高等数学测试题五(定积分)
高等数学题库
高等数学题库(总13页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除(一)函数、极限、连续一、选择题:1、在区间(-1,0)内,由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -= (C)34+-=x y (D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )(A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,则f (x )是)(x ϕ的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小 4、x =0是函数1()arctan f x x=的( )(A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点 5、 下列的正确结论是( )(A ))(lim x f xx →若存在,则f (x )有界;(B )若在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,则),(lim 0x f x x →也存在;(C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根;(D ) 当∞→x 时,xxx x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、若),1(3-=x f y Z 且x Zy ==1则f (x )的表达式为 ;2、 已知数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ; 3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、设,)(ax ax x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ; 三、 计算题:1、计算下列各式极限: (1)x x x x sin 2cos 1lim0-→; (2)xxx x -+→11ln 1lim 0;(3))11(lim 22--+→x x x (4)xx x x cos 11sinlim30-→(5)x x x 2cos 3sin lim 0→ (6)xx xx sin cos ln lim0→2、确定常数a , b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a , b ]上连续,且a <f (x )<b , 证明在(a , b )内至少有一点ξ,使()f ξξ=.(二)导数与微分一、填空题:1、 设0()f x '存在,则tt x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 则(1)f '= ; 3、 设xey2sin =, 则dy = ;4、 设),0(sin >=x x x y x 则=dxdy; 5、 y =f (x )为方程x sin y + y e 0=x 确定的隐函数, 则(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 则(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 212、 设曲线21x e y -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A) 2x -y -2=0 (B) 2x +y +1=0 (C) 2x +y -3=0 (D) 2x -y +3=0 3、设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x ex f ax 处处可导,则( )(A) a =b =1 (B) a =-2, b =-1 (C) a =0, b =1 (D) a =2, b =1 4、若f (x )在点x 可微,则xdyy x ∆-∆→∆0lim的值为( )(A) 1 (B) 0 (C) -1 (D) 不确定5、设y =f (sin x ), f (x )为可导函数,则dy 的表达式为( )(A)(sin )f x dx ' (B)(cos )f x dx '(C)(sin )cos f x x ' (D)(sin )cos f x xdx '三、计算题:1、设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、若g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、 设()ln f x x x =, 求()()n f x .7、计算.(三)中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 若01lim sin 22ax x e b x →-=则a = , b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==则)(ln )0()(sin limx f f x f x -→= ;4、 x e y xsin =的极大值为 ,极小值为 ; 5、 )10(11≤≤+-=x xxarctgy 的最大值为 ,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f’(x)=0在(a,b)内( )(A )仅有一个根; (B )至少有一个根; (C )没有根; (D )以上结论都不对。
定积分期末考试题及答案
定积分期末考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a, b]上连续,则定积分∫<sub>a</sub><sup>b</sup>f(x)dx的值:A. 总是存在B. 可能不存在C. 总是不存在D. 无法确定答案:A2. 计算定积分∫<sub>0</sub><sup>1</sup>x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A3. 函数f(x)=x^3在区间[-1, 1]上的定积分值为:A. 0B. 2C. -2D. 1答案:A4. 若∫<sub>a</sub><sup>b</sup>f(x)dx =∫<sub>a</sub><sup>b</sup>g(x)dx,则f(x)和g(x)在区间[a, b]上的关系是:A. 相等B. 相等或相反C. 相等或相等的常数倍D. 无法确定答案:C5. 定积分∫<sub>0</sub><sup>π/2</s up>cos(x)dx的值是:A. 1B. 0C. π/2D. -1答案:B二、填空题(每题5分,共20分)1. 定积分∫<sub>0</sub><sup>1</sup>(2x+1)dx的值为______。
答案:3/22. 函数f(x)=x^2在区间[0, 2]上的定积分值是______。
答案:8/33. 计算定积分∫<sub>0</sub><sup>π</sup>sin(x)dx的值是______。
答案:24. 定积分∫<sub>-1</sub><sup>1</sup>|x|dx的值为______。
高等数学(同济大学第五版)第五章 定积分
π
3 6 3
, M = f ( 3 ) = 3 arctan 3 =
π
3
.
因此
π
6 3
( 3−
1 3
) ≤ ∫ 1 x arctan xdx ≤
3
3
π
3
( 3−
1 3
),
即
π
9
≤ ∫ 1 x arctan xdx ≤
3
2
3
2π . 3
(4)先求函数 f ( x) = e x
f ′( x ) = e x
成 n 个长度相等的小区间, 各个小区间的长度为: Δx i =
第二步: 在第i个小区间[xi−1, xi] (i=1, 2, ⋅ ⋅ ⋅, n)上取右端点 ξ i = x i = a +
S n = ∑ f (ξ i )Δx i = ∑ [(a +
i =1 i =1 n n
b−a 2 b−a i ) +1]⋅ n n
2 2 2 2 1 1
b
b
b
b
(4) ∫0 xdx 还是 ∫0 ln(1+ x)dx ? (5) ∫0 e x dx 还是 ∫0 (1+ x)dx ? 解 (1)因为当 0≤x≤1 时, x2≥x3, 所以 ∫0 x 2 dx ≥ ∫0 x 3 dx . 又当 0<x<1 时, x2>x3, 所以 ∫0 x 2 dx > ∫0 x 3 dx . (2)因为当 1≤x≤2 时, x2≤x3, 所以 ∫1 x 2 dx ≤ ∫1 x 3 dx . 又因为当 1<x≤2 时, x2<x3, 所以 ∫1 x 2 dx < ∫1 x 3 dx . (3)因为当 1≤x≤2 时, 0≤ln x<1, ln x≥(ln x)2, 所以 ∫1 ln xdx ≥ ∫1 (ln x) 2 dx . 又因为当 1<x≤2 时, 0<ln x<1, ln x>(ln x)2, 所以 ∫1 ln xdx > ∫1 (ln x) 2 dx . (4)因为当 0≤x≤1 时, x≥ln(1+x), 所以 ∫0 xdx ≥ ∫0 ln(1+ x)dx . 又因为当 0<x≤1 时, x>ln(1+x), 所以 ∫0 xdx > ∫0 ln(1+ x)dx . (5)设f(x)=ex−1−x, 则当 0≤x≤1 时f ′(x) =ex−1>0, f(x)=ex−1−x是单调增加的. 因此当 0≤x≤1 时, f(x)≥f(0)=0, 即ex≥1+x, 所以 ∫0 e x dx ≥ ∫0 (1+ x)dx . 又因为当 0<x≤1 时, ex>1+x, 所以 ∫0 e x dx > ∫0 (1+ x)dx .
高等数学 第五章 定积分 习题课
x
x
∴ ∵
∴
Q( x ) ≡ c , Q ( 0) = 0 ,
Q( x ) ≡ 0 . 证毕 .
d x f (t)(x −t)dt 0 d x∫ = f (x) (x − x) =0?
13
例 6 . 设 f ( x ) 在 [ a , b ] 上连续且 f ( x ) > 0 ,
F ( x ) = ∫ f ( t ) dt + ∫
(1) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 ∫ f ( x ) dx = 0 ,
a
b
则在 [ a , b ] 上 f ( x ) ≡ 0 .
( 2) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 f ( x ) ≡ 0 , /
则 ∫ f ( x ) dx > 0 .
