2020高考物理复习-动量

合集下载

2020届高考物理总复习:动量 第2讲动量守恒定律

2020届高考物理总复习:动量 第2讲动量守恒定律
2.动量守恒定律解题的基本步骤
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。 (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒)。 (3)规定正方向,确定初、末状态的动量。 (4)由动量守恒定律列出方程。 (5)代入数据,求出结果,必要时讨论说明。
题型一 动量守恒定律的理解和应用问题
(3)若 m1<m2,则 v1'<0,v2'>0,碰后 m1 反向弹回,m2 沿 m1 碰前方向运动
题型三 碰撞问题
关键能力
发生非弹性碰撞时,内力是非弹性力,部分机械能转化为物体的内能,机械能有损失,动
非弹性碰撞
量守恒,总动能减少,满足:
m1v1+m2v2=m1v1'+m2v2' 12m1v1 2 +12m2v2 2 >12m1v1'2+12m2v2'2
两个物体组成的系统初动量等于末动量
可写为:p=p'、Δp=0和Δp1=-Δp2。
(4)守恒条件 ①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 ②近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 ③分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
C 方向行走时,船的速度为u,由动量守恒定律可知下列表达式成立的是( )。
A.(M+m)v0=Mu+mv B.(M+m)v0=Mu+m(v-u) C.(M+m)v0=Mu-m(v-u) D.(M+m)v0=Mu-m(v-v0)
答 案解

题型一 动量守恒定律的理解和应用问题 解析

2020年高考物理一轮复习专题06动量守恒定律考点归纳

2020年高考物理一轮复习专题06动量守恒定律考点归纳

专题06 动量守恒定律目录【基本概念、规律】 (1)【重要考点归纳】 (2)考点一动量定理的理解及应用 (2)考点二动量守恒定律与碰撞 (2)考点三爆炸和反冲人船模型 (3)实验:验证动量守恒定律 (4)【思想方法与技巧】 (6)动量守恒中的临界问题 (6)【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.(2)动能和动量的关系:E k=p22m.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向.(4)Δp =0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要合理.①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v ′前≥v ′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v ′1+m 2v ′2①12m 1v 21=12m 1v ′21+12m 2v ′22② 由①②得v ′1=m 1-m 2v 1m 1+m 2 v ′2=2m 1v 1m 1+m 2 结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当m 1>m 2时,v ′1>0,v ′2>0,碰撞后两球都向前运动.③当m 1<m 2时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三 爆炸和反冲 人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.。

高考物理复习---应用动量定理处理流体冲击力问题基础知识与例题PPT课件

高考物理复习---应用动量定理处理流体冲击力问题基础知识与例题PPT课件
高考物理复习---应用动量定理处理流体冲击力问 题基础知识与例题PPT课件
研究
流体类:液体流、气体流等,通常已知密度ρ
对象 微粒类:电子流、光子流、尘埃等,通常给出单位体积内粒子数n
①构建“柱状”模型:沿流速v的方向选取一段小柱体,其横截面
积为S
小柱体的体积ΔV=vSΔt 分析
②微元 小柱体质量m=ρΔV=ρvSΔt 步骤
78
本课结束
的出水速度变为原来的 2 倍时,压强变为原来的 4 倍,选项 D 正确.
跟进训练
7.(流体类冲击力问题)(2019·全国卷Ⅰ·16)最近,我国为“长征九号”研制的
大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得
突破性进展.若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生
B.3.6√N
C.1.2×103 N
D.1.2 N
78
解析 t时间内与飞船碰撞并附着于飞船上的微粒总质量为M=vtSm,设 飞 船 对 微 粒 的 作 用 力 为 F , 由 动 量 定 理 得 , Ft = Mv , 联 立 解 得 : F = v2Sm,代入数据解得F=3.6 N.根据牛顿第三定律,微粒对飞船的作用力 为3.6 N.要使飞船速度不变,根据平衡条件,飞船的牵引力应增加3.6 N, 选项B正确.
研究 小柱体粒子数N=nvSΔt
小柱体动量p=Байду номын сангаасv=ρv2SΔt
③建立方程,应用动量定理FΔt=Δp研究
例5 (2020·黑龙江大庆实验中学期末)如图6所示为清洗汽车用的高压水
枪.设水枪喷出水柱直径为D,水流速度为v,水柱垂直汽车表面,水柱冲
击汽车后水的速度为零.手持高压水枪操作,进入水枪的水流速度可忽略

2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)

2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)

动量定理与动量守恒定律一、选择题1.高空坠物极易对行人造成伤害。

若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为A .10 NB .102 NC .103 ND .104 N解析 根据自由落体运动和动量定理有2gh =v 2(h 为25层楼的高度,约70 m),Ft =mv ,代入数据解得F ≈1×103 N ,所以C 正确。

答案 C2.(多选)在光滑的水平面上,原来静止的物体在水平力F 的作用下,经过时间t 、通过位移L 后,动量变为p 、动能变为E k ,以下说法正确的是A .在力F 的作用下,这个物体若是经过时间3t ,其动量将等于3pB .在力F 的作用下,这个物体若是经过位移3L ,其动量将等于3pC .在力F 的作用下,这个物体若是经过时间3t ,其动能将等于3E kD .在力F 的作用下,这个物体若是经过位移3L ,其动能将等于3E k解析 根据p =mv ,E k =12mv 2 联立解得p =2mE k根据动能定理FL =12mv 2,位移变为原来的3倍,动能变为原来的3倍,根据p =2mE k ,动量变为原来的3倍,故B 错误,D 正确。

根据动量定理Ft =mv ,时间变为原来的3倍,动量变为原来的3倍,根据E k =p 22m,知动能变为原来的9倍,故A 正确,C 错误。

答案 AD3.(多选)质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定在其左侧,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,如图所示,两物块通过弹簧相互作用(未超出弹簧弹性限度)并最终弹开,则A.在压缩弹簧的过程中,两物块组成的系统动量守恒B.当两物块相距最近时,甲物块的速度为零C.甲物块的速率可能为5 m/sD.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s解析在压缩弹簧的过程中,两物块组成的系统所受合外力为零,系统动量守恒,选项A正确;当两物块相距最近时,两物块速度相等,甲物块的速度不为零,选项B错误;若甲物块的速率为5 m/s,根据动量守恒定律可得此时乙物块的速率为6 m/s或4 m/s,两物块组成的系统机械能增大,违反了能量守恒定律,选项C错误;当甲物块的速率为1 m/s,方向向左时,选取向右为速度的正方向,根据动量守恒定律,m·4 m/s-m·3 m/s=mv-m·1 m/s,解得乙物块的速率v=2 m/s,选项D正确。

