2016北邮工程数学期末试卷B卷答案

合集下载

《工程数学》电大历年期末试题及答案 (2)

《工程数学》电大历年期末试题及答案 (2)

工程数学电大历年期末试题及答案第一章:复数及其运算1.1 复数的定义和性质试题:1.请简要叙述复数的定义和性质。

2.复数的共轭运算是指什么?给出其定义和性质。

3.试证明虚数单位i满足i2=−1。

答案:1.复数是由实数和虚数部分构成的数,通常表示为a+bi的形式,其中a是实数部分,b是虚数部分,i是虚数单位。

复数的性质有:–复数可以相加:(a+bi) + (c+di) = (a+c) + (b+d)i–复数可以相乘:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i–复数的加法和乘法满足交换律和结合律。

2.复数的共轭运算是指改变虚数部分的符号,即将a+bi变为a-bi。

共轭运算的定义和性质如下:–定义:对于任意复数z=a+bi,其共轭复数为z* = a-bi。

–性质:(a+bi) * (a-bi) = a^2 + b^2,即一个复数与其共轭的乘积等于实数部分的平方加虚数部分的平方。

3.可以通过计算i2来证明虚数单位i满足i2=−1:–i2=(0+1i)∗(0+1i)=−1。

1.2 复数的指数表示和三角函数形式试题:1.请简要叙述复数的指数表示形式和三角函数形式。

2.试证明对于任意复数z,有$e^{i\\theta} =\\cos\\theta + i\\sin\\theta$。

答案:1.复数的指数表示形式是通过欧拉公式来表达,即$z= r \\cdot e^{i\\theta}$,其中r是复数的模,$\\theta$是复数的辐角。

复数的三角函数形式是通过复数的实部和虚部来表示,即$z = a + bi = r\\cos\\theta + r\\sin\\theta i$,其中r是复数的模,$\\theta$是复数的辐角。

2.可以通过欧拉公式来证明对于任意复数z,有$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$:–欧拉公式表示为$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$。

高等数学-16春期末考试答案-东华大学网校

高等数学-16春期末考试答案-东华大学网校

高等数学B 卷一、填空题(本大题共5小题,每小题3分,共15分) 1. 若()12+=t t ϕ,则()=+12t ϕ2224++t t 。

2. 数列 ,54,43,32,21,0的极限是 1 。

3. f (x )=sin x + 1在区间[]π2,0上的最大值是 2 。

4. 设222:a y x D ≤+,则=⎰⎰Dσd 2πa 。

5. x y e =在()+∞∞-,內连续。

二、求下列各题的极限(本大题共3小题,每小题5分,共15分) 1. xx x 1sinlim 0⋅→0=(有界函数与无穷小的乘积仍为无穷小)。

2. ()11tan lim 21--→x x x ()()21lim 11lim121=+=--=→→x x xx x 等价无穷小代换。

3. ()xx x x 1elim +→。

解:设()xx x y 1e+=,取对数,()xx y xe ln ln +=,使用洛必达法则,()2e e 1lim e ln lim ln lim 000=++=+=→→→x x x L x x x x xx y ,所以,20e lim =→y x 。

三、求下列各题的指定导数或微分(本大题共4小题,每小题5分,共20分) 1. 设xy 1=,求y '。

解:xx y 21-='。

2. ()⎪⎭⎫⎝⎛+=x y x y x f 2ln ,,计算()0,1y f '。

解:()y x x xx y x f y +=⎪⎭⎫⎝⎛+='2212121,,()210,1='y f 。

3. 已知x x y tan 2=,求y d 。

解:()()x x x x x x x x x y d sec tan 2tan d d tan d 2222+=+=。

四、求下列各题的积分(本大题共4小题,每小题5分,共20分)1. ⎰x xx d cos sin 122()C x x x x x x x x x x +-=+=+=⎰⎰cot tan d csc sec d cos sin cos sin 222222。

工程数学试题及参考答案(B卷) (2)

工程数学试题及参考答案(B卷) (2)