由于 f ( x ) 连续 ,
2h
h
对于 ε = h , ∃δ > 0 , 当 x − c < δ 时 ,
f ( x ) − f (c ) < ε
b
c −δ
a
b
(
c
)
f (c ) − ε < f ( x ) < f (c ) + ε 成立 ,
即 h < f ( x ) < 3h .
∫a f ( x ) dx = ∫a
∫a f = ∫a f + ∫c f ∫a
b b c b b b
b
5 . 在[a , b]上
f ( x) ≥ 0 f ( x) ≤ 0
⇒ ⇒
f ( x ) ≥ g( x ) ⇒
∫a f ≥ 0 b ∫a f ≤ 0 b b ∫a f ≥ ∫a g
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学第05章 定积分及其应用习题详解
0
x 1 sin tdt 0dt 1 , 2
b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3
1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n
b a
cdx lim f ( i ) xi lim c(b a) c(b a) .
x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2
高等数学 第五章定积分习题课
∫
b
a
f ( x )dx ≤ ∫ g ( x )dx
a
b
⑧估值定理:设M 和 m 分别是函数 f ( x )在区间[a, b ]上的 估值定理: 最大值和最小值, 最大值和最小值,则
m (b − a ) ≤ ∫ f ( x )dx ≤ M (b − a )
a b
上连续, ⑨定积分中值定理:如果函数 f ( x ) 在闭区间[a, b ] 上连续 定积分中值定理: 则至少存在一点ξ ∈(a , b) ,使下式成立: 使下式成立: 使下式成立
b b b
b
a
b
b
∫
b
a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
⑤区间长: ∫ 1dx = b − a 区间长:
a
b
保号性: ⑥保号性:如果在区间[a, b ]上, f ( x ) ≥ 0 ,则∫ a f ( x )dx ≥ 0
b
⑦单调性:如果在区间 [a, b ] 上, f ( x ) ≤ g ( x ) 则 单调性:
b
∫
b
a
f ( x )dx = lim ∫ f ( x )dx −
t →b a
t
设 c ( a < c < b ) 为 f ( x ) 的瑕点,则有 的瑕点,
∫
b a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
= lim ∫ f ( x )dx + lim ∫ f ( x )dx − +
∫
b
a
f ′( x )dx = [ f ( x )] a = f (b) − f (a ) = a − b
(完整版)定积分练习题
一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。
高等数学习题课(5)定积分
0
则 b a
f
(
x)dx
0
(a b)
推论:(1) 如果在区间[a,b]上 f ( x) g( x) ,
则 b a
f
(
x
)dx
b
a g( x)dx
(a b)
(2)
b
a
f
(
x)dx
b
a
f
( x)dx
(a b)
性质6 设M 及m 分别是函数 f ( x) 在区间[a,b]
上的最大值及最小值,
则
b
即 F( x) x ( f ( x) f (t) 2)dt 0 a f (t) f (x) F ( x) 单调增加.
又 F (a) 0, F(b) F(a) 0,
即
b
f ( x)dx
b dx
(b a)2.
a
a f (x)
例8
( x et2 dt)2
求 lim x
0
x e2t2 dt
( x)
x
a
f
(t )dt 在[a,b]上具有导数,且它的导数
是
( x)
dx
dx a
f (t)dt
f (x)
(a x b)
定理 3(微积分基本公式) 如果F ( x) 是连续函数 f ( x)在区间[a, b]上的一个原函数,则
b
a f ( x)dx F (b) F (a)
也可写成
b a
b
b
a
f
( x)dx
lim
a
f ( x)dx
b
b
a
f
( x)dx
lim
0 a
江苏专转本高等数学 定积分 例题加习题
- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。
其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。
例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。
例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。
济南大学高等数学C(一)5定积分及其应用-疑难解答
第六章 定积分及其应用习题6-1 定积分的概念下列定积分:利用定积分的定义计算.1⎰21;)1(-dx x[]等分个分点,把区间中插入在闭区间解:n n 12,1.10-- ,211210=<<<<<=--n n x x x x x.3)1(2Δn n x i =--= ).,,2,1(31n i i nx i =+-=[],所以因为中取右端点为在每个区间x x f i nx ξx x i i i i =+-==-)(.31,.210.3)31(ΔΔ)(111∑∑∑===⋅+-==ni i n i i i n i i ni n x ξx ξf .2)1(939393Δ)(212121+⋅+-=+-=+-=∑∑∑===n n n i n i n x ξf n i ni i ni i 即{})Δ(232)1(93lim Δ)(lim .31210210n i i n i ni i λx max λn n n x ξf xdx ≤≤∞→=→-==⎥⎦⎤⎢⎣⎡+⋅+-==∑⎰其中⎰10.)2(dx e x[]等分个分点,把区间中插入在闭区间解:n n 11,0.10-,101210=<<<<<=-n n x x x x x.1Δn x i = ).,,2,1(0n i ni n i x i ==+=[],所以因为中取右端点为在每个区间x i i i i e x f ni x ξx x ===-)(.,.210.1ΔΔ)(111∑∑∑===⋅==ni ni i n i ξi n i i ne x e x ξf i.1)1(1)(1Δ)(111211--⋅=++++=-=∑n nnn nn nni ni i e e e ne e e e nx ξf 即{})Δ(11)1(1lim Δ)(lim .311110100n i i n nn i ni i λxx max λe e e e n x ξf dx e ≤≤∞→=→=-=--⋅==∑⎰其中,说明下列等式:利用定积分的几何意义.2;12110⎰=x xd )( ;412102⎰=-πx d x )(⎰-=ππx sinxd ;)(03 ⎰⎰-=2022.24πππx cosxd x cosxd )(角形的面积,故表示如图所示的直角三)解:(⎰1021x xd.x xd 12121210=⋅⋅=⎰ ⎰-1024112圆的面积,故表示如图所示)(x d x.414111022⎰=⋅⋅=-ππx d x ⎰-ππx x sinxd 轴上方为正面积,的面积,其中表示如图所示阴影部分)(3轴下方为负面积,故x ⎰-=ππx sinxd .0⎰-2224ππx cosxd 倍,面积的的面积,它是第一象限表示如图所示阴影部分)(⎰⎰-=2022.2πππx cosxd x cosxd 故习题6-2 定积分的性质积分的大小:比较下列各题中的两个.2;,110421021dx x I dx x I ⎰⎰==)( ;,221422121dx x I dx x I ⎰⎰==)(;)(ln ,ln 34332431dx x I dx x I ⎰⎰==)( ;)1ln(,4102101dx x I dx x I ⎰⎰+==)(.)1(,5102101dx x I dx e I x ⎰⎰+==)( ,只有有限个成立的解:)"(",10)1(42x x x x =≥∴≤≤ ,,42是连续函数又x x .,21104102I I dx x dx x >>⎰⎰即故是连续函数,,又只有有限个成立的4242,)"(",21)2(x x x x x x =≤∴≤≤ .,21214212I I dx x dx x <<⎰⎰即故是连续函数,,又33)(ln ,ln )(ln ln ,1ln ,43)3(x x x x x x <∴>∴≤≤ .,)(ln ln 2143343I I dx x dx x <<⎰⎰即故.,)1ln(),10()1ln(,0)0()()(10),10(111)(,)1ln()()4(211010I I dx x dx x x x x f x f x f x x xx f x x x f ><+∴≤<<+=<≤≤<<-+='-+=⎰⎰即即单调递减,故时,故当则设.,1,)1(,0)5(21I I e x x x n l x x >∴<+∴<+>时[],证明:上连续在及设)(,)()(3b a b a x g x f .