动量定理-高考物理知识点

动量定理-高考物理知识点

动量定理-高考物理知识点
(1)区分内力和外力碰撞时两个物体之间一定有相互作用力,由于这两个物体是属于同一个系统的,它们之间的力叫做内力;系统以外的物体施加的,叫做外力。

(2)在总动量一定的情况下,每个物体的动量可以发生很大变化例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。

烧断细线后,由于弹力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。

(3)动量守恒的数学表述形式:p=p′.即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;(4)Δp=0. 即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和);(5)Δp1=-Δp 2. ?即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.。

2020高考大一轮复习(新课改专用)第6章 第2节 动量守恒定律

2020高考大一轮复习(新课改专用)第6章 第2节 动量守恒定律

第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。

[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。

3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。

(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。

[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。

二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。

(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。

[注3]②非弹性碰撞:碰撞后系统的总动能有损失。

③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。

2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。

3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。

(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。

【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。

[注2] 外力的冲量在相互作用的时间内忽略不计。

[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。

[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。

[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。

2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。

3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。

4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。

[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。

(×)(2)系统动量不变是指系统的动量大小和方向都不变。

2020届高考物理一轮复习人教版动量动量定理PPT课件(93张)

2020届高考物理一轮复习人教版动量动量定理PPT课件(93张)

模型一:流体类问题
模型二:微粒类问题
(2016·全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的 卡通玩具稳定地悬停在空中。为计算方便起见,假设水柱从横截面积为S的 喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲 击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散 开。忽略空气阻力。已知水的密度为ρ,重力加速度大小为g。求:
1.玻璃杯从同一高度落下,掉在石头上比掉在草地上容易碎,这是由 于在玻璃杯与石头的撞击过程中( )
A.玻璃杯的动量较大 B.玻璃杯受到的冲量较大 C.玻璃杯的动量变化较大 D.玻璃杯的动量变化较快 答案 D
答案
解析 从同一高度落到地面上时,落地时速度相同,动量相同,与草地 或石头接触后,末动量均变为零,因此动量变化量相同,受到的冲量相同, A、B、C错误。因为玻璃杯与石头的作用时间短,由动量定理Ft=mΔv知, F=mΔt v,此时玻璃杯受到的力F较大,即玻璃杯的动量变化较快,容易 碎,D正确。
提示:利用平行四边形定则分解可知,该动量变化的方向与石板对球 的作用力冲量的方向相同。若存在摩擦力,则动量变化的方向与总冲量的 方向相同。
提示
9.P16~17[问题与练习]T4:距离最近的特征?系统遵守的规律?系统减 少的动能呢?T5:可以逐节计算,也可以整体考虑,体会整体分析的优势。 T7:若摆至最低点时有第二颗同样子弹射入,射入后摆动的最大偏角是多 少?
答案 AB
答案
解析 动量是矢量,动量的变化量是末动量与初动量的矢量差。物体的 速度大小不变,如果方向改变,动量变化量Δp不为零,C、D错误;做单向 直线运动的物体初、末动量方向相同,速度增大时,动量变化量与速度同 向,速度减小时,动量变化量与速度反向,A、B正确。

【2020】高三物理专题复习-第五专题-动量与能量试卷及参考答案

【2020】高三物理专题复习-第五专题-动量与能量试卷及参考答案

②、③式联立解得

将①代入得④
(2)a由④式,考虑到得
根据动能传递系数的定义,对于1、2两球

同理可得,球m2和球m3碰撞后,动能传递系数k13应为

依次类推,动能传递系数k1n应为
解得
b.将m1=4m0,m3=mo代入⑥式可得
为使k13最大,只需使

8、答案:(1)0.24s (2)5m/s
解析:本题考查摩擦拖动类的动量和能量问题.。

涉及动量守恒定律、动量定理和功能关系这些物理规律的运用.。

(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有

设物块与车面间的滑动摩擦力为F,对物块应用动量定理有
②其中③
解得
代入数据得

(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则

+=S。

2020高考物理专题复习动量 动量定理PPT课件

2020高考物理专题复习动量 动量定理PPT课件

考点探究
[答案] A
[解析] 取竖直向上为正方向,则小球与地面碰撞过程中动量的变化量
Δp=mv2-mv1=0.2×4 kg·m/s-0.2×(-6) kg·m/s=2 kg·m/s,方向竖直向上.由动能
定理,合外力做的功
W=12m������22
-12m������12
=1×0.2×42
2
J-1×0.2×62
2

质量为Δm=ρV=ρSΔl=ρSvΔt
骤 3 建立方程,应用动量定理研究这段柱形流体
考点探究
例 2 水力采煤是利用高速水流冲击煤层而进行的.煤层受到 3.6×106 N/m2 的 压强冲击即可破碎,若水流沿水平方向冲击煤层,不考虑水的反向溅射作用,则 冲击煤层的水流速度至少应为(水的密度为 1×103 kg/m3) ( ) A.30 m/s B.40 m/s C.45 m/s D.60 m/s
2
J=-2
J,故
A
正确.
考点探究
■ 要点总结
1.动量、动能和动量变化量的比较
动量
动能
动量变化量
物体的质量和速度 物体由于运动而具有的 物体末动量与初动量的矢
定义
的乘积
能量
量差
考点探究
定义式 矢标性
p=mv 矢量
Ek=12mv2 标量
Δp=p'-p 矢量
特点
状态量
状态量
关联方程 Ek=2pm2 ,Ek=12pv,p= 2mE������ ,p=2Ev������
②曲线运动:要用矢量的运算方法,利用平行四边形定则画图求解.
教材知识梳理
【辨别明理】
(1)一个物体的运动状态变化,它的动量一定改变. ( )

