谈齿轮渗碳淬火有效硬化层及硬度梯度
重载齿轮渗碳质量检验标准
重载齿轮渗碳质量检验标准重载齿轮渗碳质量检验标准主要关注渗碳工序后的齿轮质量,以确保其满足重载应用的要求。
以下是对该标准的详细介绍:1.渗碳层深度和有效硬化层深度:这两个指标是衡量渗碳质量的重要技术参数。
渗碳层深度指的是从齿轮表面到渗碳层与未渗碳部分交界处的距离,而有效硬化层深度则是指从齿轮表面到硬化层与心部交界处的距离。
这两个指标都需要通过金相检测等方法进行准确测量,以确保齿轮的耐磨性和承载能力。
2.表面碳含量和组织:渗碳过程中需要控制齿轮表面的碳含量,以获得理想的组织结构和性能。
表面碳含量过高或过低都会导致齿轮性能下降,因此需要通过化学分析等方法进行准确控制。
同时,组织中的碳化物形态、分布以及残留奥氏体的含量等也需要符合标准要求,以确保齿轮的强度和韧性。
3.表层硬度梯度:渗碳后齿轮的表层硬度梯度应平缓且连续,避免出现硬度突变的情况。
这可以通过硬度测试等方法进行检测,以确保齿轮在使用过程中能够承受较大的载荷和冲击。
4.变形量:渗碳过程中由于热胀冷缩等因素,齿轮可能会产生一定的变形。
因此,需要对变形量进行控制,以确保齿轮的精度和装配性能。
变形量可以通过测量齿轮的尺寸和形状等参数进行评估。
5.内部缺陷:渗碳过程中可能会产生一些内部缺陷,如裂纹、气孔等。
这些缺陷会严重影响齿轮的性能和使用寿命,因此需要通过无损检测等方法进行排查和剔除。
总之,重载齿轮渗碳质量检验标准涵盖了多个方面的指标和要求,旨在确保渗碳后的齿轮具有优异的耐磨性、承载能力、强度和韧性等性能,以满足重载应用的需求。
在实际应用中,需要根据具体的产品要求和工艺条件制定相应的检验标准,并严格执行以确保产品质量。
浅谈机床渗碳件渗层深度与性能
浅谈机床渗碳件渗层深度与性能前言在机床零件中,渗碳件占有相当的比例,特别是齿轮、轴、套类等零件。
渗碳质量直接影响机床的精度和寿命,而渗层的表层碳含量,渗层深度,渗碳淬火回火后的硬度以及表层与心部组织,则是衡量渗碳件性能的重要指标。
根据这些指标的测定,选出最合适的渗层深度,最优化的工艺。
备料及制样2.1制样分组根据我厂具体情况,本试验选钢为20Cr。
20Cr钢的化学成分(W%)及Ac1,Ac3(℃):C(0.17-0.24)Si(0.17-0.37)Mn(0.5-0.8)Cr(0.7-1.00),Ac1(766)、Ac3(838)。
经过对渗碳件渗层深度要求的统计,筛选出具有代表性的三个渗层范围,并将试样分组,编号分别为A、B、C。
A组:渗层深度为0.6-0.8mm,B组:渗层深度为0.9-1.3mm,C组:渗层深度为1.3-1.7mm。
2.2试样种类尺寸及数量,并打上相应编号金相试样:φ12X30 每样号3件,共9件硬度试样:φ20X12 每样号3件,共9件冲击试样:10X10X55 每样号3件,共9件3.热处理阶段3.1渗碳工艺由于碳在铁素体中的溶解度较小,而在奥氏体中的溶解度较大,所以渗碳必须在Ac3以上的温度,使钢在奥氏体状态下进行。
渗碳温度越高,渗碳层越深。
但过高的渗碳温度将导致晶粒粗化,表层碳浓度过高而形成网状碳化物,并在淬火后形成大量残余奥氏体,增加了淬火后的变形、开裂倾向。
因此,选择适合的渗碳温度尤为重要。
选择渗碳温度为920℃。
根据A、B、C的三个渗层深度,渗剂为煤油,渗碳时间分别为3-5h;5-8h;8-11h。
渗碳工艺如下:组别A,渗碳温度920℃,时间3h,炉冷至840℃坑冷。
组别B,渗碳温度920℃,时间7h,炉冷至840℃坑冷。
组别C,渗碳温度920℃,时间10h,炉冷至840℃坑冷。
3.2淬火、回火工艺为使渗碳件具有表面高硬度,高耐磨性和良好的心部韧性,渗碳件在渗碳后必须进行恰当的淬火、回火才能达到要求。
渗碳工艺对WCCo梯度硬质合金的梯度结构和硬度的影响
33.803%。
C03W3C+2C=3WC+3Co
(2)
C06W6C+5C=6WC+6Co
(3)
刘咏等【8-10】从扩散热力学和动力学详细讨论梯度 结构的形成机理,认为钴梯度的形成主要受碳扩散和 WC晶粒长大导致的液相流动的影响。渗碳处理初期, 表层由于碳势较高,先于内部出现液相,溶解在液相
所有待测试样的表面和横切面进行抛光处理。采 用Leica公司的MeF3A金相显微镜和Q550图像分析 仪,以及扫描电子显微镜(JSM-6360LV)进行微观结构
Key words:WC—Co cemented carbides;gradient structure;carburizing;hardness
由于硬质合金的耐磨性能和韧性是一对相互矛 盾的性能,在许多服役条件下,传统的均匀结构硬质
合金则表现出明显的劣势n-31。例如,地质矿山用硬质 合金钻具这类要求钻齿表面耐磨和整体耐冲击,传统
第18卷第3期 、bI.18 No.3
中国有色金属学报 The Chinese Journal of Nonferrous Metals
文章编号:1004.0609(2008)03-0465—06