< [].0)(,0)(,0)(,)1(>≡/≥⎰ba dx x f x f x fb a 则且上,若在[][].0)(,,0)(,0)(,)2(≡=≥⎰x f b a dx x f x f b a ba 上,则在且上,若在[][]).()(,,)()(),()(,)3(x g x f b a dx x g dx x f x g x f b a ba ba ≡=≤⎰⎰上,在则且上,若在[]⎰≥∴≥ba dx x f x fb a ,0)(,0)(,)1(上,在证明:,假设⎰=ba dx x f 0)(上,知在由],[)2(b a ,0)(≡x f 矛盾,这与0)(≡/x f .0)(⎰>∴ba dx x f ,假设反证法0)())(2(≡/x f ,则至少存在一点],[b a ξ∈,使得0)(≠ξf ,0)(≥x f ,0)(>∴ξf []上连续,在b a x f ,)( 的区间包含ξ∴,],[],[21b a c c ⊆ ,可设0)(>x f ],[21c c x ∈,易知:⎰>210)(c c dx x f , ,,而⎰⎰≥≥120)(0)(c abc dx x f dx x f ⎰⎰⎰⎰>++=∴ba c a c c bc dx x f dx x f dx x f dx x f 1212.0)()()()(矛盾,这与⎰=ba dx x f 0)([].0)(,≡∴x f b a 上,假设不成立,即在,令)()()()3(x f x g x F -=,],[)()(b a x x g x f ∈≤ .0)(≥∴x F,且⎰⎰⎰=-=b a b a ba dx x f dx x g dx x F 0)()()( ,0)()2(≡x F 知由).()(x f x g ≡即习题6-3 微积分的基本公式计算下列各导数:.1;11302dt t dx d x ⎰+)( ;112422dt t dx d x x ⎰+)( ⎰x x dt t πdx d cos sin 2)cos()3( ;1331162223x x x x +=⋅+=)()原式解:(⎥⎦⎤⎢⎣⎡+-+=⎰⎰420022112x x t dt t dt dx d )原式( ⎰⎰+-+=24020211x x t dt dx d t dt dx d x x x x 2)(114)(1122324⋅+-⋅+= ;1214483xx x x +-+= []⎰⎰-=x x dt t πdt t πdxd cos 0sin 022)cos()cos()3(原式 ⎰⎰-=x x dt t πdxd dt t πdx d sin 02cos 02)cos()cos( [][]x x πx x πcos )(sin cos )sin ()(cos cos 22--= [][].cos )(sin cos sin )(cos cos 22x x πx x π--= 计算下列各积分:.2a ax x dx x x 02302|)21()3(1-=-⎰)(2321a a -=821|)3131()1(221334212=-=+-⎰x x dx x x )( 67|)2132()()1(30122301211-=+=+=+⎰⎰x x dx x x dx x x )(⎰⎰⎰-+=ππππdx x nxdx si dx x 2020)sin (sin 11)(4|cos |cos 20=+-=πππx x 617|31|)21()(122131022010212=+=+=⎰⎰⎰x x dx x xdx dx x f )( :3求下列极限.;lim )1(02x dt e x t x ⎰→ .sin )sin (lim )2(0320220⎰⎰→x x x dtt t dt t;11lim )1(002===→e ex x 原式解: 320220320220sin 2lim sin sin sin 2lim )2(xx x dt t xx x dt t xx xx ⋅⋅=⋅=⎰⎰→→原式3020sin 2lim xdtt xx ⎰→=.323sin 2lim 22==→x x x .)(0cos 500dxdyx y y dt t dt e .xyt的导数所确定的隐函数求由方程==+⎰⎰求导,得对解:原方程左、右两边x0cos =+x dx dy e y .1sin cos cos -=-=∴x x e x dx dy y.)(602的极值求函数⎰-=xt dt te x f .2)(x xex f -='解: ,令02=-x xe0=x 得极值点 01)0(>=''f .f x f x 0)0()(0==∴有极小值时函数[](),证明函数内可导且上连续,在在设0)(,,)(.7<'x f b a b a x f ().0)(,)(1)(<'-=⎰x F b a dt t f ax x F xa内的一阶导数在 2)()())(()(a x dtt f a x x f x F xa ---='⎰证明:)()())(())((2x ξa a x a x ξf a x x f ≤≤----= )())(()()(x ηξax ξx ηf a x ξf x f <<--'=--=,0,0,0)(>->-<'a x ξx ηf .0)(<'∴x F习题6-4 定积分的换元积分法计算下列定积分:.1;02121)3cos()3sin()1(33=-=+-=+⎰πππππx dx πx 解:;16921)49(81)49()49(41)49()2(122123123=+-=++=+-----⎰⎰x x d x x dx ;31cos 31cos cos cos sin )3(203202202=-=-=⎰⎰πππφφd φφd φφ;2)2sin 4121(22cos 1sin )cos 1()4(000202πθθθd θθd θθd θππππ=-=-==-⎰⎰⎰;232)2(31)2(2212)5(202322202202=--=---=-⎰⎰x x d x dx x x;1)6(2102dx x x -⎰,cos ),20(sin tdt dx πt t x =≤≤=令.164sin 41812141241cos cos cos 20202202202202πt t dtt os4c dt t sin tdt t sin tdt t t sin πππππ=-=-===⋅⋅=⎰⎰⎰⎰)()(原式;45)7(11⎰--xxdx;2,45,452dt tdx t x t x -=-==-则令;61)53(8185)2(45133131322=-=-=--=⎰⎰t t dt t dt t tt 原式;1)8(41⎰+xdx,2,,2tdt dx t x t x ===则令;23ln 22)1ln (2)111(212212121-=+-=+-=+=⎰⎰t t dt t t tdt 原式;2121)]21([)(21)9(11021010222---=-=--=⎰⎰--e e t d e dt te tt t;212ln 2)ln 1(2)ln 1()ln 1(ln 1ln ln 1)10(212121212121-+=+=++=+=+⎰⎰⎰-x x d x xxd x x dx .41arctan )2arctan(1)2(54)11(12122122πx x dx x x dx ==+=++=++------⎰⎰ ;32)31(31)sin 3sin 31(21)cos 3(cos 212cos cos )12(222222=--=+=+=---⎰⎰ππππππx x dx x x xdx x .34)(cos 32)(cos 32cos cos cos cos sin cos )sin (cos sin cos )cos 1(cos cos cos )13(202302232002200222222223=-=-=⋅+-==-⋅=-------⎰⎰⎰⎰⎰⎰⎰ππππππππππππx x