高中物理总复习--动量定理含解析

高中物理总复习--动量定理含解析

⾼中物理总复习--动量定理含解析⾼中物理总复习--动量定理含解析⼀、⾼考物理精讲专题动量定理1.质量为m 的⼩球,从沙坑上⽅⾃由下落,经过时间t 1到达沙坑表⾯,⼜经过时间t 2停在沙坑⾥.求:⑴沙对⼩球的平均阻⼒F ;⑵⼩球在沙坑⾥下落过程所受的总冲量I .【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对⼩球⽤动量定理:重⼒作⽤时间为t 1+t 2,⽽阻⼒作⽤时间仅为t 2,以竖直向下为正⽅向,有: mg(t 1+t 2)-Ft 2=0, 解得:⽅向竖直向上⑵仍然在下落的全过程对⼩球⽤动量定理:在t 1时间内只有重⼒的冲量,在t 2时间内只有总冲量(已包括重⼒冲量在内),以竖直向下为正⽅向,有: mgt 1-I=0,∴I=mgt 1⽅向竖直向上考点:冲量定理点评:本题考查了利⽤冲量定理计算物体所受⼒的⽅法.2.如图所⽰,⾜够长的⽊板A 和物块C 置于同⼀光滑⽔平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B ⼀起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成⼀体,最终A 、B 、C 都静⽌,求:(i )C 与A 碰撞前的速度⼤⼩(ii )A 、C 碰撞过程中C 对A 到冲量的⼤⼩.【答案】(1)C 与A 碰撞前的速度⼤⼩是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的⼤⼩是32mv 0.【解析】【分析】【详解】试题分析:①设C 与A 碰前速度⼤⼩为1v ,以A 碰前速度⽅向为正⽅向,对A 、B 、C 从碰前⾄最终都静⽌程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =.②设C 与A 碰后共同速度⼤⼩为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =-解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量⼤⼩为032mv .⽅向为负.考点:动量守恒定律【名师点睛】本题考查了求⽊板、⽊块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应⽤动量守恒定律即可正确解题;解题时要注意正⽅向的选择.3.⼀个质量为60千克的蹦床运动员从距离⽔平蹦床⽹⾯上3.2⽶的⾼处⾃由下落,触⽹后沿竖直⽅向蹦回到离⽔平⽹⾯5⽶⾼处.已知运动员与⽹接触的时候为1.2秒。

高考物理知识点:动量

高考物理知识点:动量

高考物理知识点:动量1500字动量是物理学中的重要概念,在高考物理中也是一项必学的知识点。

动量描述了物体运动的性质,是质量和速度的乘积,表示了物体运动的惯性和力的作用效果。

下面将详细介绍动量的基本概念、动量守恒定律、应用等内容,帮助大家更好地理解和掌握动量。

一、动量的基本概念:1. 动量的定义:动量(p)是物体运动的性质,是质量(m)和速度(v)的乘积,表示为p=mv。

2. 动量的量纲:国际单位制中,动量的量纲是kg·m/s。

3. 动量的方向:动量的方向与速度方向一致,是一个矢量量。

二、动量守恒定律:1. 动量守恒定律的表述:在孤立系统中,总动量不变,即系统内外力的合力为零时,系统的总动量保持不变。

2. 动量守恒定律的数学表达:ΣP = 0,即Σ(mv) = 0。

3. 动量守恒定律的应用条件:孤立系统或外力合力为零的系统。

三、动量与力的关系:1. 力的定义:力(F)是导致物体运动状态发生变化或形态发生变化的原因,是物体受到的外界作用所产生的效果。

2. 动量与力的关系:根据牛顿第二定律,力等于动量变化率的大小和方向,即F=dp/dt。

3. 弹力和冲量:弹力是单位时间内物体受到的力,也等于冲量的大小,冲量则是物体受到的力作用时间的乘积,即J=∫Fdt。

四、动量定理:1. 动量定理的表述:一个物体所受合外力的冲量等于该物体的动量变化。

2. 动量定理的数学表达:J = Δp。

3. 动量定理的应用条件:物体在力的作用下产生速度变化的过程。

五、动量守恒和碰撞:1. 完全弹性碰撞:在碰撞中,碰撞物体的总动量守恒且总动能守恒。

2. 完全非弹性碰撞:在碰撞中,碰撞物体的总动量守恒但总动能不守恒。

3. 部分弹性碰撞:在碰撞中,碰撞物体的总动量守恒但总动能损失。

六、动量在工程中的应用:1. 均匀变速机关:根据动量守恒定律,可以求解均匀变速机关的作用时间和作用力大小。

2. 动量交换机构:利用动量守恒定律,可以分析动量交换机构(如喷气发动机、火箭推进器等)的工作原理和性能。

2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)

2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)

