言
1.为什么巨大的电能需要通过高电压输送 2.高电压技术学习内容和要求
高电压技术作为工程技术中的一门学科是因为
大功率、远距离输电
的发展而产生的
20世纪电力发展特点: 大机组 大电网 高电压
美国 单机(千瓦) 120万 电压(千伏) 800
中国 90万 500
俄国 90万 765
标准波形通常用符号 1.2 / 50s 表示
2.放电时延 (1).间隙击穿要满足二个条件
a.一定的电压幅值 b.一定的电压作用时间
(2).统计时延t s
通常把电压达间隙的静态击穿电压开始到间隙中出 现第一个有效电子为止所需的时间
(3).放电形成时延tf
从第一个有效电子到间隙完成击穿所需的时间
(4).放电时延tL
c.按汤逊理论,气体放电应在整个间隙中均匀连续地 发展,但在大气中击穿会出现有分枝的明亮细通道
(2).理论要点:
认为电子碰撞游离及空间光游离是维持自持放电的 主要因素,流注形成便达到了自持放电条件,它强调了 空间电符畸变电场的作用和热游离的作用.
(3)放电简单流程图:
有效电子(经碰撞游离)-----电子崩(畸变电场)----发射光子(在强电场作用下)-----产生新的电子崩 (二次崩)-----形成混质通道(流注)-----由阳极向阴 极(阳极流注)或由阴极向阳极(阴极流注)击穿.
b.在间隙深处,正空间电荷产生的附加电场与原电 场方向相反,使放电的发展比较困难,因而击穿电 压较高。
结论: 在相同间隙下
电晕起始电压
正捧-----负板 高
负捧-----正板 低
间隙击穿电压
低
高
四.雷电冲击电压下气隙的击穿特性
1.标准波形
几个参数
波头时间T1:T1=(1.2 30%)μs 波长时间T2: T2=(50 20%) μs
tL=ts+tf
气体间隙在冲击电压作用下击穿所需全部时间:
t=t1+ts+tf 其中:ts+tf 就是放电时延tL
3. 50%冲击放电电压U50%
放电概率为50%时的冲击放电电压 p
50%
u击
u50%
50%冲击放电电压与静态放电压的比值称为绝缘的
冲击系数β
U50%
U0
4. 伏秒特性
(1) 定义
(2).非自持放电 去掉外界游离因素的作用后,放电随即停止
(3).自持放电 不需要外界游离因素存在,放电也能维持下去
(4).自持放电条件 a.电子的空间碰撞系数α
一个电子在电场作用下在单位行程里所发生的碰撞 游离数
b.正离子的表面游离系数γ
一个正离子到达阴极,撞击阴极表面产生游离的电子 数
自持放电条件可表达为:
同一波形、不同幅值的冲击电压下,间隙上出现 的电压最大值和放电时间的关系曲线
三.不均匀电场中气隙的放电特性
1.电晕放电
一定电压作用下,在曲率半径小的电极附近发生局部 游离,并发出大量光辐射,有些像日月的晕光,称为电晕 放电.
电晕起始场强 电晕起始电压
开始出现电晕时电极表面的场强 开始出现电晕时的电压
电晕放电是极不均匀电场所特有的一种自持放电形式
2.极性效应 (1).正棒---负板
第一章
气体的绝缘特性
一.气体电介质的放电特性
1.空气在强电场下放电特性
气体在正常状态下是良好的绝缘体,在一个立方厘米 体积内仅含几千个带电粒子,但在高电压下,气体从少量电 符会突然产生大量的电符,从而失去绝缘能力而发生放电 现象.
一旦电压解除后,气体电介质能自动恢复绝缘状态
输电线路以气体 作为绝缘材料
分析:
a.由于捧极附近积聚起正空间电荷,削弱了电离, 使电晕放电难以形成,造成电晕起始电压提高。
b.由于捧极附近积聚起正空间电荷在间隙深处产生 电场加强了朝向板极的电场,有利于流注发展,故 降低了击穿电压。
(2).负棒---正板
分析:
a.捧附近正空间电荷产生附加电场加强了朝向棒端 的电场强度,容易形成自持放电,所以其电晕起 始电压较低。
产生热游离的条件:
K:波茨曼常数 T:绝对温度
3 2
KT
Wi
金属表面游离
电子从金属电极表面逸出来的过程 称为表面游离
(4)去游离 a.扩散 带电质点从高浓度区域向低浓度区域运动. b.复合 正离子与负离子相遇而互相中和还原成中性原子 c.附着效应 电子与原子碰撞时,电子附着原子形成负离子
二.气体放电的两个理论
1.汤逊放电理论. 适用条件:均匀电场,低气压,短间隙 实验装置
分析: oa段:
随着电压升高,到达 阳极的带电质点数量 和速度也随之增大
ab段:
电流不再随电压的 增大而增大 bc段:
均匀电场中气体的 伏安特性
电流又再随电压 的增大而增大
c点:电流急剧突增
(1).电子崩 在电场作用下电子从阴极向阳极推进而形成的一群电子
21世纪电力发展特点:
更加可靠 更加开放 更加有效 更加灵活
设备可靠性随电压升高而下降 设备的体积随电压升高而增大
设备 可靠性
体积
电压
燃料电池 21世纪最有希望的能源
60年代用于宇宙飞船,21世纪将用于商业.工业
其特点: 模块式结构 无环境污染 节省水 电源可分散 价格高 1500美金/千瓦
(eS 1) 1
(5)巴申定律 a.表达式:
UF f (PS )
P:气体压力 S:极间距离
b.均匀电场中几种气体的击穿电压与ps的关系
2.流注理论 (1).在ps乘积较大时,用汤逊理论无法解释的几种现象 a.击穿过程所需时间,实测值比理论值小10--100倍
b.按汤逊理论,击穿过程与阴极材料有关,然而在大气 压力下的空气隙中击穿电压与阴极材料无关.
在与气体原子(或分子)发生碰撞时,可以使 后者产生游离,这种由碰撞而引起的游离称为 碰撞游离
引起碰撞游离的条件:
1 2
m 2
Wi
Wi :气体原子(或分子)的游离能
光游离
由光辐射引起气体原子(或分子)的游离 称为光游离
h Байду номын сангаасW 产生光游离的条件:
i
h:普朗克常数 ν:光的频率
热游离 气体在热状态下引起的游离过程称为热游离