xd x x d x xdx x dx x x dxx x dx x x dx x x .22sin 2sin 2cos 2cos 2cos 2cos 22cos 1)14(2202200020=-=-===+⎰⎰⎰⎰⎰πππππππππx x dx x dx x dxx dx x dx x 列定积分:利用函数奇偶性计算下.2;1arcsin 1212122dx xx ⎰--)()(.12sin )2(552432dx x x x x ⎰-++ 为偶函数,故)(解:221arcsin )()1(xx x f -=;324arcsin 32arcsin 21arcsin 232103210221022πx x arcsin d x dx xx ===-=⎰⎰)()()(原式.012sin )()2(2432=++=为奇函数,故原式x x x x x f 证明下列各题:.3;)0(11)1(11212⎰⎰>+=+xx x xdx x dx ;)1()1()2(1010dx x x dx x x mnnm⎰⎰-=-.cos 2cos )3(2010010dx x dx x ππ⎰⎰=右边;左边令证明:=+=+=+-=-==⎰⎰⎰xx x x dx t dt t dt t dt t dx t x 1121121122211111,1,1)1( 右边;左边,则令=-=-=--=-=-==-⎰⎰⎰dx x x dt t t dt t t dt dx t x t x nmnmnm101001)1()1()()1(,,11)2(,cos cos cos )3(2102010010xdx xdx xdx ππππ⎰⎰⎰+=则令,,dt dx t πx -=-=,cos cos )(cos cos 201020100210210xdx tdt dt t xdx πππππ⎰⎰⎰⎰==-= .cos 2cos cos cos 201020102010010xdx xdx xdx xdx ππππ⎰⎰⎰⎰=+=故习题6-5 定积分的分部积分法计算下列定积分:.1);1(414121121ln 21)21(ln ln )2(21221212121+=-=⋅-==⎰⎰⎰e xe dx x x x x x xd xdx x e e e ee;2sin 2)cos (cos )cos (sin )3(2020202020πx πdx x x x x xd xdx x πππππ-=+-=---=-=⎰⎰⎰;2ln 33cos ln 33cos cos 133cos sin 33tan tan tan sec cos )4(303030303030302302-=+=+=-=-===⎰⎰⎰⎰⎰⎰πx πx d x πdx x x πdx x x x x d x dx x x dx xx ππππππππ;ln )5(41dx xx ⎰,2,2tdt dx t x t x ===,则令;42ln 8)22ln 4(2)214ln 2(2)ln ln (2ln 22ln 212221212212212-=-=⋅⋅-=-===⎰⎰⎰⎰dt t tt t d t t t dt t tdt t t 原式.214)arctan (218)111(2181121arctan 21)21()6(10102102210210210-=--=+--=+⋅-==⎰⎰⎰⎰πx x πdx x πdx x x x x x arctamxd xarctamxdx ).2(51cos ,2cos 5cos 42)2cos cos (2)cos (22sin sin sin cos )7(202202202202202202202202202202-=∴-=--=⋅-+=--=⋅-==⎰⎰⎰⎰⎰⎰⎰⎰ππx ππxπx ππx πxππxππx πxπxπxe xdx e e xdx e xdxe e dx e x x e e x d e e dxe x x e x d e xdx e 故;)sin(ln )8(1⎰edx x,,dt e dx e x t x ln t t ===,则令,sin 11cos 1sin )sin cos (1sin cos 1sin cos sin sin sin )sin(ln 101010101110101dt e t e e dt e t t e e tde e dt e t t e tde dt e t dx x t tt t tttte⎰⎰⎰⎰⎰⎰⎰⋅-+-=⋅+-=-=⋅-==⋅=.21)1cos 1(sin sin )sin(ln ,1)1cos 1(sin sin 210110+-=⋅=+-=⋅∴⎰⎰⎰e dt e t dx x e dt e t tet 故.12ln 23ln 31ln ln )1ln()9(32323221--=⋅-==+⎰⎰⎰dt t t t t tdt dx x ;sin )10(20dx x π⎰,2,2tdt dx t x t x ===,则令.2sin 22cos 2cos 2)cos (22sin 00000πtπdt t t t t d t dt t t πππππ=+=+-=-=⋅=⎰⎰⎰原式.22)1(111ln ln ln )ln (ln )11(1111111111e e e e e dxx x dx x x dx x dx x dx x eeeee e e e -=--+-+-=-++-=+-=⎰⎰⎰⎰⎰利用递推公式计算:.2.)1()2(;sin )1(299102990100100dx x J xdx x J π⎰⎰-==.212,)12(2)12()12(sin )12(sin )12(sin cos ]cos )12([sin cos sincos )cos (sin sin ,sin )1()1(22)1(222)1(2020220120120120120122022----------=∴-=---=---+=-++-=-===⎰⎰⎰⎰⎰⎰⎰m m m m mm πmπm πm 2-2m πm πm πm πm m πm m J mm J J m mJ J m J m xdxx m xdx x m xdx x dxx x sin m x x x x x x x xd x xdx sin x x J xdx x J 故则设解:.2196959897100999897100991009910011000482492492502100J J J J J J ⋅⋅⋅⋅==⋅==-==⨯⨯⨯⨯ 故.224969810013959799,22100200πJ πxdx J π⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===⎰ 故而.224969810013959799sin )sin ()(sin ,sin ]2,0[,cos )2(10020990299πdt t dt t t J tdt dx πt t x ππ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-=-=∈=⎰⎰ ,则令习题6-6 广义积分算广义积分的值:收敛性,如果收敛,计判别下列各广义积分的.1;4141)4(41)3(040404=-=--=∞+-∞+-∞+-⎰⎰xx xex d e dx e.21sin ,1sin 2,sin 1]sin sin [1sin 1cos 1cos cos )cos (sin )4(00000000000==∴-=+-=-=-=-+-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+-∞+-∞+-∞+-∞+-∞+-∞+-+∞-+∞-+∞-+∞-dx x e dx x e dx x e dx x e x e x d e dx x e dxx e xe x d e dx x e xxxx xxxx xxx 故.)2(2)2arctan(1)2(54)5(22πππx x dx x x dx =--=+=++=++∞+∞-∞+∞-∞+∞-⎰⎰ .1]1)1([lim 1)1(21lim 1)6(21210221102=+--=---=---→→⎰⎰b x x d dx x x b b b ;1()7(203⎰-)x dx .1(1,1,1111,,11203103013103013113113发散)都发散,原式,则令⎰⎰⎰⎰⎰⎰⎰-∴+==-=-=-==-----x dx dt t dt t dt tdt t dt t dt t dt dx t x t x.1)8(21⎰-x xdx.38)3(2)1(22)1(,2,1,1110310210222=+=+=+==+==-=-⎰⎰t t dt t dt t t t tdt dx t x t x t x 原式,则令 )1()(ln 111ln ln )(ln )(ln 212≠+⋅-==-∞+⎰⎰⎰k C x k x x d x x dx k k x x dxk .k k k k 解:取得最小值?