回扣练8:动量定理和动量守恒定律1.将一个光滑的半圆形槽置于光滑的水平面上如图,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A 点正上方由静止开始落下,从A 点落入槽内,则下列说法中正确的是( )A .小球在半圆槽内运动的过程中,机械能守恒B .小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C .小球在半圆槽内由B 点向C 点运动的过程中,小球与半圆槽组成的系统动量守恒D .小球从C 点离开半圆槽后,一定还会从C 点落回半圆槽解析:选D.只有重力做功时物体机械能守恒,小球在半圆槽内运动由B 到C 过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,故A 错误.小球在槽内运动的前半过程中,左侧物体对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B 错误.小球自半圆槽的最低点B 向C 点运动的过程中,系统在水平方向所受合外力为零,故小球与半圆槽在水平方向动量守恒,故C 错误.小球离开C 点以后,既有竖直向上的分速度,又有与槽相同的水平分速度,小球做斜上抛运动,然后可以从C 点落回半圆槽,故D 正确.故选D.2.如图所示,质量为m 的A 球在水平面上静止放置,质量为2m的B 球向左运动速度大小为v 0,B 球与A 球碰撞且无机械能损失,碰后A 球速度大小为v 1,B 球的速度大小为v 2,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0,下列选项正确的是( ) A .e =1B .e =12C .e =13D .e =14解析:选A.AB 在碰撞的过程中,根据动量守恒可得,2mv 0=mv 1+2mv 2,在碰撞的过程中机械能守恒,可得12·2mv 20=12mv 21+12·2mv 22,解得v 1=43v 0,v 2=13v 0,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0=1,故A 正确,BCD 错误;故选A. 3.如图所示,AB 两小球静止在光滑水平面上,用轻弹簧相连接,A 球的质量小于B 球的质量.若用锤子敲击A 球使A 得到v 的速度,弹簧压缩到最短时的长度为L 1;若用锤子敲击B 球使B 得到v 的速度,弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定解析:选C.若用锤子敲击A 球,两球组成的系统动量守恒,当弹簧最短时,两者共速,则m A v =(m A +m B )v ′,解得v ′=m A v m A +m B ,弹性势能最大,最大为ΔE p =12m A v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B );若用锤子敲击B 球,同理可得m B v =(m A +m B )v ″,解得v ″=m B v m A +m B ,弹性势能最大为ΔE p =12m B v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B ),即两种情况下弹簧压缩最短时,弹性势能相等,故L 1=L 2,C 正确.4.如图所示,足够长的传送带以恒定的速率v 1逆时针运动,一质量为m 的物块以大小为v 2的初速度从左轮中心正上方的P 点冲上传送带,从此时起到物块再次回到P 点的过程中,下列说法正确的是( )A .合力对物块的冲量大小一定为2mv 2B .合力对物块的冲量大小一定为2mv 1C .合力对物块的冲量大小可能为零D .合力对物块做的功可能为零解析:选D.若v 2>v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,达到速度v 1后做匀速直线运动,可知物块再次回到P 点的速度大小为v 1,规定向左为正方向,根据动量定理得,合外力的冲量I 合=mv 1-m (-v 2)=mv 1+mv 2.根据动能定理知,合外力做功W 合=12mv 21-12mv 22;若v 2<v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,物块再次回到P 点的速度大小为v 2,规定向左为正方向,根据动量定理得,合外力的冲量为:I 合=mv 2-m (-v 2)=2mv 2;根据动能定理知,合外力做功为:W 合=12mv 22-12mv 22=0.故D 正确,ABC 错误.故选D. 5.如图甲所示,工人利用倾斜钢板向车内搬运货物,用平行于钢板向上的力将货物从静止开始由钢板底端推送到顶端,到达顶端时速度刚好为零.若货物质量为100 kg ,钢板与地面的夹角为30°,钢板与货物间的滑动摩擦力始终为50 N ,整个过程中货物的速度—时间图象如图乙所示,重力加速度g 取10 m/s 2.下列说法正确的是( )A .0~2 s 内人对货物做的功为600 JB .整个过程中人对货物的推力的冲量为1 000 N·sC .0~2 s 和2~3 s 内货物所受推力之比为1∶2D .整个过程中货物始终处于超重状态解析:选A.0~2 s 内货物的加速度a 1=Δv Δt=0.5 m/s 2,根据牛顿第二定律:F 1-f -mg sin 30°=ma 1,解得F 1=600 N ;0~2 s 内货物的位移:x 1=12×2×1 m=1 m ;则人对货物做的功为W F =Fx 1=600 J ,选项A 正确;整个过程中,根据动量定理:I F -(f +mg sin 30°)t =0,解得整个过程中人对货物的推力的冲量为I F =(f +mg sin 30°)t =(50+100×10×0.5)×3=1 650 N·s,选项B 错误;2~3 s 内货物的加速度大小a 2=1 m/s 2,根据牛顿第二定律:f +mg sin 30°-F 2=ma 2所受推力F 2=450 N ;则0~2 s 和2~3 s 内货物所受推力之比为F 1∶F 2=600∶450=4∶3,选项C 错误;整个过程中货物的加速度先沿斜面向上,后向下,先超重后失重,选项D 错误;故选A.6.(多选)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s,所以碰撞后A 球的动量是2 kg·m/s;碰撞过程系统总动量守恒:m A v A +m B v B =-m A v A ′+m B v B ′所以碰撞后B 球的动量是10 kg·m/s,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,故C 正确,D 错误.碰撞前系统动能:p 2A 2m A +p 2B 2m B=622m A +622×2m A =27m A ,碰撞后系统动能为:p A ′22m A +p B ′22m B =222m A +1022×2m A =27m A,则碰撞前后系统机械能不变,碰撞是弹性碰撞,故A 正确,B 错误;故选AC.7.(多选)质量为M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量为m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2.则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.2 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m解析:选AD.可把小球和滑块水平方向的运动看作人船模型,设滑块M 在水平轨道上向右运动了x ,由滑块和小球系统在水平方向上动量守恒,有m M =x L -x,解得:x =0.3 m ,选项A 正确、B 错误.根据动量守恒定律,小球m 相对于初始位置上升到最大高度时小球和滑块速度都为零,由能量守恒定律可知,小球m 相对于初始位置可以上升的最大高度为0.45 m ,选项C 错误.此时杆与水平面的夹角为cos α=0.8,设小球从最低位置上升到最高位置过程中滑块M 在水平轨道上又向右运动了x ′,由滑块和小球系统在水平方向时动量守恒,有m M =x ′L cos α-x ′,解得:x ′=0.24 m .小球m 从初始位置到第一次到达最大高度的过程中,滑块在水平轨道上向右移动了x +x ′=0.3 m +0.24 m =0.54 m ,选项D 正确.8.(多选)如图所示,一辆质量为M =3 kg 的平板小车A 停靠在竖直光滑墙壁处,地面水平且光滑,一质量为m =1 kg 的小铁块B (可视为质点)放在平板小车A 最右端,平板小车A 上表面水平且与小铁块B 之间的动摩擦因数μ=0.5,平板小车A 的长度L =0.9 m .现给小铁块B 一个v 0=5 m/s 的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g =10 m/s 2.下列说法正确的是( )A .小铁块B 向左运动到达竖直墙壁时的速度为2 m/sB .小铁块B 与墙壁碰撞过程中所受墙壁的冲量为8 N·sC .小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为4 JD .小铁块B 在平板小车A 上运动的整个过程中系统损失的机械能为9 J解析:选BD.设小铁块B 向左运动到达竖直墙壁时的速度为v 1,根据动能定理得:-μmgL =12mv 21-12mv 20,解得:v 1=4 m/s ,选项A 错误.与竖直墙壁发生弹性碰撞,反弹速度为-4 m/s ,由动量定理可知,小铁块B 与墙壁碰撞过程中所受墙壁的冲量为I =2mv 1=8 N·s,选项B 正确.小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为μmgL =4.5 J ,选项C 错误.假设发生弹性碰撞后小铁块B 最终和平板小车A 达到的共同速度为v 2,根据动量守恒定律得:mv 1=(M +m )v 2,解得:v 2=1 m/s.设小铁块B 在平板小车A 上相对滑动的位移为x 时与平板小车A 达到共同速度v 2,则根据功能关系得:-μmgx =12(M +m )v 22-12mv 21,解得:x =1.2 m ,由于x >L ,说明小铁块B 在没有与平板小车A 达到共同速度时就滑出平板小车A ,所以小铁块B 在平板小车上运动的整个过程中系统损失的机械能为ΔE =2μmgL =9 J ,选项D 正确.9.(多选)在地面上以大小为v 1的初速度竖直向上抛出一质量为m 的皮球,皮球落地时速度大小为v 2.若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g .下列判断正确的是( )A .皮球上升的最大高度为v 212gB .皮球从抛出到落地过程中克服阻力做的功为12mv 21-12mv 22 C .皮球上升过程经历的时间为v 1gD .皮球从抛出到落地经历的时间为v 1+v 2g解析:选BD.减速上升的过程中受重力、阻力作用,故加速度大于g ,则上升的高度小于v 212g ,上升的时间小于v 1g,故AC 错误;皮球从抛出到落地过程中重力做功为零,根据动能定理得克服阻力做功为W f =12mv 21-12mv 22,故B 正确;用动量定理,结合数学知识,假设向下为正方向,设上升阶段的平均速度为v ,则:mgt 1+kvt 1=mv 1,由于平均速度乘以时间等于上升的高度,故有:h =vt 1,即:mgt 1+kh =mv 1 ①,同理,设下降阶段的平均速度为v ′,则下降过程:mgt 2-kv ′t 2=mv 2,即:mgt 2-kh =mv 2 ②,由①②得:mg (t 1+t 2)=m (v 1+v 2),解得:t =t 1+t 2=v 1+v 2g,故D 正确;故选BD. 10.(多选)如图所示,足够长的光滑水平导轨间距为2 m ,电阻不计,垂直导轨平面有磁感应强度为1 T 的匀强磁场,导轨上相隔一定距离放置两根长度略大于间距的金属棒,a 棒质量为1 kg ,电阻为5 Ω,b 棒质量为2 kg ,电阻为10 Ω.现给a 棒一个水平向右的初速度8 m/s ,当a 棒的速度减小为4 m/s 时,b 棒刚好碰到了障碍物,经过很短时间0.5 s 速度减为零(不反弹,且a 棒始终没有与b 棒发生碰撞),下列说法正确的是( )A .从上向下看回路产生逆时针方向的电流B .b 棒在碰撞前瞬间的速度大小为2 m/sC .碰撞过程中障碍物对b 棒的平均冲击力大小为6 ND .b 棒碰到障碍物后,a 棒继续滑行的距离为15 m解析:选ABD.根据右手定则可知,从上向下看回路产生逆时针方向的电流,选项A 正确;系统动量守恒,由动量守恒定律可知:m a v 0=m a v a +m b v b 解得v b =2 m/s ,选项B 正确;b 碰到障碍物时,回路的感应电动势:E =BL (v a -v b )=4 V ;回路的电流:I =E R a +R b =415 A ;b 棒所受的安培力:F b =BIL =815N ;b 与障碍物碰撞时,由动量定理:(F b -F )t =0-m b v b 解得:F =8.5 N ,选项C 错误;b 碰到障碍物后,a 继续做减速运动,直到停止,此时由动量定理:B IL Δt =m a v a ,其中I Δt =q =ΔΦR a +R b =BLx R a +R b联立解得x =15 m ,选项D 正确;故选ABD. 11.(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s解析:选AD.由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J+12×2×9 J=27 J E k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A、B沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A′>0,v B′<0),这显然是不符合实际的,因此C错误.验证选项A、D均满足E k≥E k′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).。