2008年3月 M札2008
渗碳工艺对WC.Co梯度硬质合金的梯度结构和硬度的影响
肖逸锋1,一,贺跃辉1,丰平1,谢宏1一,马自省1一,张丽娟1,黄自谦1,黄伯云1
万方数据
第18卷第3期
肖逸锋,等:渗碳工艺对WC.Co梯度硬质合金的梯度结构和硬度的影响467
、ⅣC+Co+叩三相区之间形成富钴层。可见,W原子向 合金表面迁移也是梯度结构形成的原因之一。
图l烧结态缺碳硬质合金的显微组织 Fig.1 Microstructure of as—sintered WC一6Co carbon-deficient cemented carbides showing WC,Co and叩phase(bright,dark and gray phases referto WC,Co and,7 phase,respectively)
浅谈齿轮渗碳淬火有效硬化层及硬度梯度
浅谈齿轮渗碳淬火有效硬化层及硬度梯度随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。
为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。
由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。
为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。
此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。
下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。
一、渗碳层深度的检测1.1、金相法1.1.1、取本体或与零件材料成分相同,预先热处理状态基本相似的圆试样或齿形试样进行检测。
1.1.2、送检试样热处理状态为平衡状态,即退火状态。
1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。
1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。
1.2、硬度法1.2.1、取样方法同金相法取样方法一致。
1.2.2、送检试样状态为淬火+回火状态。
1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要求进行选择。
1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如HV550)之间垂直距离。
1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面用图形来描述。
从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550)DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。
DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。
DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。
渗氮层、淬硬层、有效硬化层的硬度和厚度测试
渗氮层、淬硬层、有效硬化层的硬度和厚度测试渗氮层、淬硬层、有效硬化层的硬度和厚度测试一、钢铁零件渗氮(氮化)后的硬度及厚度检测方法:随着工业的发展,渗氮处理被更多的应用到各行各业,对渗氮处理的检测要求也日益提高。
下面北京时代山峰科技有限公司为您简单阐述钢铁零件渗氮处理后的硬度及厚度检测。
渗氮(气体渗氮、离子渗氮、碳氮共渗、辉光离子氮化)零件的主要技术要求是有效渗氮层深度,表面硬度和局部硬度。
某些零件还有渗氮层脆性等级评定要求,完成以上要求,都需显微维氏硬度检测进行测定。
渗氮层从金相组织划分,包括从最外层化合物层(白亮层)到扩散层与基体组织明显分界处为止的深度。
显微维氏硬度检测,依据从工件表面测至与基体有明显界定硬度值处的垂直距离。
渗氮层深度以字母DN表示。
渗氮层深度硬度检测方法:1、试样的准备a、试样应从渗氮零件上切取,如工件不能破坏,也可用与零件相同材料和相同处理工艺的小试样切取后检测。
b、试样切取时要注意,应垂直渗氮层表面取样(详见金相试样取样方法),取样后进行必要的磨抛处理,在磨抛过程中应注意冷却,不能使工件过热,边缘不要出现倒角等。
c、检查渗氮层脆性的试样,表面粗糙度要求>Ra0.25-0.63um,但不允许把表面化合物层磨掉。
2、检测a、根据国标规定,一般选用显微硬度计,检测力通常选用0.3--1KG,从试样表面测至比基体维氏硬度值高50HV处的垂直距离为渗氮层厚度。
(通常采用梯式硬度测法,即从试样表面开始,每间隔一定距离打一点)b、基体硬度的取点与测定,一般在3倍左右渗氮层深度的距离处测得的硬度值(至少取3点,平均值)做为基体硬度值。