为何值时,这广义积分当发散?为何值时,这广义积分收敛?当为何值时,广义积分当时,当1=k ⎰x x dx ln C x xxd +==⎰ln ln ln ln⎪⎩⎪⎨⎧≠⋅-==∴∞+-+∞∞+⎰1|)(ln 1111|ln ln )(ln 2122k x k k x x x dx k k时,当1)1(=k .,原广义积分发散原式+∞= 时,当1)2(<k .,|)(ln 1121发散原式+∞=-=∞+-k x k=>时,原式当1)3(k .,)2(ln 111|)(ln 111121收敛-∞+--=⋅-k k k x k 时,当1>k 则记,)2ln 1(11)(1--=k k k f12)2(ln 1)1(1)(---='k k k f )2ln 1ln()2ln 1(111--+k k ).2ln ln 11()2(ln 1)1(11+---=-k k k ,令0)(='k f ,1>k 从而,0)2ln 1(111≠-∴-k k,02ln ln 11=+-k ,2ln ln 11-=k 即.值为唯一驻点此k时,当2ln ln 11->k 时,即02ln ln 11<+-k .0)(>'k f时,当2ln ln 11-<k .0)(该驻点是极小值点,∴<'k f时,即当1>k .)(),1(处的极小值就是最小值故唯一驻点没有边界值进行比较,时,在此区间上k f k ∞+∈习题6-7 定积分的几何应用形的面积:求由下列各曲线所围图.1 ).0(ln ,ln ,0,ln )7(;1,,)6(;2,1)5(;(8,2)4(;2,3)3(;,0,)2(;,)1(2222>>===========+==-======-a b b y a y x x y x e y e y x x y xy x y x y x y x y e y x e y x y x y x x x 与两部分都要计算).61)()1(10⎰=-=dx x x S 面积解:.1)()2(10⎰=-=dx e e S x 面积 .332)23(),6,3(),2,1(32)3(1322⎰-=--=--⇒⎩⎨⎧-==dx x x S B A x y x y 面积.342)218()4(22221⎰+=--=-πdx x x S 阴影部分的面积 .346)34282-=+-=πππS (另一部分的面积.2ln 23)1()5(21⎰-=-=dx x x S 面积.21)()6(10⎰-+=-=-ee dx e e S xx 面积.)0(,ln )7(ln ln ⎰-=-==⇒=ba yy a b dy e S e x x y 面积转的旋转体的体积:围平面图形绕指定轴旋求下列各题中的曲线所.2轴;轴绕y x x y x y ,,2,0,)1(3=== 轴;绕y y x x y ,,)2(22== 轴;绕x y x ,16)5()3(22=-+ ).0(,)4(222>>==+a b b x a y x 绕,7128)()1(2203πdx x πV x ==⎰解:,33y x x y =⇒=dy y πdy πV y ⎰⎰⋅-⋅=8023802)(2.56459632πππ=-=,)2(2y x x y =⇒=.10352)()(1022102πππdy y πdy y πV y =-=⋅-⋅=⎰⎰,165,165:16)5()3(222122x y x y y x --=-+==-+得由dx y y πdx y πdx y πV x )(22442144224421-=⋅-⋅=⎰⎰⎰---.160162102442πdx x π=-⋅=⎰-,,,:)4(22222122222y a b R y a b R y a x a y x --=-+=-±==+设得由dy R πdy R πV aa aa b ⎰⎰---=2221dy R R πaa )(2221-=⎰-dy y a b πaa 2222-⋅⋅=⎰-b a π222=.3列各题中立体的体积的立体体积公式计算下用平行截面面积为已知..)1(的正劈锥体为高底圆直径的线段为顶,的圆为底,平行且等于以半径为H R .)()2(的球缺的球体中高为半径为R H H R <.)20(1)3(2222的平面所截的劈形立体轴且与底面夹角的椭圆柱体被通过底面为椭圆πααx b y a x <<≤+ 截面的面积为:解:)1( [],,,221)(2222R R x x R h h x R x A -∈-=-⋅=:故此正劈锥体的体积为.21)(222h R πdx x R h dx x A V R R R R ⎰⎰--=-==截面的面积为:)2( [],,),()(22R H R y y R πy A -∈-=故球缺的体积为:).31()(222H R H πy d y R πV RH R -=-=⎰- 截面的面积为:)3( [],,,tan 1121)(2222ααx αax b a x b x A -∈-⋅-=故劈形立体的体积为: .tan 32tan )1(21)(2222αab dx αa x b dx x A V a a a a ⎰⎰--=-==习题6-8 定积分的经济应用.1000257)(1,求总成本函数,固定成本为已知边际成本为xx C .+=' .5071000)257(1000)()0()(00⎰⎰++=++='+=x x x x dx xdx x C C x C 解:.30202100)(.3应追加的成本数时,增加到,求当产量由已知边际成本==-='x x x x C:解:应追加的成本数为.500)2100()(30203020=-='⎰⎰dx x dx x C.0260)(430)(.4)(设固定成本为,求最大利润,边际收益为已知边际成本x x R x x C -='+=').0(230230)430()(22固定成本为解:x x C x x dx x x C +=++=+=⎰.60)260()(2C x x dx x x R +-=-=⎰,60)(,0,0)0(2x x x R C R -=∴=∴=,33023060)()()(222x x x x x x x C x R x L -=---=-=∴ ,06)(,5,0630)(<-=''==-='x L x x x L .75)5(5=-=L x 利润为时,有最大利润,最大故当 支出增加多少?费亿元时,购买冰箱的消亿元增加至,当居民收入由的函数,的变化率是居民总收入消费支出某地区居民购买冰箱的942001)()(.5xx W x x W =').(10012001)(9494亿解:=='⎰⎰dx xdx x W .1001亿增加故购买冰箱的消费支出.20)3(20)2()1(.10100106价值万元时,求收益的资本当应满足的方程);万元时,求内部利率(当本?为何值时,公司不会亏元收入年后报废,公司每年可备使用万元购买某设备,该设(连续复利)贷款某公司按利率==b b b b %.年后的总收益::年后这笔贷款的本利和解:10,10010010)1(101.0e e =⨯),1(101001)10(1.0⎰---=e eb dt e b t ),1(101001--=e eb e 若公司不亏本,则.1101--=eb 则 ,则设内部利率为ρ)2(),1(202010010100ρtρe ρdt e ---==⎰.1510ρe ρ--=即投入资金的现值收益流现值资本价值-=)3( 100201001.0-=⎰-dt e t.20010010020020011---=--=e e总习题六计算下列极限:.1.1lim 11lim )1(11111e edt e x xx x t x ==-→→⎰ .111)(1lim 21121)(lim .1)(lim )(,1)(lim )2(2220=⋅=+=⋅+==++∞→+∞→+∞→+∞→⎰x f xx xx x f t f t f x dt t f x x t xx 原式连续且其中计算下列积分:.2.22ln 2ln 2cos 1sin ,2ln )cos 1ln(cos 1)cos 1(cos 1sin ,2ln 22tan 2tan 2tan 22sec 2sec 22cos 2cos 1,cos 1sin cos 1cos 1sin )1(2020202020202020220220220202020ππdx x x x x x x d dx x x πdx x x x x d x x dx x dx x x dx