高考物理总复习课件动量定理

高考物理总复习课件动量定理

系统内力和外力对动量影响
系统内力对动量的影响
系统内力只改变系统内各物体的运动状态,不改变系统的总 动量。
外力对动量的影响
外力可以改变系统的总动量。当系统所受外力的矢量和不为 零时,系统的总动量将发生变化。
判断动量是否守恒方法
判断是否满足动量守恒条件
首先判断系统是否不受外力或所受外力的矢量和是否为零。如果 满足条件,则系统动量守恒。
解题思路
在曲线运动中,需要运用动量定理 和向心力公式进行求解,同时结合 牛顿运动定律分析物体的受力情况 。
动量守恒定律应用例题解析
例题1
解析完全弹性碰撞中两物体的动量变化,通过动量守恒定律和能量守恒定律求解。
例题2
分析爆炸过程中物体的动量变化,运用动量守恒定律求解物体的速度变化。
解题思路
在动量守恒定律的应用中,主要运用动量守恒定律和能量守恒定律进行求解,同时结合牛 顿运动定律分析物体的受力情况。需要注意的是,在应用动量守恒定律时,要判断系统是 否满足动量守恒的条件。
XX
高考物理总复习课件 动量定理
汇报人:XX
20XX-01-24
REPORTING
目录
• 动量定理基本概念与公式 • 直线运动中动量定理应用 • 曲线运动中动量定理应用 • 动量守恒定律及其条件 • 典型例题解析与思路拓展 • 实验验证:动量定理实验设计与操作
XX
PART 01
动量定理基本概念与公式
4. 调整砝码的质量,使滑块在 导轨上做匀速直线运动。
实验器材准备和操作步骤
01
5. 断开细绳,使滑块在导轨上滑 行,并通过光电计时器记录下滑 块的滑行时间。
02
6. 重复以上步骤多次,以获得较 为准确的数据。

高考物理课程复习:动量守恒定律及其应用

高考物理课程复习:动量守恒定律及其应用

(2)系统内各物体间相互作用的内力远大于它所受到的外力。
外力的冲量忽略不计
(3)如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守
恒。
易错辨析 (1)只要系统外力做功为零,系统动量就守恒。( × )
(2)系统动量不变是指系统的动量大小和方向都不变。( √ )
(3)系统的动量守恒时,机械能也一定守恒。( × )
答案


≤vB≤
4
2
解析 当两球发生完全非弹性碰撞时,B 球的速度最小,根据动量守恒定律得
mv=4mvmin,解得

vmin= ;当两球发生弹性碰撞时,B
4
球的速度最大,根据动量守
恒定律得
1
2 1
mv=mvA+3mvmax,根据能量守恒定律得2mv =2 A 2
联立解得



vmax=2,故速度可能值的范围为4≤vB≤2。
+
1
mAA 2
2

1
(mA+mB)AB 2 =3
2
J
Q=μ·
mBg·
L
解得L=0.75 m
所以长板A的上表面长度L至少为0.75 m。
旁栏边角 人教版教材选择性必修第一册P25
阅读“做一做”,完成下面题目。
1.气球内气体向后喷出,气球会向前运动,这是因为气球受到(
)
A.重力
B.手的推力
C.空气的浮力
【典例突破】
典例1.(多选)(2020全国Ⅱ卷)水平冰面上有一固定的竖直挡板。一滑冰运
动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0
m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡

第六章 第1讲动量定理及应用

第六章 第1讲动量定理及应用

B、C、D正确;
物体做匀速圆周运动,所受合外力方向不断变化,合力为变力,不能满足在
任何相等时间内,合外力的冲量相等,故不可能为匀速圆周运动,故A错误.
1 2 3 4 5 6 7 8 9 10 11 12 13
B.与它的位移成正比
C.与它的速度成正比
D.与它的动量成正比
解析 高铁列车做初速度为零的匀加速直线运动,则速度 v=at,动能 Ek=
12mv2=12ma2t2,与经历的时间的平方成正比,A 项错误; 根据 v2=2ax,动能 Ek=21mv2=12m·2ax=max,与位移成正比,B 项正确;
动能 Ek=21mv2,与速度的平方成正比,C 项错误; 动量 p=mv,动能 Ek=21mv2=2pm2 ,与动量的平方成正比,D 项错误.
撞极短时间内,碰撞力远大于豆粒受到的重力),已知1 000粒的
豆粒的总质量为100 g.则在碰撞过程中秤盘受到的压力大小约为
A.0.2 N
√B.0.6 N
图3
C.1.0 N
D.1.6 N
变式3 (多选)(2018·陕西省安康市第二次联考)一质量为m=60 kg的运动员从
下蹲状态竖直向上跳起,经t=0.2 s,以大小v=1 m/s的速度离开地面,取重 力加速度g=10 m/s2,在这0.2 s内
的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是 矢量 式,等号包含了大小相等、方向相同两方面的含义.
自测2 (2018·全国卷Ⅱ·15)高空坠物极易对行人造成伤害.若一个50 g的鸡蛋
从一居民楼的25层坠下,与地面的碰撞时间约为2 ms,则该鸡蛋对地面产生
图4
双基巩固练
1.(2018·山东省日照市校际联合质检)关于动量和动能,下列说法中错误的是