第 1页 /共 1页工程数学(考试形式: 闭卷 考试时间: 2小时)考试作弊不授予学士学位方向: 姓名: ______ 学号: ______1. Find values of:(a) );3(Ln − (b) )i +(12.(10 points)2. Function is harmonic, find an analytic functionsuch that satisfying (0)0f = .(10 points)3. Evaluate each of the following integrals: (20 points) 22;(9)()z zz z z i −+∫(b) d23131(2)z z z z −=−∫ (d)d .4. Find the series representation for the function at .(10 points)5. Evaluate integral of , where . (10 points)6. Find a representation for the function in powers of .(10 points)7. Find the residue of function 6sin ()z z f z z−=at 0z =.(10 points)8. Find the inverse Laplace transform of function 225()(2)9s F s s +=++. (10 points)9. Evaluate integral along positively oriented circle . (10 points) 2(1)z z e z z z =−∫2(a)d ; 10||2()(1)(3)z z z i z z =+−−∫d (c); (,)(cos sin ),()x v x y e y y x y x y f z u iv =+++=+ arctan 0z z = 2sin 14112Cz z C z z π+=−∫d : 11ze z − 1:|-2|2z iCdz C z eiππ=−∫第 1页 /共 3页《工程数学》期末试题答案(B)1.(a) (5 points)1.(b) (5 points)2.(10 points) 3.(a) z=0为一级极点, z=1二级极点(5 points)(b) (5 points))2sin(ln )2[cos(ln 2 0 .,2,1,0 )],2sin(ln )2[cos(ln 2)]22sin(ln )22[cos(ln 2222ln )22(ln )22(ln ) 2ln2)(1(2Ln )1(1i k k i e k i k e e e e k k k i k i k i i i +=±±=+=+++====−−++−++++时,得其主值为其中L πππππππ),2,1,0(,)12(3ln )3(Arg 3ln )3(Ln L ±±=++=−+−=−k i k i 其中π,1)sin sin cos (+++=∂∂y y x y y e xv x ,1)cos sin (cos ++−=∂∂y x y y y e y v x,1)cos sin (cos ++−=∂∂=∂∂y x y y y e y v x u x 由),()sin cos (d ]1)cos sin (cos [ y g x y y y x e x y x y y y e u x x ++−=++−=∫得 , 得由y u xv ∂∂−=∂∂),()sin cos sin (1)sin sin cos (y g y y y y x e y y x y y e x x ′−++=+++,)( C y y g +−=故,)sin cos ( C y x y y y x e u x+−+−=于是,)1()1()1()(C z i ze C i iy i x e iye e xe iv u z f z iy x iy x +++=++++++=+= ,0)0( =f 由,0 =C 得.)1()( z i ze z f z ++=所求解析函数为z z z e z z f z z d )1(lim ]0),([Res 20−⋅=→,1)1(lim 20=−=→z e zz ⎥⎦⎤⎢⎣⎡−−−=→221)1()1(d d lim )!12(1]1),(Res[z z e z z z f z z ⎟⎟⎠⎞⎜⎜⎝⎛=→z e z z z d d lim 10)1(lim 21=−=→z z e z z z z z e C z d )1(2∫−{}]1),(Res[]0),(Res[2z f z f i +=π.2i π=∫=+−22d ))(9(z z i z z z .592d )(9222ππ=−⋅=−−−=−==∫i z z z z i z i z z z第 2页 /共 3页(c)由于-i 与1在C 内部,(5 points) (d)2233131132|(2)8z z d idz i z z dz z ππ=−=−==−∫(5 points) 4.(10 points)5.(10 points)6.(10 points)2, 23 ,0 2 )2(132==−===−z z C z z z z 仅包含奇点和有两个奇点函数;2214sin 2d 114sin d 14sin 12112112i z zi z z z zz z z z z z πππππ=−⋅=+−=−−==+=+∫∫,1d arctan 02∫+=z z z z 因为1,)()1(11 022<⋅−=+∑∞=z z z n nn 且∫+=z z z z 021d arctan 所以∫∑∞=⋅−=z n n n z z 002d )()1(.1,12)1(012<+−=∑∞=+z n z n n ni,1,3)3)(1()(1)(10−∞−−+=点外,其他奇点为除被积函数z z i z z f 0]),(Res[]3),(Res[]1),(Res[]),(Res[ =∞+++−z f z f z f i z f 则∫−−+Cz z i z z )3)(1()(d 10]}1),(Res[]),(Res[{2z f i z f i +−=π]}),(Res[]3),(Res[{2∞+−=z f z f i π.)3(0)3(2121010i i i i +−=⎭⎬⎫⎩⎨⎧++−=ππ211)1(1)(z e z f z −=′−,)1(1)(2z z f −=,0)()()1( 2=−′−z f z f z 所以0)()32()()1(2=′−+′′−z f z z f z 0)(2)()54()()1(2=′+′′−+′′′−z f z f z z f z L L L ,13)0(,3)0(,)0()0(e f e f e f f =′′′=′′=′=).1(,!313!2313211<⎟⎠⎞⎜⎝⎛++++=−z z z z e e z L第 3页 /共 3页7.利用洛朗展开式(10 points) 8.(10 points)9.由)22(ππk iLnii e e i +−==可知被积函数11)(−=z e z f 以,...)2,1,0(),22(±±=+−=k k z k ππ为一阶极点,其中)42(),22(21ππππ+−=+−=−−z z 包含在ππ2||=−z 内部,由公式,...)2,1,0(|)'(1]),([Re 22++==−=+−k e i e z z f s k z z i z k k ππ,由留数定理,)(2]}),([Re ]),([Re {2)(12723212|2|ππππππ−−−−=−+=+=−∫ee i z zf s z z f s i i e z i z(10 points)223)2(1)2(2)(++++=s s s F )3sin 313cos 2(]}31[]3[2{]312[]3)2(1)2(2[)]([2221221222122211t t e s L s s L e s s L e s s L s F L tt t +=+++=++=++++=−−−−−−−−(0)(0)(0)0,P P P ′′′===(0)0.P ′′′≠3566sin 13!5!z z z z z z z z ⎡⎤⎛⎞−=−−+−⎢⎥⎜⎟⎝⎠⎣⎦L 16sin 1,0.5!z z c z −−⎡⎤∴==−⎢⎥⎣⎦Res。