x x dx x x dx x x dx x x dx x x x ππππππππππππππ=+-=++=+-=++-=+-=-=====++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰故而而 ;42)2(22⎰-+xdx.122tan 22sec 2122cos 212)cos 111(cos 1cos cos 22cos 2,cos 2]2,0[,sin 220202202202020-=-=-=-=+-=+=+==∈=⎰⎰⎰⎰⎰πt πdt t πdtt πdt t t tdt t tdt tdt dx πt t x ππππππ原式,则令).12(2)sin cos ()cos (sin )cos (sin )sin (cos cos sin )cos (sin cos sin 2cos sin 2sin 1)3(2440244020202202220-=--++=-+-=-=-=-+=-⎰⎰⎰⎰⎰⎰ππππππππππx x x x dx x x dx x x dx x x dxx x dx x x x x dx x .22)tan 2arctan(211)tan 2(tan 2211tan 2tan 1tan 2sec 1tan 21tan sin 2cos cos sin sin 1)4(202022022022222202222202πx x x d x x d dx x x dx x x x x xdx x x dx πππππππ==+=+=+=++=++=+⎰⎰⎰⎰⎰⎰ 且说明理由:指出下列计算中的错误4..01lim 1)3(;01,11)2(;2]1[arctan )1(1)1(1)1(4343112112111211112112=+=+=+∴+-=+-=-=+-=+⎰⎰⎰⎰⎰⎰⎰-+∞→∞∞---=----b bb tx xdx x x dx x x dx t dt x dx πx x x d x dx.0)1(2x x 以,故不能分子分母同除可以取为第一步到第二步错,因解:.2)4(4arctan 111112πππx x dx =--==+⎰--正确的做法: .x tx 0,1)2(就取不到因为这样不能令=.)3(是没有关系的限设法错误,因为它们第二步中定积分的上下解下列几何问题:.5;轴旋转的旋转体的体积所围图形绕求由y y x x y 0,4,)1(23===;轴旋转的旋转体的体积绕求圆盘y y x 1)2()2(22≤+- .940,1,,.0]1,0[)0,0()3(22积最小轴旋转而成的旋转体体,且使图形绕为所围图形的面积与直线的值,使抛物线试确定时,,且当过原点设抛物线x y x c bx ax y c b a y x c bx ax y ==++=≥∈++=应取何值?所围图形面积最小时,与抛物线)点,当直线过(已知直线b a x y b ax y b ax y ,1,0)4(2=+=+=.7512128)(4)1(80348023280212πdy y ππdy y πdy πV V V =-=⋅-⋅=-=⎰⎰⎰解:故旋转体的体积为,得由],1,1[121)2()2(222-∈-±==+-y y x y x.418124)12()12(211211221122112πdy y πdyy πdy y πdy y πV =-=-⋅=----+=⎰⎰⎰⎰----,896,94)(,0)3(1022=+=++==⎰b a dx bx ax bx ax y c 故,故由已知轴旋转体的体积绕x ),235()(22102abb a πdx bx ax πV ++=+=⎰)],98(12131)98(1801[),98(61222b b b b πV b a -++-=∴-=.0,35,2,0151,2,0]152151[22满足条件时,故当故=-==>⋅===-=c a b πdb V d b b πdb dV )(即由已知11)4(=+=b ax y ,即它所围面积,则两交点的横坐标为与抛物线设直线⎰-+=<=+=21)1()(,1221212x x dx x ax A x x x x x y ax y ),(31)()(23132122122x x x x x x a A ---+-=,01122=--⇒⎩⎨⎧=+=ax x xy ax y 是此方程的两根,有设21,x x ,1,2121-==+x x a x x ,44)(2)(221212212122212+=-+=-+=-a x x x x x x x x x x ,4))(()(,4212122122212+=-+=-+=-a a x x x x x x a x x 又 .)4(64)1(314421),1(4]))[((232222222221212123132+=++-+++=++=-+-=-a a a a a a A a a x x x x x x x x 故.1,0480,0,0)4(18212=====+=b a A a a a a dadA ,故有最小值时,故当则令解下列经济应用问题:.6?台的平均利润各为多少台与后台时,前售出台电视机的总利润售出试求的边际利润为已知某商场销售电视机需求出满足的方程)万元,求内部利率(只年,每年收益厂投产期万元扩建一个工厂,该某企业投资少?单位时,总成本减少多单位减少到由问当产量成本已知生产某产品的边际303060.2.401),20(10250)()3(.2020232)2(312,30183)()1(2.x xx L x x x x C ≥-='+-='.11120232)2(.756)30183()()1(202001232123ρtρeρ.6dt e ρdx x x dx x C C --⎰⎰⎰-===+-='=,解得:,则设内部利润为减少的成本解:,20250)10250()(.1)3(2C x x dx x x L +-=-=⎰,20250)(,0,0)0(2x x x L C L -=∴=∴=.9920)40(40=L 台电视机的总利润为:售出,5.24830745530)30(,7455)30(.2===L L ,5.24530)30()60(,7365)30()60(,14820)60(=-=-=L L L L L.5..5245302483060台的平均利润为,后台的平均利润为台时,前故售出(注:本资料素材和资料部分来自网络,仅供参考。
高等数学第五章课后习题答案
班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。
(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。
高等数学第五章习题课1定积分
第 五 章 定 级 分
解
原式 lim
2e
x2
0 e
2 x2
x t2
dt
x
e
0
lim
2 e dt e
x2
x t2
x
lim
2e
x2
2
x 2 xe x
1 lim 0 x x
- 17 -
习题课(一)
3 解
第 五 章 定 级 分
tf ( x t )dt lim 0 ,
1 i 1 2 lim sin sinxdx n 0 n n i 1
n
-2-
习题课(一)
第 五 章 定 级 分
i 1 n i 1 lim sin lim sin n n n n 1 n n n i 1 i 1 1 2 sinxdx 0 2 原式 1 n1 n 2 n nn 3 lim n n n n
1 2 F ( x )dx 0
存在一点 , 使得 F ( ) 0, 即 f ( ) f ( )
-9-
习题课(一)
第 五 章 定 级 分
设在 [0,1] 上 f ( x ) 0, 证明: 1 1 2 0 f ( x )dx f ( 3 ) 证 由于 y f ( x ) 在区间 [0,1] 是上凸的, 所以曲线 1 1 y f ( x ) 在过 ( , f ( )) 处的切线下方,即 3 3 1 1 1 f ( x ) f ( ) f ( )( x ) 3 3 3 1 1 2 1 2 f ( x ) f ( ) f ( )( x ) 3 3 3
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
(完整版)定积分习题及答案
第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。
(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。
4.设1,211,12xx x x xf ,求20dx x f 。
5.1lim22xdtarctgt xx 。