高考物理专题复习:《动量》试卷及参考答案

高考物理专题复习:《动量》试卷及参考答案

高考物理专题复习:《动量》(附参考答案)一、考纲要求1.动量、冲量、动量定理及其应用 B2.动量守衡定律及其应用(包括反冲) B二、知识结构(一)重要的概念1.动量定义:把物体的质量和运动速度的乘积叫物体的动量公式:P=m·v 单位:千克米/秒理解:动量是矢量,方向与v相同,v指即时速度2.动量的变化定义:物体的末动量减初动量叫物体动量的变化公式:ΔP=P′-P=mv′-mv 单位:千克米/秒或牛顿·秒理解:动量的变化是矢量,方向与Δv相同即Δv矢量,“减”是末动量矢量减初动量矢量,即平行四边形3.冲量定义:把t和力的作用时间的乘积叫力的冲量公式:I=F·t 单位:牛顿·秒或千克米/秒理解:冲量是矢量、方向与F相同。

(二)基本规律1.动量定理语言表述:合外力对物体的冲量等于物体动量的变化公式:F合·t=ΔP=mv′-mv理解:F合是合外力而不是某个力,合外力是恒力时ΔP与F合同向且为冲量的方向,合外力的方向变化时冲量与ΔP同向。

2.动量守衡定律语言叙述:相互作用的物体,如果不受外力作用或者它们所受的外力之和为零,它们的总动量保持不变。

公式:两个物体相互作用时,m1v1+m2v2=m1v1′+m2v2′理解:系统所受外力的合力虽不为零,但比系统内力小得多,如碰撞过程中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。

系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上的系统的总动量的分量保持不三、知识点、能力点提示1.动量、动量的变化、冲量都是矢量,正、负号表示跟规定的正方向相同或相反。

2.ΔP=P′-P,ΔP的方向可以跟初动量P相同;可以跟初动量P的方向相反,也可以跟初动量的方向成某一角度。

3.动量定理不仅适用于恒定的力,也适用于随时间变化的力,对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。

4.求变力的冲量,不能直接用F·t求解,应该由动量定律根据动量的变化间接求解,也可以 F-t图像下的“面积”的计算方法求解。

高考物理知识点总结动量知识点

高考物理知识点总结动量知识点

高考物理知识点总结动量知识点动量是物体在运动过程中的重要物理量,它描述了物体所具有的运动状态和运动特性。

在高考物理考试中,动量是一个重要的考察内容,涉及到动量的定义、解题方法、实验现象等方面。

本文将对高考物理中的动量知识点进行总结,旨在帮助同学们深入理解和掌握动量的概念和应用。

一、动量的定义和计算公式动量的定义:动量是物体的质量和速度的乘积,用字母p表示。

动量的公式如下:p = m * v其中,p表示动量,m表示物体的质量,v表示物体的速度。

二、动量守恒定律动量守恒定律是物理学中的重要基本定律之一,它描述了在一个系统内,如果没有外力作用于该系统,那么系统的总动量将保持不变。

动量守恒定律的数学表达式为:m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'其中,m₁和m₂分别表示两个物体的质量,v₁和v₂分别表示两个物体的初始速度,v₁'和v₂'分别表示两个物体的最终速度。

根据动量守恒定律,我们可以解决一些与动量有关的实际问题,例如弹性碰撞和完全非弹性碰撞等。

三、力的冲量和动量变化当一个物体受到外力作用时,引起该物体动量的变化。

我们知道力可以用冲击力的概念来描述。

力的冲量定义为:冲量是作用在物体上的力在时间上的累积。

冲量的计算公式为:FΔt = Δp其中,F表示作用力,Δt表示作用时间,Δp表示动量的变化量。

四、动量定理动量定理是描述物体受力作用时动量变化规律的重要定理。

根据动量定理,外力对物体的冲量等于物体的动量变化。

动量定理的数学表达式为:FΔt = Δp这个定理告诉我们,当物体受到力的作用时,冲量等于物体动量的变化量。

根据这个定理,我们可以解决一些与动量有关的问题,例如力的大小、时间和物体动量的关系等。

五、动量守恒定律在碰撞问题中的应用动量守恒定律在碰撞问题中有着广泛的应用。

在碰撞过程中,物体之间的相互作用力将引起它们的动量变化,而动量守恒定律可以帮助我们求解碰撞前后物体的速度、动量等相关参数。

高三物理【动量定理 动量守恒定律】复习整合

高三物理【动量定理 动量守恒定律】复习整合

[真题再练] 1.(2020·全国卷Ⅰ)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬 间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作 用,下列说法正确的是( ) A.增加了司机单位面积的受力大小 B.减少了碰撞前后司机动量的变化量 C.将司机的动能全部转换成汽车的动能 D.延长了司机的受力时间并增大了司机的受力面积
B.0.27 N
C.0.022 N
D.0.027 N
解析:D 由题知,水滴质量为 m=0.5 g,重力加速度为 g=10 m/s2,屋檐高度为 h =4 m,设水滴刚落到石板上时速度为 v.水滴从屋檐开始下落到石板上,忽略空气阻力, 水滴的机械能守恒,有 mgh=12mv2.水滴从接触石板到速度为零的过程中,取向下为正方 向,对水滴由动量定理得(mg-F)t=0-mv,解得 F≈0.027 N,由牛顿第三定律可知,D 正确.
动量守恒定律解题的基本步骤 1.明确研究对象,确定系统的组成(系统包括哪几个物体)及研究的过程. 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒). 3.规定正方向,确定初、末状态动量. 4.由动量守恒定律列出方程. 5.代入数据,求出结果,必要时讨论说明.
[精选模拟] 视角 1:动量守恒的判断 1.关于下列四幅图所反映的物理过程的说法正确的是( )
8 次这样推物块后,运动员退行速度的大小大于 5.0 m/s,反弹的物块不能再追上运动员.不
计冰面的摩擦力,该运动员的质量可能为( )
A.48 kg
B.53 kg
C.58 kg
D.63 kg
解析:BC 设运动员和物块的质量分别为 m、m0,规定运动员运动的方向为正方向, 运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为 v1、v0,则根 据动量守恒定律 0=mv1-m0v0,解得 v1=mm0v0,物块与弹性挡板撞击后,运动方向与运动 员同向,当运动员再次推出物块 mv1+m0v0=mv2-m0v0,解得 v2=3mm0v0,第 3 次推出后 mv2+m0v0=mv3-m0v0, 解得 v3=5mm0v0,依次类推,第 8 次推出后,运动员的速度 v8=15mm0 v0, 根据题意可知 v8=15mm0v0>5 m/s, 解得 m<60 kg,第 7 次运动员的速度一定小于 5 m/s, 则 v7=13mm0v0<5 m/s, 解得 m>52 kg,综上所述,运动员的质量满足 52 kg<m<60 kg,AD 错 误,BC 正确.