北邮工程数学答案

北邮工程数学答案

一、设A 、B 、C 为三事件,用A 、B 、C 运算关系表示下列事件:1. A 发生,B 与C 不发生:_______________________2. A 、B 、C 中至少有一个发生:___________________ 3. A 、B 、C 中至少有两个发生:___________________ 4. A 、B 、C 中不多于一个发生。

_____________________ 二、填空1. 设A 、B 为两个事件,且5.0)()(,7.0)(===B P A P B A P ,则(1)=)(B A P ___________, (2)=)(B A P __________;2.若事件A 发生必导致事件B 发生,且==)(,4.0)(A B P A P 则____,=)(AB P ____; 3.若A 、B 为任意两随机事件,若)(),(),(AB P B P A P 已知,则=)(B A P ______________,=)(A P _______________;4. 设有三事件A 1、A 2、A 3相互独立,发生的概率分别为1p 、2p 、3p ,则这三事件中至少有一个发生的概率为__________________,这三事件中至少有一个不发生的概率为_______;5. 若随机变量X ~B (5,0.3),则P {X =3}=___________________________,P {X ≥4}=__________________________________________; 6. 设随机变量X ~B ),(p n ,且EX =2.4,DX =1.44,则X 的分布列为{}==k X P __________________________________________, {}==3X P __________________________________________;7.已知随机变量X 的概率密度函数为),(221)(8)1(2∞-∞=--x e x f π则EX =______,DX =______,X 的分布函数=)(x F __________________;8.设X ~N (1.5,4),则P {︱X ︱<3}=_________________;(已知)9878.)25.2(,7734.0)75.0(=Φ=Φ9.若X ~N (==-)(,22222Y E eY e x则),且,μμσμ___________;10.设随机变量X 的概率密度为=⎩⎨⎧≤>=-k x x ke x f x 则常数0,00,)(3_________。

北邮概率论期末考试卷(附答案)

北邮概率论期末考试卷(附答案)