6.设其它,00,sin 21xx xf ,求x dt t f x。
7.设时当时当0,110,11xex xxf x,求201dx xf 。
8.2221limnn nnn。
9.求nk nknknnen e 12lim 。
10.设x f 是连续函数,且12dt t f x x f ,求x f 。
11.若2ln 261xtedt ,求x 。
12.证明:212121222dxeex。
13.已知axxx dx ex axa x 224lim,求常数a 。
高等数学(同济五版)第五章 定积分 练习题册
42文档来源为:从网络收集整理.word 版本可编辑.第五章 定积分第一节 定积分的概念与性质一、填空题: 在⎰+1031dx x 与⎰+141dx x 中值比较大的是 .二、选择题(单选): 1.积分中值定理⎰-=baa b f dx x f ))(()(ξ,其中:(A) ξ是[]b a ,上任一点; (B) ξ是[]b a ,上必定存在的某一点; (C) ξ是[]b a ,唯一的某点; (D) ξ是[]b a ,的中点.答:( )2.曲线xe y =与该曲线过原点的切线及y 轴所围成图形的面积值为: (A) ⎰-10)(dx ex e x ; (B)⎰-edy y y y 1)ln (ln ;(C)⎰-e xx dx xe e 1)(; (D)⎰-1)ln (ln dy y y y .答:( )第二节 微积分基本公式一、填空题: 1.=-⎰-2121211dx x.2.0)32(02=-⎰kdx xx )0(>k ,则=k .二、选择题(单选):若)(x f 为可导函数,且已知0)0(=f ,2)0(='f ,则2)(limxdt t f x x ⎰→(A)0; (B)1; (C)2; (D)不存在.答:( )三、试解下列各题:1.设⎪⎩⎪⎨⎧>≤+=1,211,1)(32x x x x x f ,求⎰20)(dx x f .43文档来源为:从网络收集整理.word 版本可编辑.2.设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f ,0,00,sin 21)(,求⎰=x dt t f x 0)()(ϕ在),(∞+-∞上的表达式.四、设)(x f 在],[b a 上连续,且0)(>x f ,⎰⎰+=x axbt f dtdt t f x F )()()(.证明: (1)2)('≥x F ;(2)方程0)(=x f 在),(b a 内有且仅有一个根.第三节 定积分的换元法和分部积分法一、填空题: 1.=-⎰-212121arcsin dx xx .2.⎰-=++43432cos 1)arctan 1(ππdx x x .3.{}=⎰-222,1max dx x .4.设)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则=)(x f .二、选择题(单选):⎰>=aa dx x f x I 023)0()(,则I 为:(A)⎰20)(a dx x xf ;(B) ⎰adx x xf 0)(; (C) ⎰20)(21a dx x xf ; (D) ⎰a dx x xf 0)(21.答:( )三、试解下列各题: 1.⎰+21ln 1e xx dx.2.)0(0222⎰>-a a dx x a x .3.设⎩⎨⎧≥<+=-0,0,1)(2x e x x x f x ,求⎰-31)2(dx x f .五、计算下列定积分:44文档来源为:从网络收集整理.word 版本可编辑.1.⎰e xdx x 2ln .2.⎰20cos πxdx e x .六、已知1)(=πf ,)(x f 二阶连续可微.且3sin )]()([0=''+⎰πxdx x f x f ,求)0(f .第四节 反常积分一、填空题: 1.=⎰∞+12ln dx x x. 2.=-⎰121)1(arcsin dx x x x .二、选择题(单选): 1.若⎰∞+adx x f )(及⎰∞+adx x g )(均发散,则dx x g x f a⎰∞++)]()([一定:(A)收敛; (B)发散; (C)敛散性不能确定.答:( )2.若⎰∞-a dx x f )(发散,⎰∞+adx x f )(发散,则⎰∞+∞-dx x f )(一定:(A)收敛; (B)发散; (C)敛散性不能确定. 答:( )三、判别下列各反常积分的敛散性,如果收敛,则计算反常积分的值: 1.⎰-202)1(x dx.2.⎰∞++0)1(1dx xx .四、利用递推公式计算反常积分⎰∞+-=dx e x I x n n (n 为自然数).第五章自测题一、填空题(每小题5分,共20分):1.a ,b 为正常数,且1sin 1lim20=+-⎰→x x dt ta t x bx ,则=a ,=b . 2.=-⎰201dx x .45文档来源为:从网络收集整理.word 版本可编辑.3.=+⎰-ππdx xxx 21cos . 4.=⎰→xdt t x x 020cos lim.二、选择题(单选)(每小题5分,共10分): 1.⎰-x dt t dxd sin 021等于: (A) x cos ; (B) x x cos cos ; (C) x 2cos -; (D) x cos .答:( )2.设)(x f 连续,则⎰+ba dy y x f dxd )(等于: (A)⎰+'bady y x f )(;(B) )()(a x f b x f +-+;(C) )(a x f +;(D) )(b x f +.答:( )三、试解下列各题(每小题10分,共40分): 1.⎰-21224dx x x . 2.设⎪⎪⎩⎪⎪⎨⎧<+≥+=0,110,11)(x e x xx f x,求⎰-20)1(dx x f .3.设⎪⎪⎩⎪⎪⎨⎧≤≤<=πππx x x x f 2,02,cos )(,求dt t f x F ⎰-=ππ)()(在],[ππ-上的表达式.4.求位于曲线21xy =)1(≥x 的下方,x 轴上方的图形的面积. 四、试解下列各题(每小题15分,共30分): 1.设)(x f 在],[b a 上连续,证明⎰⎰-+-=badx x a b a f a b dx x f 1])([)()(.2.证明:⎰⎰-=aaadx x dx x 022)(2)(ϕϕ,其中)(u ϕ为连续函数.。
定积分期末考试题及答案
定积分期末考试题及答案一、选择题1. 以下哪个选项是定积分的基本性质?A. ∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx + ∫[a,b]g(x) dxB. ∫[a,b] f(x) dx = ∫[b,a] f(x) dxC. ∫[a,b] f(x) dx = ∫[a,c] f(x) dx + ∫[c,b] f(x) dxD. ∫[a,b] f(x) dx = ∫[a,b] f(-x) dx答案:A2. 如果函数f(x)在区间[a, b]上连续,那么下列哪个陈述是正确的?A. ∫[a,b] f(x) dx 总是存在B. ∫[a,b] f(x) dx 可能不存在C. ∫[a,b] f(x) dx 等于0D. ∫[a,b] f(x) dx 等于f(a) + f(b)答案:A二、填空题1. 定积分∫[0,1] x^2 dx 的值为 ______ 。
答案:1/32. 若∫[a,b] f(x) dx = 5,且 f(x) = 2x + 1,求 a 的值,当 b = 2。
答案:-1三、解答题1. 计算定积分∫[1,4] (3x^2 - 2x + 1) dx。
解:首先确定被积函数的原函数,即 F(x) = x^3 - x^2 + x。
然后根据定积分的定义,计算 F(4) - F(1)。
F(4) = 4^3 - 4^2 + 4 = 64 - 16 + 4F(1) = 1^3 - 1^2 + 1 = 1 - 1 + 1因此,∫[1,4] (3x^2 - 2x + 1) dx = F(4) - F(1) = 64 - 16 + 4 - (1 - 1 + 1) = 522. 已知函数 f(x) = x^2 + 3x + 2,求在区间 [0, 3] 上的定积分,并求出曲线 y = f(x) 与 x 轴围成的面积。
解:首先计算定积分∫[0,3] (x^2 + 3x + 2) dx。
原函数为 F(x) = (1/3)x^3 + (3/2)x^2 + 2x。
高等数学测试题五(定积分)答案