高考物理总复习 第六单元 动量 第1课时 动量定理(含解析)

高考物理总复习 第六单元 动量 第1课时 动量定理(含解析)

课时1 动量定理1.动量(1)定义:物理学中把运动物体的质量和速度的乘积叫作物体的动量。

(2)表达式:p=mv。

(3)单位:kg·m/s。

(4)矢量性:物体在某时刻的动量方向与其速度方向相同。

(5)动量与动能的比较。

物理量动量动能定义物体质量与速度的乘积物体由于运动而具有的能量定义式p=mv Ek=mv2标矢性矢量标量特征状态量状态量关联式p=Ek=2.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量。

(2)定义式:I=Ft。

(3)单位:N·s。

(4)矢量性:冲量的方向跟力的方向相同。

(5)物理意义:冲量反映力的作用对时间的累积效应。

3.动量的变化量(1)物体在某段时间内末动量与初动量的矢量差叫作物体在这段时间内的动量的变化。

(2)计算式:Δp=p2-p1。

(3)动量的变化是矢量。

4.动量定理(1)内容:物体在一个过程中动量的变化量等于其在这个过程中所受到的力的冲量。

(2)表达式:I=p2-p1。

(3)物理意义:冲量是物体动量变化的量度。

(4)动量定理与动能定理的比较物理规律动量定理动能定理内容物体在一个过程中动量的变化量等于其在此过程中所受合外力的冲量物体在某一过程中动能的变化量等于在此过程中合外力对物体所做的功表达式I=mv2-mv1W=m -m 标矢性矢量式标量式物理意义反映力的作用对时间的累积效果反映力的作用对位移的累积效果1.(2019河北邯郸高三模拟)下列情况中,物体的动量不变的是()。

A.汽车在平直的公路上匀速前进B.汽车在转弯过程中,速度的大小不变C.水平飞来的小球撞到竖直墙面后,保持速度大小不变离开墙面返回D.水平地面上匀速直线运动的洒水车正在洒水答案A2.(2018福建厦门10月模拟)(多选)一个物体的动量和动能的关系,下列说法正确的是()。