第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

离散数学试题(2016)_B(答案)-推荐下载

离散数学试题(2016)_B(答案)-推荐下载

第1页 共6页第2页 共 6页一、填空题(每小题3分,共15分)1.设F (x ):x 是苹果,H (x ,y ):x 与y 完全相同,L (x ,y ):x =y ,则命题“没有完全相同的苹果”的符号化(利用全称量词)为∀x ∀y (F (x )∧F (y )∧⌝L (x ,y )→⌝H (x ,y )).2.命题“设L 是有补格,在L 中求补元运算‘′’是L 中的一元运算”的真值是 0 .3.设G ={e ,a ,b ,c }是Klein 四元群,H =〈a 〉是G 的子群,则商群G /H ={〈a 〉,{b ,c }}={{e ,a },{b ,c }}.4.设群G =〈P ({a ,b ,c }),⊕〉,其中⊕为集合的对称差运算,则由集合{a ,b }生成的子群〈{a ,b }〉 ={∅,{a ,b }}.5.已知n 阶无向简单图G 有m 条边,则G 的补图有n (n -1)/2-m 条边.二、选择题(每小题3分,共15分)1.命题“只要别人有困难(p ),小王就会帮助他(q ),除非困难已经解决了(r )”的符号化为 【B 】A .⌝(p ∧r )→q .B .(⌝r ∧p )→q .C .⌝r →(p ∧q ).D .⌝r →(q → p ).2.设N 为自然数集合,“≤”为通常意义上的小于等于关系,则偏序集〈N ,≤〉是 【C 】A .有界格.B .有补格.C .分配格.D .布尔代数.3.设n (n ≥3) 阶无向图G =〈V ,E 〉是哈密尔顿图,则下列结论中不成立的是 【D 】A .∀V 1⊂V ,p (G -V 1)≤|V 1|.B .|E |≥n .C .无1度顶点.D .δ(G )≥n /2.4.设A ={a ,b ,c },在A 上可以定义 个二元运算,其中有 个是可交换的,有 个是幂等的. 【A 】A .39,36,36.B .39,36,33.C .36,36,33.D .39,36,39.5.下列图中是欧拉图的有【C 】A .K 4,3.B .K 6.C .K 5.D .K 3,3.三、计算与简答题(每小题10分,共50分)1.利用等值演算方法求命题公式(p ∨q ) → (q →p )的主合取范式;利用该主合取范式求公式的主析取范式,并指出该公式的成真赋值和成假赋值.(p ∨q ) → (q →p ) ⇔⌝(p ∨q )∨(⌝q ∨p ) ⇔(⌝p ∧⌝q )∨(⌝q ∨p )⇔(⌝p ∨⌝q ∨p )∧(⌝q ∨⌝q ∨p ) ⇔⌝q ∨p ⇔p ∨⌝q哈尔滨工程大学试卷考试科目:离散数学(061121,061131)考试时间: 2008.07.09 9:00-11:00题号一二三四五总分分数评卷人第5页 共6页第6页 共 6页=(a ∧b )∨((a ∨c )∧(b’ ∨c’ ∨c ))=(a ∧b )∨(a ∨c )=(a ∨(a ∨c ))∧(b ∨a ∨c )=(a ∨c )∧(a ∨c ∨b )=a ∨c四、证明题(共20分)1.在自然推理系统中,构造推理证明:前提:∀x (F (x )∨G (x ))结论:⌝∀xF (x )→ ∃xG (x )证明:(1) ⌝∀xF (x ) 附加前提引入(2) ∃x ⌝F (x ) (1)置换(3) ⌝F (c )(2)EI 规则(4) ∀x (F (x )∨G (x )) 前提引入(5) F (c )∨G (c ) (4)UI 规则(6) G (c )) (3)(5)析取三段论(7) ∃xG (x )(6)EG 规则2.设代数系统〈A ,*〉是独异点,e 是其单位元.若∀a ∈A ,有a *a =e ,证明:〈A ,*〉是Abel 群.证明:由于对∀a ∈A ,有a *a =e ,因此,A 中任意元素a 都有逆元,且a=a -1.又〈A ,*〉是有单位元的独异点,从而〈A ,*〉是群.∀a ,b ∈A ,有a *b ∈A ,且a=a -1,b=b -1,(a *b )-1=a *b .又(a *b )-1=b -1*a -1=b *a ,因此 a *b =b *a ,即〈A ,*〉是Abel 群.3.证明:若无向图G 为欧拉图,则G 无桥.证明:(1)假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’一定不连通(G ’至少含有两个连通分支).由于G 为欧拉图,因此它是连通图,且有经过每条边一次且仅一次的回路,这条回路必经过G 的所有顶点.从而存在顶点v 1,v 2,…,v s ,使得uv 1v 2…v s vu 是G 的一条回路.从G 中删去边e =(u ,v )后,所得图G ’仍有从u 到v 的通路uv 1v 2…v s v ,这样G ’仍是连通图.矛盾.因此,G 中一定无桥.(2)由于G 为欧拉图,其每个顶点的度数均为偶数.假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’至少有两个连通分支.而且,顶点u ,v 的度数都是奇数,这与每个连通分支为图矛盾(与握手定理矛盾),因此,G 中一定无桥.。