c、对于渗氮层硬度变化很平缓的钢种,(如碳钢、低碳合金钢制件),其渗氮层深度可以从试样表面沿垂直方向测至比基体维氏硬度高30HV处。
d、当渗氮层深度有的特别浅,有的则较深时,检测力可以在0.2KG范围内选择(并注明,如HV0.2)e、结果的表示,渗氮层深度用字母DN表示,深度以毫米计,取小数点后两位。
渗碳淬火齿轮件的硬化层深设计与控制
汽 车 工 艺 与 材 料 AT&M 19
生 产现场
SHOP
SOLUTION
表1
国家
美国ANSI/ ACMA2004
美国ANSI/ ACMA2001
英国 BS公司
德国DIN3990
模数/mm 层深/mm
1.45~1.85 0.25~0.50
设计标准
1.85~2.45
2.45~3.00
0.38~0.64
另据资料提供的经验公式也可作为齿轮硬化层深
设max·u )/〔HV·cosβb·(u
±1)2〕
(1)
式中,t 为渗碳层的最小深度,mm;a 为相啮合齿
轮 副 的 公 称 中 心 距 , m m ;α t 为 齿 轮 端 面 啮 合 角 , (°);δ max为最大接触应力,MPa;u 为相啮合 齿轮副齿数比(z 2/z 1);HV为齿面渗碳层的维氏硬 度;βb为基圆螺旋角,(°);小括号中的“+”用 于外啮合,“-”用于内啮合。
2.3 热处理工艺过程对硬化层深的控制
针对热处理渗碳环节,其对硬化层深的控制要综
渗氮层、淬硬层、有效硬化层的硬度和厚度测试简介
0.05
0.02
0.35
0.15
0.1
0.05
0.4
0.2
0.15
0.05
0.5
0.25
0.2
0.1
0.6
0.3
0.25
0.1
0.65
0.3
0.3
0.1
0.75
0.3
3、总渗氮层深度
b、基体硬度的取点与测定,一般在3倍左右渗氮层深度的距离处测得的硬度值(至少取3点,平均值)做为基体硬度值。
c、对于渗氮层硬度变化很平缓的钢种,(如碳钢、低碳合金钢制件),其渗氮层深度可以从试样表面沿垂直方向测至比基体维氏硬度高30HV处。
d、当渗氮层深度有的特别浅,有的则较深时,检测力可以在0.2KG范围内选择(并注明,如HV0.2)
a、渗氮层脆性级别按维氏硬度压痕边缘碎裂程度分为5级
级别
渗氮层脆性级别说明
1
压痕边角完整无缺
2
压痕一边或一角碎裂
3
压痕二边或二角碎裂
4
压痕三边或三角碎裂
5
压痕四边或四角碎裂
b、渗氮层脆性检验一般采用维氏硬度计,试验力10公斤,试验力的加载必须缓慢(在5-9S内完成),试验力加载完成后必须停留5-10S,然后卸载试验力,特殊情况也可采用5KG或者30KG试验力。
一般零件推荐的化合物层厚度及公差表(单位/mm)
化合物层厚度
上偏差
化合物层厚度
上偏差
0.005
0.003
0.012
0.006
0.008
0.004
20CrMnTi齿轮渗碳淬火
常州机电职业技术学院毕业设计(论文)作者:王慧学号:20921209系部:模具技术系专业:材料成型与控制技术(热处理)题目:20CrMnTi减速机齿轮的渗碳淬火指导者:陈宁评阅者:2013年 3 月毕业设计(论文)中文摘要热处理工艺是金属材料工程的重要组成部分。
现代工业的飞速发展对机械零部件的要求愈来愈高,因此通过热处理可以改变材料的加工艺性能,充分发挥材料的潜力,提高工件的使用寿命。
为获得理想组织性能,保证零件在生产过程中的质量,稳定性和使用寿命,就必须从工件的特点、要求和技术条件,正确选择材料;再根据生产规模、现场条件、热处理设备提出几种可行的热处理方案,最后确定出一种最佳方案。
20CrMnTi钢具有晶粒细、渗碳淬火性能良好、工艺性能成熟可靠且成本低廉等优点,目前生产量大致占渗碳齿轮钢的70% ,齿轮在使用过程中,担负着传递动力的任务,在冲击、交变应力等作用下以齿根断裂和齿面接触疲劳为主要失效形式,因此齿轮钢应有良好的强韧性、耐磨性以承受冲击、弯曲和接触应力;此外,还要求变形小、精度高,噪声低。
本设计便是对20CrMnTi减速机齿轮热处理工艺进行详细的说明,从选材下料到热处理工艺路线,以及最后的质量检验、可能产生的缺陷及预防措施等,都进行逐一分析,尽可能的将整个过程详尽的展现出来,从而对大家有所帮助。
关键词:20CrMnTi;减速机齿轮;渗碳淬火;缺陷毕业设计(论文)外文摘要Title: 20CrMnTi Reducer Gear Carburizing and QuenchingAbstract:Heat treatment technology of metallic materials is an important part of the project. The rapid development of modern industry of machinery parts and components of the increasingly high demand, so the heat treatment can change the material and process performance, give