高等数学测试题(五)定积分部分(答案)一、选择题(每小题4分共20分)1、 设320()(0)aI x f x dx a =>⎰,则I 等于(C )A 2()a I xf x dx =⎰B 0()a I xf x dx =⎰C 201()2a I xf x dx =⎰D 01()2aI xf x dx =⎰2、下列函数中,哪个函数在[,]a b 上不一定可积(B ) A ()f x 在[,]a b 内有两个第一类间断点 B ()f x 在[,]a b 上有界 C ()f x 在[,]a b 内严格单调增加 D ()f x 在[,]a b 上连续3、设函数()f x 在[,]a b 上连续,则曲线()y f x =与直线,,0x a x b y ===所围成的平面图形的面积等于(C )A()baf x dx ⎰B()baf x dx ⎰C()baf x dx ⎰D ()(),()f b a a b ξξ'-<<4、下列各积分中能够直接应用牛顿—莱布尼茨公式的是(C ) A3112dx x-⎰B 3ln xdx ⎰C4tan xdx π⎰ D 22cot xdx ππ-⎰5、已知20()xx f t dt a =⎰,则()f x 等于(D )A 22xa B 2ln xa a C 212x xa - D 22ln xaa二、填空题(每小题4分共20分) 1、 设函数2()cos xF x t tdt =⎰,则()4F π'=8π 2、 比较定积分的大小43ln xdx ⎰<433ln xdx ⎰3、 极限202sin limxx tdt t x→⎰=12 4、322sin x x d t dt dx⎰=223sin92sin 4x x - 5、 已知201()0cx x f x ⎧≤≤=⎨⎩其它 ,若()1f x dx +∞-∞=⎰,则常数c =3 三、解答题 1、(7分)计算22220()limxt x x t e dt e dt→+∞⎰⎰解:原式=222220222limlim02xxt x x x x x e e dte exe→+∞→+∞==⎰2(7分)若()f x 连续,且(2)4f =-,计算2222[()]lim(2)xtx f u du dtx →-⎰⎰解:原式=222()()limlim22(2)2xx x f u duf x x →→-==-⎰3、(7分)计算21x dx -⎰解:原式=1201(1)(1)1x dx x dx -+-=⎰⎰4、(8分)计算230x e dx -解:原式=222012x e dx -,令 2x t =,:0ln 2t →原式=ln 2ln 2001122t t te dt tde --=-⎰⎰ln 2ln 211()(1ln 2)24tt te e dt --=--=-⎰5、(7分)计算2221min{,}x dx x-⎰解:由被积函数的奇偶性知 原式=21222312010*******min{,}2()2(ln )2(ln 2)33x dx x dx dx x x x x =+=+=+⎰⎰⎰6、(12分)设函数02()0()0x tf x dtx F x x cx ⎧⎪≠=⎨⎪=⎩⎰ ,其中 ()f t 具有连续的导数,且(0)0f =(1) 确定常数c ,使得函数()F x 连续 (2) 讨论()F x '是否连续解:(1)02()()1lim ()limlim(0)022xx x x tf t dt xf x F x f x x →→→====⎰ 所以 由()F x 连续知 0lim ()0x c F x →== (2)当 0x ≠时32043()2()()2()()xxx f x x tf t dtx f x tf t dtF x xx--'==⎰⎰20000()()(0)(0)lim lim0()1()(0)1lim lim (0)3303xx x x x tf t dtF x F x F x x f x f x f f x x →→→→-'==--'===-⎰2203200()2()2()()2()lim ()limlim 31(0)(0)3xx x x x f x tf t dtxf x x f x xf x F x x x f F →→→-+-'==''==⎰所以 ()F x '为连续函数。
高等数学定积分测试题
13、 设f ( x )连续,x > 0,且
∫
x2
1
f (t ) d t = x 2 (1 + x ),则f (2) = (
( B) . 2 2 + 12 ( D). 12 − 2 2
) 。
( A). 4 (C ). 1+ 3 2 2
14、函数 f(x)在[a,b]上有界是定积分 (A) 充分必要条件 (C) 必要但非充分条件
x − 2 dx ;
2.
∫
e
1
ln x dx ; x
x
0
3.
∫ lim
x→0
2t cos t dt
;
1 − cos x
x
∫ 4. lim
x →∞
0
(arctan t )2 dt
x2 + 1
;
5.
∫
1
−1
x dx ; 5 − 4x
五、证明题 1.设 f ′′( x) 在 [ a, b] 上连续,证明:
7、
( B)1 ( D) 2
)
∫
0
−1
3x + 1 d x = (
5 ( A). 6 3 (C ). − 2
8、 若f ( x) = ⎨
( B). − 3 ( D). 2 则∫ f ( x) d x = (
−1 2
5 6
⎧ x,x ≥ 0 ⎩e ,x < 0
x
)
( A). 3 − e −1 (C ). 3 − e
( A).有界 (C ).有定义
12、 设f ( x)为连续函数,且F ( x) =
( B).连续 ( D).仅有有限个间断点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=x a= , x b= , y 0 所围成的平面图形的面积等于( )
b
b
b
∫ ∫ ∫ A f (x)dx B f (x)dx C f (x) dx D f ′(ξ )(b − a), (a < ξ < b)
a
a
a
4、下列各积分中能够直接应用牛顿—莱布尼茨公式的是( )
∫3 1
A
dx
1 2−x
3
∫ B ln xdx 0
xf (x)dx
20
2、下列函数中,哪个函数在[a, b] 上不一定可积( )
A f (x) 在[a,b] 内有两个第一类间断点
B f (x) 在[a,b] 上有界
C f (x) 在[a,b] 内严格单调增加
D f (x) 在[a,b] 上连续
3 、 设 函 数 f (x) 在 [a,b] 上 连 续 , 则 曲 线 y = f (x) 与 直 线
0
4
4
∫ 2、 比较定积分的大小 ln xdx 3
∫ 4 ln3 xdx 3
∫ x sin2 t dt
3、 极限 lim 0 x→0
t x2=∫dFra bibliotek4、3x sin t 2dt =
dx 2x
cx2 0 ≤ x ≤ 1
+∞
∫ 5、 已知 f (x) =
,若 f (x)dx = 1,则常数 c =
0 其它
高等数学测试题(五)定积分部分
一、选择题(每小题 4 分共 20 分)
∫ = 1、 设 I a x2 f (x2 )dx (a > 0) ,则 I 等于( ) 0
a2
∫ A I = xf (x)dx 0 1 a2
∫ C I = xf (x)dx
20
a
∫ B I = xf (x)dx 0
∫ D
I=1
a
∫ (2,4),设函数 f (x) 具有三阶连续导数,计算 3 (x2 + x) f ′′′(x)dx 0
4
−∞
三、解答题
( x et2 dt)2
∫ 1、(7 分)计算 lim x→+∞
0
x e2t2 dt
∫0
x2
∫ ∫[ f (u)du]dt
2(7 分)若 f (x) 连续,且 f (2) = −4 ,计算 lim 2 x→2
t
(x − 2)2
2
∫ 3、(7 分)计算 1− x dx 0 2
∫ 4、(8 分)计算 ln 2 x3e−x2 dx 0
0
∫ C π tan xdx 4
π
∫ D
2 −π
cot
xdx
2
∫ 5、已知 x f (t)dt = a2x ,则 f (x) 等于( ) 0
A 2a2x B a2x ln a C 2xa2x−1 D 2a2x ln a
1
二、填空题(每小题 4 分共 20 分)
∫ 1、 设函数 F (x) = x t cos2 tdt ,则 F′(π ) =
∫ 5、(7 分)计算 2 min{ 1 , x2}dx
−2
x
∫
x
tf (x)dt
0
6、(12 分)设函数 F (x) = x2
c
x≠0 x=0
,其中 f (t) 具有连续
的导数,且 f (0) = 0
(1) 确定常数 c ,使得函数 F (x) 连续
(2) 讨论 F′(x) 是否连续
3
7、(12 分)如图 曲线 C 的方程为 y = f (x) ,点(3,2)是它的一个拐 点,直线 l1, l2 分别是曲线 C 在点(0,0)与(3,2)处的切线,其交点为