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念§1 .1 随机试验与随机事件1.(1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A=;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为:.(2)A 与B 都发生,而C 不发生表示为:.(3)A 与B 都不发生,而C 发生表示为:.(4)A 、B 、C 中最多二个发生表示为:. (5)A 、B 、C 中至少二个发生表示为:.(6)A 、B 、C 中不多于一个发生表示为:. 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则 (1)=)(AB P , (2)()(B A P )= , (3))(B A P ⋃=.2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P =.§1 .4古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

工程数学考试试卷B

工程数学考试试卷B

广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程(2015-2016 √ 考试 A 卷 √ 闭卷一、单项选择题(每题2分,共20分)1、假设事件A 与事件B 相互对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C)发生的概率为1 (D)是必然事件 2、掷一枚质地均匀的骰子,则在出现奇数点的条件下出现1点的概率为( )。

(A)1/3 (B)1/2 (C)1/6 (D)2/3 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )。

(A) P (A)=1- P(B)(B) P(AB)=P(A)P(B)(C)P(B A )=1(D)P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)=( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、⎰=z (A)2πi (D)以上都不对 6、复数i e -3对应的点在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 7、设)2()(2222y xy bx i y axy x z f +++-+=在复平面内处处解析,(其中a,b 为常数)则( ) (A) a=2,b=1 (B) a=1,b=2 (C) a=2,b=-1 (D)a=-1,b=28、单位脉冲函数δ(t)的Fourier 变换为( )(A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)班级: 姓名:学号:试题共密封GDOU-B-11-302Cx 2y,9、设f(t)=u(t)cost ,则f(t)的Lapalace 变换为( )(A)1/(s 2+1) (B) 1/[s(s 2+1)] (C) s/(s 2+1)(D)1/s10、若f(t)的Fourier 变换为F(ω),则f(t+2)的Fourier 变换为( )(A)e 2j ωF(ω) (B)e -2j ωF(ω) (C)F(ω+2)(D)F(ω-2)二、填空题(每空2分,共20分)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。

大学《线性代数》2016-2017第二学期期末卷答案

大学《线性代数》2016-2017第二学期期末卷答案

大学2016—2017学年第二学期末卷课程名称: 线性代数 考试时间: 100 分钟 考试方式:闭卷一、填空题(每小题3分,共18分)1.设向量α=(-1,2,-2,4),则其单位向量的是ß= b =(-0.2,0.4,-0.4,0.8) 2. 如果n 元齐次线性方程组0=Ax 有基础解系并且基础解系含有)(n s s <个解向量,那么矩阵的秩为()=A R s n -3.设矩阵A =⎪⎪⎭⎫ ⎝⎛-4321,则矩阵A 的伴随矩阵A *= ⎪⎪⎭⎫ ⎝⎛-13244. 设 123,,λλλ为方阵270056004A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的三个特征值,则123λλλ= 405. 若向量组1a =(1,4,3),2a =(-2,-3,1), 3a =(2,t,-1)线性相关,则t = 36. 已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A 满足⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=421113201BA ,写出初等矩阵B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010100001B二、单项选择题(每小题3分,共18分)7. 设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( D ) (A).-6 (B).-3 (C).3 (D).68. 设A 为m n ⨯矩阵,且非齐次线性方程组AX b =有唯一解,则必有( C )(A) m n = (B)()R A m = (C) ()R A n = (D)()R A n <姓名: 学号: 教学班级: 教学小班序号:9. 设1234,,,αααα都是3维向量,则必有( B ) (A) 1234,,,αααα线性无关(B) 1234,,,αααα线性相关(C) 1α可由234,,ααα线性表示 (D) 1α不可由234,,ααα线性表示10. 设A 为n 阶方阵,则0=A 的充要条件是(B ).(A).两行(列)元素对应成比例; (B).必有一行为其余行的线性组合; (C).A 中有一行元素全为零; (D).任一行为其余行的线性组合. 11. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ).(A). 111---=B A AB )( (B). (AB)T =B T A T (C). (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 212. 若方程组 02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩有非零解,则k =( D )(A). -2 (B). -1 (C). 0 (D). 2三、计算题(每小题5分,共10分)13.求行列式21021001201002。