full play to the potential, improve the service life of the workpiece. In order to obtain the ideal organizational performance, guarantee the components in the production process quality, stability and service life, must from the characteristics of the workpiece, requirements and technical conditions, proper selection of materials; then according to the scale of production, site conditions, heat treatment equipment and puts forward several feasible heat treatment scheme, finally determine a kind of optimum scheme.20CrMnTi steel has fine grain size, good performance, carburizing and quenching process is mature and reliable performance and low cost, the current production capacity accounted for roughly70% of carburized gear steel, gear during use, charged with the transmission of dynamic task, in shock, alternating stress under the action of taking root fracture and tooth surface contact fatigue as the main the failure forms of gear steel, therefore, should have good strength and toughness, abrasion resistance to withstand impact, bending and contact stress; in addition, also called little deformation, high precision, low noise.This is designed for20CrMnTi reducer gear heat treatment process in detail, from material selection under the expected heat treatment technology route, as well as the final quality inspection, the possible defects and preventive measures and so on, are analyzed and explained, as far as possible the whole process detailed show hill, thus all of you to help.Keywords:20CrMnTi; Reducer gear;carburizing and quenching; defect目录毕业设计(论文)中文摘要 (I)毕业设计(论文)外文摘要 ................................................................... I I 目录 (IV)第一章绪论 (1)1.1 减速机齿轮的应用 (1)1.2 减速机齿轮的作用 (4)1.3 齿轮用钢的分类与生产 (5)1.4 国内外汽车齿轮发展现状 (6)1.5 减速机齿轮的性能要求 (9)1.6 加工工艺性能要求 (9)1.7 材料的选择 (10)第2章热处理工艺选择 (11)2.1 预备热处理的工序位置 (11)2.2 最终热处理的工序位置 (11)2.3 最终热处理工艺方法选择 (11)第三章热处理工艺特性对齿轮质量和寿命的影响 (12)3.1 淬透性 (12)3.2 变形开裂倾向 (12)3.3 淬硬性 (12)第四章20CrMnTi钢的基本性质 (13)4.1 钢的化学成分和力学性能 (13)4.2 含碳量及合金元素作用 (14)4.3汽车变速箱变速齿轮的热处理工艺设计 (16)4.3.1 服役条件 (16)4.3.2 失效形式 (16)4.3.3 性能要求 (17)第五章20CrMnTi变速齿轮加工工艺 (18)5.1 减速机齿轮常用的加工工艺路线 (18)5.2 各种工艺路线的分析 (18)5.2.1 等温正火 (18)5.2.2 渗碳+淬火+回火 (18)5.2.3 喷丸处理 (20)5.2.4 检验 (20)第六章热处理后的金相组织 (21)6.1 20CrMnTi等温正火后金相组织 (21)6.2 20CrMnTi经渗碳后淬火、回火处理金相组织 (21)第七章质量控制与检验方法 (23)7.1 随炉试样检验 (23)7.1.1 表面硬度 (23)7.1.2 心部硬度 (23)7.1.3 有效硬化层深度 (23)7.1.4 表层组织 (24)7.2 齿轮热处理质量检验 (25)7.2.1 外观 (25)7.2.2 齿面硬度 (25)7.2.3 有效硬化层深度 (25)7.2.4 畸变 (26)第八章热处理工艺过程中的质量检验 (27)8.1 渗碳淬火后齿轮的检验项目、内容和要求 (27)8.2 渗碳齿轮的常见缺陷及防止措施 (28)8.3 渗碳淬火后畸变原因分析及解决措施 (29)8.3.1 渗碳淬火后畸变原因分析 (29)8.3.2 减小渗碳淬火齿轮畸变的措施 (32)结论 (35)致谢 (36)参考文献 (37)第一章绪论随着科学技术和工业生产的飞速发展,经济各个部门迫切需要各种各样质量优、性能好、效率高、能耗低、价格廉的机械产品。
渗碳淬火齿轮有效硬化层深
工厂标准
Q/DZ
渗碳淬火齿轮有效硬化层深度
共2页第1页
1、定义:渗碳齿轮齿面有效硬化层深度是指终加工齿面至心部硬度
为Hv550处的厚度a,国际上用Eht表示。
2、渗碳齿轮有效硬化层最小深度a min按下式计算。
可从表1中直
接查取。
a min= log(1.2m n)+ 0.018m n
表1
3、有效硬化层深度的最大值a max按表2确定
共2页第2页
表2
4、本规定适用于轧钢机械、连铸机械、炼焦机械、冶炼机械、装卸
机械的传动齿轮。
5、特殊工况用渗碳齿轮的有效硬化层深度,可根据接触剪应力的大
小另行确定。
6.、本表对于Mn≤8的齿轮而言,其推荐的渗碳深度是合理的,但对于Mn>8的齿轮而言,其数据缺乏合理性。
7. 对于合理的渗碳层深度各国、各公司的标准不同,而且差距还比较大。
各国及各行业推荐的渗碳层深度见表3
表3 各国及各行业推荐的渗碳层深度
注:根据JB/T 8853-2001《圆柱齿轮减速机》渗碳层的深度根据模数选择,当Mn=1.5~6时,渗碳层深度ht=(0.2~0.3)Mn;
当Mn=7~18时,渗碳层的深度ht=(0.15~0.25)Mn(小模数取大值,大模数取小值)。
渗碳齿轮最佳有效硬化层深度
齿轮加工中渗碳淬火和渗碳质量分析
齿轮加工中渗碳淬火和渗碳质量分析一、前言齿轮是我们日常生活中接触到的较多的机械产品,它的性能的好坏对产品的机械性能起着重要作用。
齿轮在渗碳淬火过程中,可能出现的问题很多,主要表现在以下几个方面:淬火后硬度不够、渗层深度不够、淬火后心部硬度过高、变形大、油淬后表面光亮度不够甚至开裂。
影响淬火质量的因素有很多,比如原材料成分、热处理工艺以及淬火后的冷却过程。
本文主要论述以上几个方面对齿轮渗碳淬火质量的影响。
二、材料成分对齿轮渗碳淬火质量的影响2.1 材料成分对心部硬度的影响20CrMnMo齿轮的主要合金元素是Cr、Mn和Mo元素。
Mo和Cr元素可以大大降低渗碳层中贝氏体形成的敏感性,Mn元素可以提高淬透性。
虽然Mn元素对提高心部淬透性来说是最经济有效的元素,但是Mn含量过多会产生如淬透性带失控等问题,淬透性越高,畸变量越大,因此要严格控制合金元素含量。
2.2 材料成分对内氧化的影响在热处理期间,在合金表面的下方形成氧化物的现象称为内氧化。
在气体渗碳中,Mn和Cr是容易与介质中的氧原子发生氧化的元素,所形成的氧化物会导致钢表层的合金元素流失,Mo元素则对内氧化的影响较小。
对于Mn元素,它的流失会导致淬透性降低,以及表层中非马氏体组织(在渗碳淬火件表面中经常出现连续或不连续的网状或块状黑色组织,此处恰好不是表层压应力最大的区域,被公认是由于内氧化而贫化合金元素导致形成屈氏体类组织,也被成为非马氏体组织)的形成;Cr元素的损失则使渗层中碳化物的形成变得困难。
只要表面转变为马氏体组织,较浅的表面氧化对疲劳特性无明显影响,而严重的氧化会因从奥氏体中消耗大量的合金元素而降低其淬透性,导致形成其它一些非马氏体组织(如屈氏体、珠光体组织),这些组织会降低表面压应力,对疲劳性能不利。
因此在渗碳过程中要注意减少和避免表面氧化,但实际生产过程中,考虑到目前普遍应用的渗碳气氛都含有氧化物,所以渗碳过程或多或少都会发生内氧化。
渗碳齿轮最佳有效硬化层深度
渗碳齿轮最佳有效硬化层深度
渗碳齿轮最佳有效硬化层深度
渗碳齿轮是一种重要的机械加工件,其强度和耐磨性是影响它们应用性能的重要因素。
渗碳齿轮的表面硬度受渗碳深度的影响,而渗碳深度受碳温度和渗碳时间的影响。
渗碳时间主要由机械渗碳装置的工作程序、反复循环次数和设备的制造精度等因素决定。
本文旨在探讨渗碳齿轮最佳有效硬化层深度的因素,并针对渗碳齿轮的渗碳温度、渗碳时间和反复循环次数,给出一定的指导意见。