A.动量增大,动能一定增大B.动能减小,动量可能增大C.动量不变,动能就不变D.动能不变,动量就不变AC3.(2019河北沧州11月月考)(多选)下列关于冲量和动量的说法正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ⅰ.在水泥面上做实验时,A恰好未撞到B;
ⅱ.在冰面上做实验时,A撞到B后又共同滑行了一段距离,测得该距离为 。
对于冰面的实验,请你与他们共同探讨以下三个问题:
(1)A碰撞B前后的速度之比_______
(教苑中学)2.用如图甲所示的装置,来验证碰撞过程中的动量守恒。图中PQ是斜槽,QR为水平槽。O点是水平槽末端R在记录纸上的垂直投影点,A、B两球的质量之比mA:mB=3:1。先使A球从斜槽上固定位置G由静止释放,在水平地面的记录纸上留下落点痕迹,重复10次,得到10个落点。再把B球放在水平槽上的末端R处,让A球仍从位置G由静止释放,与B球碰撞,碰后A、B球分别在记录纸上留下各自的落点痕迹,重复10次。A、B两球在记录纸上留下的落点痕迹如图乙所示,其中米尺的零点与O点对齐。
(1)求A球与B球第一次碰撞后瞬间,A球的速度V1和B球的速度V2;
(2)要使A球与B球第二次仍在B球的初始位置迎面相碰,求劲度系数k的可能取值。
(深圳一模)2.光滑水平面上有两个小木块A和B,其质量mA=1kg、mB=4kg,它们中间用一根轻质弹簧相连.一颗水平飞行的子弹质量为m=50g,以V0=500m/s的速度在极短时间内射穿两木块,已知射穿A木块后子弹的速度变为原来的 ,且子弹射穿A木块损失的动能是射穿B木块损失的动能的2倍.求:系统运动过程中弹簧的最大弹性势能.
(1)碰撞后A球的水平射程应取_____________cm。
(2)本实验巧妙地利用小球飞行的水平距离表示小球的水平速度。下面的实验条件中,可能不能使小球飞行的水平距离表示为水平速度的是__________________。
A.使A、B两小球的质量之比改变为5:1
B.升高固定点G的位置
C.使A、B两小球的直径之比改变为1:3
(潮州市)7.如图所示,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为 可视为质点的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。现瞬间使物体A获得一向右的水平初速度v0,以后物体A与盒B的左右壁碰撞时,B始终向右运动。当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。
(广州市)6 .如图所示,水平面上固定着一个半径R=0.4m的 光滑环形轨道,在轨道内放入质量分别是M=0.2kg和m=0.1kg的小球A和B(均可看成质点),两球间夹一短弹簧。(1)开始时两球将弹簧压缩(弹簧的长度相对环形轨道半径和周长而言可忽略不计),弹簧弹开后不动,两球沿轨道反向运动一段时间后又相遇,在此过程中,A球转过的角度θ是多少?(2)如果压缩弹簧在松手前的弹性势能E=1.2J,弹开后小球B在运动过程中受到光滑环轨道的水平侧压力是多大?
(1)两滑块在碰撞前的瞬时,滑块A的速度;
(2) 滑块A起始运动位置与滑块B的距离λ;
(三校联考)9.如图所示,固定在地面上的光滑圆弧轨道AB、EF,他们的圆心角均为90°,半径均为R. 一质量为m、上表面长也为R的小车静止在光滑水平面CD上,小车上表面与轨道AB、EF的末端B、E相切. 一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动. 当小车右端与壁DE刚接触时,物体m恰好滑动到小车右端相对于小车静止,同时小车与DE相碰后立即停止运动但不粘连,物体则继续滑上圆弧轨道EF,以后又滑下来冲上小车,求:
(n=0 、1 、2 、3 ……) ⑦ …………………………(2分)
由题意得: ⑧ …………………………(1分)
解得: (n=0 、1 、2 、3 ……) ⑨ ……………(2分)
2.
解:子弹穿过A时,子弹与A动量守恒,
由动量守恒定律: ……………………… ① 3分
而由 得:v1=300m/s
得: ………………………②
B.摆球的速度不变,小车和木块的速度变为v1和v2,满足
C.摆球的速度不变,小车和木块的速度都变为v1,满足
D.小车和摆球的速度都变为v1,木块的速度变为v2,满足
(教苑中学)5.为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位持有完全相同步枪和子弹的射击手. 首先左侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同. 当两颗子弹均相对于木块静止时,下列判断正确的是( )
(1) 与 第一次碰撞前, 是否运动?
(2)若 第一次与 碰后瞬间向左运动的速率为 ,求此时矩形盒 的速度大小
(3)当 停止运动时, 的速度是多少?
(实验中学)
4.如图所示,n个相同的木块(可视为质点),每块的质量都是m,从右向左沿同一直线排列在水平桌面上,相邻木块间的距离均为l,第n个木块到桌边的距离也是l,木块与桌面间的动摩擦因数为μ.开始时,第1个木块以初速度υ0向左滑行,其余所有木块都静止,在每次碰撞后,发生碰撞的木块都粘在一起运动.最后第n个木块刚好滑到桌边而没有掉下.
子弹穿过B时, 子弹与B动量守恒,
由动量守恒定律: ………………………③ 3分
又由 …………………④ 2分
得:v2=100m/s
由③,④得: ………………………⑤
子弹穿过B以后,弹簧开始被压缩,A、B和弹簧所组成的系统动量守恒
D.A、B两球的最大速度之比为vA:vB= 1 : 2
(广大附中)4.在质量为M的小车中挂有一单摆,摆球的质量为m0,小车(和单摆)以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的( )
A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足
(1)物体从A点滑到B点时的速率和滑上EF前的瞬时速率;
(2)水平面CD的长度;
(3)当物体再从轨道EF滑下并滑上小车后,如果小车与壁BC相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端的距离.
参考答案
一.不定项选择题
1.BCD 2.B 3.AC 4.BC 5.B 6.A
二.实验题
A.木块静止,d1=d2
B.木块静止,d1<d2
C.木块向右运动,d1<d2
D.木块向左运动,d1=d2
(三校联考)6.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为 ,规定向右为正方向,A、B两球的动量均为 ,运动中两球发生碰撞,碰撞后A球的动量增量为 ,则( )
A.左方是A球,碰撞后A、B两球速度大中学)1.甲、乙两个质量都是M的小车静置在光滑水平地面上。质量为m的人站在甲车上并以速度v(对地)跳上乙车,接着仍以对地的速率v反跳回甲车。对于这一过程,下列说法中正确的是().
A.最后甲、乙两车的动量大小相等
B.最后甲、乙两车的速率之比v甲:v乙=M:(m+M)
C.人从甲车跳到乙车时对甲的冲量小于从乙车跳回甲车时对乙车的冲量
(1)若框架与墙壁发生碰撞后速度为零,但与墙壁不粘连,求框架脱离墙壁后的运动过程中,弹簧弹性势能的最大值。
(2)若框架与墙壁发生碰撞以一定速度反弹,在以后过程中弹簧的最大弹性势能为 ,求框架与墙壁碰撞时损失的机械能 E1。
(3)在(2)情形下试判定框架与墙壁能否发生第二次碰撞?若不能,说明理由。若能,试求出第二次碰撞时损失的机械能 E2。(设框架与墙壁每次碰撞前后速度大小之比不变)
D.升高桌面的高度,即升高R点距地面的高度
(3)利用此次实验中测得的数据计算碰撞前的总动量与碰撞后的总动量的比值为。(结果保留三位有效数字)
三.计算题
(茂名市)1.如图15所示,劲度系数为k的轻弹簧,左端连着绝缘介质小球B,右端连在固定板上,放在光滑绝缘的水平面上。整个装置处在场强大小为E、方向水平向右的匀强电场中。现有一质量为m、带电荷量为+q的小球A,从距B球为S处自由释放,并与B球发生碰撞。碰撞中无机械能损失,且A球的电荷量始终不变。已知B球的质量M=3m,B球被碰后作周期性运动,其运动周期 (A、B小球均可视为质点)。
A. B.
C. D.
(潮州市)3 .一不计质量的直角形支架的两直角臂长度分别为2l和l,支架可绕水平固定轴O在竖直平面内无摩擦转动,支架臂的两端分别连接质量为m和2m的小球A和B,开始时OA臂处于水平位置,如图所示。由静止释放后,则( )
A.OB臂能到达水平位置
B.OB臂不能到达水平位置
C.A、B两球的最大速度之比为vA:vB= 2 : l
B.左方是A球,碰撞后A、B两球速度大小之比为
C.右方是A球,碰撞后A、B两球速度大小之比为
D.右方是A球,碰撞后A、B两球速度大小之比为
二.实验题
(乐从中学)1.今年2月我国南方遭受了严重的冰冻灾害,很多公路路面结冰,交通运输受到了很大影响。某校一学习小组为了研究路面状况与物体滑行距离之间的关系,做了模拟实验。他们用底部贴有轮胎材料的小物块A、B分别在水泥面上和冰面上做实验,A的质量是B的4倍。使B静止,A在距B为L处,以一定的速度滑向B:
碰撞过程中动量守恒 ③………………(2分)
机械能无损失,有 ④……………(2分)
解得 负号表示方向向左 ………………(1分)
方向向右 ……………………………(1分) (2)要使m与M第二次迎面碰撞仍发生在原位置,则必有A球重新回到O处所用的时间t恰好等于B球的 ………………………………(1分)
⑥ …………………………………………………………………(1分)
(实验中学)3 .如图所示,矩形盒 的质量为 ,底部长度为 ,放在水平面上,盒内有一质量为 可视为质点的物体 , 与 、 与地面的动摩擦因数均为 ,开始时二者均静止, 在 的左端。现瞬间使物体 获得一向右的水平初速度 ,以后物体 与盒 的左右壁碰撞时, 始终向右运动。当 与 的左壁最后一次碰撞后, 立刻停止运动, 继续向右滑行 ( )后也停止运动。
相关文档
最新文档