工程数学“概率论与数理统计”测试题参考答案

工程数学“概率论与数理统计”测试题参考答案

工程数学期末复习要点邹斌现在主要讨论工程数学这门课程的考核要求,08秋工程数学考试形式为半开卷,行考比例占30%,我们将分章节复习。

本课程分线性代数和概率统计两部分共7章内容。

分别是行列式、矩阵、线性方程组、矩阵的特征值及二次型、随机事件与概率、随机变量的分布和数字特征、数理统计基础。

第一部分线性代数一、行列式复习要求(1)知道n阶行列式的递归定义;(2)掌握利用性质计算行列式的方法;(3)知道克莱姆法则。

考核要求:行列式性质的计算(选择或填空)二、矩阵复习要求(1)理解矩阵的概念,了解零矩阵、单位矩阵、数量矩阵、对角矩阵、上(下)三角矩阵、对称矩阵的定义,了解初等矩阵的定义;(2)熟练掌握矩阵的加法、数乘矩阵、乘法、转置等运算;(3)掌握方阵乘积行列式定理;(4)理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件;(5)熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,掌握求解简单的矩阵方程的方法;(6)理解矩阵秩的概念,掌握矩阵秩的求法;(7)会分块矩阵的运算。

考核要求:(1)矩阵乘法(选择或填空)(2)求逆矩阵(3阶)初等行变换法(计算题)(3)求矩阵的秩(等于阶梯形矩阵的非零行数)三、线性方程组复习要求(1)掌握向量的线性组合与线性表出的方法,了解向量组线性相关与线性无关的概念,会判别向量组的线性相关性;(2)会求向量组的极大线性无关组,了解向量组和矩阵的秩的概念,掌握求向量组的秩和矩阵的秩的方法;(3)理解线性方程组的相容性定理,理解齐次线性方程组有非零解的充分必要条件。

熟练掌握用矩阵初等行变换方法判断齐次与非齐次线性方程组解的存在性和惟一性;(4)熟练掌握齐次线性方程组基础解系和通解的求法;(5)了解非齐次线性方程组解的结构,掌握求非齐次线性方程组通解的方法。

考核要求:(1)线性相关性(选择或填空)(2)会求向量组的极大线性无关组(计算题)(3)线性方程组的判定定理(选择或填空)(4)熟练掌握齐次和非齐次方程组的基础解系和通解的求法(计算题)四、矩阵的特征值及二次型复习要求(1)理解矩阵特征值、特征多项式及特征向量的定义,掌握特征值与特征向量的求法;(2)了解矩阵相似的定义,相似矩阵的性质;(3)知道正交矩阵的定义和性质;(4)理解二次型定义、二次型的矩阵表示、二次型的标准形,掌握用配方法化二次型为标准形的方法;(5)了解正定矩阵的概念,会判定矩阵的正定性。

北京邮电大学数学分析期末考试2016年1月(附答案)

北京邮电大学数学分析期末考试2016年1月(附答案)

北京邮电大学数学分析期末考试2016年1月(附答案)北京邮电大学2015-2016学年第一学期《数学分析》(上)考试卷考试注意事项:考生必须将答题内容做在答题纸上,做在试题纸上均无效一.填空题(本大题共10小题,每小题4分,共40分)1. 设220a c +≠,则20sin (1cos )lim(1)ln(1)x x a x b x c e d x →+-=-++ ;2. 0201|sin |arctan lim x x t dt t x→=?_____; 3.设函数3211tx e y dt t=+?的反函数为()x g y =,则(0)g '=____; 4. 设函数()y y x = 由参数方程20ln(1)cos tx t y u du =+ ??=??确定,则 22t d ydx == . 5. 曲线1xy xe - =的斜渐近线方程为 _________ ;6.sin sin cos xdx x x +?___________________;7.32420sin (|sin |)cos 2x x dx x sin xπ+=+?. 8. 设()f x 连续,满足0()2()21xf x f t dt x +=-?,则1()f x dx =?________;9.2ln exdx x+∞=?.10. 设211()23x x y e x e =+-是二阶常系数非线性微分方程x y ay by ce '''++=的一个特解,则:_____________.()3,2,1A a b c =-==-; ()3,2,1B a b c ===- ()3,2,1C a b c =-==; ()3,2,1D a b c ===。

二.(9分). 求函数arctan (1)x y x e =-的单调区间、极值;函数图形的拐点。

三.(每小题6分,共12分). (1)设函数()y y x =由方程211ln(1)y t e dt x --=+?确定,求22x d ydx= ;(2)设()f x 连续且(0)0f ≠,求120()lim()xx x f xt dtt f x t dt→ -??。