首先,渗碳温度是影响渗碳深度的主要因素,而渗碳温度越高,渗碳层越深。
这是因为碳温度越高,碳溶解度越强,从而渗碳深度增加。
因此,如果要使渗碳齿轮的表面有效硬化层深度达到最佳,就必须把碳温度提高到一定的水平。
其次,渗碳时间也是影响渗碳深度的因素之一,而渗碳时间越长,渗碳深度越深。
渗碳时间受机械渗碳装置工作程序的影响很大,因此,为了使渗碳齿轮表面有效硬化层深度达到最佳,它的渗碳时间需要调整到恰当的水平。
在此基础上,还要考虑渗碳反复循环次数的影响,即渗碳深度和反复循环次数之间存在相互影响的关系,如果反复循环次数越多,渗碳深度就越深。
因此,为了达到最佳的有效硬化层深度,应注意适当增加渗碳反复循环次数。
总之,渗碳齿轮最佳有效硬化层深度的影响因素有渗碳温度、渗碳时间和反复循环次数,应在此基础上进行合理调节,以达到最佳的
有效硬化层深度。
渗碳淬火硬齿面齿轮制造难点的工艺研究
预加工齿形沉割起始点的曲率半径为Θ1沉, 要使渐开线
收稿日期: 2007206211; 修回日期: 2007207220 作者简介: 张立峰 (19722) , 男, 山西太原人, 工程师, 专科。
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
其长度, 必须确保任意工作面 Θ1< Θ1′, 若被磨齿轮不 满足这个条件就容易产生渐开线长度不足。
112 齿根过渡曲线连接不好产生台阶
齿根缺陷是指磨齿生产实践中容易发生的齿根几
何形状缺陷。在制造过程中, 约有 50% 左右的齿轮有
凸台, 其中有的是齿根两边不对称, 一侧凸台明显, 一
侧过渡好一些; 有的是全齿宽都有凸台, 凸台约占齿
力和使用寿命得到很大提高, 并因结构尺寸小而使齿 轮装置的成本大大降低, 所以越来越广泛地被应用于 船舶、 冶金设备以及挖掘机、 轧机、 起重机上。 齿轮 产品的质量和性能, 除依赖于合理而先进的设计方法 外, 主要决定于齿轮制造水平的高低。
硬齿面齿轮主要有表面淬火齿面、 氮化齿面、 渗 碳淬火磨削齿面三种硬化齿面。 渗碳淬火硬齿面齿轮 精度高, 表面硬度高 (HRC60±2) , 硬度的分布梯度 小, 组织均匀, 不易产生表面裂纹, 且成本低, 解决 了表面淬火齿面、 氮化齿面中存在的一系列问题。 但 在制造过程中容易产生磨削裂纹、渐开线长度不足、齿 根过渡曲线连接不好而产生台阶等现象, 本文将针对 这些问题进行分析研究, 并提出相应的解决方案。 1 渗碳淬火硬齿面齿轮加工过程中存在的主要问题 111 渐开线长度不足
·177·
HRC40, 残余奥氏体小于 10% (见图 4) , 齿顶无碳化物 (见图 5) , 心部组织为低碳板条马氏体 (见图 6)。
渗碳齿轮有效硬化层深度的确定和齿轮疲劳强度试验方法
h sb e r d a l d c d I i f u d f m p l a in o u h g a a e u t n o a b r i gt i k e s a e n g a u l r u e . t s o n r a p i t f c e r h t d ci f r u i n c n s y e o c o s t r o c z h
的接触疲 劳 和齿根 部 的弯 曲疲 劳 ,所 有关 于材 料 以
装 备 中起 着传递 动力 、改 变转速 和旋转 方 向的重 要
及 组 织 性 能 的试 验 研 究 ,基 本都 紧 密 围绕 这 一 主
题 。其 中 ,对 于 已经 选定 的材料 ,选 择并 实施 合适
作 用 。 按 齿 轮 的传 动形 式 ,一 般 将 其 分 为 三 类 : () 圆柱 齿轮 用 于 平行 两 轴之 间 的传 动 ; () 锥 1 2 齿 轮 用于 相交 两 轴 之 间的 传动 ; () 蜗轮 与 蜗 杆 3
ito c d whih h v e n u e rma yy a s I e e t e r, a b rzn c n s f a y d y g a s n r du e , c a eb e s df n e r . n r c n a s c r u ii g t k e so v - ut e r o y hi he
n to l a o ifue c n ftga e itn eo e r,b tas sb n fca o s v n n r ya d r du i g o n yh sn n l n eo aiae r ssa c fg a s u lo i e e i t a i ge e g n e cn i l e e g o s mpt n n r cnu y i .A e d mp c e ti n rdu e o ofra smpl n o v n e twa rme s rn o b n —i a tt s si to c d t fe i e a d c n e i n y f a u i g o ftg esr n t fg a s a iu te ghso e r.