北京邮电大学 高等数学(全)答案.pdf

北京邮电大学 高等数学(全)答案.pdf

北京邮电大学高等数学答案一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数G.有界函数H.无界函数设,则__________.I.J.K.L.函数的定义域是____________.M.N.O.P.设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量S.常数T.不能确定下列函数中当时与无穷小相比是高阶无穷小的是_________.U.V.W.X.时,与为等价无穷小,则__________.Y. 1Z.0AA.2BB.____________.CC.DD.EE.FF.1_________.GG.0HH.II.JJ.1下列计算极限的过程,正确的是____________.KK.LL.MM.NN.设在处连续,则_________.OO.0PP.1QQ.2RR.设 ,则()SS.TT.UU.VV.设且可导,则()WW.XX.YY.ZZ.已知,则()AAA.1BBB.CCC.DDD.设,则()EEE.FFF.GGG.HHH.设,且,则( ) III.1JJJ.KKK.LLL.设,则( )MMM.99NNN.OOO.99!PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设,且存在,则等于()UUU.VVV.WWW.XXX.设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)函数的反函数是____________.A.B.C.D.函数的周期是___________.E.F.G.H.是____________.I.单调函数J.周期函数K.有界函数L.奇函数2.函数是___________.A.偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数设(为常数),则___________.E.F.G.H.设,则__________.I.J.K.L.下列各对函数相同的是________.M.与N.与O.与P.与设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量S.常数T.不能确定____________.U.V.W.X. 1_________.Y.0Z.AA.BB.1下列变量在给定的变化过程中为无穷小量的是_____________.CC.DD.EE.FF.存在是在处连续的_________.HH.必要条件JJ.无关的条件设在处连续,且时,,则_________.KK.0LL.8MM.4NN.2设函数,则的连续区间为______________.OO.PP.QQ.RR.设且可导,则()SS.TT.UU.VV.设,则()WW.XX.YY.ZZ.设则( )AAA.BBB.CCC.DDD.设,则()EEE.FFF.GGG.HHH.设,且,则( ) III.1JJJ.KKK.LLL.设,且存在,则等于()MMM.NNN.OOO.PPP.一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数的周期是___________.E.F.G.H.函数是定义域内的____________.I.周期函数K.有界函数是____________.M.单调函数N.周期函数O.有界函数P.奇函数函数是___________.Q.偶函数R.奇函数S.非奇非偶函数T.既是奇函数又是偶函数下列函数中为奇函数的是__________.U.V.W.X.设(为常数),则___________.Y.Z.AA.BB.函数的定义域是____________.CC.DD.EE.FF._____________.GG.0HH.1II.2JJ.____________.KK.LL.MM.NN.1_________.OO.0PP.QQ.RR.1设在处连续,且时,,则_________.SS.0TT.8UU.4VV.2设函数,则的连续区间为______________.WW.XX.YY.ZZ.设且可导,则()AAA.BBB.CCC.DDD.设则( )EEE.FFF.GGG.HHH.设,且,则( )III.1JJJ.KKK.LLL.设,则( )MMM.99NNN.OOO.99!PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设曲线在点M处的切线斜率为3,则点M的坐标为()UUU.(0,1)VVV.(1,0)WWW.(0,0)XXX.(1,1)设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)1.若,,则___________.B.C.D.设的定义域为则的定义域为___________.E.F.G.H.2.函数的反函数是____________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数G.有界函数H.无界函数是____________.I.单调函数J.周期函数K.有界函数下列函数中为奇函数的是__________.A.B.C.D.4.(错误)当时,与比较是______________.A.高阶无穷小B.等价无穷小C.非等价的同阶无穷小D.低阶无穷小5._________.A.0B.C.D. 16.(错误)下列计算极限的过程,正确的是____________.A.B.C.下列变量在给定的变化过程中为无穷小量的是_____________.A.B.C.D.8.(错误)设,则_________________.A. 1B.0C. 2D.不存在9.(错误)存在是在处连续的_________.A.充分条件B.必要条件C.充分必要条件D.无关的条件10.(错误)设函数,则的连续区间为______________.A.C.D.11.(错误)函数的连续区间为___________.A.B.C.D.12.设且可导,则()A.B.C.D.13.14.(错误)设则()A.B.C.D.15.(错误)设则( )A.B.C.D.16.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()A.(0,1)B.(1,0)C.(0,0)D.(1,1)17.(错误)设,且存在,则等于()A.B.C.D.18.设在点可导,则()A.B.C.一、单项选择题(共20道小题,共100.0分)1.(错误)若,,则___________.A.B.C.D.2.函数的反函数是____________.A.B.C.D.3.(错误)函数的周期是___________.A.B.C.D.4.(错误)函数是定义域内的____________.A.周期函数B.单调函数C.有界函数D.无界函数5.下列函数中为奇函数的是__________.A.D.6.(错误)设(为常数),则___________.A.B.C.D.7.(错误)函数的定义域是____________.A.B.C.D.8.(错误)函数的定义域为____________.A.B.C.D.9.(错误)下列各对函数相同的是________.A.与B.与C.与D.与10.(错误)_____________.A.0B. 1C. 2D.11.(错误)____________.A.B.C.D. 112.(错误)___________.A.0B.C.D. 113.存在是在处连续的_________.A.充分条件B.必要条件C.充分必要条件D.无关的条件14.15.(错误)设 ,则()A.B.C.D.16.(错误)设则( )A.B.17.(错误)已知,则()A. 1B.C.D.18.(错误)设,则( )A.99B.C.99!D.19.(错误)曲线在点(0,1)处的切线方程为( )A.B.C.D.20.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()A.(0,1)B.(1,0)C.(0,0)D.(1,1)21.(错误)A.B.C.D.21。