渗碳齿轮齿根部的硬化层深度分析
3 试验结果分析
齿顶、齿根与 节 圆 硬 化 层 误 差 主 要 产 生 在 渗 碳 和 淬火冷却两个环节,齿顶、齿根硬化层深度与节圆硬化 层深度的偏差百分比见表Байду номын сангаас3。
齿顶硬化层深度偏差百分比齿顶硬化层深度节圆硬化层深度节圆硬化层深度100齿根硬化层深度偏差百分比齿根硬化层深度节圆硬化层深度节圆硬化层深度100齿根和渗碳气氛接触的面积小于扩散路径上的面积而节圆和渗碳气氛接触的面积大于扩散路径上的面积在相同的吸碳面积下齿根处渗碳层的碳浓度低于节圆处的碳浓度在淬火冷却时齿根处和淬火介质接触的面积小于热量传递路径上的面积而节圆处和淬火介质接触的面积大于热量传递路径上的面积在表面换热系数相同的条件下齿根冷却慢节圆冷却快
齿轮渗碳 时 ,除 了 齿 顶 面 的 渗 碳 扩 散 外 ,渐 开 线 齿面也在渗碳扩散,齿顶的渗碳层碳浓度是齿顶和齿 面两个面渗碳扩散的叠加( 图 5) ,再加上齿顶部位在 淬火冷却时冷却速度最快,因此渗碳淬火后齿顶部位 的硬化层深度较深,从表 3 结果可以看出齿顶硬化层 深度比节圆高 12. 9% ~ 21. 0% 。
( a) tooth profile sample; ( b) gear sample
2. 2 硬化层深度 试样渗碳淬火后的硬化层深度见表 1。由表 1 可
以看出,齿顶的硬化层深度最深,齿根最浅; 但齿轮试
第4 期
黎丽君: 渗碳齿轮齿根部的硬化层深度分析
97
样由于质量大,淬火冷却时受淬透性限制,心部硬度较 低,齿根的硬化层深度较浅。
表 1 4820H 钢试样渗碳淬火、回火后的硬化层深度 Table 1 Hardening case depth of the 4820H steel samples after
渗碳淬火齿轮有效硬化层深
工厂标准
Q/DZ
渗碳淬火齿轮有效硬化层深度
共2页第1页
1、定义:渗碳齿轮齿面有效硬化层深度是指终加工齿面至心部硬度
为Hv550处的厚度a,国际上用Eht表示。
2、渗碳齿轮有效硬化层最小深度a min按下式计算。
可从表1中直
接查取。
a min= log(1.2m n)+ 0.018m n
表1
有效硬化层深度的
最大值a max按表2确定
共2页第2页
表2
3、本规定适用于轧钢机械、连铸机械、炼焦机械、冶炼机械、装卸
机械的传动齿轮。
4、特殊工况用渗碳齿轮的有效硬化层深度,可根据接触剪应力的大
小另行确定。
6.、本表对于Mn≤8的齿轮而言,其推荐的渗碳深度是合理的,但对于Mn>8的齿轮而言,其数据缺乏合理性。
7. 对于合理的渗碳层深度各国、各公司的标准不同,而且差距还比较大。
各国及各行业推荐的渗碳层深度见表3
表3 各国及各行业推荐的渗碳层深度
注:根据JB/T 8853-2001《圆柱齿轮减速机》渗碳层的深度根据模数选择,当Mn=1.5~6时,渗碳层深度ht=(0.2~0.3)Mn;
当Mn=7~18时,渗碳层的深度ht=(0.15~0.25)Mn(小模数取大值,大模数取小值)。
硬度梯度
浅谈齿轮渗碳淬火有效硬化层及硬度梯度北京时代利和科技发展有限公司随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。
为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。
由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。
为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。
此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。
下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。
一、 渗碳层深度的检测1.1、金相法1.1.1、取本体或与零件材料成分相同,预先热处理状态基本相似的圆试样或齿形试样进行检测。
1.1.2、送检试样热处理状态为平衡状态,即退火状态。
1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。
1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。
1.2、硬度法1.2.1、取样方法同金相法取样方法一致。
1.2.2、送检试样状态为淬火+回火状态。
1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要求进行选择。
1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如HV550)之间垂直距离。
1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面用图形来描述。
从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550)DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。
DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。
DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。
渗碳淬火齿轮有效硬化层深[攻略]
工厂标准
Q/DZ
渗碳淬火齿轮有效硬化层深度
共2页第1页
1、定义:渗碳齿轮齿面有效硬化层深度是指终加工齿面至心部硬度
为Hv550处的厚度a,国际上用Eht表示。
2、渗碳齿轮有效硬化层最小深度a min按下式计算。
可从表1中直
接查取。
a min= log(1.2m n)+ 0.018m n
表1
3、有效硬化层深度的最大值a max按表2确定
共2页第2页
表2
4、本规定适用于轧钢机械、连铸机械、炼焦机械、冶炼机械、装卸
机械的传动齿轮。
5、特殊工况用渗碳齿轮的有效硬化层深度,可根据接触剪应力的大
小另行确定。
6.、本表对于Mn≤8的齿轮而言,其推荐的渗碳深度是合理的,但对于Mn>8的齿轮而言,其数据缺乏合理性。
7. 对于合理的渗碳层深度各国、各公司的标准不同,而且差距还比较大。
各国及各行业推荐的渗碳层深度见表3
表3 各国及各行业推荐的渗碳层深度
注:根据JB/T 8853-2001《圆柱齿轮减速机》渗碳层的深度根据模数选择,当Mn=1.5~6时,渗碳层深度ht=(0.2~0.3)Mn;
当Mn=7~18时,渗碳层的深度ht=(0.15~0.25)Mn(小模数取大值,大模数取小值)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈齿轮渗碳淬火有效硬化层及硬度梯度
随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。
为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。
由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。
为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。
此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。
下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。
一、渗碳层深度的检测
1.1、金相法
1.1.1、取本体或与零件材料成分相同,预先热处理状态基本
相似的圆试样或齿形试样进行检测。
1.1.2、送检试样热处理状态为平衡状态,即退火状态。
1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。
1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。
1.2、硬度法
1.2.1、取样方法同金相法取样方法一致。
1.2.2、送检试样状态为淬火+回火状态。
1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要
求进行选择。
1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如
HV550)之间垂直距离。
1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面
用图形来描述。
从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550)
DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。
DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。
DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。
1.4、结论
从图中可以看出,DCp(HV500)、DCp(HV550)是不相等的,而在金相法检测时,这两点是近似相等的,故用硬度法测试渗碳层深度结果更精确,更直观,减少了人为误差。
二、渗碳层碳浓度梯度(即硬度梯度)
为了防止渗碳淬火齿轮表面出现剥落、点蚀,提高齿轮承载能力,必须要求渗碳层渗碳浓度从表面至芯部应保持平滑的梯度。
这种斜度一般推荐为0.25mm深度,碳含量最多下降0.10%。
碳浓度梯度检测采用剥层法进行,因此方法操作比较复杂,检验时间比较长,在实际生产中不经常使用。
这一指标在现行国家标准中采用硬度梯度来反映。
硬度梯度在相关标准中又叫“至芯部硬度降”,即在有效硬化层范围内,自齿轮表面向芯部方向的硬度梯度,用“△HV/△EHt”
来表示,“△HV”为硬度变化量,“△EHt”为有效硬化层深度的变化量。
这一指标反映了有效硬化层内硬度的平缓程度,不但反映了渗碳层浓度梯度问题,同时也反映了淬火质量,指标中规定了有效硬化层深度下降0.1mm(△EHt),硬度下降应小于45HV(△HV)。
综上所述,渗碳层中碳浓度梯度检测采用硬度法优于剥层法。