2016北邮工程数学期末试卷B卷答案

2016北邮工程数学期末试卷B卷答案

上,将函数
广义Fourier级数。
设:

按Legendre多项式展开为


解得: 所以:
八、(10 分)求解下列定解问题
得到: 而: 所以: 得:
所以:
1、试将复数

化为指数形式。
综上,指数形式为
2、 果是,求其导函数。

是否在z平面上解析?如
,则: ,
满足柯西-黎曼条件,所以是解析的。
3、将函数 级数。
在圆环
内展开为罗朗
4、求积分:

,则


,所以:
而 ,所以 所以:
三、(10分)求
在孤立奇点处的留数。
四、(10 分)利用分离变量法解下列定解问题:
北京邮电大学 2015——2016 学年第二学期
《工程数学》期末考试试题(B 卷)
可能用到的公式
,各递推公式中
一、 填空题(每空 4 分,共 20 分)
1、
0.
2、已知
,则可求出z的主值为
.
3、复数
,当
时,其幅角的主值
.
4、
=
.
5、Legendre方程
在自然条

的情况下,本征值为l.
二、 计算题(每题 5 分,共 20 分)
分离变量得:
, 可知只有
则 ,代入初始条件:
,所以:
代入原方程,解得 所以 由初始条件,则:
综上:
五、(10分)将方程 的标准形式。

化为Sturm-Liouville方程
则:
即: 六、(10分)在第一类齐次边界条件下,把定义在
按零阶Bessel函数展开成级数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上,将函数
广义Fourier级数。
设:

按Legendre多项式展开为


解得: 所以:
八、(10 分)求解下列定解问题
得到: 而: 所以: 得:
所以:
1、试将复数

化为指数形式。
综上,指数形式为
2、 果是,求其导函数。

是否在z平面上解析?如
,则: ,
满足柯西-黎曼条件,所以是解析的。
3、将函数 级数。
在圆环
内展开为罗朗
4、求积 ,所以 所以:
三、(10分)求
在孤立奇点处的留数。
四、(10 分)利用分离变量法解下列定解问题:
北京邮电大学 2015——2016 学年第二学期
《工程数学》期末考试试题(B 卷)
可能用到的公式
,各递推公式中
一、 填空题(每空 4 分,共 20 分)
1、
0.
2、已知
,则可求出z的主值为
.
3、复数
,当
时,其幅角的主值
.
4、
=
.
5、Legendre方程
在自然条

的情况下,本征值为l.
二、 计算题(每题 5 分,共 20 分)
分离变量得:
, 可知只有
则 ,代入初始条件:
,所以:
代入原方程,解得 所以 由初始条件,则:
综上:
五、(10分)将方程 的标准形式。

化为Sturm-Liouville方程
则:
即: 六、(10分)在第一类齐次边界条件下,把定义在
按零阶Bessel函数展开成级数。
上的函数
设:
则:
所以:
七、(10分)在
相关文档
最新文档